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Massively parallel execution of logic program: A static approach 

F. Baiardi a. * , A. Candelieri b, L. Ricci a 

Abstract 

A static model for the parallel execution of logic programs on MIMD distributed memory systems is presented where a 
refutation is implemented through a process network returned by the compilation of the logic program. The model supports 
Restricted-AND, OR and stream parallelism and it is integrated with a set of static analyses to optimise the process network. 
Altogether, the processes interact according to a static data driven model with medium grain operators. Data flowing in the 
network is tagged to distinguish bindings belonging to the same refutation. A scheduling strategy to integrate low level 
scheduling and message flow control has been defined. Performance figures are presented. 
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1. Introduction 

The parallel implementation of logic languages is 
currently pursued as a cost effective solution to 
speed up the execution of logic programs. Most of 
the current approaches focus on the definition of 
dynamic process networks, where several instances 
of an interpreter are created when the search reaches 
a branch point of the search tree [9,10,1.5,17- 19,2 I - 
23,25,26,32-34,36,37,39]. This approach has been 
originally developed in the case of shared memory 
systems because it is simplifies load balancing. Cur- 
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rent work is focused on the implementation of this 
approach on distributed memory systems. Distributed 
memory systems are becoming increasingly popular 
because of their scalability and cost effectiveness. 
These architectures include a large amount of pro- 
cessing elements, PEs, each including a processor 
and some local memory. Either a direct or an indirect 
partial interconnection network supports the coopera- 
tion among PEs. 

In a distributed memory system, the effectiveness 
of a dynamic approach can be largely reduced be- 
cause of the overheads due to the partial interconnec- 
tion network. As an example the complexity of 
process mapping increases due to the lack of infor- 
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mation about process communication. It may be the 
case that two heavily communicating processes, P 
and Q, are not mapped onto directly connected PEs 
because the mapping algorithm cannot anticipate the 
creation of Q when P is mapped. This results in an 
overhead due either to the routing of messages be- 
tween P and Q or to the migration of P and/or Q 
to two directly connected PEs. Further overheads 
may arise because of the transmission of the process 
data and/or code to a PE where a process is mapped 
124,291. 

A static approach [l&20,24,32], implements a 
refutation through a concurrent program where the 
number of processes and the interconnection among 
processes are static and are produced by the com- 
piler. The compilation of a program LP and of a 
query Q consists of two steps. The first step returns 
Net(Q,LP>, the network of processes implementing 
the refutation of G through the program LP. Infor- 
mation to optimise Net(Q,LP) is deduced through a 
set of static analyses of LP. 

The second step of the compilation maps the 
processes of Net(Q,LP) onto the PEs [2,.5,18,24]. 

Since the structure of Net(Q,LP) is known, the 
mapping step can exploit any information about pro- 
cess communications to improve the mapping. As a 
counterpart, this structure is independent of the target 
architecture and, to map Net(Q,LP) onto the archi- 
tecture, sharing of some resources may be necessary. 
A proper scheduling strategy has to solve the con- 
flicts arising because several processes share a PE or 
several communications share a physical link. 

Obviously, a static approach can fail to exploit 
those opportunities for parallelism that depend upon 
the values of some variables. The number of lost 
opportunities can be reduced by a proper set of static 
program analysis. 

This work introduces a static concurrent execution 
model where a set of static analyses of the logic 
program determines the structure of the concurrent 
program to implement a refutation. The analyses do 
not require any information about the usage of the 

various predicates. Their correctness has been proved 
through an abstract interpretation approach [I$, 12, 
17,19,20.27,28,32]. 

To prevent both congestion and hot spots 
[ 14.15.311, a strategy to schedule both the processors 
and the communication links has been defined that 
bounds the number of messages flowing in the inter- 
connection network simultaneously. 

The paper is organised as follows. Section 2 
introduces the static execution model and it points 
out where the output process network can be opti- 
mised according to the information returned by the 
program static analyses. Section 3 briefly defines the 
basic notions underlying the analyses and the analy- 
ses themselves. Section 4 discusses the dynamic 
scheduling strategy and an implementation of the 
model. Performance figures are discussed. 

We do not discuss mapping strategies because, 
while most mapping strategies may be adopted, ex- 
perimental results point out that resource scheduling 
is the most critical issue. 

2. The static execution model 

We define the concurrent static execution model 
in the general case of Horn clause logic and refer to 
[ I81 for a classification of the various kinds of 
implicit parallelism of a logic program. 

The proposed model implements the refutation of 
a query Q< . . .) on a program LP through a process 
network Net(Q,LP). From now on we drop the de- 
pendency of the process network from the logic 
program, i.e. Net(Q) is used in place of Net(Q,LP). 

The compiler produces the network Net(Q), the 
predicate network for Q, by properly composing the 
networks Net(Q, >, . . . , Net(Q,>, clause networks, 
where Q,, . . ,Q, are all and only the program clauses 
having Q as their predicate symbol. 

In turn, each Net(Q,> is recursively defined in 
terms of the networks INet(L,, l, . . . ,INet(L,,) where 
1 <j 5 m, L,j is the j-th literal in the body of Qi 
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and INet( L,,) is an instance of Net(L,j), the predi- 
cate network of Li,. To avoid bottlenecks, Net(Qi) 
includes a distinct instance of Net(P) for each literal 
whose predicate symbol is P. 

The strategy to compose Net(Q, >, . . . ,Net(Q,> to 
produce Net(Q) defines the solution to OR paral- 
lelism, while that to compose INet(L,, >, . . , 
INet(L,,) to produce Net(Q;) is a solution to AND 
parallelism, see Fig. 1. 

Each message flowing in the network codifies a 
goal to be refuted by a network. A message may be 
described as an Activation Frame, AF, that includes 
an environment and a store. An environment records 
a pointer to the store for each variable, while the 
store records the bindings for the variables. If the 
refutation of a goal P(. . . > requires that of the 
subgoal R( . . . 1, AF,, an AF that codifies this sub- 
goal is sent to ZR, the proper instance of Net(R). The 
store and the environment of AF, are subsets of 
those of AF, they include all and only the bindings 
of the variables appearing in R( . . . >. In this way, ZR 
receives the bindings required to refute R only. If 
the refutation of R( . . . ) is successful, the bindings of 

(1) f.J( . ..).- Ll(...1.L2( . ..).Ll( ). 

(2) Q( ..,) :- L1( ). L-2( ). 

clause nelwork (1) 

clause network (2) 

Fig. I. OR and AND parallelism in the model. 
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Fio 2. Creation of the AF to refute R(X,W) in a clause 

P(c;l,Y,Z): - R(X,W) ,_._, 

the AF that codifies its results are imported into the 
AF for the original query P(. . .>, see Fig. 2. 

In this way, the processes of Net(Q) cooperate in 
a data driven way and they exchange AFs that codify 
the queries for the various subnetworks of Net(Q). 
Each process implements a predefined set of opera- 
tions, i.e. the unification of a goal with the head of a 
clause. the management of recursion and the update 
of an AF through the bindings returned by the 
refutation of a subgoal. Further predefined processes 
are required to implement non-logical predicates of 
the considered language. 

As detailed in the following, a process network 
implements several refutations in parallel. Consis- 
tency is preserved through a tag associated with each 
AF to distinguish bindings belonging to distinct refu- 
tations [3]. 

2.1. Implementation of OR parallelism 

To fully exploit OR parallelism, Net(Q), the pred- 
icate network for Q is the parallel composition of all 
the clause networks Net(Q, 1,. . . ,Net(Q,) where 
Q,, . . _ ,Q, are the clauses having Q as their predi- 
cate symbol. Net(Q, >, . . . ,Net(Q,) are composed in 
parallel through an instance Dist of the predefined 
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(4 Qjx, Y):- K(X), P(X. Y). 

QCX. Y):- P(X, 2). P(Y. Z). 

R (a). 

R (h). 

P (;i,h). 

P (X.Y) :- R (Xl. R (Y) 

(cl INet INet 

(4 ~1st 

Fig. 3. A program and the corresponding process networks a. A 
simple program. b. Net(Q). c. NetiP). d. Net(R). 

unification process and one instance of the prede- 
fined collector process, Join, see Fig. 3a and Fig. 3b. 

After receiving an AF, Dist unifies the corre- 
sponding query with the head of each clause Q. If 
the unification is successful, a frame AF, is produced 
and sent to Ner(Qi>. The environment of AF, in- 
cludes all and only the variables appearing in Q. 
The bindings of the global variables are those re- 
turned by the unification, while any local variable is 
initially unbound. AF, and AF are then paired with a 
unique tag, to record that the bindings of the global 
variables in AF, returned by the refutation have to be 
imported into AF. 

If the unification of the goal with the head of Qi 
fails, no data is sent to Net(Qi>. After attempting the 
unification with the head of all the clauses, Dist 
sends to Join(Q) the AF it has received. 

To implement a fact, Dist transmits the AF result- 
ing from a successful unification to Join. No back- 
tracking strategy is required because Dist attempts 
the unification of a goal with all the clauses. 

When Join receives an AF, from NedQ,), it im- 
ports the binding of AFi into the corresponding AF 
received from Dist. The resulting AF is transmitted 
to the next network. The use of tags makes it possi- 
ble to correctly and efficiently associate each AF, 
with the proper AF. 

Because of OR parallelism, any predicate network 
can produce several AFs, even when receiving a 
single AF. Hence, both the input and the output of a 
network are streams of AFs. A predicate network 
solves distinct queries in parallel, because Dist re- 
ceives an AF from its input stream as soon as it has 
unified the previous one against the heads of all the 
clauses of Q, and sent the resulting AFs to the 
proper clause networks. 

2.2. Implementation of AND parallelism 

According to previous experiences [6,9- 
11,17,18,22,23], two predicate networks implement- 
ing literals of the same clause are executed in paral- 
lel only if the corresponding literals cannot share an 
unbound variable, Restricted-AND parallelism, RAF’. 
The absence of sharing is deduced through a static 
share analysis [32], see Section 3. 

If a sharing exists, or if the absence of sharing 
cannot be proven, stream parallelism is applied and 
the two networks are composed according to a 
pipeline strategy where processes in the first one 
bind the shared variable and those in the other 
consume, i.e. check, the binding. While the correct- 
ness of the implementation does not depend upon 
which network is chosen as the producer, the execu- 
tion time is reduced if the producer network binds 
the shared variable to a ground term. The producer 
network is chosen through a static analysis based 
upon the notion of ground dependency [ 191. 
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If RAP cannot be exploited, pipeline-AND paral- 
lelism, an optimisation of stream parallelism may be 
adopted. This kind of parallelism arises if the con- 
sumer network can perform some useful computation 
as soon as a partial binding for the shared variable 
has been produced. In this case, the producer com- 
municates to the consumer a partial binding for the 
shared variable, rather than a complete one, as soon 
as such a binding has been produced. 

2.2.1. Restricted-AND parallelism 
Within a clause process, the parallel execution of 

INet(&, . ,INet(L,J is implemented through two 
instances of the predefined processes Split and 
Merge. 

After receiving an AF, Split produces an AFj for 
each INET(L,,). AF, includes the bindings in AF of 
the variables referred to by Lij. After receiving an 
AF, from each INET(L,j), Merge produces and sends 
to the next network an AF including all the bindings 
of AF , , . . . ,AF,, , see Fig. 4. 

To guarantee a consistent merge of the bindings, 
Split inserts the same tag into all the AFs returned by 
the decomposition of the same AF. 

If mj(t) denotes the number of AFs with tag t 
that Merge has received, at a given time, from 
INET(L,,), 1 5 j I n, then, upon receiving an AF 
with tag t from INET(Lik), 1 < k I n, Merge ap- 
pends m,(t)* . . . * rnk-,(t)* mt+,(t)* . . . *m,,(t) 

Fig. 4. Composition of two networks to exploit RAP 

AFs to its output stream. Each AF is produced by 
merging the received AFs with n - 1 AFs, each 
received from a distinct subnetwork. This implies 
that an instance of Merge has to record all the AFs it 
receives from any INET(L,,). To prevent memory 
overflows, Merge may be decomposed into a set of 
parallel processes. 

To retrieve the AFs to be merged with a given 
one while avoiding a sequential scanning, Merge 
uses the tags paired with the AFs as keys in a hash 
table. 

2.2.2. Pipeline-AND parallelism 
This kind of parallelism will be illustrated through 

an example. Consider the clause: 

Transform( X,Y,Z) : -Mol( Y,Y,), Add( X,Y, ,Z) 

and suppose that: 

. X, Y. Y, and Z are lists, X is ground; 

. the refutation of Mol and that of Add returns a 
ground substitution for an element of Y,, or of Z, 
if the corresponding element of Y. or of X and 
Y,, is ground. 

Let Prod be the subnetwork of Net(Mo1) that 
computes a ground substitution for the first element 
of Y,. When Prod generates such a substitution, it 
sends an AF recording this partial binding both to 
Net(Add) and to the next subnetwork of Prod in 
Net(Mo1). These two networks can start, respec- 
tively, the computation of the first element of Z and 
that of the second element of Y,, and so on, see Fig. 
5. The correctness of the incremental construction of 
the bindings is preserved through proper tags in the 
AFS. 

2.3. Networks for recursive clauses 

The procedure previously outlined to compile a 
predicate into a predicate network does not terminate 
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b--J J Yet(Addi 

Net!Mol) 

Fig. 5. Interconnection for pipeline-AND parallelism. 

if it is applied to a predicate Q such that Q( . . . ) is 
invoked during the refutation of Q( . ). 

To avoid this case, we introduce a normal form of 
logic program characterised by the absence oj’mutu- 
ally recursive predicates, i.e. no predicate P is 
defined in terms of a predicate Q (# P) that is, in 
turn, defined in terms of P. Mutual recursion is 
removed at compile time by considering two mutu- 
ally recursive predicates P and Q as instances of a 
normal form predicate PQ where a further argument 
distinguishes the instance, P or Q, to be applied 
[35], see Fig. 6. 

Normal form programs simplify the mapping step 
because they are compiled into networks where pro- 
cesses are connected in a regular topology [5]. As an 
example, each network receives (sends) its AFs from 
(to> one stream only. 

The network for a recursive clause includes a 
distinct instance of RecHan, the predefined process 
for recursion handling for each recursive invocation. 
To handle a recursive invocation, RecHan: 

(a> records the AF that has produced the invoca- 
tion, 

P(...) :- Rl( _.._ ), <I( ). PC ) 

PC...) :- . . . . P( ). 

Q(L) :- R2( ), .., CJ ). I’( I. 

hccomc\ 

PO.., p) :- R I (...). . . PCJ , ~1). PC){ p, 

Pc)( p) : . PCJ( . p). 

PC&... , q) :- R2( .._. ), _... PQ( . . ~1). Pv( _. , p). 

Fig. 6. Transformation IO remove mutual recursion. 

(b) produces an AF codifying the invocation, 
(c) sends to Dist the AF produced in (b), 
Cd) after receiving from Join the AF codifying the 
results of the invocation, it builds the proper solu- 
tions through the AFs recorded in (a>. 

Even if the AF received in Cd) is produced by 
Dist, it is sent to RecHan through Join so that Dist 
can manage in a uniform way the AFs returned by a 
unification. 

In this way, the process network refutes in paral- 
lel goals received either from the previous network 
or from the RecHan processes within the network 
itself. In other words, the network input stream 
merges the output stream of the previous network 
and the recursive invocations produced by the 
RecHan processes within the network. Again, consis- 
tency is preserved by associating each AF with a 
unique tag. 

If a RecHan receives an AF with tag T, AF(T), 
and it produces a recursive invocation with tag T,, 
then T, is a tag depending on T. Upon receiving an 
AF(T,) codifying a final substitution, the RecHan 
produces the results of the invocation by applying 
these substitutions to AF(T). Because of OR paral- 
lelism, a RecHan may receive several AFs, with the 
same tag. For each AF, either it produces a recursive 
invocation. with a distinct tag, or it uses the bindings 
in the AF to produce the result of an invocation. 

Dependencies among tags are represented through 
a tree or a cactus stack, as shown in Fig. 7. A 
RecHan handles a distinct tree, or a cactus stack, for 

<AFl.Tl> cAF2, T2> <AF3. T3> 

< AF4, T4> cAF5. T5> <AF6, T6> <AF7,T7> 

Fig. 7. A tree recording dependencies among tags. 
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each tag T where T has not been produced by the 
RecHan itself or, from another point of view, T does 
not depend upon any other tag. 

2.4. Compiling a predicate into a process network 

The procedure to compile a predicate P of a 
normal form program LP into a process network 
Net(P) may be outlined as follows: 

(a) Net(P) is the parallel composition of the clause 
networks of P through an instance of Dist and 
one of Join. 
(b) A clause network is 
1. the sequential composition; or 
2. the parallel composition of the networks for the 

literals in the body of the clause through an 
instance of Split and one of Merge. 

(cl In a clause network of P, the network for a 
literal Q<. . .> is 
1. an instance, INet( of Net(Q) if Q + P; 
2. a RecHan process if Q = P. 

The refutation of a query 

Q=P,(...) ,.... P,(...), 

where P,,... ,P, are predicates of LP, is imple- 
mented through a query network, Net(Q), that is the 
clause network of the clause P,(. . . ), . . ,P,(. . .I. 

The input of the query network is an AF codify- 
ing the bindings of the variables in the query. The 
output is a sequence of AFs, each codifying a substi- 
tution satisfying the query itself. Since an AF is 
discarded upon the failure of a unification, no AF is 
produced by the query network if no such a substitu- 
tion exists. In other words, the model backward 

semantics [ 171 discards an AF as soon as it is 
detected that its bindings do not lead to a refutation 
of the goal. This points out that our model is “all 
solutions” oriented. 

A refutation terminates after producing all the 
substitutions for the query. The termination can be 
detected through the exchange of further messages, 
end messages [32]. An end message is transmitted to 
the query network after the AF codifying the query 
and proper rules are defined so that each network 
propagates the end messages only if and when it will 
not produce any further AF. 

The proposed static model does not impose an “a 
priori”, architecture dependent, constrain on the de- 
gree of parallelism of the output program. The finite 
amount of PEs is considered in the mapping step and 
in the resource scheduling strategy 

It is worth noticing that a query network includes 
several instances of distinct processes. Each instance 
can be further special&d according to the predicate 
it implements or to its position in the query network. 
Furthermore, each predefined process can be decom- 
posed in parallel depending upon the optimal process 
granularity of the target architecture. 

3. Static analyses of a logic program 

The step of the compilation that generates the 
process network exploits the information returned by 
a set of static analyses to optimise the network 
structure. 

The analyses are defined according to a bottom 
up approach [28] so that they return only the infor- 
mation that can be deduced from the structure of the 
program. 

The analyses are based on the notion of ground 
dependency, i.e. the relation between the distinct 
arguments of a predicate that a successful refutation 
binds to a ground term. This notion allows the 
analyses to overcome several limitations of existing 
analyses. The correctness of the analyses has been 
formally proved through abstract interpretation tech- 
niques. The abstract interpretations have been de- 
fined according to a bottom up approach as well 
[ 19.201. 
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Select (cons(X , Xs), X, Xs 1 

Select (cons(Y, Ykj. X. constY. %s 1) :- 

Select (Ys, x, ZS). 

P (X ,Y. Lb’) :- Select (X. Y, W). Fi (X, Y), F2 (Y, W) 

Fig. 8. 

3.1. Bottom up analyses 

First, we point out the main differences between a 
top down analysis and a bottom up one. 

Consider, as an example, the program fragment in 
Fig. 8, where Select(X,Y,Z) if the list 2 is produced 
by removing one occurrence of Y from X. Fl and 
F2 are verified if a given relation exists between Y 
and, respectively, the original list X and the result- 
ing list W. 

If the whole program is top-down analysed, some 
information has to be supplied by the user about the 
goals that will be refuted and/or the status, i.e. 
ground or not ground, of some variables in the 
query. This information is propagated by the analysis 
till the invocation of P and it defines the context of 
the invocation. Suppose that, according to the con- 
text, the first argument of P is ground, hence the first 
argument of Select is ground and the other argu- 
ments of Select will be ground after the refutation of 
Select. This information is now included in the 
contexts of Fl and F2. 

A bottom up mode analysis, instead, propagates 
information starting from the unit clauses of the 
program. Due to the lack of user supplied informa- 
tion, less information about the status of a variable 
may be available than in the corresponding context 
of a top-down analysis. Hence, a bottom up analysis 
based upon variable states only cannot return the 
information to optimise the structure of the network. 
In the example of Fig. 8, if no information is avail- 
able about the state of the arguments of PI a bottom 
up mode analysis of Select cannot return any infor- 
mation. 

3.2. Ground dependency analysis 

The loss of information due to the bottom up 
approach may be recovered by taking into account 
not only the states of variables, but also the relation 
about the states of distinct variables produced by the 
successful refutation of a predicate. This is possible 
through the notion of ground dependency, GD: 

a predicate P defines a ground dependency from 
arguments in S = (Ai,. . . , Ak) to an argument A,, 
Aj E S, if any successful refutation of P where 
the arguments in S are bound to ground terms 
binds A, to a ground term. 

The notion of GD is fully independent of the 
variable states and the analysis to detect GDs does 
not require information about such states. Further- 
more, the notion of GD allows the analysis to return 
significant information about the variable states be- 
cause, provided that the groundness of a few vari- 
ables may be determined, the state of other variables 
may be deduced through GDs. 

From the declarative meaning of Select in Fig. 8, 
it is quite obvious that whenever the first argument is 
ground both the second and the third arguments, 
respectively the selected element and the resulting 
list, are ground. Furthermore, since Select may pro- 
duce the first argument through a non-deterministic 
insertion of the second argument in the third one, the 
first argument will be ground, provided that both the 
second and the third ones are ground. 

GDs are detected through the multiple occurrence 
of the variables in the arguments of a predicate, i.e. 
X and X, in the first clause of Select and Y in the 
second one. 

GDs define how predicates propagate ground in- 
formation and they are strongly related to stream 
parallelism because this propagation has a critical 
role in the choice of the predicate to be used as the 



producer. As matter of fact, the search space of the 
consumer is strongly reduced if the producer binds V 
to a ground term. More in general, the refutations of 
the predicates in the body of a clause should be 
ordered so that the i-th predicate defines a CD from 
the variables bound to ground terms by the previous 
(i - 1) predicates. Since. in this way. a partial order 
only may be defined. the compiler exploits proper 
heuristics to transform the partial order into a total 
one [32]. As an example. if several predicates bind 
the same variable to a ground term, then the pro- 
ducer is the one that binds the largest number of 
variables to ground terms. 

A specialisation of the notion of CD is that of 
deternzinistic ground dependency DGD that extends 
the notion of functional computation in a logic pro- 
gram [ 161: 

ground dependency is deterministic if for any set 
of ground bindings for the arguments in S. any 
successful refutation of P binds A, to one ground 
tern) only. 

The predicate Append3( X.Y,Z,K 1 in Fig. 9 is 
such that K is the result of appending the lists X, Y 
and Z and satisfies a given condition F,. 

The predicate Append defines three GDs: 

1. from the first two arguments to the third one: 
2. from the third argument to the first one; 
3. from the third argument to the second one. 

According to the declarative meaning of Append3, 
only the first GD is a deterministic one. This can be 
deduced because each step of a refutation exploits at 
most one clause of Append. Suppose now that A. B, 

C and D are ground when Append3 is invoked: then 
the three subgoals of Append3 cannot be concur- 
rently executed because of the shared local variable 
E. If the producer of E is chosen on the basis of 
GDs only. either of the two Append literals may be 
chosen because they both produce a ground binding 
for E. If DGDs have been determined, then the first 
invocation of Append is chosen because it produces 
at most one ground binding for E. This choice 
largely reduces the search space and it may be 
considered as the optimal one, independently of the 
execution model. 

If a predicate P defines a DGD, the instance of 
Dist in Net(P) sends any AF received from the input 
stream to at most one clause network. 

3.3. Type inference and shut-e analysis 

A bottom up polymorphic type inference system 
has been included in the compiler. The type infer- 
ence system assigns types to functors and predicates 
through a program analysis that is independent of the 
functor names and of their arity. Type declarations 
are defined implicitly in the compiler and they are 
parametric with respect to the name of the construc- 
tors exploited in the type declarations. 

Most type inference systems for logic languages 
are based upon those used in functional program- 
ming [3O] and they can handle only regular structures 
that include objects with the same type. When a 
heterogeneous structure is analysed, either an error is 
signalled or a. the most general type that includes 
any type, is returned. 

Our type system, instead, characterises heteroge- 
neous data structures through the introduction of the 
type union constructor @. As an example, if a list 
may include both Boolean values and characters, its 
type is list(Boolean @ character). The type system 
assigns the type LY to a structure if and only if it can 
include terms with any type. 

The adoption of this type system is related to the 
defimtion of a bottom up analysis to detect the 



Occ (cons(a,Xj, 2) :-OK (X, T), Plus (‘I‘, s(oj. 2). 

Occ (cons(b,X) 2):. Occ (X, Z). 

Sumlist (I 1, 0). 

Sumlist (cons(X ,Y) , K) :- Sumllst (Y. T ), Plus (X. T, K ). 

Check (X. Y) :- Occ (X. Lj, Sumhst (Y. F), L,~ger (L. FJ. 

Fig. IO. 

sharing among variables due to a unification. This 
analysis detects literals of the same clause that can- 
not be refuted in parallel because they may share an 
unbound variable. 

To improve the share analysis, its results have 
been integrated with those returned by the type 
inference system. In fact. two variables defined in 
terms of distinct elementary data types cannot share 
an unbound variable. As an example, no variable can 
be shared between a list of integers and one of 
strings. 

To describe the proposed approach, consider the 
predicate Check(X,Y > in Fig. 10, that is verified if 
the number of occurrences of the character “u” in 
X is larger than the sum of elements of Y. 

In the clause of Check, because of the shared 
variables L and F, one producer has to be chosen 
between Occ and Larger and one between Sumlist 
and Larger. Hence, the only opportunity is the paral- 
lel execution of Occ and Sumlist, but. even if a 
textual analysis does not detect any variable shared 
between them, a sharing may arise because of a 
previous unification. 

In the case of Check, the types inferred for the 
arguments of Occ and Sumlist can guarantee that no 
sharing occurs at run-time. As a matter of fact, the 
type inference system detects that, whenever Occ 
succeeds, its first argument will be bound to a term 
of type list(character) while the type of the first 
argument of Sumlist is always list(natura1). As a 
consequence, no sharing is possible between the two 
structures because they include elements with dis- 
tinct elementary data types. i.e. no successful refuta- 

tion can introduce a sharing. Hence, Occ and Sumlist 
can be refuted in parallel before Larger. 

To show the importance of handling heteroge- 
neous data structures, suppose that the clause 

Occ(cons(true,X),Z) : -Occ( X,Z) 

is inserted into the program in Fig. 10. The type of 
the first argument of Occ becomes list(Boolean Ei 
character). Again, no sharing between Occ and Sum- 
list is possible. This can be deduced because the type 
system records the information about all the types of 
the elements in the two lists. A type system that is 
not heterogeneous does not enable the share analysis 
to deduce the absence of sharing between Occ and 
Sumlist because it assigns the type u, that may be 
instantiated to any data type, to the first argument of 
occ. 

3.4. K-ground dependency analysis 

When stream parallelism is exploited. the pro- 
ducer generates a “complete” binding for a shared 
variable V before starting the consumer. This re- 
duces the degree of parallelism when the consumer 
can perform some useful computation even when 
receiving a partial binding for the shared variable. 
Suppose that the shared variable is a list: in this case, 
the producer can send to the receiver a stream of 
elements of a list rather than a whole list. This 
cooperation is implemented through pipeline-AND 
parallelism and it requires a control mechanism simi- 
lar to that of concurrent logic languages [33], where 
stream communication is fundamental. We point out 
that pipeline-AND parallelism is fully orthogonal to 
OR parallelism, because it is related to the definition 
of a single solution. 

To determine if pipeline-AND parallelism can be 
exploited. a formal definition of “useful partial bind- 
ing” is required, that describes the binding required 
by the consumer to perform some useful computa- 
tion. The notion of k-ground dependency is a further 
refinement of a GD that approximates such a defini- 
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Fig. I 1. A matrix multiplication program 

tion. A partially ground binding is useful if it allows 
the consumer to produce, in turn, ground bindings 
for other arguments. 

A predicate P defines a k-ground dependency, 
k-GD, from the arguments in S to A, if: 

1. a ground dependency from S to A, exists, 
2. the arguments in S and A, are structured terms. 
3. for any substitution where the first k components 

of the arguments in S are ground, a successful 
refutation of P binds the first component of A, 
to a ground term. 

The analysis to detect k-GDs is applied if the type 
inference analysis returns a type list for at least two 
arguments of a predicate. 

Consider. as an example, the program fragment in 
Fig. 11. where mm( X,Y.Z) is such that the matrix Z, 
a list of rows, is the product of matrices X, a list of 
rows and Y. a list of columns. In turns, both rows 
and columns are represented as lists. We assume that 
the predicates +, * have the obvious meaning and 
that both define a GD from their two first arguments 
to the third one. 

The type inference system deduces that the argu- 
ments of mm are two level structures, lists of lists. 
The predicate mm defines a GD from the rows and 
the columns of the input matrices to the rows of the 
resulting one. 

The predicate vm defines GDs among second 
level elements of the structure, i.e. from the elements 
of the input matrices to those of the resulting one. 

The analysis detects a l-GD from the first two 
arguments of mm to the third one. This signals that a 
row of the resulting matrix can be bound to a ground 

term if the whole second matrix and the correspond- 
ing row of the first matrix are ground. vm defines 
each row of the third matrix as the product of a row 
of the first matrix for each column of the second one. 
The I-GD from the first two arguments to the third 
one denotes that a ground binding for an element of 
the resulting row is produced provided that only the 
corresponding row and column in the input matrices 
are ground. Hence, a binding is useful for mm if the 
first subterm of the first argument of mm is ground 
and the second argument is ground. When supplied 
with such a binding, mm can bind to a ground term 
one element of its third argument. 

To show how k-GDs make it possible to exploit 
pipeline-AND parallelism, consider the clause 

mmul( X,Y,Z) : - transp( Y,T) ,mm( X,T,Z), 

where transp(Y,T) is such that T is the transposition 
of matrix Y and a I-GD from the first to the second 
argument of transp exists. In this case, if transp has 
been chosen as the producer of T, pipeline-AND 
parallelism can be exploited because of the I-GDs 
from the first argument of transp to the shared 
variable 7’ and of that from T to the other arguments 
of mm. These dependencies show that the partial 
ground bindings for T are useful for the consumer. 

A further requirement to exploit pipeline-AND 
parallelism is that the partial bindings are consumed 
in the same order they are produced. This can be 
checked by the compiler because this order depends 
upon the one among clauses. In the example, the 
pipeline-AND optimisation can be applied if transp 
produces the columns of the transposed matrix in the 
obvious order. 

4. Implementation of the model 

A first implementation of the execution model 
and of the abstract interpreters has been developed. 
This implementation exploits a predicate-indepen- 
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dent version of Dist, Join, Split, Merge and RecHan. 
The size of the program of each process, that ranges 
from 5 to 10 Kbytes, could be reduced by optimising 
each process according to its position in the network. 

4.1. Processor scheduling and flow 

The experimental results have pointed out some 
critical problems related not only to the proposed 
model but to distributed memory systems in general. 

Because of OR parallelism, a refutation of a goal 
may fire the refutation of a large number of sub- 
goals. This results in the injection of a large number 
of messages into the interconnection network that 
leads to a sharp increase of the communication traf- 
fic. In turn, this can cause both congestion and hot 
spots. A hot spot [ 14.311 arises when a large percent- 
age of the messages crosses the same link. 

If we take into account that the latency of a 
communication is proportional to the number of 
links crossed by the corresponding message as well 
as to the number of conflicts on each link, i.e. of the 
messages that try to cross the same link simultane- 
ously, it is obvious that congestion and hot spots 
strongly reduce the performance of the network and. 
hence, of the overall system. 

Furthermore, both congestion and hot spots no- 
ticeably increase if several communications are non- 
local. i.e. between processes mapped onto PEs that 
are not directly connected or connected to the same 
routing device. In a direct interconnection network, 
non-local communications increase the computa- 
tional load of the PEs that have to route the corre- 
sponding messages. In an indirect network, non-local 
communications increase the number of conflicts at 
each routing node. On the other hand. to map a 
complex process network onto the target architec- 
ture, non-local communications cannot be avoided 

[5,241. 
To prevent a large performance degradation, we 

have adopted a control flow strategy, congestion 
prevention by bounding (CPBB). This strategy 

bounds the number of messages flowing in the inter- 
connection network in parallel or, that is the same, 
the number of processes that can send a message in 
parallel [4]. The CPBB strategy seems more appro- 
priate for asynchronous computational models than 
random routing [38] and it does not require proper 
hardware supports as virtual channels [ 13,141. Fur- 
thermore, it makes it possible both to exploit locality 
in the application and to bound in advance the 
latency of a communication. 

The CPBB strategy we have defined: 
(a) bounds the overall number of messages flow- 
ing both in the overall interconnection network 
and in a subset of the network itself, i.e. it sup- 
ports both global and local controls. Local control 
is fundamental to reduce hot spots; 
(b) chooses the processes that can send a message 
according to the status of the overall computation. 
As an example, messages that can quickly lead to 
the production of a result have priority over those 
that still requires a large amount of computation 
before producing an output. Assigning a priority to 
each message is not a proper solution, because 
priorities depend upon the status of the receiver 
process as well. 

It is worth noticing that, if most communications 
are not local, then several processes can be mapped 
onto the same PE so that the PE is not idle while one 
process is waiting because of a non-local communi- 
cation. In this case, control flow should be integrated 
with the scheduling of the PE so that a process is 
scheduled for execution only if it is allowed to 
communicate. This avoids a too large context switch- 
ing overhead. As discussed in the following, CPBB 
can achieve such an integration. 

The CPBB strategy and the corresponding algo- 
rithm have been defined with reference to a class of 
process networks that includes those to support the 
implementation of logic programs. Here we describe 
the CPBB strategy at a high abstraction level and 
focus only on those aspects that are relevant to the 
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networks of interest, see Fig. 3. At first, structured 
networks with no recursion are considered. 

CPBB is based upon the notion of a token that 
represents the permission to send a message, i.e. 
only a process holding a token can send a message. 
The number of tokens is fixed at program loading. If 
K is the number of tokens, at most K messages can 
be flowing in the network at any moment because 
only a process holding a token can send a message 
and because the process pairs the token with the 
transmitted message. 

Each token is either local or external to a net- 
work. In the former case, the token supports the 
transmission of messages only within the corre- 
sponding network. In the latter, a token can cross 
different subnetworks and propagate AFs among the 
subnetworks. The tokens are managed so that the 
receiver of a message, i.e. of an AF, can start the 
refutation of the query coded by the AF as soon as it 
is received. 

Starting from an initial allocation of token to 
processes, an algorithm distributes tokens among the 
processes so that the same results of an uncon- 
strained execution are produced. The algorithm con- 
sists of two steps: the forward and the backward 
distributions of tokens that correspond to, respec- 
tively, the distribution of AFs among the networks 
and that of free tokens among the networks waiting 
to send/receive an AF. 

The ~WJO steps alternate to guarantee that when a 
process sends an AF, the receiver is ready to exe- 
cute the computation$red by that AF. The backward 
distribution of tokens in a network N terminates if 
and when all the outputs of N have been produced. 
To detect this event, each token T includes an 
information ES(T) about the execution status of the 
processes it has already crossed in the backward 
distribution. ES(T) makes it possible to determine if 
at least one computation is still suspended waiting 
for a token. 

We notice that K, the number of tokens, depends 
upon the ratio between the degree of parallelism of 

the query network and the degree of parallelism that 
can be supported by the target architecture as well as 
upon the mapping of the network on the architecture. 
The value of K decreases as it increases the number 
of constrains the architecture imposes on the net- 
work. From another point of view, the larger the 
value of K, the lower the resource sharing due to the 
program mapping. 

In the following, we assume that each process, or 
process network, N stores in a queue OutQ( N) the 
AFs it cannot send because no token is available. 
In(N) denotes the input stream of N that includes 
the AFs codifying the queries to be refuted by N. 

4. I .l Fomaard distribution 
Because of the CPBB strategy, each message 

flowing in the network is either a pair (AF,token) or 
a token that is backward distributed to enable a 
process P to send messages in OutQ(P). 

A process network N can receive a message 
(AF.ET) from ln( N) only if it holds a free local 
token LT. Upon the reception of such a message, N 
holds the token ET that is, by definition, external for 
N. Hence, N can use ET to transmit one AF to the 
network ON whose input stream corresponds to the 
output one of N. LT enables N to start a computa- 
tion and produce a result that will be either appended 
to OutQ(N) or transmitted to ON, i.e. appended to 
In(ON) if some external token is available. In both 
cases, LT becomes free because it is local to N. LT 
allows N either to receive a message from In(N) or 
to resume one of the computations fired by an AF 
previously received and that has been suspended 
because no token was available. These computations 
are detected through the token backward distribution. 

4.1.2. Backward distribution 
In the backward distribution phase, tokens are 

redistributed to enable the resumption of suspended 
computations. In the backward distribution the pro- 
cesses N,, . . . ,NA belonging to a network N, trans- 
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mit tokens in the opposite direction with respect to 
AFs. Hence, tokens flow from the processes that 
transmit the AFs produced by N to those that receive 
the AFs from In(N). 

As an example, in an OR network implemented as 
in Fig. 3. AFs flow from Dist to Join in the forward 
phase while tokens flow from Join to Dist in the 
backward phase. 

During the backward distribution, any N, crossed 
by a token LT either uses LT to transmit an AF in 
OutQ(N;yi) or transmits the token backward if 
OutQ(N;) is empty. The transmission of a message 
in OutQ(N,) terminates the token backward distribu- 
tion and it starts a new forward phase. 

A backward phase terminates after distributing the 
tokens to any process or subnetwork of N that can 
produce an AF to be appended to OutQ( N >. 

As discussed in Section 2. because of OR paral- 
lelism, the execution model always requires a ternzi- 
nution detection algorithm independently of schedul- 
ing and congestion prevention. This algorithm de- 
tects when the query network will not produce fur- 
ther AFs. The backward distribution is a generalisa- 
tion of this algorithm that detects the subnetworks 
waiting to send an AF. 

N can backward distribute any external token that 
it is currently holding when no computation is going 
on within N and no computation is suspended within 
N. In terms of AFs, these two conditions can be 
rephrased as follows: N can backward distribute an 
external token if no AF is flowing within N or 
waiting in a queue, i.e. OutQ(N,) is empty for any 
process N, belonging to N. 

The backward distribution of external tokens al- 
lows other networks to produce queries to be re- 
ceived by N. Since N backward distributes an exter- 
nal token only after the termination of its computa- 
tions. it privileges the resumption of suspended com- 
putations with respect to the production of further 
queries for N. In other words. N can receive an AF 
from In(N) only after computing all the solutions of 
the queries previously received. 

1. 

2. 

Ihe main advantages of this strategy are: 

101~ memory requirements because it reduces the 
number of suspended computations; 
load balancing: By favouring suspended compu- 
tations, we reduce the time to produce the solu- 
tions for a given query and, hence, to start a 
computation in the networks that receive such 
solutions. 

4.1.3. Recursion 
To apply the CPBB strategy to networks that 

include RecHan processes, the distinction between 
local and external tokens has to be reconsidered 
because the recursive invocations produced by 
RecHan are solved by the same network, Net(P), 
including the RecHan process. Hence. RecHan needs 
an external token to append a message to In(P), but 
external tokens are handled by Dist and Join only 
because they are the processes of Nett P > that inter- 
act with the environment of Net(P). 

This can be solved through another kind of token, 
an indirect token. An indirect token IT is local to the 
network Net(P) including the RecHan and, in the 
forward distribution, any process in Net(P) can con- 
sider IT as either an external token, as in the general 
case, or as a local token dedicated to the RecHan 
process. This means that a process of Net( P > can use 
IT to send a message to a RecHan only. Otherwise, 
the process handles IT as an external token. 

The backward distribution phase handles indirect 
tokens as external ones. 

4.2. Experimental results 

The first experiments have been focused on a 
database query. the classical N-queens problem, that 
present several problems of more realistic applica- 
tions, queries about array and matrix manipulation 
and the search of the shortest path between two 
nodes of a graph. Any kind of parallelism is present 
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(4 

in these programs. Several experiments have been 
developed by adopting the CPBB policy. 

Because of the static approach. the number of PEs 
to be used in the experiments depends upon the 
process network returned by the compiler and it 
cannot be freely chosen as in a dynamic approach. 

(4 

PFs/qu"'I, kind 01’ p:~rd time (mwc I 
Xl/l \t~~..,,n+( )R’ :li 
2, I/S \llL~.,,ll+( )I~1 WI 
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Fig. 14. N-queens program. a. Execution times b. Execution times 

eith CPPB. c. Execution times with CPPB and random mapping. 

Some the experiments have used a distributed 
memory system with 40 PEs, each including an T414 
and a 256 Kbytes memory. The PEs are connected in 

(b) 
PEs kind of p;~rnll. limr( mwc) 

25 \,11’.11,, X?YX~~ I 
29 \Il~.llll+RAP 3lZ/??l) 
32 ~~~~~~~m+I~AP+~:ii~llcl MCI+ I Ill/l?li 
41) \IIL,.IIII+RAP+OR? 1 I?/? 1’ 

Fig. 13. Second database program. The query is Same(X,Y,Z,K). b. Execution times. 
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a 4 X 10 mesh with wrap-around connections. Other 
experiments have used a distributed memory system 
with 32 PEs, each including a T800 and 2 Mbytes of 
memory. Both systems are rather simple and most 
communication related functions are implemented by 
software rather than at the hardware/firmware level 
as in current architectures. As an example, in both 
systems, messages are routed through proper pro- 
cesses replicated on each PE. This implies that all 
the reported performance figures can be considered 
as worst case ones. 

4.2.1. Database programs 
Given a database recording the population and the 

extension of a set of countries, at first we consider a 
query about all the pairs of countries whose average 
densities differ of less than 5%. 

Fig. 12a shows the database program in the case 
of 25 countries, Fig. 12b reports the kinds of paral- 
lelism, the number of PEs that have been exploited 
and the corresponding execution time. Each time is 
an average over at least 8 runs. ORi means that the 
process Dist has been decomposed so that the facts 
about either the extension or the surface are managed 
by i processes mapped onto distinct PEs, i.e. i 

unifications have place in parallel. The experiments 
have shown that this improves the performance only 
if i < 3. This is due to the low number of physical 
links of each PE because, if i > 3, some of the 
communications among the processes produced by 
the decomposition of Dist are non-local. Parallel 
Merge denotes that the process Merge to implement 
AND parallelism has been decomposed into two 
processes to avoid memory overflows. 

(4 
tlxl\f~ulll(X. I I. X) 

tunhl‘c)nn(X. Y, Zi:-nlol(Y. Y’).urld(X. Y’. Z). 

llld(~].[l). 

mcrl([X I Y].[X I I Z]):-X I IS (3*-X).lnhrl(Y,Z). 

add([ 1.Y.Y). 

add([XI I X],[\r’ I I Y I,jW I I WI):-w I 1s (X I +Y I ). adtl(X.Y.W) 

Fig. 15. a. Array program. b. Execution times 
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A further benchmark has been considered, where 
the database includes the global national product of 
each country as well. In this case, the query is about 
all the pairs of countries whose average densities 
differ less than 5% and such that the average product 
per person of the first country is larger than that of 
the second one. The program and the execution times 
are shown, respectively, in Fig. 13a and Fig. 13b. 

4.2.2. N-queens problem 
In our experiments for this well-known problem, 

the largest value of N is 6. The execution times are 
reported in Fig. 14. Again, each time is an average 
over at least 8 runs. Also in these experiments, ORi 
means that the clauses with the same predicate sym- 
bol are managed by i processes. In the case of 6 
queens, the application of the CPBB strategy reduces 
the execution time from 4245 msec to 3640 msec. 
Furthermore, the adoption of CPBB reduces the 
amount of memory to buffer messages as well as the 
size of the cactus stack managed by the RecHan 
processes. 

4.2.3. Array and matrix product 
Given two arrays of integers, the program shown 

in Fig. 15a multiplies each element of the first one 
for a constant and adds the resulting array to the 
second one. In the implementation of this program, 
OR, Restricted-AND and pipeline-AND parallelism 
may be exploited. We have compared the execution 
times that can be achieved through stream paral- 
lelism alone against those that can be achieved 
through both stream and pipeline-AND parallelism. 
As shown in Fig. 15b, the execution time halves 
when both kinds of parallelism are exploited with 
respect to the case where stream parallelism only is 
exploited. 

The second program applies the same operation to 
matrices. The experimental results show that, with 
respect to the case where only pipeline-AND paral- 
lelism is exploited, no speed up is achieved by 
exploiting RAP in the producer network. The pro- 

\ I, ; s 

Fi- 16. a. Matrix program. b. Stream and pipeline-AND paral- 

lelT;rn: Execution times. c. Stream parallelism: Execution times. 

gram in Fig. 16a has been executed on several 
matrices, by fixing the number of columns and by 
varymg the number of rows from 3 to 7. In the case 
of matrices with 3, 4 and 5 columns, Fig. 16b and 
Fig. 16c show the execution times if pipeline-AND 
parallelism or stream parallelism alone is exploited. 

4.2.4. Shortest path problem 
To evaluate the influence of the CPBB strategy on 

the final performance, a set of experiments has con- 
sidered a program that computes the shortest path 
between any two nodes of a graph. Two versions of 
this program have been considered that are imple- 
mented, respectively, by 32 and 60 processes. Alter- 
native mapping and routing strategies have been 
applied to the two versions. 

The two routing strategies we have considered are 
an adaptive one, that chooses the path to route a 
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message according to the current load of the links, 
and an oblivious one [7], where the path to route a 
message between any pair of PEs is fixed. 

Three mapping strategy have been applied: 

(a) the minimum distance mapping (md). This 
strategy minimises the average distance between 
two communicating processes, i.e. the average 
number of links crossed by a message. To com- 
pute the average number of links, each communi- 
cation is weighted according to the amount of 
transferred data and to its frequency: 
(b) the longest disrunce mapping (Id). This map- 
ping maximises the average distance between two 
communicating processes. The weight of each 
communication is determined as in (a>; 
(c) the random distance mapping (rd). A process 
is mapped onto a PE chosen at random according 
to a uniform distribution. This strategy does not 
attempt any optimisation but it requires no infor- 
mation about the amount of data exchanged in a 
communication or about the communication fre- 
quency. 

To define the mappings (a) and (b), the amount of 
data exchanged among any pair of processes as well 
as the probability distribution of the interval of time 
between two successive communications have to be 
known. They have been obtained by program moni- 
toring. 

In all the experiments where the CPBB strategy is 
not adopted, the processes that are allowed to com- 
municate or scheduled for execution are chosen by, 
respectively, the routing processes and the prede- 
fined scheduling algorithm of the Transputer. 

The three parameters considered in the experi- 
ments are: 

1. mul, the degree of multiprogramming of a PE; 
2. the routing strategy: adaptive or oblivious; 
3. the mapping strategy: Id or md or rd. 

Concerning (11, in the case of the 32 process 
version. either 32 or 8 PEs are used and at most four 
processes are mapped onto each PE. The experimen- 
tal results show that CPBB is an effective scheduling 
strategy for a PE. For each choice of mul, the 
mapping strategy and the routing algorithm, Fig. 17 
shows D, the percentage improvement due the adop- 
tion of CPBB. If ex(CPBB) and ex(noCPBB) are, 
respectively, the execution times of the program if 
CPBB is applied and if it is not applied, then D = 
(ex(noCPBB) - ex(CPBB))/ex(noCPBB). 

Each time is an average over at least six execu- 
tions. With the exception of (* >, the CPBB strategy 
reduces, or at least it does not increase, the execution 
time, independently of the other parameters. 

In case (*) in Fig. 17, the execution time in- 
creases because of the large number of non-local 
communications introduced by the Id mapping strat- 
egy. To support these communications, the PEs route 
messages for most of the time and they can devote a 
small percentage of time to the execution of pro- 
cesses and to the generation of AFs. Hence, no 
congestion arises and the CPBB strategy further 
increases the overhead. 

Fig. 18 shows the results of the experiments for 
the 60 processes version. The execution times of this 
version are worse than those of the 32 processes 
version. By adopting the CPBB strategy, the execu- 
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tion times of this version are always lower than the 
corresponding ones in the 32 processes version. Be- 
sides those previously considered, we have evaluated 
a mapping where 4 PEs are used and at most 16 
processes are mapped onto each PE. In this case, if 
the oblivious routing strategy is adopted, a message 
crosses, at most, two links. The reduction of the 
execution time in this case confirms the effectiveness 
of CPBB as a scheduling strategy. 

The largest improvements in the version with 60 
processes are due to a larger number of messages or, 
in other words, to a finer process grain. As a matter 
of fact, the 32 processes version has an almost 
optimal process grain for the considered architecture. 
It is worth noticing that, for any choice of the 
parameters, the execution time in the case (CPBB + 
Id mapping) is lower than that of the case (noCPBB 
+ md mapping). Obviously, it is simpler to adopt the 
CPBB strategy rather than defining the md mapping. 

Lack of space prevents a more extensive analysis 
of other experiments with a “hybrid” solution where 
the CPBB strategy has been applied only to those 
subnetworks where congestion may arise. Even in 
these cases, performance improvements similar to 
those previously described have been achieved. 

5. Conclusion 

To the best of our knowledge, ours is one of the 
first approaches to the execution of logic programs 
on distributed memory systems where a static execu- 
tion model is integrated with static analyses to opti- 
mise the output process network. 

At this stage of the experiments, preliminary con- 
clusions only can be derived. The first results sug- 
gest the adoption of the proposed approach in the 
case of a database program or, however, in the case 
of “all solutions” applications. Even if side effects 
constructs such as cut and not have been imple- 
mented in the proposed model, the effectiveness of 
the solution in the case of “single solution” applica- 
tions is more questionable. More powerful static 
analyses or further optimisations of the predefined 
processes have to be investigated for these problems. 

The use of the CPPB algorithm has pointed out 
the importance of dynamic resource scheduling to 
reduce the performance losses due to sharp increases 
of the communication load. These sudden changes in 
the communication load cannot be foreseen at com- 
pile time and require a dynamic solution. 
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