
ELSEVIER Journal of Systems Architecture 43 (1997) 437-457

Massively parallel execution of logic program: A static approach

F. Baiardi a. * , A. Candelieri b, L. Ricci a

Abstract

A static model for the parallel execution of logic programs on MIMD distributed memory systems is presented where a
refutation is implemented through a process network returned by the compilation of the logic program. The model supports
Restricted-AND, OR and stream parallelism and it is integrated with a set of static analyses to optimise the process network.
Altogether, the processes interact according to a static data driven model with medium grain operators. Data flowing in the
network is tagged to distinguish bindings belonging to the same refutation. A scheduling strategy to integrate low level
scheduling and message flow control has been defined. Performance figures are presented.

Key~or~l.\: Logic language; Distributed memory system; Compilation: Static process network; Congestion

1. Introduction

The parallel implementation of logic languages is
currently pursued as a cost effective solution to
speed up the execution of logic programs. Most of
the current approaches focus on the definition of
dynamic process networks, where several instances
of an interpreter are created when the search reaches
a branch point of the search tree [9,10,1.5,17- 19,2 I -
23,25,26,32-34,36,37,39]. This approach has been
originally developed in the case of shared memory
systems because it is simplifies load balancing. Cur-

’ Corresponding author. Email: baiardi@dipisa.pi.unipi.it

rent work is focused on the implementation of this
approach on distributed memory systems. Distributed
memory systems are becoming increasingly popular
because of their scalability and cost effectiveness.
These architectures include a large amount of pro-
cessing elements, PEs, each including a processor
and some local memory. Either a direct or an indirect
partial interconnection network supports the coopera-
tion among PEs.

In a distributed memory system, the effectiveness
of a dynamic approach can be largely reduced be-
cause of the overheads due to the partial interconnec-
tion network. As an example the complexity of
process mapping increases due to the lack of infor-

1X33-7621 /0165-6074/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved.
PI/ S I X83-762 1(96)00056-2

mation about process communication. It may be the
case that two heavily communicating processes, P
and Q, are not mapped onto directly connected PEs
because the mapping algorithm cannot anticipate the
creation of Q when P is mapped. This results in an
overhead due either to the routing of messages be-
tween P and Q or to the migration of P and/or Q
to two directly connected PEs. Further overheads
may arise because of the transmission of the process
data and/or code to a PE where a process is mapped
124,291.

A static approach [l&20,24,32], implements a
refutation through a concurrent program where the
number of processes and the interconnection among
processes are static and are produced by the com-
piler. The compilation of a program LP and of a
query Q consists of two steps. The first step returns
Net(Q,LP>, the network of processes implementing
the refutation of G through the program LP. Infor-
mation to optimise Net(Q,LP) is deduced through a
set of static analyses of LP.

The second step of the compilation maps the
processes of Net(Q,LP) onto the PEs [2,.5,18,24].

Since the structure of Net(Q,LP) is known, the
mapping step can exploit any information about pro-
cess communications to improve the mapping. As a
counterpart, this structure is independent of the target
architecture and, to map Net(Q,LP) onto the archi-
tecture, sharing of some resources may be necessary.
A proper scheduling strategy has to solve the con-
flicts arising because several processes share a PE or
several communications share a physical link.

Obviously, a static approach can fail to exploit
those opportunities for parallelism that depend upon
the values of some variables. The number of lost
opportunities can be reduced by a proper set of static
program analysis.

This work introduces a static concurrent execution
model where a set of static analyses of the logic
program determines the structure of the concurrent
program to implement a refutation. The analyses do
not require any information about the usage of the

various predicates. Their correctness has been proved
through an abstract interpretation approach [I$, 12,
17,19,20.27,28,32].

To prevent both congestion and hot spots
[14.15.311, a strategy to schedule both the processors
and the communication links has been defined that
bounds the number of messages flowing in the inter-
connection network simultaneously.

The paper is organised as follows. Section 2
introduces the static execution model and it points
out where the output process network can be opti-
mised according to the information returned by the
program static analyses. Section 3 briefly defines the
basic notions underlying the analyses and the analy-
ses themselves. Section 4 discusses the dynamic
scheduling strategy and an implementation of the
model. Performance figures are discussed.

We do not discuss mapping strategies because,
while most mapping strategies may be adopted, ex-
perimental results point out that resource scheduling
is the most critical issue.

2. The static execution model

We define the concurrent static execution model
in the general case of Horn clause logic and refer to
[I81 for a classification of the various kinds of
implicit parallelism of a logic program.

The proposed model implements the refutation of
a query Q< . . .) on a program LP through a process
network Net(Q,LP). From now on we drop the de-
pendency of the process network from the logic
program, i.e. Net(Q) is used in place of Net(Q,LP).

The compiler produces the network Net(Q), the
predicate network for Q, by properly composing the
networks Net(Q, >, . . . , Net(Q,>, clause networks,
where Q,, . . ,Q, are all and only the program clauses
having Q as their predicate symbol.

In turn, each Net(Q,> is recursively defined in
terms of the networks INet(L,, l, . . . ,INet(L,,) where
1 <j 5 m, L,j is the j-th literal in the body of Qi

F. Ba~urdr et ul. / Journal cfl Systems Architecture 43 (1997) 437-457 439

and INet(L,,) is an instance of Net(L,j), the predi-
cate network of Li,. To avoid bottlenecks, Net(Qi)
includes a distinct instance of Net(P) for each literal
whose predicate symbol is P.

The strategy to compose Net(Q, >, . . . ,Net(Q,> to
produce Net(Q) defines the solution to OR paral-
lelism, while that to compose INet(L,, >, . . ,
INet(L,,) to produce Net(Q;) is a solution to AND
parallelism, see Fig. 1.

Each message flowing in the network codifies a
goal to be refuted by a network. A message may be
described as an Activation Frame, AF, that includes
an environment and a store. An environment records
a pointer to the store for each variable, while the
store records the bindings for the variables. If the
refutation of a goal P(. . . > requires that of the
subgoal R(. . . 1, AF,, an AF that codifies this sub-
goal is sent to ZR, the proper instance of Net(R). The
store and the environment of AF, are subsets of
those of AF, they include all and only the bindings
of the variables appearing in R(. . . >. In this way, ZR
receives the bindings required to refute R only. If
the refutation of R(. . .) is successful, the bindings of

(1) f.J(. ..).- Ll(...1.L2(. ..).Ll().

(2) Q(..,) :- L1(). L-2().

clause nelwork (1)

clause network (2)

Fig. I. OR and AND parallelism in the model.

EW

StOE Slore
J

Fio 2. Creation of the AF to refute R(X,W) in a clause

P(c;l,Y,Z): - R(X,W) ,_._,

the AF that codifies its results are imported into the
AF for the original query P(. . .>, see Fig. 2.

In this way, the processes of Net(Q) cooperate in
a data driven way and they exchange AFs that codify
the queries for the various subnetworks of Net(Q).
Each process implements a predefined set of opera-
tions, i.e. the unification of a goal with the head of a
clause. the management of recursion and the update
of an AF through the bindings returned by the
refutation of a subgoal. Further predefined processes
are required to implement non-logical predicates of
the considered language.

As detailed in the following, a process network
implements several refutations in parallel. Consis-
tency is preserved through a tag associated with each
AF to distinguish bindings belonging to distinct refu-
tations [3].

2.1. Implementation of OR parallelism

To fully exploit OR parallelism, Net(Q), the pred-
icate network for Q is the parallel composition of all
the clause networks Net(Q, 1,. . . ,Net(Q,) where
Q,, . . _ ,Q, are the clauses having Q as their predi-
cate symbol. Net(Q, >, . . . ,Net(Q,) are composed in
parallel through an instance Dist of the predefined

44 F. Baiordi rf ul./Journol oj’Systems Architecrure 43 (1997) 437-457

(4 Qjx, Y):- K(X), P(X. Y).

QCX. Y):- P(X, 2). P(Y. Z).

R (a).

R (h).

P (;i,h).

P (X.Y) :- R (Xl. R (Y)

(cl INet INet

(4 ~1st

Fig. 3. A program and the corresponding process networks a. A
simple program. b. Net(Q). c. NetiP). d. Net(R).

unification process and one instance of the prede-
fined collector process, Join, see Fig. 3a and Fig. 3b.

After receiving an AF, Dist unifies the corre-
sponding query with the head of each clause Q. If
the unification is successful, a frame AF, is produced
and sent to Ner(Qi>. The environment of AF, in-
cludes all and only the variables appearing in Q.
The bindings of the global variables are those re-
turned by the unification, while any local variable is
initially unbound. AF, and AF are then paired with a
unique tag, to record that the bindings of the global
variables in AF, returned by the refutation have to be
imported into AF.

If the unification of the goal with the head of Qi
fails, no data is sent to Net(Qi>. After attempting the
unification with the head of all the clauses, Dist
sends to Join(Q) the AF it has received.

To implement a fact, Dist transmits the AF result-
ing from a successful unification to Join. No back-
tracking strategy is required because Dist attempts
the unification of a goal with all the clauses.

When Join receives an AF, from NedQ,), it im-
ports the binding of AFi into the corresponding AF
received from Dist. The resulting AF is transmitted
to the next network. The use of tags makes it possi-
ble to correctly and efficiently associate each AF,
with the proper AF.

Because of OR parallelism, any predicate network
can produce several AFs, even when receiving a
single AF. Hence, both the input and the output of a
network are streams of AFs. A predicate network
solves distinct queries in parallel, because Dist re-
ceives an AF from its input stream as soon as it has
unified the previous one against the heads of all the
clauses of Q, and sent the resulting AFs to the
proper clause networks.

2.2. Implementation of AND parallelism

According to previous experiences [6,9-
11,17,18,22,23], two predicate networks implement-
ing literals of the same clause are executed in paral-
lel only if the corresponding literals cannot share an
unbound variable, Restricted-AND parallelism, RAF’.
The absence of sharing is deduced through a static
share analysis [32], see Section 3.

If a sharing exists, or if the absence of sharing
cannot be proven, stream parallelism is applied and
the two networks are composed according to a
pipeline strategy where processes in the first one
bind the shared variable and those in the other
consume, i.e. check, the binding. While the correct-
ness of the implementation does not depend upon
which network is chosen as the producer, the execu-
tion time is reduced if the producer network binds
the shared variable to a ground term. The producer
network is chosen through a static analysis based
upon the notion of ground dependency [191.

F. Buurd~ rr ul. / Journal oj Sysrems Archirecture 43 (1997) 437-4.57 441

If RAP cannot be exploited, pipeline-AND paral-
lelism, an optimisation of stream parallelism may be
adopted. This kind of parallelism arises if the con-
sumer network can perform some useful computation
as soon as a partial binding for the shared variable
has been produced. In this case, the producer com-
municates to the consumer a partial binding for the
shared variable, rather than a complete one, as soon
as such a binding has been produced.

2.2.1. Restricted-AND parallelism
Within a clause process, the parallel execution of

INet(&, . ,INet(L,J is implemented through two
instances of the predefined processes Split and
Merge.

After receiving an AF, Split produces an AFj for
each INET(L,,). AF, includes the bindings in AF of
the variables referred to by Lij. After receiving an
AF, from each INET(L,j), Merge produces and sends
to the next network an AF including all the bindings
of AF , , . . . ,AF,, , see Fig. 4.

To guarantee a consistent merge of the bindings,
Split inserts the same tag into all the AFs returned by
the decomposition of the same AF.

If mj(t) denotes the number of AFs with tag t
that Merge has received, at a given time, from
INET(L,,), 1 5 j I n, then, upon receiving an AF
with tag t from INET(Lik), 1 < k I n, Merge ap-
pends m,(t)* . . . * rnk-,(t)* mt+,(t)* . . . *m,,(t)

Fig. 4. Composition of two networks to exploit RAP

AFs to its output stream. Each AF is produced by
merging the received AFs with n - 1 AFs, each
received from a distinct subnetwork. This implies
that an instance of Merge has to record all the AFs it
receives from any INET(L,,). To prevent memory
overflows, Merge may be decomposed into a set of
parallel processes.

To retrieve the AFs to be merged with a given
one while avoiding a sequential scanning, Merge
uses the tags paired with the AFs as keys in a hash
table.

2.2.2. Pipeline-AND parallelism
This kind of parallelism will be illustrated through

an example. Consider the clause:

Transform(X,Y,Z) : -Mol(Y,Y,), Add(X,Y, ,Z)

and suppose that:

. X, Y. Y, and Z are lists, X is ground;

. the refutation of Mol and that of Add returns a
ground substitution for an element of Y,, or of Z,
if the corresponding element of Y. or of X and
Y,, is ground.

Let Prod be the subnetwork of Net(Mo1) that
computes a ground substitution for the first element
of Y,. When Prod generates such a substitution, it
sends an AF recording this partial binding both to
Net(Add) and to the next subnetwork of Prod in
Net(Mo1). These two networks can start, respec-
tively, the computation of the first element of Z and
that of the second element of Y,, and so on, see Fig.
5. The correctness of the incremental construction of
the bindings is preserved through proper tags in the
AFS.

2.3. Networks for recursive clauses

The procedure previously outlined to compile a
predicate into a predicate network does not terminate

‘@I2 F. Buurdi et ul./Journui c)j Sy.wms Ardutecrure 43 (1997) 437-457

AF -\

b--J J Yet(Addi

Net!Mol)

Fig. 5. Interconnection for pipeline-AND parallelism.

if it is applied to a predicate Q such that Q(. . .) is
invoked during the refutation of Q(.).

To avoid this case, we introduce a normal form of
logic program characterised by the absence oj’mutu-
ally recursive predicates, i.e. no predicate P is
defined in terms of a predicate Q (# P) that is, in
turn, defined in terms of P. Mutual recursion is
removed at compile time by considering two mutu-
ally recursive predicates P and Q as instances of a
normal form predicate PQ where a further argument
distinguishes the instance, P or Q, to be applied
[35], see Fig. 6.

Normal form programs simplify the mapping step
because they are compiled into networks where pro-
cesses are connected in a regular topology [5]. As an
example, each network receives (sends) its AFs from
(to> one stream only.

The network for a recursive clause includes a
distinct instance of RecHan, the predefined process
for recursion handling for each recursive invocation.
To handle a recursive invocation, RecHan:

(a> records the AF that has produced the invoca-
tion,

P(...) :- Rl(_.._), <I(). PC)

PC...) :- P().

Q(L) :- R2(), .., CJ). I’(I.

hccomc\

PO.., p) :- R I (...). . . PCJ , ~1). PC){ p,

Pc)(p) : . PCJ(. p).

PC&... , q) :- R2(.._.), _... PQ(. . ~1). Pv(_. , p).

Fig. 6. Transformation IO remove mutual recursion.

(b) produces an AF codifying the invocation,
(c) sends to Dist the AF produced in (b),
Cd) after receiving from Join the AF codifying the
results of the invocation, it builds the proper solu-
tions through the AFs recorded in (a>.

Even if the AF received in Cd) is produced by
Dist, it is sent to RecHan through Join so that Dist
can manage in a uniform way the AFs returned by a
unification.

In this way, the process network refutes in paral-
lel goals received either from the previous network
or from the RecHan processes within the network
itself. In other words, the network input stream
merges the output stream of the previous network
and the recursive invocations produced by the
RecHan processes within the network. Again, consis-
tency is preserved by associating each AF with a
unique tag.

If a RecHan receives an AF with tag T, AF(T),
and it produces a recursive invocation with tag T,,
then T, is a tag depending on T. Upon receiving an
AF(T,) codifying a final substitution, the RecHan
produces the results of the invocation by applying
these substitutions to AF(T). Because of OR paral-
lelism, a RecHan may receive several AFs, with the
same tag. For each AF, either it produces a recursive
invocation. with a distinct tag, or it uses the bindings
in the AF to produce the result of an invocation.

Dependencies among tags are represented through
a tree or a cactus stack, as shown in Fig. 7. A
RecHan handles a distinct tree, or a cactus stack, for

<AFl.Tl> cAF2, T2> <AF3. T3>

< AF4, T4> cAF5. T5> <AF6, T6> <AF7,T7>

Fig. 7. A tree recording dependencies among tags.

F. Bolurdi er ul./Journul of’Sy.vrms Archirecrurr 43 (1997) 437-457 443

each tag T where T has not been produced by the
RecHan itself or, from another point of view, T does
not depend upon any other tag.

2.4. Compiling a predicate into a process network

The procedure to compile a predicate P of a
normal form program LP into a process network
Net(P) may be outlined as follows:

(a) Net(P) is the parallel composition of the clause
networks of P through an instance of Dist and
one of Join.
(b) A clause network is
1. the sequential composition; or
2. the parallel composition of the networks for the

literals in the body of the clause through an
instance of Split and one of Merge.

(cl In a clause network of P, the network for a
literal Q<. . .> is
1. an instance, INet(of Net(Q) if Q + P;
2. a RecHan process if Q = P.

The refutation of a query

Q=P,(...) ,.... P,(...),

where P,,... ,P, are predicates of LP, is imple-
mented through a query network, Net(Q), that is the
clause network of the clause P,(. . .), . . ,P,(. . .I.

The input of the query network is an AF codify-
ing the bindings of the variables in the query. The
output is a sequence of AFs, each codifying a substi-
tution satisfying the query itself. Since an AF is
discarded upon the failure of a unification, no AF is
produced by the query network if no such a substitu-
tion exists. In other words, the model backward

semantics [171 discards an AF as soon as it is
detected that its bindings do not lead to a refutation
of the goal. This points out that our model is “all
solutions” oriented.

A refutation terminates after producing all the
substitutions for the query. The termination can be
detected through the exchange of further messages,
end messages [32]. An end message is transmitted to
the query network after the AF codifying the query
and proper rules are defined so that each network
propagates the end messages only if and when it will
not produce any further AF.

The proposed static model does not impose an “a
priori”, architecture dependent, constrain on the de-
gree of parallelism of the output program. The finite
amount of PEs is considered in the mapping step and
in the resource scheduling strategy

It is worth noticing that a query network includes
several instances of distinct processes. Each instance
can be further special&d according to the predicate
it implements or to its position in the query network.
Furthermore, each predefined process can be decom-
posed in parallel depending upon the optimal process
granularity of the target architecture.

3. Static analyses of a logic program

The step of the compilation that generates the
process network exploits the information returned by
a set of static analyses to optimise the network
structure.

The analyses are defined according to a bottom
up approach [28] so that they return only the infor-
mation that can be deduced from the structure of the
program.

The analyses are based on the notion of ground
dependency, i.e. the relation between the distinct
arguments of a predicate that a successful refutation
binds to a ground term. This notion allows the
analyses to overcome several limitations of existing
analyses. The correctness of the analyses has been
formally proved through abstract interpretation tech-
niques. The abstract interpretations have been de-
fined according to a bottom up approach as well
[19.201.

444

Select (cons(X , Xs), X, Xs 1

Select (cons(Y, Ykj. X. constY. %s 1) :-

Select (Ys, x, ZS).

P (X ,Y. Lb’) :- Select (X. Y, W). Fi (X, Y), F2 (Y, W)

Fig. 8.

3.1. Bottom up analyses

First, we point out the main differences between a
top down analysis and a bottom up one.

Consider, as an example, the program fragment in
Fig. 8, where Select(X,Y,Z) if the list 2 is produced
by removing one occurrence of Y from X. Fl and
F2 are verified if a given relation exists between Y
and, respectively, the original list X and the result-
ing list W.

If the whole program is top-down analysed, some
information has to be supplied by the user about the
goals that will be refuted and/or the status, i.e.
ground or not ground, of some variables in the
query. This information is propagated by the analysis
till the invocation of P and it defines the context of
the invocation. Suppose that, according to the con-
text, the first argument of P is ground, hence the first
argument of Select is ground and the other argu-
ments of Select will be ground after the refutation of
Select. This information is now included in the
contexts of Fl and F2.

A bottom up mode analysis, instead, propagates
information starting from the unit clauses of the
program. Due to the lack of user supplied informa-
tion, less information about the status of a variable
may be available than in the corresponding context
of a top-down analysis. Hence, a bottom up analysis
based upon variable states only cannot return the
information to optimise the structure of the network.
In the example of Fig. 8, if no information is avail-
able about the state of the arguments of PI a bottom
up mode analysis of Select cannot return any infor-
mation.

3.2. Ground dependency analysis

The loss of information due to the bottom up
approach may be recovered by taking into account
not only the states of variables, but also the relation
about the states of distinct variables produced by the
successful refutation of a predicate. This is possible
through the notion of ground dependency, GD:

a predicate P defines a ground dependency from
arguments in S = (Ai,. . . , Ak) to an argument A,,
Aj E S, if any successful refutation of P where
the arguments in S are bound to ground terms
binds A, to a ground term.

The notion of GD is fully independent of the
variable states and the analysis to detect GDs does
not require information about such states. Further-
more, the notion of GD allows the analysis to return
significant information about the variable states be-
cause, provided that the groundness of a few vari-
ables may be determined, the state of other variables
may be deduced through GDs.

From the declarative meaning of Select in Fig. 8,
it is quite obvious that whenever the first argument is
ground both the second and the third arguments,
respectively the selected element and the resulting
list, are ground. Furthermore, since Select may pro-
duce the first argument through a non-deterministic
insertion of the second argument in the third one, the
first argument will be ground, provided that both the
second and the third ones are ground.

GDs are detected through the multiple occurrence
of the variables in the arguments of a predicate, i.e.
X and X, in the first clause of Select and Y in the
second one.

GDs define how predicates propagate ground in-
formation and they are strongly related to stream
parallelism because this propagation has a critical
role in the choice of the predicate to be used as the

producer. As matter of fact, the search space of the
consumer is strongly reduced if the producer binds V
to a ground term. More in general, the refutations of
the predicates in the body of a clause should be
ordered so that the i-th predicate defines a CD from
the variables bound to ground terms by the previous
(i - 1) predicates. Since. in this way. a partial order
only may be defined. the compiler exploits proper
heuristics to transform the partial order into a total
one [32]. As an example. if several predicates bind
the same variable to a ground term, then the pro-
ducer is the one that binds the largest number of
variables to ground terms.

A specialisation of the notion of CD is that of
deternzinistic ground dependency DGD that extends
the notion of functional computation in a logic pro-
gram [161:

ground dependency is deterministic if for any set
of ground bindings for the arguments in S. any
successful refutation of P binds A, to one ground
tern) only.

The predicate Append3(X.Y,Z,K 1 in Fig. 9 is
such that K is the result of appending the lists X, Y
and Z and satisfies a given condition F,.

The predicate Append defines three GDs:

1. from the first two arguments to the third one:
2. from the third argument to the first one;
3. from the third argument to the second one.

According to the declarative meaning of Append3,
only the first GD is a deterministic one. This can be
deduced because each step of a refutation exploits at
most one clause of Append. Suppose now that A. B,

C and D are ground when Append3 is invoked: then
the three subgoals of Append3 cannot be concur-
rently executed because of the shared local variable
E. If the producer of E is chosen on the basis of
GDs only. either of the two Append literals may be
chosen because they both produce a ground binding
for E. If DGDs have been determined, then the first
invocation of Append is chosen because it produces
at most one ground binding for E. This choice
largely reduces the search space and it may be
considered as the optimal one, independently of the
execution model.

If a predicate P defines a DGD, the instance of
Dist in Net(P) sends any AF received from the input
stream to at most one clause network.

3.3. Type inference and shut-e analysis

A bottom up polymorphic type inference system
has been included in the compiler. The type infer-
ence system assigns types to functors and predicates
through a program analysis that is independent of the
functor names and of their arity. Type declarations
are defined implicitly in the compiler and they are
parametric with respect to the name of the construc-
tors exploited in the type declarations.

Most type inference systems for logic languages
are based upon those used in functional program-
ming [3O] and they can handle only regular structures
that include objects with the same type. When a
heterogeneous structure is analysed, either an error is
signalled or a. the most general type that includes
any type, is returned.

Our type system, instead, characterises heteroge-
neous data structures through the introduction of the
type union constructor @. As an example, if a list
may include both Boolean values and characters, its
type is list(Boolean @ character). The type system
assigns the type LY to a structure if and only if it can
include terms with any type.

The adoption of this type system is related to the
defimtion of a bottom up analysis to detect the

Occ (cons(a,Xj, 2) :-OK (X, T), Plus (‘I‘, s(oj. 2).

Occ (cons(b,X) 2):. Occ (X, Z).

Sumlist (I 1, 0).

Sumlist (cons(X ,Y) , K) :- Sumllst (Y. T), Plus (X. T, K).

Check (X. Y) :- Occ (X. Lj, Sumhst (Y. F), L,~ger (L. FJ.

Fig. IO.

sharing among variables due to a unification. This
analysis detects literals of the same clause that can-
not be refuted in parallel because they may share an
unbound variable.

To improve the share analysis, its results have
been integrated with those returned by the type
inference system. In fact. two variables defined in
terms of distinct elementary data types cannot share
an unbound variable. As an example, no variable can
be shared between a list of integers and one of
strings.

To describe the proposed approach, consider the
predicate Check(X,Y > in Fig. 10, that is verified if
the number of occurrences of the character “u” in
X is larger than the sum of elements of Y.

In the clause of Check, because of the shared
variables L and F, one producer has to be chosen
between Occ and Larger and one between Sumlist
and Larger. Hence, the only opportunity is the paral-
lel execution of Occ and Sumlist, but. even if a
textual analysis does not detect any variable shared
between them, a sharing may arise because of a
previous unification.

In the case of Check, the types inferred for the
arguments of Occ and Sumlist can guarantee that no
sharing occurs at run-time. As a matter of fact, the
type inference system detects that, whenever Occ
succeeds, its first argument will be bound to a term
of type list(character) while the type of the first
argument of Sumlist is always list(natura1). As a
consequence, no sharing is possible between the two
structures because they include elements with dis-
tinct elementary data types. i.e. no successful refuta-

tion can introduce a sharing. Hence, Occ and Sumlist
can be refuted in parallel before Larger.

To show the importance of handling heteroge-
neous data structures, suppose that the clause

Occ(cons(true,X),Z) : -Occ(X,Z)

is inserted into the program in Fig. 10. The type of
the first argument of Occ becomes list(Boolean Ei
character). Again, no sharing between Occ and Sum-
list is possible. This can be deduced because the type
system records the information about all the types of
the elements in the two lists. A type system that is
not heterogeneous does not enable the share analysis
to deduce the absence of sharing between Occ and
Sumlist because it assigns the type u, that may be
instantiated to any data type, to the first argument of
occ.

3.4. K-ground dependency analysis

When stream parallelism is exploited. the pro-
ducer generates a “complete” binding for a shared
variable V before starting the consumer. This re-
duces the degree of parallelism when the consumer
can perform some useful computation even when
receiving a partial binding for the shared variable.
Suppose that the shared variable is a list: in this case,
the producer can send to the receiver a stream of
elements of a list rather than a whole list. This
cooperation is implemented through pipeline-AND
parallelism and it requires a control mechanism simi-
lar to that of concurrent logic languages [33], where
stream communication is fundamental. We point out
that pipeline-AND parallelism is fully orthogonal to
OR parallelism, because it is related to the definition
of a single solution.

To determine if pipeline-AND parallelism can be
exploited. a formal definition of “useful partial bind-
ing” is required, that describes the binding required
by the consumer to perform some useful computa-
tion. The notion of k-ground dependency is a further
refinement of a GD that approximates such a defini-

F. Burcirdi et al. / Journal ofSy.sfems Architecture 43 (1997) 437-457 441

mm(ll.-.I I)

vm(.Xs, corh(Y.Y ,). oxh(Z, %,,I I~O(,.Y.Z). vwX,,Ys.Zsi ~p(ll,lI,O)

~pccons(.X, X,). ccm(Y. Y, j , Zr .- -0;. Y. 23. +(Zz, %I, %) q(X,.Y,. ZI)

Fig. I 1. A matrix multiplication program

tion. A partially ground binding is useful if it allows
the consumer to produce, in turn, ground bindings
for other arguments.

A predicate P defines a k-ground dependency,
k-GD, from the arguments in S to A, if:

1. a ground dependency from S to A, exists,
2. the arguments in S and A, are structured terms.
3. for any substitution where the first k components

of the arguments in S are ground, a successful
refutation of P binds the first component of A,
to a ground term.

The analysis to detect k-GDs is applied if the type
inference analysis returns a type list for at least two
arguments of a predicate.

Consider. as an example, the program fragment in
Fig. 11. where mm(X,Y.Z) is such that the matrix Z,
a list of rows, is the product of matrices X, a list of
rows and Y. a list of columns. In turns, both rows
and columns are represented as lists. We assume that
the predicates +, * have the obvious meaning and
that both define a GD from their two first arguments
to the third one.

The type inference system deduces that the argu-
ments of mm are two level structures, lists of lists.
The predicate mm defines a GD from the rows and
the columns of the input matrices to the rows of the
resulting one.

The predicate vm defines GDs among second
level elements of the structure, i.e. from the elements
of the input matrices to those of the resulting one.

The analysis detects a l-GD from the first two
arguments of mm to the third one. This signals that a
row of the resulting matrix can be bound to a ground

term if the whole second matrix and the correspond-
ing row of the first matrix are ground. vm defines
each row of the third matrix as the product of a row
of the first matrix for each column of the second one.
The I-GD from the first two arguments to the third
one denotes that a ground binding for an element of
the resulting row is produced provided that only the
corresponding row and column in the input matrices
are ground. Hence, a binding is useful for mm if the
first subterm of the first argument of mm is ground
and the second argument is ground. When supplied
with such a binding, mm can bind to a ground term
one element of its third argument.

To show how k-GDs make it possible to exploit
pipeline-AND parallelism, consider the clause

mmul(X,Y,Z) : - transp(Y,T) ,mm(X,T,Z),

where transp(Y,T) is such that T is the transposition
of matrix Y and a I-GD from the first to the second
argument of transp exists. In this case, if transp has
been chosen as the producer of T, pipeline-AND
parallelism can be exploited because of the I-GDs
from the first argument of transp to the shared
variable 7’ and of that from T to the other arguments
of mm. These dependencies show that the partial
ground bindings for T are useful for the consumer.

A further requirement to exploit pipeline-AND
parallelism is that the partial bindings are consumed
in the same order they are produced. This can be
checked by the compiler because this order depends
upon the one among clauses. In the example, the
pipeline-AND optimisation can be applied if transp
produces the columns of the transposed matrix in the
obvious order.

4. Implementation of the model

A first implementation of the execution model
and of the abstract interpreters has been developed.
This implementation exploits a predicate-indepen-

448 F. Buiurdr et ul.,‘Journd c~f’Sy.\trm.\ Arcltttrrturr 43 (1997) 437-4S7

dent version of Dist, Join, Split, Merge and RecHan.
The size of the program of each process, that ranges
from 5 to 10 Kbytes, could be reduced by optimising
each process according to its position in the network.

4.1. Processor scheduling and flow

The experimental results have pointed out some
critical problems related not only to the proposed
model but to distributed memory systems in general.

Because of OR parallelism, a refutation of a goal
may fire the refutation of a large number of sub-
goals. This results in the injection of a large number
of messages into the interconnection network that
leads to a sharp increase of the communication traf-
fic. In turn, this can cause both congestion and hot
spots. A hot spot [14.311 arises when a large percent-
age of the messages crosses the same link.

If we take into account that the latency of a
communication is proportional to the number of
links crossed by the corresponding message as well
as to the number of conflicts on each link, i.e. of the
messages that try to cross the same link simultane-
ously, it is obvious that congestion and hot spots
strongly reduce the performance of the network and.
hence, of the overall system.

Furthermore, both congestion and hot spots no-
ticeably increase if several communications are non-
local. i.e. between processes mapped onto PEs that
are not directly connected or connected to the same
routing device. In a direct interconnection network,
non-local communications increase the computa-
tional load of the PEs that have to route the corre-
sponding messages. In an indirect network, non-local
communications increase the number of conflicts at
each routing node. On the other hand. to map a
complex process network onto the target architec-
ture, non-local communications cannot be avoided

[5,241.
To prevent a large performance degradation, we

have adopted a control flow strategy, congestion
prevention by bounding (CPBB). This strategy

bounds the number of messages flowing in the inter-
connection network in parallel or, that is the same,
the number of processes that can send a message in
parallel [4]. The CPBB strategy seems more appro-
priate for asynchronous computational models than
random routing [38] and it does not require proper
hardware supports as virtual channels [13,141. Fur-
thermore, it makes it possible both to exploit locality
in the application and to bound in advance the
latency of a communication.

The CPBB strategy we have defined:
(a) bounds the overall number of messages flow-
ing both in the overall interconnection network
and in a subset of the network itself, i.e. it sup-
ports both global and local controls. Local control
is fundamental to reduce hot spots;
(b) chooses the processes that can send a message
according to the status of the overall computation.
As an example, messages that can quickly lead to
the production of a result have priority over those
that still requires a large amount of computation
before producing an output. Assigning a priority to
each message is not a proper solution, because
priorities depend upon the status of the receiver
process as well.

It is worth noticing that, if most communications
are not local, then several processes can be mapped
onto the same PE so that the PE is not idle while one
process is waiting because of a non-local communi-
cation. In this case, control flow should be integrated
with the scheduling of the PE so that a process is
scheduled for execution only if it is allowed to
communicate. This avoids a too large context switch-
ing overhead. As discussed in the following, CPBB
can achieve such an integration.

The CPBB strategy and the corresponding algo-
rithm have been defined with reference to a class of
process networks that includes those to support the
implementation of logic programs. Here we describe
the CPBB strategy at a high abstraction level and
focus only on those aspects that are relevant to the

F. Buiurdi et u/./Journal of Sy.vems Architecture 43 (1997) 437-457 449

networks of interest, see Fig. 3. At first, structured
networks with no recursion are considered.

CPBB is based upon the notion of a token that
represents the permission to send a message, i.e.
only a process holding a token can send a message.
The number of tokens is fixed at program loading. If
K is the number of tokens, at most K messages can
be flowing in the network at any moment because
only a process holding a token can send a message
and because the process pairs the token with the
transmitted message.

Each token is either local or external to a net-
work. In the former case, the token supports the
transmission of messages only within the corre-
sponding network. In the latter, a token can cross
different subnetworks and propagate AFs among the
subnetworks. The tokens are managed so that the
receiver of a message, i.e. of an AF, can start the
refutation of the query coded by the AF as soon as it
is received.

Starting from an initial allocation of token to
processes, an algorithm distributes tokens among the
processes so that the same results of an uncon-
strained execution are produced. The algorithm con-
sists of two steps: the forward and the backward
distributions of tokens that correspond to, respec-
tively, the distribution of AFs among the networks
and that of free tokens among the networks waiting
to send/receive an AF.

The ~WJO steps alternate to guarantee that when a
process sends an AF, the receiver is ready to exe-
cute the computation$red by that AF. The backward
distribution of tokens in a network N terminates if
and when all the outputs of N have been produced.
To detect this event, each token T includes an
information ES(T) about the execution status of the
processes it has already crossed in the backward
distribution. ES(T) makes it possible to determine if
at least one computation is still suspended waiting
for a token.

We notice that K, the number of tokens, depends
upon the ratio between the degree of parallelism of

the query network and the degree of parallelism that
can be supported by the target architecture as well as
upon the mapping of the network on the architecture.
The value of K decreases as it increases the number
of constrains the architecture imposes on the net-
work. From another point of view, the larger the
value of K, the lower the resource sharing due to the
program mapping.

In the following, we assume that each process, or
process network, N stores in a queue OutQ(N) the
AFs it cannot send because no token is available.
In(N) denotes the input stream of N that includes
the AFs codifying the queries to be refuted by N.

4. I .l Fomaard distribution
Because of the CPBB strategy, each message

flowing in the network is either a pair (AF,token) or
a token that is backward distributed to enable a
process P to send messages in OutQ(P).

A process network N can receive a message
(AF.ET) from ln(N) only if it holds a free local
token LT. Upon the reception of such a message, N
holds the token ET that is, by definition, external for
N. Hence, N can use ET to transmit one AF to the
network ON whose input stream corresponds to the
output one of N. LT enables N to start a computa-
tion and produce a result that will be either appended
to OutQ(N) or transmitted to ON, i.e. appended to
In(ON) if some external token is available. In both
cases, LT becomes free because it is local to N. LT
allows N either to receive a message from In(N) or
to resume one of the computations fired by an AF
previously received and that has been suspended
because no token was available. These computations
are detected through the token backward distribution.

4.1.2. Backward distribution
In the backward distribution phase, tokens are

redistributed to enable the resumption of suspended
computations. In the backward distribution the pro-
cesses N,, . . . ,NA belonging to a network N, trans-

450 F. Boiurdt et al. / Jourrd of Sy~rem Arc~hitc,cture 43 (IYY7) 437-457

mit tokens in the opposite direction with respect to
AFs. Hence, tokens flow from the processes that
transmit the AFs produced by N to those that receive
the AFs from In(N).

As an example, in an OR network implemented as
in Fig. 3. AFs flow from Dist to Join in the forward
phase while tokens flow from Join to Dist in the
backward phase.

During the backward distribution, any N, crossed
by a token LT either uses LT to transmit an AF in
OutQ(N;yi) or transmits the token backward if
OutQ(N;) is empty. The transmission of a message
in OutQ(N,) terminates the token backward distribu-
tion and it starts a new forward phase.

A backward phase terminates after distributing the
tokens to any process or subnetwork of N that can
produce an AF to be appended to OutQ(N >.

As discussed in Section 2. because of OR paral-
lelism, the execution model always requires a ternzi-
nution detection algorithm independently of schedul-
ing and congestion prevention. This algorithm de-
tects when the query network will not produce fur-
ther AFs. The backward distribution is a generalisa-
tion of this algorithm that detects the subnetworks
waiting to send an AF.

N can backward distribute any external token that
it is currently holding when no computation is going
on within N and no computation is suspended within
N. In terms of AFs, these two conditions can be
rephrased as follows: N can backward distribute an
external token if no AF is flowing within N or
waiting in a queue, i.e. OutQ(N,) is empty for any
process N, belonging to N.

The backward distribution of external tokens al-
lows other networks to produce queries to be re-
ceived by N. Since N backward distributes an exter-
nal token only after the termination of its computa-
tions. it privileges the resumption of suspended com-
putations with respect to the production of further
queries for N. In other words. N can receive an AF
from In(N) only after computing all the solutions of
the queries previously received.

1.

2.

Ihe main advantages of this strategy are:

101~ memory requirements because it reduces the
number of suspended computations;
load balancing: By favouring suspended compu-
tations, we reduce the time to produce the solu-
tions for a given query and, hence, to start a
computation in the networks that receive such
solutions.

4.1.3. Recursion
To apply the CPBB strategy to networks that

include RecHan processes, the distinction between
local and external tokens has to be reconsidered
because the recursive invocations produced by
RecHan are solved by the same network, Net(P),
including the RecHan process. Hence. RecHan needs
an external token to append a message to In(P), but
external tokens are handled by Dist and Join only
because they are the processes of Nett P > that inter-
act with the environment of Net(P).

This can be solved through another kind of token,
an indirect token. An indirect token IT is local to the
network Net(P) including the RecHan and, in the
forward distribution, any process in Net(P) can con-
sider IT as either an external token, as in the general
case, or as a local token dedicated to the RecHan
process. This means that a process of Net(P > can use
IT to send a message to a RecHan only. Otherwise,
the process handles IT as an external token.

The backward distribution phase handles indirect
tokens as external ones.

4.2. Experimental results

The first experiments have been focused on a
database query. the classical N-queens problem, that
present several problems of more realistic applica-
tions, queries about array and matrix manipulation
and the search of the shortest path between two
nodes of a graph. Any kind of parallelism is present

F. Boiurdi et (II./ Journul oj’.Sysrems Archttecrurr 43 (1997) 437-457 451

(4

in these programs. Several experiments have been
developed by adopting the CPBB policy.

Because of the static approach. the number of PEs
to be used in the experiments depends upon the
process network returned by the compiler and it
cannot be freely chosen as in a dynamic approach.

(4

PFs/qu"'I, kind 01’ p:~rd time (mwc I
Xl/l \t~~..,,n+()R’ :li
2, I/S \llL~.,,ll+()I~1 WI
2i lib \llL.d,ll-(JR3 1lISIl

Fig. 14. N-queens program. a. Execution times b. Execution times

eith CPPB. c. Execution times with CPPB and random mapping.

Some the experiments have used a distributed
memory system with 40 PEs, each including an T414
and a 256 Kbytes memory. The PEs are connected in

(b)
PEs kind of p;~rnll. limr(mwc)

25 \,11’.11,, X?YX~~ I
29 \Il~.llll+RAP 3lZ/??l)
32 ~~~~~~~m+I~AP+~:ii~llcl MCI+ I Ill/l?li
41) \IIL,.IIII+RAP+OR? 1 I?/? 1’

Fig. 13. Second database program. The query is Same(X,Y,Z,K). b. Execution times.

452 F. Buurdi et ul./Jnurnol of‘Sy.wn~s Archirrcrurr 43 (19971437-457

a 4 X 10 mesh with wrap-around connections. Other
experiments have used a distributed memory system
with 32 PEs, each including a T800 and 2 Mbytes of
memory. Both systems are rather simple and most
communication related functions are implemented by
software rather than at the hardware/firmware level
as in current architectures. As an example, in both
systems, messages are routed through proper pro-
cesses replicated on each PE. This implies that all
the reported performance figures can be considered
as worst case ones.

4.2.1. Database programs
Given a database recording the population and the

extension of a set of countries, at first we consider a
query about all the pairs of countries whose average
densities differ of less than 5%.

Fig. 12a shows the database program in the case
of 25 countries, Fig. 12b reports the kinds of paral-
lelism, the number of PEs that have been exploited
and the corresponding execution time. Each time is
an average over at least 8 runs. ORi means that the
process Dist has been decomposed so that the facts
about either the extension or the surface are managed
by i processes mapped onto distinct PEs, i.e. i

unifications have place in parallel. The experiments
have shown that this improves the performance only
if i < 3. This is due to the low number of physical
links of each PE because, if i > 3, some of the
communications among the processes produced by
the decomposition of Dist are non-local. Parallel
Merge denotes that the process Merge to implement
AND parallelism has been decomposed into two
processes to avoid memory overflows.

(4
tlxl\f~ulll(X. I I. X)

tunhl‘c)nn(X. Y, Zi:-nlol(Y. Y’).urld(X. Y’. Z).

llld(~].[l).

mcrl([X I Y].[X I I Z]):-X I IS (3*-X).lnhrl(Y,Z).

add([1.Y.Y).

add([XI I X],[\r’ I I Y I,jW I I WI):-w I 1s (X I +Y I). adtl(X.Y.W)

Fig. 15. a. Array program. b. Execution times

F. Buiurdi el al./ Jourd of‘Sy.stcm Architecture 43 (1997) 437-457 453

A further benchmark has been considered, where
the database includes the global national product of
each country as well. In this case, the query is about
all the pairs of countries whose average densities
differ less than 5% and such that the average product
per person of the first country is larger than that of
the second one. The program and the execution times
are shown, respectively, in Fig. 13a and Fig. 13b.

4.2.2. N-queens problem
In our experiments for this well-known problem,

the largest value of N is 6. The execution times are
reported in Fig. 14. Again, each time is an average
over at least 8 runs. Also in these experiments, ORi
means that the clauses with the same predicate sym-
bol are managed by i processes. In the case of 6
queens, the application of the CPBB strategy reduces
the execution time from 4245 msec to 3640 msec.
Furthermore, the adoption of CPBB reduces the
amount of memory to buffer messages as well as the
size of the cactus stack managed by the RecHan
processes.

4.2.3. Array and matrix product
Given two arrays of integers, the program shown

in Fig. 15a multiplies each element of the first one
for a constant and adds the resulting array to the
second one. In the implementation of this program,
OR, Restricted-AND and pipeline-AND parallelism
may be exploited. We have compared the execution
times that can be achieved through stream paral-
lelism alone against those that can be achieved
through both stream and pipeline-AND parallelism.
As shown in Fig. 15b, the execution time halves
when both kinds of parallelism are exploited with
respect to the case where stream parallelism only is
exploited.

The second program applies the same operation to
matrices. The experimental results show that, with
respect to the case where only pipeline-AND paral-
lelism is exploited, no speed up is achieved by
exploiting RAP in the producer network. The pro-

\ I, ; s

Fi- 16. a. Matrix program. b. Stream and pipeline-AND paral-

lelT;rn: Execution times. c. Stream parallelism: Execution times.

gram in Fig. 16a has been executed on several
matrices, by fixing the number of columns and by
varymg the number of rows from 3 to 7. In the case
of matrices with 3, 4 and 5 columns, Fig. 16b and
Fig. 16c show the execution times if pipeline-AND
parallelism or stream parallelism alone is exploited.

4.2.4. Shortest path problem
To evaluate the influence of the CPBB strategy on

the final performance, a set of experiments has con-
sidered a program that computes the shortest path
between any two nodes of a graph. Two versions of
this program have been considered that are imple-
mented, respectively, by 32 and 60 processes. Alter-
native mapping and routing strategies have been
applied to the two versions.

The two routing strategies we have considered are
an adaptive one, that chooses the path to route a

454 f-. Buiurdt et ~L/Journul oj’Sy\trms .4rchttecture 43 (1997) 437-457

message according to the current load of the links,
and an oblivious one [7], where the path to route a
message between any pair of PEs is fixed.

Three mapping strategy have been applied:

(a) the minimum distance mapping (md). This
strategy minimises the average distance between
two communicating processes, i.e. the average
number of links crossed by a message. To com-
pute the average number of links, each communi-
cation is weighted according to the amount of
transferred data and to its frequency:
(b) the longest disrunce mapping (Id). This map-
ping maximises the average distance between two
communicating processes. The weight of each
communication is determined as in (a>;
(c) the random distance mapping (rd). A process
is mapped onto a PE chosen at random according
to a uniform distribution. This strategy does not
attempt any optimisation but it requires no infor-
mation about the amount of data exchanged in a
communication or about the communication fre-
quency.

To define the mappings (a) and (b), the amount of
data exchanged among any pair of processes as well
as the probability distribution of the interval of time
between two successive communications have to be
known. They have been obtained by program moni-
toring.

In all the experiments where the CPBB strategy is
not adopted, the processes that are allowed to com-
municate or scheduled for execution are chosen by,
respectively, the routing processes and the prede-
fined scheduling algorithm of the Transputer.

The three parameters considered in the experi-
ments are:

1. mul, the degree of multiprogramming of a PE;
2. the routing strategy: adaptive or oblivious;
3. the mapping strategy: Id or md or rd.

Concerning (11, in the case of the 32 process
version. either 32 or 8 PEs are used and at most four
processes are mapped onto each PE. The experimen-
tal results show that CPBB is an effective scheduling
strategy for a PE. For each choice of mul, the
mapping strategy and the routing algorithm, Fig. 17
shows D, the percentage improvement due the adop-
tion of CPBB. If ex(CPBB) and ex(noCPBB) are,
respectively, the execution times of the program if
CPBB is applied and if it is not applied, then D =
(ex(noCPBB) - ex(CPBB))/ex(noCPBB).

Each time is an average over at least six execu-
tions. With the exception of (* >, the CPBB strategy
reduces, or at least it does not increase, the execution
time, independently of the other parameters.

In case (*) in Fig. 17, the execution time in-
creases because of the large number of non-local
communications introduced by the Id mapping strat-
egy. To support these communications, the PEs route
messages for most of the time and they can devote a
small percentage of time to the execution of pro-
cesses and to the generation of AFs. Hence, no
congestion arises and the CPBB strategy further
increases the overhead.

Fig. 18 shows the results of the experiments for
the 60 processes version. The execution times of this
version are worse than those of the 32 processes
version. By adopting the CPBB strategy, the execu-

F Bururdi et ul./Journul ofSy.\fems Archltecturr 43 (1997) 437-457 455

tion times of this version are always lower than the
corresponding ones in the 32 processes version. Be-
sides those previously considered, we have evaluated
a mapping where 4 PEs are used and at most 16
processes are mapped onto each PE. In this case, if
the oblivious routing strategy is adopted, a message
crosses, at most, two links. The reduction of the
execution time in this case confirms the effectiveness
of CPBB as a scheduling strategy.

The largest improvements in the version with 60
processes are due to a larger number of messages or,
in other words, to a finer process grain. As a matter
of fact, the 32 processes version has an almost
optimal process grain for the considered architecture.
It is worth noticing that, for any choice of the
parameters, the execution time in the case (CPBB +
Id mapping) is lower than that of the case (noCPBB
+ md mapping). Obviously, it is simpler to adopt the
CPBB strategy rather than defining the md mapping.

Lack of space prevents a more extensive analysis
of other experiments with a “hybrid” solution where
the CPBB strategy has been applied only to those
subnetworks where congestion may arise. Even in
these cases, performance improvements similar to
those previously described have been achieved.

5. Conclusion

To the best of our knowledge, ours is one of the
first approaches to the execution of logic programs
on distributed memory systems where a static execu-
tion model is integrated with static analyses to opti-
mise the output process network.

At this stage of the experiments, preliminary con-
clusions only can be derived. The first results sug-
gest the adoption of the proposed approach in the
case of a database program or, however, in the case
of “all solutions” applications. Even if side effects
constructs such as cut and not have been imple-
mented in the proposed model, the effectiveness of
the solution in the case of “single solution” applica-
tions is more questionable. More powerful static
analyses or further optimisations of the predefined
processes have to be investigated for these problems.

The use of the CPPB algorithm has pointed out
the importance of dynamic resource scheduling to
reduce the performance losses due to sharp increases
of the communication load. These sudden changes in
the communication load cannot be foreseen at com-
pile time and require a dynamic solution.

References

[l] S. Abramsky and C. Hankin (eds.), Ahtruct Interpretation

of’Declura?iue Longuqes (Ellis Horwood Ltd., 1987).

[2] J.K. Aggarwal and AS. Lee, A mapping strategy for parallel
processing, fEEE Trtrn.\. on Computer 4 (1987) 433-442.

[3] Arvind, K.P. Gostelow, The U-interpreter, fEEE Computrr 2

(1982) 42-49.

[4] F. Baiardi, A. Candelieri and L. Ricci, Congestion prevention
by bounding in distributed memory systems, in: A. De

Gloria, M.R. Jane, D. Marini (eds), Trmspurer Applicurions

und Systems 94 (10s Press;Amsterdam, 1994) 843-859.
[S] F. Berman and L. Snyder, On mapping parallel algorithms

into parallel architectures, Proc of‘ 1984 Int. Conj: on Purul-

ItI Processiq (Bellaire, Michigan, 1984) 307-309.
[6] L. Bit, A data driven model for parallel interpretation of

logic programs, Proc. of Int. Conj: F$h Generution Com-

puter Sy.vem.s (1984) 517-523.

[7] A. Borodin and J.F. Hopcroft, Routing, merging and sorting

456 F. Boiardi ef al./Journul oj’Sysrems Archirecrure 43 11997) 437-457

on parallel models of computation, Jwrnal of Cornpurer and

Sysrem Screncr I (1985) 130-145.
[81 M. Btuynooghe G. Janssens, B. Demoen and A. Callebaut,

Abstract interpretation: Towards the global optimization of

prolog programs, Proc of 4th IEEE Symp. on Logic Pro-

grumming (San Francisco, 1987) 192-204.

[9] J.H. Chang, High performance execution of prolog program
based on a static data dependency analysis, Technical Report

UCB/CSD 86/263, Univ. of California, Berkley, 1986.
[lo] J.S. Conery and D.F. Kibler, AND parallelism and non-de-

terminism in logic programs, Nes Getterorion Computing 3
(1985) 43-70.

[I I I J.S. Conery, Binding environment for parallel logic programs
in non-shared memory multiprocessors, Proc of 1987 Inr.

Conf: on Parallel Processing (1987) 457-467.

[I21 P. Cousot and R. Cousot, Abstract interpretation: A unified

lattice model for static analysis of programs by construction
or approximation of fixpoints, Proc of 4th ACM Symp. on

Prim. of Progr. Languuges (1977) 238-252.
[IS] W.J. Dally and D.S. Wills, Universal mechanisms for con-

currency, Proc. of PARLE’89; Lecture Notes in Computer

Science Vol. 365 (Springer. Berlin, 1989) 19-33.
[141 W. Dally. Virtual-channel flow control, Proc. of 17 In?.

Symp. on Computer Arch. (1990) 60-68.

[151 W. Dally, Network and processor architecture for message

driven computers, in: R. Suaya and G. Binwistle (eds.). VLSI

and Pod/e/ Computers (Morgan Kaufmann, New York,
1990) 140-219.

[I61 S.K. Debray and D.S. Warren, Functional computations in
logic programs, ACM Truns. on frog. Lang. und Sysrems 3

(1989) 451-481.

[17] D. DeGroot, A technique for compiling execution graph
expressions for restricted AND-parallelism in logic pro-
grams, Journal of Parullel und Disr. Computing 5 (1988)

494-5 16.
[I81 B.S. Fagin and A.M. Despain. The performance of parallel

prolog programs, IEEE Trcrns. on Cornpurer I2 (1990)
1434-1445.

[I91 R. Giacobazzi and L. Ricci, Pipeline optimization in AND
parallelism by abstract interpretation, Proc of 7rh fnr. Conj:

on Logic Programming (MIT Press, Boston 1990) 291-305.
[20] R. Giacobazzi and L. Ricci, Detecting determinate computa-

tions by a bottom-up abstract interpretation, Proc. of’Euro-

peun Symposium on P rogrumming (1992) I67- 18 1
[21] R. Hasegawa and M. Amamiya, Parallel execution of logic

programs based on dataflow concepts, Proc. of Inr. Conj: on

Fifh Generarion Compufer Systems (1984) 507-5 16.

[22] M.V. Hermenegildo, An abstract machine for restricted
AND-parallel execution of logic programs, Proc. of 3rd fnr.

Conf on Logic Programming (1986) 25-39.

[23] M.V. Hermenegildo, R.I. Nasr, Efficient management of

backtracking in AND-parallelism, ACM Truns. on Progrum-

ming Language& und Systems 3 (I 9891, 40-53.

[24] A.J.G. Hey, Experiments in MIMD parallelism, Proc. of

PARLE’89; Lecrure Notes in Computer Science Vol. 365

(Springer, Berlin, 1989) 28-42.

[251 Y. Lin and V. Kumar, An execution model for exploiting
AND-parallelism in logic programs, New Generazion Com-

puring 5 (1988) 393-425.
[26] Y. Lin and V. Kumar, A parallel execution scheme for

exploiting AND-parallelism of logic programs, Proc (~19%
Inr. Conj1 on Parallel Processing (I 986) 972-975.

1271 H. Mannila and E. Ukkonen, Flow analysis of prolog pro-
grams, Proc of 4th IEEE Symp. on Logic Progmmming

(1987) 205-214.
1281 K. Marriott and H. Sondegaard. Bottom-up abstract interpre-

tation of logic programs, Proc of5rh In?. Cod: and Symp. on

Logic Programming (I 988) 733-748.

[291 D.L. MC Bumey and M.R. Sleep, Transputer based experi-
ments with the ZAPP architecture, Proc. c$ PARLE ‘87;

Lecture Notes in Computer Science Vol. 258 (Springer,
Berlin 1987) 242-259.

[30] R. Milner, A theory of type polymorphism in programming,

Journul of Computer und System Science 3 (1978) 348-375.

1311 G.F. Ptister and V. Alan Norton, Hot spot contention and

combining in multistage interconnection networks, lEEE

Truns. on Cornpurer 10 (1985) 943-948.

[32] L. Ricci, Compilation of logic programs for massively paral-
lel systems, Ph.D. Thesis, Universid di Pisa, 1990.

1331 E. Shapiro (ed.), Concurrent Prolog Collected Papers (MIT

Press, Boston, 1987).

[35] D.J. Troy, C.T. Liu and W. Zhang. Linearization of nonlinear

recursive rules, IEEE Truns. on Soj?wure Engineering 9

(1989) 1109-1119.

[34] B. Schwinn, G. Barth and C. Welsch. RAPID: A data flow
model for implementing parallelism and intelligent back-

tracking in logic programs, Proc. of’ fARLE’89; Leclure

Notes in Computer Science Vol. 365 (Springer, Berlin 1989)
115-132.

[36] E. Tick, A performance comparison of AND and OR parallel

logic programming architecture. F’roc. of 5th lnf. Logic

Progrumming Con/: (I 989).

[37] P. Tinker and G. Lindstrom, A performance oriented design

for OR-parallel logic programming, PTOL.. of 4rh Int.Logic

Progrumming Conf (1987) 601-615.

(381 L.G. Valiant, Optimality of a two phase strategy for routing
in interconnection networks, IEEE Trans. on Cornpurer 9

(1983) 861-863.

[39] D.H.D. Warren, OR-parallel execution models of Prolog,
Proc. of Theory and Practice of Sojiware Development;

Lecture Notes in Computer Science Vol. 250 (Springer,
Berlin 1987) 243-259.

F. Baiordi et ul./Journol oj’Syiystem.s Archrtecture 43 (1997) 437-457

Fabrizio Baiardi graduated in Com-
puter Science at the University of Pisa
in 1980. He has been an associate re-
searcher with the Department of Infor-
matics, University of Pisa, since 1984.
Currently he is an associate professor
with the same department. His research
interests include programming environ-
ments and operating systems for MIMD
massively parallel systems. He has been
the coordinator of the research activities
on highly parallel operating systems of
the national oroiect on Parallel Architec-

457

tore of the National Research Councii(eNR).

