
A Two-level Scheduler to Dynamically Schedule a Stream
of Batch Jobs in Large-scale Grids

Marco Pasquali
∗

Information Science and
Technologies Institute, CNR

Pisa, Italy
m.pasquali@isti.cnr.it

Ranieri Baraglia
Information Science and

Technologies Institute, CNR
Pisa, Italy

r.baraglia@isti.cnr.it

Gabriele Capannini
Information Science and

Technologies Institute, CNR
Pisa, Italy

g.capannini@isti.cnr.it

Laura Ricci
Computer Science Dept.

University of Pisa
Pisa, Italy

ricci@di.unipi.it

Domenico Laforenza
Information Science and

Technologies Institute, CNR
Pisa, Italy

d.laforenza@isti.cnr.it

ABSTRACT
This paper describes the study conducted to design and eval-
uate a two-level on-line scheduler to dynamically schedule a
stream of sequential and multi-threaded batch jobs on large-
scale grids, made up of interconnected clusters of heteroge-
neous machines. The scheduler aims to schedule arriving
jobs respecting their computational and deadline require-
ments, and optimizing the utilization of hardware resources
as well as software resources.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods, Scheduling; F.2.2 [Nonnumerical Al-

gorithms and Problems]: Sequencing and scheduling

General Terms
Algorithms, Experimentation, Management, Performance.

Keywords
Grids, Scheduling, Simulation.

1. INTRODUCTION
To build a grid infrastructure requires the development

and deployment of middle-ware, services, and tools. At
middle-ware level the scheduler plays a major role in or-
der to efficiently and effectively schedule submitted jobs on
the available resources. The objective of the scheduler is
to assign tasks to specific resources maximizing the overall
resource utilization and guaranteeing the QoS required by
applications. In this paper we describe the study conducted
to develop a two-level scheduler to dynamically schedule a
stream of batch jobs in large-scale grids, made of intercon-
nected clusters of heterogeneous machines. In our study we

∗Lucca Institute for Advanced Studies, IMT Lucca, Lucca,
Italy

Copyright is held by the author/owner(s).
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
ACM 978-1-59593-997-5/08/06.

consider a stream of batch jobs, which arrive to the system
and are stored into a single job queue. We suppose that
each job is independent of the computation of other jobs,
sequential or multi-threaded, that a job is executed only on
one machine, and that jobs are allocated to a machine ac-
cording to the space sharing policy. We also assume that
all jobs are not preemptable, and that mechanisms to notify
configuration changes, such as job submission/ending, are
available in the computing platform.

2. SCHEDULER ARCHITECTURE
At the higher level there is the Meta Scheduler (MS),

which manages the queue to which users submit their jobs
and makes decisions to dispatch them to the lower-level
scheduling instances: the Local Scheduler (LS). LS makes
decisions to schedule jobs on the machines belonging to its
cluster. To make scheduling decisions, both MS and LS com-
pute a priority value for each submitted job by exploiting,
each one, a different set of heuristics. The computational
complexity of the heuristics used at MS level is smaller than
those used at LS level.

MS computes the priority pj of a job j by averaging the re-
sults of three heuristics: Deadline, which evaluates the aver-
age of the differences between available time till the deadline
and estimated processing time, computed for a fixed sized
set of elements in the rear of the incoming jobs, Licenses,
which favors the execution of jobs improving the software
licenses usage, and User, which prioritizes jobs according
the user peculiarities. MS dispatches jobs to LSs accord-
ing to a policy based on two functions: Load and Ordering.
Load aims to balance the workload among clusters. Order-
ing aims to balance the number of jobs with equal priority
in each cluster queue.

For each cluster c two arrays Lc and Oc of n elements are
defined, with each array entry corresponding to a priority
value, i.e. p ∈ [1, n]. Each Lc stores the amount of workload
due to jobs scheduled on c computed as:

∀c. ∀p ∈ [1, n]. Lc[p] =
P

{j∈c|priority(j)≥p} workload(j)

Load assigns a job j to the first empty cluster c̄ (i.e.
Lc̄[pj ] = 0) or to the one with the least workload correspond-
ing to pj (i.e. Lc̄[pj ] = min{Lc[pj ]}∀c). If exists more than

231



cluster optimal ta = 0 ta = 5 ta = 10 ta = 15
c1 0.52 0.25 0.53 0.63 0.67
c2 0.26 0.25 0.23 0.24 0.25
c3 0.13 0.25 0.14 0.09 0.07
c4 0.07 0.25 0.08 0.05 0.01

Table 1: MS’s workload result.

one cluster with the same workload, Ordering is invoked. It
works using the same strategy of Loads, but uses Oc arrays
to store for each priority how many jobs are queued in the
cluster c.

As LS we experimented a Flexible Backfilling [2] and an
EASY Backfilling algorithm [3]. In the case of Flexible Back-
filling, the job priorities were computed as the sum of the
weighted contributes computed by four heuristics obtained
from the ones in [1, 2]: Aging, which increases its result for
each job proportionally to the time elapsed since its submis-
sion, Deadline, which favors the jobs closer to their deadline,
License, which assigns a higher increase to jobs requiring a
larger number of critical licenses, and Wait Minimization,
which tries to improve the total flow time favors jobs with
a shorter estimated execution time.

3. PERFORMANCE EVALUATION
The objective of the executed tests is to investigate about

workload distribution and job classification choices made by
the MS scheduling policies we propose.

Tests were conducted by using a synthetic workload (5000
jobs, 20 licenses, and with the 30% of jobs without deadline),
and simulating a grid consisting of four clusters (from c1 to
c4 in Table 1) each one with a different number of machines,
i.e. 120, 60, 30, and 15 respectively. In order to obtain
stable values, each simulation was repeated 20 times with
different streams. Table 1 shows the average percentage of
total workload assigned to each cluster. Increasing the aver-
age job interarrival time (ta), it happens that some clusters
are enough powerful to maintains empty their LS’s queue.
Consequently, MS dispatches a larger number of jobs to such
clusters. ta = 5 obtains a workload distribution that better
approximates the optimal one. It is because of the amount
of workload assigned to LSs, properly represents the clusters
computational power.

Consequently, to figure out the quality of the MS’s job
classification, we show the results obtained by using ta = 5.
Three different cases were evaluated: in the first one, re-
ferred as h(ms), the Flexible Backfilling algorithm is used
as LS exploiting job priorities computed by MS, in the sec-
ond one, referred as h(ls), at LS level, is still applied the
Flexible Backfilling algorithm exploiting its job classifica-
tion heuristics, in the third case, referred as fcfs, jobs are
scheduled at both MS and LS level according to the FCFS
policy. Figure 1 shows the average slowdown[2] computed
for all the jobs without deadlines. It can be seen that it
improves in inverse proportion to the cluster computational
power. This because the MS objective is to maintain the
same workload in each cluster queue. Consequently, it dis-
patches jobs among clusters without considering the time a
job spent in the queue. Figure 1 shows also the percent-
age of jobs ended after their deadlines (referred as delayed

job). It can be seen that the solutions based on LS and MS
heuristics are able to improve the number of jobs executed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

slowdown delayed job system usage licenses usage
0%

20%

40%

60%

80%

100%

h(ls)
h(ms)

fcfs

Figure 1: MS’s job classification result.

within their deadline, compared to the EASY Backfilling so-
lution. Furthermore, considering system and licenses usage,
it can be seen that using only the MS job classification we
obtained results comparable to those obtained by using the
LS one, but with a smaller computational cost.

4. CONCLUSIONS
This paper describes the study we conducted to develop

a two-level scheduler to dynamically schedule a stream of
batch jobs on grids made up of heterogeneous machines in
interconnected clusters. The conducted simulation demon-
strated that the proposed solution can be a viable one. In
particular, we show that using a lightweight component like
MS, joined with lightening LSs, carries out good results as
using more complex LSs.

5. ACKNOWLEDGMENTS
This work has been supported by SUN Microsystems’s

grant, and by the European CoreGRID NoE (European Re-
search Network on Foundations, Software Infrastructures
and Applications for Large Scale, Distributed, GRID and
Peer-to-Peer Technologies, contract no. IST-2002-004265).

6. REFERENCES
[1] G. Capannini, R. Baraglia, D. Puppin, L. Ricci, and

M. Pasquali. A job scheduling framework for large
computing farms. In SC07, Reno, USA, November 2007.

[2] A. D.Techiouba, G. Capannini, R. Baraglia, D. Puppin,
M. Pasquali, and L. Ricci. Backfilling strategies for
scheduling streams of jobs on computational farms. In
CoreGRID Workshop, Crete, Greece, June 2007.

[3] A. W. Muálem and D. G. Feitelson. Utilization,
predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling. IEEE Trans.

Parallel and Distributed Syst., 12(6), June 2001.

232


