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Corso Italia 40, 50125 - PISA
<last name>@di.unipi.it

Abstract. Irregular problems require the computation of some proper-
ties for a set of elements irregularly distributed in a domain in a dynamic
way. Most irregular problems satisfy a locality property because the prop-
erties of an element e depend upon the elements ”close” to e. We propose
a methodology to develop a highly parallel solution based on load bal-
ancing strategies that respects locality, i.e. e and most of the elements
close to e are mapped onto the same processing node. We present the
experimental results of the application of the methodology to the n-boby
problem and to the adaptive multigrid method.

1 Introduction

The solution of an irregular problem requires the computation of some properties
for each of a set of elements that are distributed in a n-dimensional domain in
an irregular way, that changes during the computation. Most irregular problems
satisfy a locality property because the probability that the properties of an
element ei affects those of ej decreases with the distance from ei to ej. Examples
of irregular problems are the Barnes-Hut method [2], the adaptive multigrid
method [3] and the hierarchical radiosity method [5].

This paper proposes a parallelization methodology for irregular problems
in the case of distributed memory architectures with a sparse interconnection
network. The methodology defines two load balancing strategies to, respectively,
map the elements onto the processing nodes, p-nodes, and update the mapping
as the distribution changes and a further strategy to collect information on
elements mapped onto other p-nodes. To evaluate its generality, the methodology
has been applied to the Barnes-Hut method for the n-body problem, NBP, and
to the adaptive multigrid method, AMM. Sect. 2 describes the representation of
the domain and the load balancing strategies and Sect. 3 presents the strategy
to collect remote data. Experimental results are discussed in Sect. 4.

2 Data Mapping and Runtime Load Balancing

All the strategies in our methodology are defined in terms of a hierarchical
representation of the domain and of the element distribution. At each hierarchical
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level, the domain is partitioned into a set of equal subdomains, or spaces. The
hierarchy is described through the Hierarchical Tree, H-Tree [7, 8]; the root
represents the whole domain, each other node N, hnode, represents a space,
space(N), and it records information on the elements in space(N). A space A that
violates a problem dependent condition, is partitioned into 2n equal subspaces
by halving each of its sides. A is partitioned if contains more than one body in
the NBP, and if the current approximation error in its vertexes is larger than a
threshold in AMM. The sons of N describe the partitioning of space(N). In the
following, hnode(A) denotes the hnode representing the space A, and the level
of A is the depth of hnode(A) in the H-Tree. Hnodes representing larger spaces
record a less detailed information than those representing smaller spaces. In the
NBP, each leaf L records the mass, the position in the space and the speed vector
of the body in space(L), while any other hnode N records the center of gravity
and the total mass of the bodies in space(N). In the AMM, each hnode N records
the coordinates, the approximated solution of the differential equation and the
evaluation of the error of the point on the leftmost upward vertex of space(N).
At run time, the hierarchy and the H-Tree are updated according to the current
elements distribution. Since the H-Tree is too large to be replicated in each p-
node, we consider a subset that is replicated in each p-node, the RH-Tree, and
one further subset, the private H-Tree, for each p-node.

To take locality into account, we define the initial mapping in three steps:
spaces ordering, workload determination and spaces mapping onto p-nodes.

The spaces are ordered through a space filling curve sf built on the spaces
hierarchy [6]; sf also defines a visit v(sf) of the H-Tree that returns a sequence
S(v(sf)) = [N0, .., Nm] of hnodes. The load of a hnode N evaluates the amount
of computations due to the elements in space(N). In the NBP, the load of a leaf
L is due to the computation of the force on the body in space(L). This load
is distinct for each leaf and it is measured during the computation, because it
depends upon the current body distribution. No load is assigned to the other
hnodes because no forces are computed on them. Since in the AMM the same
computation is executed on each space, the same load is assigned to each hnode.

The np p-nodes are ordered in a sequence SP = [P0, .., Pnp] such that the
cost of an interaction between Pi and Pi+1 is not larger than the cost of the
same interaction between Pi and any other p-node. Since each p-node executes
one process, Pk denotes also the process executed on the k-th p-node of SP .

S(v(sf)) is partitioned into np segments, whose overall load is as close as
possible to average load, the ratio between the overall load and np. We cannot
assume that the load of each segment S is equal to average load because each
hnode is assigned to one segment; in the following, = (S,C) denotes that the load
of S is as close as possible to C. The first segment of S(v(sf)) is mapped onto
P0, the second onto P1 and so on. This mapping satisfies the range property:
if the hnodes Ni and Ni+j are assigned to Ph, then all the hnodes in-between Ni

and Ni+j in S(v(sf)), are assigned to Ph as well. Due to the property of space
filling curves, any mapping satifying this property allocates elements that are
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close to each other to the same p-node. Furthermore, two consecutive segments
are mapped onto p-nodes that are close in the interconnection network.

PH-Tree(Ph), the private H-Tree of Ph, describes Doh, the segment assigned
to Ph, and includes a hnode N if space(N) belongs to Doh. The RH-Tree is the
union of the paths from the H-Tree root to the root of each private H-Tree; each
hnode N records the position of space(N) and the owner process. In the NBP, a
hnode N belongs to PH-Tree(Ph) iff all the leaves in Sub(N), the subtree rooted
in N, belong to this tree too, otherwise it belongs to the RH-Tree. To minimize
the replicated data, the intersection among a private H-Tree and the RH-Tree
includes the roots of the private H-Trees only. In the AMM, each hnode belongs
to the private H-Tree of a p-node, because all hnodes are paired with a load.

Due to the body evolution in the NBP and to the grid refinement in the
AMM, the initial allocation could result in an unbalance at a later iteration.
The mapping is updated if the largest difference between average load and the
current workload of a process is larger than a tolerance threshold T > 0. Let
us suppose that the load of Ph is average load + C, C > T , while that of Pk,
h �= k, is average load - C. To preserve the range property, the spaces are shifted
among all the processes Pi in-between Ph and Pk. Let us define Preci as the set
[P0...Pi−1] and Succi as the set [Pi+1...Pnp]. Furthermore, Sbil(PS) is the global
load unbalances of the set PS. If Sbil(Preci) = C > T , i.e. processes in Preci
are overloaded, Pi receives from Pi−1 a segment S where = (S,C). If, instead,
Sbil(Preci) = C < −T , Pi sends to Pi−1 a segment S where = (S,C). The same
procedure is applied to Sbil(Succi), but the hnodes are either sent to or received
from Pi+1. To preserve the range property, if Doi= [Nq....Nr], then Pi sends
to Pi−1 a segment [Nq....Ns], while it sends to Pi+1 a segment [Nt....Nr], with
q ≤ t, s ≤ r.

3 Fault Prevention

To allow Ph to compute the properties of elements in Doh whose neighbors
have been mapped onto other p-nodes, we have defined the fault prevention
strategy. The fault prevention strategy allows Ph to receive the properties of
the neighbors of elements in Doh without requesting them. Besides reducing the
number of communications, this simplifies the applications of some optimization
strategies such as messages merging. For each space A in Dok, Pk determines,
through the neighborhood stencil, which processes require the data of A and
sends to these processes the data, without any explicit request. To determine
the data needed by Ph, Pk exploits the information on Doh in the RH-Tree.
In general, Pk approximates these data because the RH-Tree records a partial
information only. The approximation is always safe, i.e. it includes any data Ph

needs, but, if it is not accurate, most data is useless. To improve the approxima-
tion, the processes may exchange some information about their private H-Trees
before the fault prevention phase (informed fault prevention).

In the NBP, the neighborhood stencil of a body b is defined by the “Multipole
Acceptability Criterium” (MAC), that determines, for each hnode N, whether
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the interaction between b and the bodies in space(N) can be approximated. A
widely adopted definition of the MAC [2] is l

d < θ, where l is the length of the side
of space(N), d is the distance between b and the center of gravity of the bodies
in space(N) and θ is an user defined approximation coefficient. Pk computes the
influence space, is(N), for each hnode N that is not a leaf of PH-Tree(Pk). is(N)
is a sphere with radius l

θ centered in the center of gravity recorded in N. Then,
Pk visits PH-Tree(Pk) in anticipated way and, for each hnode N that is not a leaf,
it computes J(N,R) = is(N) ∩ space(R) where R is the root of PH-Tree(Ph),
∀h �= k. If J(N,R) �= ∅, it may include one body d, and the approximation
cannot be applied by Ph when computing the forces on d. Hence, Ph needs the
information recorded in the sons of N in the PH-Tree(Pk). To guarantee the
safeness of fault prevention, Pk assumes that J(N,R) always includes a body,
and it sends to Ph the sons of N. Ph uses these data iff J(N,R) includes at
least one body. If J(N,R) = ∅ then, for each body in Doh, Ph approximates the
interaction with N and it does not need the hnodes in Sub(N).

In the AMM, Ph applies the multigrid operators, in the order stated by the
V-cycle, to the points in Doh [3, 4]. We denote by Boh the boundary of Doh,
i.e. the sets of the spaces in Doh such that one of their neighbors does not
belong to Doh. Boh depends upon the neighborhood stencil of the operator op
that is considered. Let us define Ih,op,liv as the set of spaces not belonging to
Doh and including the points required by Ph to apply op to the points in the
spaces at level liv of Boh. ∀h �= k, Pk exploits the information in the RH-Tree
about Doh to determine the spaces in Dok that belongs to Ih,op,liv. Hence, it
computes and sends to Ph a set AkIh,op,liv that approximates Ih,op,liv∩Dok. The
values of points in AkIh,op,liv are trasmitted just before the application of op,
because they are updated by the previous operators in the V-cycle. To improve
the approximation, we adopt informed fault prevention. If a space in Dok belongs
to Ih,op,liv, k �= h, Ph sends to Pk, at the beginning of the V-cycle and before
the fault prevention phase, the level of each space in Boh that could share a side
with the one in Dok. If the load balancing procedure has been applied, Ph sends
the level of all the spaces in Boh, otherwise, since spaces are never pruned, Ph

sends the level of the new spaces only.

4 Experimental Results

To evaluate the generality of our methodology, we have implemented the NBP
on the Meiko CS 1 with OCCAM II as programming language and the AMM on
a Cray T3E with C and MPI primitives. The data set for the NBP is generated
according to [1]. The AMM solves the Poisson’s problem in two dimensions
subject to two different boundary conditions, denoted by h1 and h2:

h1(x, y) = 10 h2(x, y) = 10 cos(2π(x− y))sinh(2π(x + y + 2))
sinh(8π)

To evaluate the fault prevention strategy, we consider the ratio of the amount of
data sent against those that are really needed. This ratio is less than 1.1 in the
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Fig. 1. Efficiency

NBP and less than 1.24 in the AMM. In the AMM, informed fault prevention
reduces the ratio to 1.04.

In both problems, the balancing procedure reduces the total execution time
but the optimal value of T has to be determined. In the NBP, the execution
time is nearly proportional to difference between the adopted value of T and
the optimal one. In the AMM, the optimal value of T also depends upon the
considered equation, that determines the structure of the H-Tree. In this case,
the relative difference between the execution time of a well balanced execution
and that of an unbalanced one can be larger than 25%.

Fig. 1 shows the efficiency of the two implementations. For the NBP, the
lowest number of bodies to achieve a given efficiency is shown. For the AMM
we show the results for the two equations, for a fixed number of initial points,
16.000, and the same maximum depth of the H-Tree, 12. The larger granularity
of the NBP results in a better efficiency. In fact, after each fault prevention
phase, the computation is executed on the whole private H-Tree in the NBP
while in AMM it is executed on one level of this tree.
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