

Java Bittorrent API

By Baptiste Dubuis

Supervisor: Dr. Martin Rajman
Assistant: David Portabella Clotet

 Lausanne, February 19, 2007

Java Bittorrent API 1

Java Bittorrent API 2

Table of contents

1 INTRODUCTION ... 4

1.1 PEER-TO-PEER NETWORKS.. 4
1.2 BITTORRENT... 4
1.3 GOAL OF THE PROJECT ... 5
1.4 TOOLS AND LIBRARIES ... 5
1.4.1 Simple Web .. 5
1.4.2 JDOM... 6
1.4.3 ClientHTTPRequest .. 6
1.4.4 BEncoder.java and BDecoder.java ... 6

2 ILLUSTRATIVE EXAMPLE.. 7

2.1 STEP 1: CREATE A TORRENT FILE .. 7
2.2 STEP 2: PUBLISH TORRENT FILE.. 8
2.3 STEP 3: DISTRIBUTE TORRENT ... 8
2.4 STEP 4: SHARE THE PICTURES AND MOVIES .. 9
2.5 STEP 5: DOWNLOAD THE PICTURES AND MOVIES .. 9
2.6 CONCLUSION ON THE EXAMPLE ... 9

3 PRESENTATION OF THE PROTOCOLS.. 10

3.1 ACTORS IN BITTORRENT PROTOCOL...11
3.1.1 Peers ..11
3.1.2 Trackers ..13
3.1.3 Web servers...13

3.2 DESCRIPTION FILE: THE “TORRENT” ..14
3.3 COMMUNICATION BETWEEN ACTORS ..17
3.3.1 Torrent files distribution ..17
3.3.2 Peer – Tracker communication ...17
3.3.3 Peer Wire Protocol ..19

3.3.3.1 Handshake ..19
3.3.3.2 Messages ..20

4 IMPLEMENTATION OF THE PROTOCOLS ... 22

4.1 PUBLISHING FILES ...22
4.1.1 Create torrent file ...23
4.1.2 Publish torrent file ..23

4.1.2.1 trackerBT: a simple Bittorrent tracker ...24
4.1.2.1.1 FileService ...25
4.1.2.1.2 UploadService ..25
4.1.2.1.3 TrackerService..26

4.1.3 Share the target files ..27
4.2 DOWNLOADING TORRENTS ...27
4.3 RETRIEVING REMOTE PEERS INFORMATION ...28
4.4 RETRIEVING THE TARGET FILES ..29

5 CONCLUSION ... 31

5.1 ACHIEVEMENTS ..31
5.2 DIFFICULTIES ..31
5.3 FUTURE WORKS AND IMPROVEMENTS ...32
5.4 FINAL WORD..32

6 REFERENCES .. 33

Java Bittorrent API 3

Java Bittorrent API 4

1 Introduction

1.1 Peer-To-Peer networks

Peer-to-peer networks (referred as P2P in the next chapters) allow clients
and providers to share files in a decentralized environment. There are
several reasons for P2P networks to exist. First one may be to ensure high
file availability. In the classic client/server approach, a file is hosted by a
server. But if the server goes down (crash, maintenance…), there is no
possibility for a client to get the file. With P2P, the file is made available
by every client that shares it and there should not be any centralized
server that proposes the file. A client who wants to download a file will
contact other peers sharing the same file and download directly from
them, which makes the files highly available, especially very popular ones.
If a peer stops serving the files, there should always be other peers that
still have them and share them.

A second reason is for sure the bandwidth cost. If a single server was
proposing very popular services and files to download, it will have tons of
clients connecting to it every second and so it will require a huge amount
of bandwidth to be able to serve them at the same time. It is in this case
that P2P networks appear to be the ultimate solution. Indeed every people
downloading the file will share it at the same time, downloading not only
(and maybe not at all) from the main server but from other peers that
also share the files. Then the initial host of the files will only have to share
it for a few times and without huge bandwidth requirement.

We can see easily that P2P networks provide some advantages over
classical client/server approach for large files transfers. Among peer-to-
peer networks the search of the most efficient algorithms to assure good
throughput and availability as given birth to many different protocols.
Napster, Kazaa, eMule (eDonkey2000 network) and now Bittorrent are the
most famous of them.

1.2 Bittorrent

Bittorrent is one of the rising P2P transfer protocols on the internet. Many
users have already adopted it and major companies in the field of
entertainment (music, movies…) are investigating to use this protocol for
the distribution of their products due to its popularity and the good
transfer rates it provides. It uses metadata files (called torrents) to
provide necessary information to its clients.

Java Bittorrent API 5

1.3 Goal of the project

The first goal of this project was to get in touch with this relatively new
protocol. We wanted to know how it works and what its main
characteristics are.

Further we wanted to study if this protocol could be useful for everyday’s
internet use, like for example web browsing and if so, what could be the
best way of using it. The main purpose of this project is to see if it could
be possible to modify a web server and a web browser so that it can use
the Bittorrent protocol in an efficient manner, providing both bandwidth
economy and increased reliability for the server by delegating the task to
its clients for example.

1.4 Tools and libraries

As one will see, there is not that much implementation of the Bittorrent
protocol in JAVA. It was therefore very difficult to reuse code to simplify
the work. However some preexisting classes and libraries have been used
throughout this project to ease the development of the software and also
because of their efficiency and user-friendliness.

Figure 1 - Simple Web Architecture for Tracker implementation

1.4.1 Simple Web1

If a user wants to put a tracker online, he will need to setup a web server
to host the files and respond to client request. For this reason I was
proposed to use the Simple Web library. It provides the possibility to
execute JAVA code (services) in order to respond to client requests which
is exactly what I needed to implement the tracker proposed within the

1 http://www.simpleframework.org

Java Bittorrent API 6

project software. In the same time, it is quite light compared to other
solution like Tomcat while being complete enough to ensure a good
performance.

It is very easy to create a server using Simple web library and the
architecture is the following: a main class accept incoming connection on a
given port and redirect them to the corresponding service according to the
URL. The service is a JAVA class that is instantiated to process the request
in any way and create the corresponding response. The tracker
architecture is represented in Figure 1 and the services will be explained
below.

1.4.2 JDOM2

The tracker created for this project does not use a database. Instead of
that, it relies on XML files to store and retrieve torrents and peers
information. In order to do that, I choose the JDOM library which provides
a complete, Java-based solution for accessing, manipulating, and
outputting XML data from Java code.

1.4.3 ClientHTTPRequest3

When communicating with trackers for uploading files, I have been
confronted to a special kind of HTTP request: multipart/form-data as
defined in RFC23884. These are HTTP request encoded in a special manner
to permit transmission on files along with text and other parameters.
The ClientHTTPRequest class implements this protocol and utility methods
that permit in a simple manner to add content to the request and send it
to a web server. Therefore, this class has been chosen for speculative
future enhancement of the publication part of the API, which might need
to communicate in a non-trivial way with trackers or web servers. In this
case, the ClientHTTPRequest class should be very helpful.

1.4.4 BEncoder.java and BDecoder.java

As we will see in chapter 3.2, Bittorrent protocol uses a special encoding
for the torrent files and the tracker responses called BEncoding. There are
many JAVA classes that implement this encoding type. I just found the
ones that are part of the Azureus5 distribution very practical and general
so that they can be used with many types of data.

2 http://www.jdom.org
3 See article http://www.devx.com/Java/Article/17679/0/page/3
4 RFC2388: Returning Values from Forms: multipart/form-data. Available at
http://www.ietf.org/rfc/rfc2388.txt
5 Azureus is one of the most popular Bittorrent client and almost the only one to be
written in JAVA. See http://azureus.sourceforge.net

Java Bittorrent API 7

2 Illustrative example

In order to illustrate the use of Bittorrent protocol and of our API along
the next sections of this report, let’s consider this simple example:

John went on holidays and he has his digital camera with him. He took
about a hundred of pictures (1MB each) and made also two movies (50MB
each). When he came back home, he decided to share his holiday stuff
with his friends, which are located in many different countries. So he
would like to propose to his many friends and also to other people the
possibility to download his files.

The problem is that the total size of data is huge, 200Mo, and so sharing
for example to ten people would require a transfer of 2000Mo of data
(plus the overhead of the protocol used). Also he does not own a very fast
Internet connection and still would like to be able to use it, even if people
try to download from his computer. So he cannot simply put these files on
a local website. Hopefully he recently heard about peer-to-peer networks
and knows he can provide these files to other people by not using only his
bandwidth, but also the one of other people downloading the files. For
this, he decided to use a popular protocol and the one he found to be very
used actually is the Bittorrent Protocol. He read some documentation and
then follows the different steps that are required to publish his files.

2.1 Step 1: Create a torrent file

The torrent file contains essential information about the files John wants
to publish and about the location he will publish it. To create such a file,
John needs special software that takes as input his holidays pictures and
movies and some other parameters.

Many programs permit to do it quite simply. Among them, let’s quote
MakeTorrent6 or the well known Azureus, the complete JAVA Bittorrent
program that also permit to create a torrent file. Taking the example of
MakeTorrent, John will have to download the program on the official
website. He will install it running the .exe files downloaded and launch the
application. Then he will browse the directory tree to find the files he
wants to publish. Once he has selected them, he can enter the tracker
announce URL or choose it in the provided list. Let’s suppose he wants to
publish it on smartorrent tracker, which announce URL is
http://www.smartorrent.com:2710/announce. Finally he can enter
some comment about his holiday’s files and choose the length of the

6 See http://krypt.dyndns.org:81/torrent/maketorrent/

Java Bittorrent API 8

pieces the files will be split into to be distributed. Then, he’ll push the
“Create .torrent now!” button and indicate the name and location this file
can be saved into, for example “c:\torrents\holidaysPicture.torrent”.

2.2 Step 2: Publish torrent file

Once the torrent file is created, John will have to publish it on the tracker
he specified earlier in the torrent file (“announce URL” parameter). To do
that, he will need to create register an account on smartorrent.com. To
complete this step, he will have to:

1. Go on http://www.smartorrent.com
2. Click on the “s’inscrire” tab
3. Provide the information

a. Nom d’utilisateur(username): johnDoe
b. Email: john@epfl.ch
c. Confirm email: john@epfl.ch
d. Mot de passe (password): bittorrentAPI
e. Confirmer mot de passé: bittorrentAPI

4. Press “Envoyer” button, this will show the login page
5. Enter his created username and password to login and press login
6. Choose the uploader tab
7. Provide the requested information about the torrent he has created

a. Nom (name): “holidays.torrent”
b. Torrent: “c:\torrents\holidaysPicture.torrent”
c. Categorie: “autre”
d. Lien de description externe: none
e. Description: “My holidays pictures and movies”

8. Press upload, a page will announce “Votre torrent a bien été
uploadé”, meaning your torrent has been published correctly

2.3 Step 3: Distribute torrent

Now the torrent is published, John can advertise his friends that they can
download the files from the tracker. To do that, they can simply go to
http://www.smartorrent.com, register an account as John did, login and
search for the torrent name John provided. This will display the list of
torrents corresponding to this name. There can be more than one result,
in such case they will just have to check the uploader is John (i.e. that the
username is johnDoe). Then they just click on the torrent which will
display a page with torrent details. From there, they just press the
download link and get the torrent.

Java Bittorrent API 9

A faster way for John to provide the torrent file to his friends is simply to
send them the (small) torrent file by email, so they don’t have to register
on smartorrent and directly get the file necessary to begin download.

2.4 Step 4: Share the pictures and movies

John now has to provide his files for download. In order to do that he has
to open the torrent file he just created using a Bittorrent client. There are
many of them available7. Since we talk about it for a moment, let’s see
how to use Azureus. Users can get the latest version of the program at

http://sourceforge.net/project/showfiles.php?group_id=84122
and choosing the correct distribution. Once downloaded, John will just
have to run Azureus on his machine. Once it is launched, John will just
have to open the torrent he wants to share and there he is: the client is
now sharing the files with other peers that can now start downloading
pieces of John’s beautiful pictures and movies.

2.5 Step 5: Download the pictures and movies

For John’s friends to be able to download the files, they have to follow the
same steps as John when he had to share his files, i.e. run a Bittorrent
client on their machine and open the torrent file provided by John. The
client will be able to contact other peers sharing John’s files and download
pieces from them. Finally they will all get John’s holiday’s stuff on their
computer.

2.6 Conclusion on the example

We have seen here that John and his friends must do quite a lot of things
before everybody’s got John’s files. Download multiple programs, visit
several web sites and so on. Although all the preceding steps could have
been done using the latest version of Azureus, it seems that it would have
been too difficult and furthermore too heavy to use Azureus for the main
goal of the project, which is using Bittorrent in web browsing by adapting
a web browser and/or a web server. For this reason, Java Bittorrent API
project should be the solution for John and his friend since it provides a
simple API and furthermore simple example program that permit to
execute the different step presented above in a quite easy way. Moreover,
the API behind these examples is complete and performing enough to use
it for the next part of the project.

7 Visit http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software for more
information about Bittorrent Clients

Java Bittorrent API 10

3 Presentation of the protocols

Before using the programs he just downloaded John, who is curious by
nature, decided to check what that Bittorrent protocol is. He learned lots
of things…

The Bittorrent protocol needs several steps to complete any download.

First John, the owner of the original files, will have to create a relatively
small metadata file which will contain all information that any other user
will need to retrieve John’s pictures and movies. This description file is
called the torrent file, or simply the torrent.

Once this file has been created, John will have to publish it on a tracker,
which should coordinate the file transfers. Then, John will have to run a
Bittorrent client, which will be responsible to communicate with other
peers and share with them John’s holiday files, which will be called
hereafter the target files.

When the previous steps are completed, John is able to share his files with
people. In order to do that, he will have to provide people the description
file. Although it should already be available on the tracker, John can
upload this small file to as many web servers he wants, so that it is
available for many people. And for his close friends and relative he can
even send them the torrent by email, so that they don’t have to bother
searching the file on the Web.

At the time they get this metadata file, they can run a Bittorrent client as
John do and therefore start downloading. At the beginning, they will find
the files part on John’s computer but as the time goes by they will also
download parts from other people, making John’s connection bandwidth
less used…

Peers, tracker, web server… These terms are not that clear at the time. So
let’s see what they are all about.

Java Bittorrent API 11

Figure 2 - Bittorrent actors8

3.1 Actors in Bittorrent protocol

To accomplish this task, Bittorrent protocol relies on three kinds of actors
(Figure 2): (1) the web servers to find the appropriate torrent files, (2)
the trackers to coordinate the peers in the network and (3) the peers who
share the files in the network by running a Bittorrent client. Each of these
actors has a precise function which is presented hereafter.

3.1.1 Peers

Peers are the end-users of Bittorrent protocol. It is among them that
pieces of target files are exchanged. In our example, peers are
represented by John, his friends and all people running a Bittorrent client
to share some files. Among these peers, it is possible to denote 2
subcategories of peers called, in the Bittorrent language, seeders and
leechers.

Seeders are the peers that own the complete target files corresponding to
a torrent and share them with other peers. Equivalently, we could say that
they only upload these files and do not download from other peers (Figure
3 – thin blue arrows). It is quite clear here that just after files have been

8 Figure taken from http://www.hwysoft.com/cht/source.htm

Java Bittorrent API 12

published, John is the only seeder, since he is the only one to own the
whole pictures and movies.

Leechers are all the other peers, John’s friends and people on the
Internet, the ones that do not own the complete file and therefore
download pieces from other peers (Figure 3 – thin red arrows). They can
also serve the pieces of the files that they already have. Once they’ll have
downloaded all parts of the files, leechers become seeders if they continue
to share the files.

Each peer runs a Bittorrent client to share or download files to/from other
peers. A peer chokes a client to inform it that no requests will be
answered until the client is unchoked. Therefore, the client should not
send any requests for blocks of data and consider all pending requests to
be discarded.

Figure 3 - Bittorrent message exchange9

A peer can be interested in another if the latter owns pieces of data that
the former itself does not.

Each peer maintains state information for each connection with a remote
peer. State information could be:

 is_choking: the remote peer is choking the client
 is_interested: the remote peer is interested in the client

9 Figure taken from http://computer.howstuffworks.com/Bittorrent2.htm

Java Bittorrent API 13

 is_choked: the client is choking the remote peer
 is_interesting: the client is interested in the remote peer

Peers can find the IP addresses and port of other peers by contacting a
tracker.

3.1.2 Trackers

In each metadata file that users will download, there will be at least one
tracker URL (otherwise the torrent file is not valid…). This URL
corresponds to the address of another kind of actor, the tracker.

The tracker is responsible of coordinating all peers that request the same
target files or, equivalently, use the same torrent file. Basically, the
tracker maintains a list of all peers that are currently sharing or
requesting the same file, providing them the possibility to contact each
other and start sharing new parts of the files.

In order to appear in the tracker’s peer list, a client will have to announce
itself to the tracker according to the Tracker HTTP/HTTPS Protocol
(Figure 3, thick green arrow).

Each torrent created with the announce URL of a given tracker has to be
published on the corresponding tracker in order to be available for other
peers and we say that the tracker owns the torrent. The tracker can then
serve the torrent to download and reply to peer requests with list of other
peers sharing the same file.

For John, this means that after having registered his description file on a
given tracker, he will run his Bittorrent client to share his files. The client
will contact the tracker and remember John’s computer IP address and
listening port. Then, every time another client will contact the tracker for
information about people sharing John’s files, the tracker will return a list
of peers information, within which will be John’s.

3.1.3 Web servers

The first thing users have to do to download a file is to get the metadata
file (torrent) that corresponds to the target files users want to download in
the end. These files are present on the trackers on which they have been
published.

But there is nothing in Bittorrent protocol that prevents any web servers
to propose a torrent file to be downloaded from it… Indeed, as it has been
said before, the torrent file contains all the information that a client needs
to download the target files. Thus there is no need for a torrent file to

Java Bittorrent API 14

reside on its tracker. It can therefore be located on any web server that
let people download from it and that’s an advantage of the Bittorrent
protocol: torrents can be everywhere once they have been published.

To find these torrent files, users can simply use their favorite search
engine in their browser, files containing both the name of the desired
target files and the .torrent extension. This way is by far not the most
practical, since it will returns tons of answers and maybe not what is really
needed.

Hopefully, there are many communities that provide this search services
into their own databases of torrents and let users download the torrents
that correspond to the target files.
No matter the way users choose, the task is always the same: to get the
metadata file, it is necessary to download it from a web server, either by
HTTP or FTP.

It might be interesting to note that nowadays, many trackers also permit
the search of torrents that they do not own and provide them either by
direct download or by redirection to a site that provides it, while other
web sites only list tons of torrents and redirect the users to the
tracker/website that provides the file for download.

3.2 Description file: the “torrent”

Now let’s see in more details what a torrent file really is. A torrent file is a
text file that contains metadata necessary to a client willing to download a
certain file. The encryption of this metadata is called bencoding and
supports four types of data: byte strings, integers, lists and dictionaries.

1. Byte strings are encoded as follows: <string length in base 10
ASCII>:<string data>
Example: 19:Bittorrent protocol represents the string “Bittorrent
protocol”

2. Integers are encoded as follows: i<integer in bas 10 ASCII>e,
where i and e are beginning and ending delimiters
Example: i1664e represents the integer 1664

3. Lists are encoded as follows: l<bencoded value>…<bencoded
value>e.
Lists contain any of the four bencoded types.
Example: l10:Bittorrenti1664ee represents the list [“Bittorrent”,
1664]

4. Dictionaries are encoded as follows: d<bencoded

string><bencoded element>e
The keys must be bencoded strings. The values may be any
bencoded type, including integers, strings, lists, and other

Java Bittorrent API 15

dictionaries. Dictionaries are sorted in alphabetical order referring to
the keys.
Example: d7:torrentl3:spai5eee represents the dictionary {“torrent”
=> [“spa”, 5]}

The content of the torrent file is a bencoded dictionary containing the keys
listed below.

 announce: The announce URL of the tracker (string)
 announce-list: (optional) this is an extension to the official
specification, which is also backwards compatible. This key is used
to implement lists of backup trackers.

 creation date: (optional) the creation time of the torrent, in
standard UNIX epoch format (integer seconds since 1-Jan-1970
00:00:00 UTC)

 comment: (optional) free-form textual comments of the author
(string)

 created by: (optional) name and version of the program used to
create the .torrent (string)

 info: a dictionary that describes the file(s) of the torrent. There
are two possible forms: one for the case of a 'single-file' torrent
with no directory structure, and one for the case of a 'multi-file'
torrent (see below for details). In both case, to create the info
dictionary, several steps must be taken:
 Split the target file(s) data into pieces of equal length. In case
of multiple files, the data bytes are concatenated and the
resulting bytes are split as a single one (Figure 4 below).
Number of pieces is equal to

ceil(total_length/piece_length)

 For each piece, compute the 20bytes SHA-110 hash of the
corresponding bytes. The hash uniquely identifies each piece11
and can therefore provide the client a way to verify that the
downloaded piece (i.e. part of the target file(s)) has not been
corrupted since the publishing of the original files.

 Concatenate these hashes to obtain a single string which length
will be a multiple of 20 bytes, depending on the number of
pieces

 It is important to note here that:
 All pieces have the same length (piece_length bytes) with a
single possible exception for the last one that could be
truncated.

10 For further information, see http://en.wikipedia.org/wiki/SHA-1
11 http://www.schneier.com/blog/archives/2005/02/sha1_broken.html, collisions could
have been found on the SHA-1 algorithme. But this is not yet of real concern for
Bittorrent. See discussion entitled [Bittorrent] SHA-1 Broken at
http://lists.ibiblio.org/pipermail/Bittorrent/2005-February/thread.html#560

Java Bittorrent API 16

 A piece can contain data belonging to more than one file,
depending on the length of the pieces and the length of the
files (see for example Figure 4, piece 9)

 Piece length is commonly set to 256kB, 512kB or 1MB. The
goal is to keep a rather small torrent size to permit a quick
download and no waste of bandwidth for the web servers
while still having an efficient swarm for sharing the files.
Nowadays, the conventional wisdom is to have a rather
small piece size that increases the swarm efficiency, even if
the torrent becomes larger. This is because web server
bandwidth is becoming less tightly constrained.

Figure 4 - Piece segmentation

The info dictionary contains the following fields, depending on whether the
torrent represent single or multiple file(s).

 piece length: number of bytes in each piece - except possibly the
last one (integer)

 pieces: string consisting of the concatenation of all 20-byte SHA1
hash values, one per piece. The hashes are needed to verify the
integrity of the downloaded pieces (byte string)

 name: in the case of a single-file download, this represents the
(advisory) filename of the file. In the multiple-file download case,
this represents the (advisory) name of the directory in which to
store the files (byte string)

 length: length of the file, in bytes. Present at this level only in the
single file case (integer)

 files: only in the multiple-file case. Lists of dictionaries, one for
each file. The dictionaries have the following keys:
 length: length of the file in bytes (integer)

Java Bittorrent API 17

 path: list containing one or more string elements representing
the ordered sequence of directories to save the file in. Last
element is the file name.
Example: if the file has to be saved as “dir1/dir2/file.ext”,
this will be encoded as: l4:dir14:dir28:file.exte

Several optional and non important fields also exist and could be used to
perfect the torrent, but we chose to only present the most important ones.

3.3 Communication between actors

At this point we know the different actors in presence and also we have
understood the central role of the torrent file in the protocol. Now we will
study in more details how the actors interact with each other and
especially what are the particularities of their communication protocols.

3.3.1 Torrent files distribution

We have seen that one of the main qualities of the Bittorrent protocol is
that it is very easy to make torrent files available. Since they can be
downloaded from any web servers, retrieving these files does not require
a special protocol. This can be as simple as a HTTP response to a GET
request. This can be done by FTP, or by the mean of an email. There is
here no general manner to distribute these files and once again this is the
strength of Bittorrent. Publishing them require the same protocol. Earlier
we have mentioned the existence of communities of users that list tons of
torrent files and provide them to download. These communities are
particularly useful since they provide in general performing search engines
which give the possibility to sort this amount of data and retrieve the
exact torrent that users need. They also provide efficient trackers that can
handle hundreds of thousands of users. Therefore for making

Now that the torrent file is published on a tracker and that users have
access to it from web servers, it is time to start the communication
between the client and the tracker. To enable the communication, peer
and tracker use a special protocol that is describe hereafter.

3.3.2 Peer – Tracker communication

The tracker is an http/https service which replies to HTTP GET requests.
The base URL is the tracker announce URL, specified in the torrent file.
Then, parameters are encoded in this URL according to the RFC2396
specification12 (i.e. a “?” followed by “param=value” sequences separated
by “&”).

12 RFC2396: Uniform Resource Identifiers (URI): Generic Syntax. Available at
http://www.ietf.org/rfc/rfc2396.txt

Java Bittorrent API 18

When a peer wants to share or download a file, it contacts the tracker
using a HTTP GET request and uses the Tracker HTTP/HTTPS Protocol,
which requires the following parameter being encoded in the URL:

 info_hash: 20-byte SHA1 hash of the value of the info key from
the metadata file. This identity uniquely the metadata file so that
the tracker knows which target files the client wants to download
 It is very important and interesting to note here that a torrent
file is identified by its info part only. That means that if one
create several torrents with a different announce URL but with
the same info hash (i.e. same target files in the same order),
the torrents will be the same from a Bittorrent point of view.
That provides the possibility to publish the same files on
different trackers, making the target files even more available
since they can be shared by more peers.

 peer_id: 20-byte string used as a unique ID for the client,
generated by the client at startup. This is allowed to be any value,
and may be binary data

 port: The port number that the client is listening on. Ports
reserved for Bittorrent are typically 6881-6889 but there is no
need for a client to listen on those.

 uploaded: The total amount uploaded in base ten ASCII
 downloaded: The total amount downloaded in base ten ASCII
 left: The number of bytes this client still has to download, in base
ten ASCII

The three field uploaded, downloaded and left may be used by the
tracker to maintain some kind of statistics about the peers, for
example determine the number of seeders, the download rate of each
peer, …

 compact: Indicates the client accepts a compact response. Value
field is set to 1 if client accepts, otherwise it is set to 0. If this field
is not present, tracker considers client does not support compact
response. Compact response is described below in the tracker
response description.

 event: If specified, must be one of started, completed, stopped. If
not specified, then this request is a request that the client
performs at regular intervals to get new peers.
 started: The first request to the tracker must include the event
key with this value.

 stopped: Must be sent to the tracker if the client is shutting
down gracefully.

 completed: Must be sent to the tracker when the download
completes. However, must not be sent if the download was
already 100% complete when the client started.

Java Bittorrent API 19

The tracker then replies to the request with a plain text document
containing a bencoded dictionary with the following keys:

 failure reason: If present, then no other keys may be present.
The value is a human-readable error message as to why the
request failed (string).

 interval: Interval in seconds that the client should wait between
sending regular requests to the tracker (mandatory).

 min interval: Minimum announce interval. If present clients must
not reannounce more frequently than this.

 tracker id: A string that the client should send back on its next
announcements. If absent and a previous announce sent a tracker
id, do not discard the old value; keep using it.

 complete: number of peers with the entire file (integer)
 incomplete: number of non-seeder peers (integer)
 peers:

 In case of non compact response, the value is a list of
dictionaries, each with the following keys:
 peer id: peer's self-selected ID, as described above for the
tracker request (string)

 ip: peer's IP address (either IPv6 or IPv4) or DNS name
(string)

 port: peer's port number (integer)
 In case of compact response, the peers list is replaced by a
peer string with 6 bytes per peer. The first four bytes are the
host (in network byte order); the last two bytes are the port
(again in network byte order). It should be noted that some
trackers only support compact responses (for saving
bandwidth) and refuse normal requests. Also note the
deprecation here of the peer id, not sent.

3.3.3 Peer Wire Protocol

As soon as the client knows the IP address and port of other peers, either
by receiving the list from a tracker or because a remote peer is trying to
connect to it, then the client should start the communication with these
remote peers. The message exchange between peers is done using the so
called Peer Wire Protocol described hereafter. The protocol is symmetric,
in the sense that messages can flow in both directions in the same format.

3.3.3.1 Handshake

The communication between peers starts with a symmetric handshake.
The peer that wants a piece of file sends a handshake message to the
peer that owns this piece. The handshake message has the form:

Java Bittorrent API 20

<pstrlen><pstr><reserved><info_hash><peer_id>

 pstrlen: string length of <pstr>, as a single raw byte (default 19)
 pstr: string identifier of the protocol (default “Bittorrent protocol”)
 reserved: 8 reserved bytes (default 00000000)
 info_hash: 20-byte SHA1 hash of the info key, same as sent in
tracker request

 peer_id: 20-byte string used as unique ID for the client sending
the message, same as in tracker request, if non compact response
is used

3.3.3.2 Messages

All remaining messages take the form of:

<length prefix><message ID><payload>

The length prefix is a 4-byte big-endian value.
Message ID is a single decimal character.
The combination of these two fields uniquely identifies each kind of
message according to the following list:

 Keep-alive <len=0000>: length 0, no ID, no payload, this
message must be sent to avoid certain clients to close connection
after a certain period of inactivity.

 Choke <len=0001><id=0>: choked the client that receives this
message.

 Unchoke <len=0001><id=1>: unchoked the client that
receives this message.

 Interested <len=0001><id=2>: inform a client that a peer is
interested in at least one of the piece it owns.

 Not interested <len=0001><id=3>: inform a client that a peer
is not interested.

 Have <len=0005><id=4><piece index>: A piece of the file
has just been successfully downloaded and verified. The payload of
the message is the zero-based index of the piece.

 Bitfield <len=0001+X><id=5><bitfield>: It informs which
parts of the file the client has. The payload of the message is the
bit representation of the pieces that the client has. High bit in first
byte corresponds to piece index 0. Cleared bits correspond to a
missing piece, set bits to a valid and available piece. There can be
spare bits at the end of the payload and they are set to 0. X
corresponds to the bitfield length. It is sent immediately after the
handshake is completed. Optional if the client has no pieces of the
requested torrent.

 Request <len=00013><id=6><index><begin><length>:
used to request a block of data in a piece

Java Bittorrent API 21

 Index: integer specifying the zero-based piece index
 Begin: integer specifying the zero-based byte offset within the
piece

 Length: integer specifying the requested length (in bytes)
 Piece <len=0009+X><id=7><index><begin><block>:
message that contains a block of data, where X is the length of the
block of data
 Index: integer specifying the zero-based piece index
 Begin: integer specifying the zero-based byte offset within the
piece

 Block: block of data, which is a subset of the piece specified by
index

 Cancel <len=00013><id=8><index><begin><length>:
cancels a block request

Note that “request” messages can be sent by a client to a remote peer
only if the client is interested (hence the client has sent an “interested”
message to the remote peer) and the remote peer is not choking the
client (hence the client has received an “unchoke” message from the
peer).

Java Bittorrent API 22

4 Implementation of the protocols

There are a lot of implementation of Bittorrent protocol and, so, many
Bittorrent clients. But there are only few of them that are written in Java.
Actually, the only one that I found is the Azureus client. It is an amazingly
complete client, with many features, plug-in and so on. And as it is very
complete, it is in the same time very complex, with many interfaces and
no real API available. The idea then was to create a new client, i.e. a new
implementation of the protocol, as an API with maybe less features, but
with a much lower complexity, a client that can be easily understandable
and updatable for future work on it and therefore easily embeddable in
another application.

Keeping that in mind, I decided to build brand new software that offers
the possibility to ease the publication of files, to download and process
metadata files (torrents) from any web servers and, according to the
downloaded torrent, to start the retrieval of the files described in this
torrent. During this work, I also found that it might be difficult for a user
to find a tracker where he can easily publish his torrents on. So decision
was taken to implement a tracker to ease the publication. We will see in
the following sections how these two programs have been implemented.

4.1 Publishing files

As it has been said before, in order to download a file using Bittorrent,
users need to get a metadata file, called torrent file. But if they can get it,
it is also because someone made it available before… This program offers
the opportunity to publish files, by creating torrents containing
information about them, and publishing the torrents on a tracker to make
it available for other people.

What is interesting with Bittorrent is the fact that in one torrent, one can
provide several files to download and not only publish one file at a time.
Compared with eDonkey network, when one wanted to publish several
files, either one published them one at a time or one compressed them in
one folder and then published the compressed file. This feature is
interesting in the sense that a user can group files that are related to the
same main theme while still leaving the possibility to a remote peer to
download only the files he truly wants.

For John, this is in interesting since he can create a single torrent file
describing all his pictures and movies and publish it on a tracker. In the
same time any user that would want to download only some pictures or
only the 2 movies will not have to download all the files but could choose
to download only those he really wants.

Java Bittorrent API 23

The next few sections demonstrate how users can publish or retrieve files
using our programs, trackerBT and jBittorrentAPI.

4.1.1 Create torrent file

The first thing users have to do to publish files is to create a torrent file
containing information about the target files. The torrent creation is
mainly handled by the class TorrentProcessor and some of its methods.

Basically what this class do is to take input arguments such as the
announce URL of the tracker, the piece size, a list of the files to be
published and comment about them and also the name and path of the
file the created torrent should be saved into. These parameters are passed
to an instance of TorrentProcessor by the mean of set methods
(setTrackerURL, setPieceLength …) and files are added thanks to the add
methods (addFile or addFiles).

Once all parameters have been set and all files that should be published
have been added, the object can generate the SHA-1 hashes of the pieces
of the target files by calling the method generatePieceHashes. At this time
the object contains a TorrentFile object that is my JAVA representation of
a “physical” torrent file. The last steps to generate this file are to call the
generateTorrent method that compute, given the TorrentFile, the bytes
corresponding to the BEncoded torrent file. Finally the file is saved
according to the directory and filename provided above.

In order to show how this methods can be used and in a thought of
providing users an intuitive way to create torrent, the class
ExampleCreateTorrent implements these different steps and can be run
easily to create any description file. The use of this class is the following:

ExampleCreateTorrent <torrenSavingPath> <announceURL>

<pieceLength> <filePath1> ... <filePathN> <..> <creator> <..>
<comment>

Then for John to publish his holiday pictures and movies, he’ll only have to
run the submitted example and provide all these parameters and the
paths of his files in order to create the description file.

4.1.2 Publish torrent file

This step is way more hazardous than the precedent one. Indeed, as far
as I have seen, there is no official and typical way of publishing torrents
on web servers and trackers. Most of time, in order to publish a torrent,
you have to create an account on the server, and then authenticate

Java Bittorrent API 24

yourself on it (with username and password). Unfortunately, servers often
require cookies to be present to authenticate the user and also a captcha13
to avoid bots to publish torrents automatically, and thus prevent
automatic authentication. For the moment, we can only publish torrent
files on a few numbers of trackers that do not require too much
authentication.

In practice this step is circumvented simply by automatically logging into
the tracker using a prerecorded username and password and/or
sometimes using cookies and session authentication sent by the tracker at
login time and then post the torrent to the tracker upload page. Note that
jBittorrentAPI only provides the possibility to publish on smartorrent
tracker since it is among the relatively big trackers (> 300’000 users) the
one with the less authentication needs. No captcha, it only need a
username and password to login and upload torrent.

Here if John wants to publish on smartorrent, he’ll have to go on the
tracker web page http://www.smartorrent.com and register an account.
Then after filling up the form and confirming his account creation thanks
to the received email, he’ll be able to publish on this tracker using the
provided example ExamplePublish with the username and password he
just created and the trackerURL set to ‘smartorrent’. The program will
automatically generate the URLs it needs to contact the smartorrent
tracker login and upload pages.

But here we can see that it can be quite annoying for John to follow all
these steps, he may want to have a faster way of publishing his files, with
no need to register an account. And the answer to these needs is the
simple trackerBT tracker…

4.1.2.1 trackerBT: a simple Bittorrent tracker

As one can see, finding a tracker that accept anonymous torrent upload is
quite hard. That’s why I decided to write my own tracker, a very simple
one providing all basic functionalities and easy to use for a lambda user.

The tracker is totally independent, in the sense that there is no need for
the user to have a web server already installed on his computer. The
tracker itself behaves as a web server, with additional services to permit
clients to publish torrents and retrieve peer information. The tracker
therefore is based on the Simple Web library.

Since the goal here is to keep the program as simple and as light as
possible, the tracker does not use a database to store torrents or peers

13 Captcha is a type of challenge-response test used in computing to determine whether
or not the user is human. See at http://en.wikipedia.org/wiki/Captcha

Java Bittorrent API 25

information. All is done using XML files, where data is stored and read by
the service to retrieve information about the torrents currently owned by
the tracker and the peers currently announced. Let’s call these 2 files the
XML torrents file, respectively the XML peers file.

The main class Tracker loads configuration data such as the root of the
server, the port on which the tracker should listen or the name of the XML
files to be used for information storage. The name and path to the
configuration files is left to the user who has to specify this information
when running the tracker. Once the setup is done, the Tracker class starts
the web server on the specified port and waits for incoming requests.
Depending on the URL specified in these request, the Tracker class, by the
use of Simple Web libraries will instantiate one of the 3 service classes:
FileService, UploadService or TrackerService.

The specific URL corresponding to a service is configured in the
‘Mapper.xml’ file, which maps a given URL to a specific service. To keep
the configuration as simple as possible, this file is automatically generated
and put in the root directory of the server. Let’s see what these services
are for and how they work.

4.1.2.1.1 FileService

This service is the standard serving service, i.e. it simply responds to the
request by serving the file that is specified in the URL. If the file does not
exist, an HTTP404 error page is returned to the client.

4.1.2.1.2 UploadService

The upload service is called when a client tries to upload a torrent to the
tracker. For the torrent to be correctly published, the request must be a
multipart/form-data request containing several fields:

 name: the name that the user would like the torrent to have on
the tracker. Can be different from the real torrent filename. For
the moment it is not used, but in the future it could be used to
download the torrent from the tracker for example.

 comment: comments about the torrent, description of the files.
Again, this is not used yet. This could be used for informing a
client of the content of the torrent.

 torrent: the torrent file the user want to publish

Although the name and comment field are not used yet, I decided to keep
them since it could be useful to have them if improvement in the tracker
are done. For example, it is possible to implement a search service,
providing the user a list of torrents published on the tracker, with their
name and description. This could prove very useful for users to retrieve
the torrent file they need.

Java Bittorrent API 26

Therefore, if all these fields are not present, an error message is sent back
to the client, within an HTML page. Otherwise, the torrent file is decoded
using BDecoder.java. This decoding is done for 2 reasons. First it is a way
to verify that the torrent is valid since the BDecoder class throws an error
if the torrent is not correctly constructed. Second it permits to extract the
info dictionary which will then be hashed to create the torrent id that will
uniquely identify the torrent on the tracker and for future exchange with
peers.

Once these steps are completed, the tracker checks if the torrent is
already registered. If not, it is saved in a local directory determined in the
configuration file and the XML file storing the torrents id, name and
comment is updated by adding this torrent’s information.

Finally a response is sent to the tracker specifying if the torrent has been
successfully added and if not, the reason of the failure. The response is a
simple HTML page displaying the error message.

4.1.2.1.3 TrackerService

The last service implemented for the tracker is the TrackerService. This
service is called when the tracker receives a request on its announce URL,
meaning a peer wants to get the list of peers sharing the same file.

First this service tests if all the required parameters are present in the
request according to the Tracker HTTP/HTTPS Protocol (see section 3.3.2.
If the request is conform, then the service test if the torrent identified by
the info_hash parameter is already owned by this tracker (i.e. it has been
previously published) by checking the XML torrents file to contain the
info_hash in any of its nodes. If the torrent hash is found, then the service
reads from the XML peers file all the peers that are currently sharing the
file (removing the too old ones) and then registers the current client in it.
Finally the service bencodes the peer list in non compact form and send
the created bencoded string to the client as the response.

The nice thing here for John is that this tracker is very easy to use for
him. He almost has nothing to do to make it work. The trackerBT provided
in the jBittorrentAPI.jar release comes with an example configuration file
where John will be able to choose in which directory the torrent root will
be set and torrents saved. Then he can just launch it and create torrents
with his own IP address.

For the moment, John can choose on which port the server will be
listening. This determined the announce URL he has to provide in his
created torrent files. For example by default the server listens on port
8081. Let’s suppose John has an internet address redirected to his
computer, for example, myaddress.john.com. Therefore the URL to be
used in torrent file has to be:

Java Bittorrent API 27

http://myaddress.john.com:8081/announce

and the URL used to publish file with the ExamplePublish should be:

http://myaddress.john.com:8081/upload

4.1.3 Share the target files

Once the torrent file is published on a tracker, remote peers can have
access to it and therefore they may want to get the files. But as one has
seen, nobody at the moment is really sharing the target files, only the
torrent file is available. It may happen that the tracker only owns the
torrent file but not the file itself, and no other peers are sharing the target
files either. Then for someone to be able to download the target files, we
have to run a Bittorrent client and start “downloading”. Yes, this may
seem strange that for people to upload from us, we have to start
downloading. But actually when the client announces itself to the tracker,
it will say that it already owns the whole files (the ‘left’ value is set to 0
since he owns the whole files data) and is only sharing it with other peers.

Back to the example, John will run his Bittorrent client and select the
torrent he just published. The client will then see he already has all pieces
and will therefore start sharing files with peers that miss some. Note here
that in our example classes, we choose to provide ExampleShareFiles and
ExampleDownloadFiles classes, i.e. 2 different classes to hide this strange
fact of “downloading for uploading” to the user. But basically they are the
same since the ExampleShareFiles just creates an instance of the
ExampleDownloadFiles. But again for John no matter what the program is
doing, the important thing is that when running ExampleShareFiles, he
provides his pictures and movies to his friends.

4.2 Downloading torrents

Once the torrent file has been released on at least one tracker, each user
has the possibility to download it and use a Bittorrent client to retrieve the
target files. In our software, the client sends an HTTP GET request for the
file to the server. Once the file is received, it is directly processed by a
specialized class (TorrentProcessor.java), which extracts all the features of
the torrent, such as tracker URL, piece length, pieces hashes… The result
is stored in a special object called TorrentFile, which will be used by other
classes to start the download processes.

Java Bittorrent API 28

Also, during the torrent processing, we could choose the files that we
really want to download and skip the undesired ones14.

In our example, John’s friends that want the file will only have to retrieve
the torrent published by John. They can get it either directly by John (who
could for example send the torrent by email, since it has a very compact
size, ~tens of kB) or found it on the tracker and web servers where John
published the file.

4.3 Retrieving remote peers information

After the torrent processing, all necessary information is available to start
the download process since a TorrentFile object has been created.
Therefore the client is able to instantiate the DownloadManager class.
According to the TorrentFile object provided, the new created object will
create a list of Piece object representing of course the pieces specified in
the torrent file. The Piece object creation can last a few seconds since I
choose to determined at running time the list of target files each piece
belongs to as much as its position in these files. This choice is made in
order to speed up the saving and retrieval of pieces from the files during
the download or upload process.

Then the client can start listening for incoming connection from other
peers by instantiating the class ConnectionListener and starting the
listening thread. This class basically tries to create a ServerSocket that
listens for incoming peers connection requests. Once a connection is
accepted, the thread informs the DownloadManager of the new peer
arrival and let it decide if yes or no the connection has to be confirmed by
the start of the handshake or just dropped.

Now everything is set up except that we still do not have the list of peers
sharing the files described in the torrent. In order to get this list, the
program contacts the tracker specified in the TorrentFile object using the
tracker http/https protocol described in Section 3.3.2. To do that, it
creates a new Thread by instantiating the class PeerUpdater and starting
the thread. The created thread will then regularly contact the tracker to
announce that this client is still sharing this torrent and to retrieve new
peers. The answer of the tracker will be, as stated before, the list of peers
also sharing the same file.

The tracker’s reply will be processed and peers information such as IP
address, listening port and ID (in the non compact case) will be stored in
Peer objects and made available for the DownloadManager object. We can
say here that all along the API, a peer is not really identified by its ID field

14 This features is not yet implemented in our software

Java Bittorrent API 29

but more by the combination of its IP address and listening port. This
decision is motivated by the fact that in the case of compact response
from the tracker, no ID is provided.

4.4 Retrieving the target files

Now that the client has information on peers, it will try to contact them.
This is done in parallel, with the use of Threads. For each new peer found,
the program will create a new DownloadTask object. Of course, the
number of new connection is limited and this limit can be chosen by
setting the maxConnectionNumber value.

This class extends the Thread class and so, there will be as many new
threads created as the number of new peers found. The number of new
DownloadTask created can be configured thanks to a parameter in the
configuration file.

The DownloadTask object will first try to contact the corresponding peer at
the given IP address and port by creating a socket. If the connection
failed, then the task simply ends. But if a connection can be established,
then the client starts the Peer Wire Protocol described in Section 3.3.3 and
the corresponding message exchange.

Since all tasks are executed in parallel, we need something to coordinate
the different tasks and to manage the message exchange between peers.
For example, we do not want the same piece being requested to all peers
at the same time, since it will be a waste of bandwidth. My answer to this
problem is the DownloadManager object. This object stores all information
about requested pieces, active tasks and so on. It implements a listener
for all DownloadTask and waits for their messages.

When a DownloadTask receives a request from its remote peer, this
request is passed to the DownloadManager. According to the peer state it
chooses if the piece block should be sent or not. As we have seen in the
protocol specification, a remote peer can request a piece block only if it is
unchoked and interested. If these 2 conditions are not satisfied when
receiving a request message, the peer is immediately disconnected since
it does not respect the Bittorrent protocol. A loop periodically checks
which peers should be unchoked and which one should be choked
according to their download or upload rates. This decision is called the
Unchoking Algorithm and is performed about every 10 seconds to avoid
peer state to change too quickly, which is known as fibrillation. The
unchoking is done in respect with the following algorithm:

 Sort peers according to their download rate, i.e. the rate at which
this client is currently downloading from them. If download is
complete, they are sorted according to the upload rate. This last

Java Bittorrent API 30

fact is to speed up the time a peer will become a seed, providing
therefore more availability to the target files

 Pop the next peer from the list (i.e. the one with the highest DL or
UL rate of the peer remaining). If it is not interested, then it
should be unchoked. If it is not yet unchoked, send it an unchoke
message.
If the peer is interested, unchoke it if there are not already more
than 5 peers that are interested and unchoked. Peers interested
and unchoked are called downloaders. This limitation is to provide
a significant upload rate to the remote peers and rewarding the
peers that let us download.
If it is interested and there is already 5 peers interested and
unchoked, then choke the remote peer and add it to a list of peers
to be unchoked optimistically

 A peer is unchoked about every 30 seconds. It means that the first
peer in the list of choked peers in pop up and unchoked. This is
done in order to try to find a better downloader and this is why it
is called optimistic unchoking, since this client does not now a
priori if unchoking this peer will result in a better download rate.

It is also the DownloadManager that stores the received pieces and saves
them into the final target files into the corresponding directories.

For John and his friends, this step is done transparently. The only thing
they have to do is launch either the ExampleShareFiles or
ExampleDownloadFiles précising the torrent that should be processed and
then the retrieval of the files is done automatically. They just have to wait
for the download process to end… very quickly!

Java Bittorrent API 31

5 Conclusion

5.1 Achievements

Up to now, we concentrated on the understanding of the protocol and on
the development of an application capable of both publishing and
retrieving files using Bittorrent protocol. This application is now available,
even if some features have not been fully implemented yet. We have now
a strong background on how Bittorrent protocol works and how it could be
used for web browsing and we are pleased to provide this API for future
enhancement and work with it. We are sure it will be very useful for the
next part of the project, consisting in transforming a web browser and a
web server to make use of Bittorrent protocol qualities.

This first part enabled us to understand the precise operation of P2P
networks and particularly Bittorrent protocol. We were able, thanks to the
documentation provided on Internet but also with the use of forums and
newsgroups, to develop a brand new application within a reasonable time.
Also, we looked for existing open source code, reusing some code when
available.

A list of all these sites is available under References chapter. According to
my opinion this practical work is the only way to properly understand how
the whole protocol works and how it can be used and improved. Moreover,
the necessity to communicate with other developers was a great pleasure
and provides me lots of good ideas.

5.2 Difficulties

Some problems arise along the development of the application.

The first one was related to the development language, JAVA. We thought
it would be easy to find libraries, projects or classes to rely on and start
with. But the only implementation of Bittorrent that we were able to find
was Azureus, an amazingly complete and complex application. We decided
therefore to develop a new, simpler application and API so that the new
person working on this project can easily understand it and continue its
development without too much loss of time.

Another problem was related to the network topology. Firewalls and NAT
causes a lot of problem during the development, when trying to test the
application with our own means. Many peers are not reachable directly,
since their users did not configure their firewalls to forward requests and
therefore this caused lots of host to be unreachable.

Java Bittorrent API 32

5.3 Future works and improvements

The next step will be to develop the framework to adapt web browsing to
Bittorrent network. Now that the publish/retrieve program is ready, it
should be possible to use it along with the whole background acquired
during this first part to make web browsing capable of using Bittorrent
network when it is required.

Concerning the applications developed during the first part, we could also
improve it by implementing some features that could be very useful or
that have not been implemented yet, for example the up/down rate
management by using a better (optimistic) unchoking algorithm.

Also for the moment our client works using the official specifications,
which uses TCP for message exchanges. Nowadays extensions to the
official specifications exist that permit the use of UDP exchanges and also
provide some kind of NAT Transversal using UpNP

There can be also improvement in the use of XML files which is not
optimal at the moment.

And finally, the last thing we could improve is the use of the Simple Web
server, which is simple but maybe still too complete for the tracker
application. There are many unused features of it that could be removed
and certainly libraries that are not needed for the tracker to work. So
maybe in this part is it possible to simplify further the program, making
this API as light as possible for its use within web browser or server…

5.4 Final word

This project has been a real pleasure to go through. It required quite a
large amount of work but finally considering the amount of experience
acquired along it, it was worth it. Working with other developers on a
subject as popular as Bittorrent was truly a great experience and I hope
the resulting API will satisfy the needs of the supervisors and future
developers. I’d like to thank David Portabella Clotet for the time he spent
helping me, especially in the end of this project.

I finally hope that this project will continue to evolve and reach the
desired objective as soon as possible.

Java Bittorrent API 33

6 References

 http://sourceforge.net/projects/bitext: official website of this
project

 http://www.Bittorrent.com : official website of Bittorrent
 http://www.Bittorrent.org : a forum for Bittorrent developers
 http://www.wikipedia.org : online encyclopedia providing huge
amount of information. See in particular
http://wiki.theory.org/BittorrentSpecification

 http://lists.ibiblio.org/pipermail/Bittorrent/ : list of archives about
Bittorrent developments. Huge database and many articles,
questions and answers about all features of Bittorrent

 http://dessent.net/btfaq/ : many interesting information about
Bittorrent related applications

 http://azureus.sourceforge.net: official web site of the Azureus
project, another java based Bittorrent client

 Some trackers and torrents databases:
 http://www.thepiratebay.org
 http://www.smartorrent.com

