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PREFACE

When I was appointed Director of Education for the Computer Science de-
partment at VU University, I became partly responsible for revitalizing our
CS curriculum. At that point in time, mathematics was generally experi-
enced by most students as difficult, but even more important, as being ir-
relevant for successfully completing your studies, Despite numerous efforts
from my colleagues from the Mathematics department, this view on math-
ematics has never really changed. I myself obtained a masters degree in
Applied Mathematics (and in particular Combinatorics) before switching to
Computer Science and gradually moving into the field of large-scale dis-
tributed systems. My own research is by nature highly experimental, and
being forced to handle large systems, bumping into the theory and practice
of complex networks was almost inevitable. I also never quite quit enjoying
material on (combinatorial) algorlthms S0 I decided to run another type of
experiment. ~

The experiment that eventually lead to this text was to teach graph the-
ory to first-year students in Computer Science and Information Science. Of
course, I needed to explain’ ‘why graph theory is important, so I decided to
place graph theory in the‘context of what is now called network science. The
goal was to arouse curIos1ty in this new science of" measuring the structure
of the Internet, dlsco,venng what online social communities look like, obtain
a deeper understanding of organizational networks, and so on. While doing
so, teaching graph theory was just part of the deal. .

No appropriate book existed, so I started writing lecture notes. As with
most experiments that I participate in (the hard work is actually done by my
students), things got a bit out of hand and I eventually found myself writ-
ing another book. Considering that my other textbooks are really on (dis-
tnbuted) computer systems and barely contain any mathematical symbols
(as, in'fact, is also the case for most of my research papers), this book is to
be /cbnsidered as somewhat exceptional. In fact, because I do not consider
myself to be a mathematician anymore, I'm not quite sure how this book
should be classified. Is it math? Is it computer science? Does it matter? ‘

P-1
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P-2

The goal is to provide a first introduction into complex networks, yet in

‘a more or less rigorous way. After studying this material, a student should
have a pretty good idea of what makes real-world networks complex in-
stead of complicated, and can do a lot more than just handwaving when it
comes. to explaining real-world phenomena. While getting to that point, I
also hope to have achieved two other goals: successfully teaching the foun-
dations of. graph theory, and even more important, lowering the threshold
for studying mathematical material.

The latter may not be obvious when skimming through the text it is full
of mathematical symbols, theorems, and proofs. I have deliberately chosen
for this approach, feeling confident that if enough and targeted attention
is paid to the languiage of mathematics in the first chapters, a student will
become aware of the fact that mathematical language i$ sometimes only in-
timidating: mathematicians’ barks are often worse than their bites. Students
who have so far followed my classes have indeed confirmed that they were
surprised at how much easier it was to access the math once they got over
the notations. I hope that this -approach will last for long, making it at least
easier for many students to not 1mmed1ately pull back when encountering
mathematical language in other texts

Intended readership

This book has been written for first: ox‘rtxsecond-year undergraduates who
have taken the usual courses in mathematics as taught in high school. How-
ever, although I claim that the material is not inherently difficult, it will cer-
tainly require serious studying by most students, and certainly those for
which math does not come natural. As mentioned, I have deliberately cho-
sen to use the language of ‘math because it is not ‘only precise and compre-
hensive, but above all because I believe that at the level of this book, it will
lower the threshold fqr other mathematical texts. It shQuld be clear that the
lecturer using this material may need to pay some speCial effort to encour-
age students. For most students, the language will turn’ out to be the hard
part, not the content )

Maarten van Steen
Amsterdam, January 2010
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On 11 September 2001 there was a malicious attack on the WTC towers in

“New York City, eventually leading to the two buildings collapsing. What
is not known to many people, is that there were three transatlantic Inter-
net.cables coming ashore close the WTC and that an important Internet
switching station was damaged, along with two other important Internet re-
source centers. Peter Salus and John Quarterman [2002] had since long been
measuring the performance of the Internet by checking the reachability of a
fairly large collection of servers. In effect, they simply sent messages from
different locations on the Internet to these special computers‘and recorded
whether or not servers would be responding. If reachability was 100%, this
meant that all sérvers were up and running. If reachability was less, this
could mean that servers were either out-of-order, or that the communica-
tion paths to some of the servers were broken. Vs

Immediately after the attack reachability dropped by about 9%. Within
30 minutes it had almost reached its old value again.

This example illustrates two important properties of the Internet. First,
even when disrupting what.would seem as a‘vital location in the Internet,
such a disruption barely affects the overall'communication capabilities of
the network. Second, the Internet has apparently been designed in such a
way that it takes almost no time to recover from a big disaster. This recov-
ery is even more remarkable when you consider that no manual repairs had
even started, but also that no designér had ever really anticipated such at-
tacks (although robustness was definitely a design criterion for the Internet).
The Internet demonstrated emergent self-healing behavior.!

The Internet is an example"'of what is how commonly referred to as a
complex network, which we can informally. define as large collection of
interconnected nodes. A node can be anything: a person, an organization,
a computer, a biological - ¢ell, and so forth. Interconnected means that two
nodes may be linked, for example, because two people know each other, two
organizations exchange goods, two computers havea cable connecting the
two of them, or because two neurons are connected by means of a synapses
for passing 51gnals What makes these networks complex is that they are
generally so huge that it is impossible to understand or predlct their overall
behavior by looking into the behavior of individual nodes or links.

As it turns out, complex networks are everywhere. Or, to be more pre-
cise, it turns out that if we model real-world situations in terms of networks,
we often discover new things. What is striking, is that many real- world net-
works’ Took alike: the structure of the Internet resembles the organlzatlon
of our brain, but also the organization of online social communities. Where

) ! As we'll encounter in later chapters, there’s no magic here: so-called routing algorithms
/" simply adjust their decisions when paths break.
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" these similarities come from is still a mystery, just as it is often very difficult
‘to understand how certain networks were actually structured. Before we”
go. deeper into what complex networks actually entails, let’s first consider’ a
few’ general areas where networks play a vital role, starting with Commuru-
cation networks

1.1 Communication networks

Not even so long ago, setting up a phone call to someone on the other side
of the world requlred the intervention of a human operator Moreover, an
established connection was no guarantee for being able to understand each
other as the quality could be pretty bad. Many will recall these situations to
happen in the 70s and 80s of the previous century—really not that long ago.
Today, cell phones allowus to be contacted virtually’anywhere and anytime,
and coverage continues t‘(‘)\expand to even the mbst remote areas. Setting
up a high-quality voice connection over the Internet with peers anywhere
around the world is plain simple. Along these lines, we need merely wait a
while until it is also possible to have cheap, high-quality video connections
allowing us to experience our rerﬁc_)te friends as being virtually in the same
room. NS

The world appears to be becommg smaller, and people are becoming
ever more connected. Obviously, telecc;mmumcatlon has played a crucial
role in establishing this connected world as it is commonly known, but with
the convergence of telecommunication and data networks (and notably the
Internet), it is difficult not to be connected anymore. Being connected has
profound effects for the dissémination of information. And as we shall see,
how we are connected plays a crucial role when it comes to the speed and
robustness of such dlssemmatlon among many other issues.

1.1.1 Hlstorlcal perspectlve

Tohave a connegted world it is obvious that we need to commumcate If we
want this world to have significant coverage, long-distance communication
is obviously- important. Unlike what many tend to believe, networks that
facilitate such communication have a long history, as described. by Holz-
mann and Pehrson| [1995]. Apart from well-known means of Commumca-
tion such as sending messengers or using pigeons, long-distance communi-
catlon without the need to physically transport a message has always caught
the’ attention of mankind. Typically, such telegraphic communication used
po be done through fire beacons, mirrors (i.e., heliographic commumcatzon)k
/drums, and flags. Communication paths set up using such methods, for ex-
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1.1. COMMUNICATION NETWORKS 1-5

“. ample by having communication posts organized at line-of-sight distances, .
“‘xare known from Greek and Roman history. s

. However, it wasn’t until the end of the 18th Century that a system—
atic .approach was developed to establish telegraphic communication net-
works. Such networks would consist of communication posts, of which pairs
would lie in each other’s line-of-sight. Typically, for these optical telegraphs,
distances between two posts would be in the order of tens of kilometers,
which was realistic given that high-quality telescopes could be used. An
important aspect in the design of these networks was the communication
protocol, which would prescribe the encoding of letters, but also what to do
if there was a transmission error. To make matters more concrete, consider
Figure[L.Twhich shows a model of a shutter telegraph/,w"l

THAL
L

nn
L

o)

Figure 1.1: (a) A model of a shutter station with six (open) shutters and (b) a few
examples of how letters were encoded. .

As shown in Figure [L.1(b), letters are represented by spec1f1c combina-
tions of open and closed shutters. In this way, it became p0551ble to trans-
mit messages over long distances. Of course, it became equally 1mportant
to think about encryption of messages, handling transmission errors, syn-
chronlzatlon between transmitter and reader (i.e., sender and recelver) and
so‘on. In other words, these seemingly primitive communication networks
l,had to deal with virtually the same issues as modern systems. Conceptually,
/" there is really no difference. R
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By the middle of the 19th Century, Europe had optical telegraphic net-
"works installed in the Scandinavian countries, France, England, Germany,*"
and others. Concerning topology, these networks were relatively simple:
there were only relatively few nodes (i.e., communication posts), and Cyeles
did not exist. That is, between any two nodes messages could travel only
through a unique path. Such networks are also known as trees. '

Matters became serious when the electrical telegraph system, emerged
Instead of using vision, communication paths were realized through elec-
trical cables. “The medium proved to be successful: by the middle of the
19th Century the electrical telegraph spanned more than 30,000 kilometers
in the United States making it more than just a serious competitor to optical
telegraph systems. ‘In fact, by then it was clear to most people that the op-
tical networks were headmg towards a dead end. In 1866, networks in the
United States and Europe were successfully connected through a transat-
lantic cable (where earlier attempts had failed). Gradually, the concept of a
worldwide network was becommg reality.

1.1.2 From telephony to tﬁ‘e\lnternet

The impact of a worldwide telephony network can only be underestimated.
From an end user’s perspective, it really didn’t matter anymore where you
were, but only that the other party was simultaneously online. In other
words, telecommunication networks realized location independency. This in-
dependency could be realized only because it was possible to establish a cir-
cuit between the two communicating parties: a communication path from
one party to the other with intermediate nodes operating as switches. In
most cases, these switches had fixed locations and every switch was physi-
cally linked to a few other switches. The combination of switches and links
form a communication network, which can be represented mathematically
by what is known as a‘graph, the object of study in this book.

As we already discussed, telecommunication networks were well estab-
lished when people began to think about connecting Computers and thus
establishing data communication networks. Of course, the many existing
networks already made it possible to send data, for example, as a telegram.
The new challenge was to connecting these separate networks into logically
a single one that could be used by computers using the same prdtocol This
led to the idea of building a communication system in which p0551b1y large
messages were split into smaller units called packets. Each packet would be
tagged with the address of its destination and subsequently routed through
the'various networks. It is important to note that packets from the same
;ﬁessage could each follow their own route to the destination, where they.
“would then be subsequently used to reassemble the original message. x
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1.1. COMMUNICATION NETWORKS 1-7

When a switch received a packet, it would only then decide to which
“next switch the packet would be forwarded. This packet switching ap<
proach contrasts sharply with telecommunication networks in which two
end. points would first establish a path and then subsequently let all com-
munication pass through that path, also referred to as circuit sw1tch1ng

The first packet-switching network was established in 1969, called the
ARPANET (Advanced Research Projects Agency Network). It forrned the
starting pornt of the present Internet. Key to this network were the inter-
face message processors (IMPs), special computers that provrded a system-
independent interface for communication. In this way, any computer that
wanted to hook" up to the ARPANET needed only to conform to the inter-
face of an IMP. IMPs would then further handle the transfer of packets. They
formed the first generatlon of network switches, or reuters. To give an im-
pression of what this network looked like, Figure ushows a logical map of
IMPs and their connected computers as of Aprﬂ 1971.

< 9> Q Q @ Q
0—1 SRI H Utah ’I.I‘I|n0|s "/MIT | {CASE‘

Q\{UCSB‘ E@Q

= [ Har | [ Bur
vard roughs
OO g@

Figure 1.2: A map of the ARPANET as of April 1971 Rectangles represent IMPs;
ovals are computers.

[
=

The ARPANET of 1971 constituted a network with 15.nodes and 19 links.
It is so small that we can easily draw it. We've passed. that stage for the
Internet. (In fact it is far from trivial to determine the size of today’s Inter-
net.) Of course, that network was also connected: it is p0551b1e to route a
packet from any source to any destination. In fact, connectivity could still
be estabhshed if a randomly selected single link broke. An important de-
sign criterion for communication networks is how many links need to fail
before the network is partitioned into several parts. For our exarnple net-
work of Figure|1.2} it is clear that this number is 2. Rest assured that for the
present day Internet, this number is much higher. p

 Likewise, we can ask ourselves how many nodes (i.e., switches or IMPS)
~ need to fail before connectivity is affected. Again, it can be seen that we need\\.
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1-8 CHAPTER 1. INTRODUCTION

" to remove at least 2 nodes before the network is partitioned. Surprisingly, in
‘the present-day Internet we need not remove that many nodes to establish-
the same effect. This is caused by the structure of the Internet: researchers
have discovered that there are relatively few nodes with very many links.
These nodes essentially form an Achilles” heel of the Internet. In subsequent
Chapters you will learn why. :

113 The‘"Web and Wikis

Next to the importance of e-mail and other Internet messaging systems,
there is little discussion about the impact of the World Wide Web. The Web
is an example of a-digital information space: a collection of units of in-
formation, linked together into a network. The Web is perhaps the biggest
information space that we know of today: by the end-of January 2005, it was
estimated to have at least 11.5 billion indexable pages [Gulli and Signorinil
2005], that is, pages that could be found and indexed by the major search
engines such as Google. Three years later, different studies (using different
metrics) indicate that we may be dealing with 30-50 billion pages. In any
case, we are clearly dealing with a phenomenal growth.

What makes information spaces such as the Web interesting for our stud-
ies, is that again these spaces form a- network In the case of the Web, each
page may (and generally will) contain links to other pages and corresponds
to a node in the network. What begdmeé@nteresting are questions such as:

¢ If we take the number of/links pointingxto a page as a measure of that
page’s popularity, whatcan we say about the number and intensity of
page popularity (i.e., what is the distribution of page popularity)?

* Does the Web also: share characteristics with x;vhat are known as small
world networks: is it possible to navigate to any other page through
only a few hnks7 ~

As we shall dlscuss extensively in Chapter [8 the Web 1ndeed has its own
Characterlstlcs, some of which correspond to those in small Worlds How-
ever, there are also important differences. For example, it turns out that the
distribution of page popularity is very skewed: there are relatwely few, but
extremely popular pages. In contrast, by far most pages are not popular,
yet there are many of such unpopular pages, which makes the collectlon of
unpopular pages by itself and interesting subject for study. ‘
“An information space related to the Web is that of the online encyclo-
pedla Wikipedia. By the end of 2007, over 7.5 million pages were counted,
/written in more than 250 different languages. The English Wikipedia is by .
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1.2. SOCIAL NETWORKS 1-9

far the largest, with more than 2 million articles. It is also the most popu-

“lar one when measuring the number of page requests: 45% of all Wikipedia
traffic is directed towards the English version [Urdaneta et al.,2009]. Again,
Wikipedia forms a network with its pages as nodes and references to other
pages as links. Like the Web, it turns out that there are few very: ‘popu-
lar pages, and many unpopular ones (but so many that they Cannot be ig-
nored) [Voss 2005].

1.2 Social\petworks

Next to communication networks, networks that are buﬂt around people
have since long been subject of study. We first cons1der modern social net-
works that have come mto play as online commumtles facilitated by the
Internet. "

1.2.1 Online commumtles

In their landmark essay, Llckhder and Taylor [1968] foresaw that computers
would form a major communication device between people leading to the
online communities much like the ones'we know today. Indeed, perhaps
one of the biggest successes of the Internet has been the ability to allow
people to exchange information with each other by means of user-to-user
messaging systems [Wams and van Steen| 2004]. The best known of these
systems is e-mail, which has been around ever since the Internet came to
life. Another well-known example is network news, through which users
can post messages at electronic bulletin boards, and to which others may
subsequently react, leadmg to discussion threads of all sorts and lengths.
More recently instant messaging systems have become popular, allowing
users to directly and mteractlvely exchange messages with each other, pos-
sibly enhanced with information on various states of Ppresence.

It is interesting to observe that from a technological point of view, most
of these systems are really not that sophisticated and are still built with tech-
nology that has'been around for decades. In many ways, these systems are
simple, and have stayed simple, which allowed them to scale to sizes that
are difficult'to imagine. For example, it has been estimated that in 2006 al-
most 2 million e-mail messages were sent every second, by a total of more
than 1 b’illion users. Admittedly, more than 70% of these mességes were
spam- or contained viruses, but even then it is obvious that a lot of. onhne
communication took place. These numbers continue to rise. 8

/' More than the technology, it is interesting to see what these commum—
l,catlon facilities do to the people who use them. What we are w1tnessmg
/' today is the rise of online communities in which people who have never",
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" met each other physically are sharing ideas, opinions, feelings, and so on.
"In fact, Dodds et al.| [2003]] have shown that also for online communities*"
we are dealing with what is known as a small world. To put it simply,‘a
small world is characterized by the fact that every two people can reach
each other through a chain of just a handful of messages. This phenomenon
is also known as the “six degrees of separation” [Watts| 2003] to Wthh we
will return extensively later. '

Dodds et al| were interested to see whether e-mail users were capable
of sending a message to a specific person without knowing that person’s
address. In that case, the only thing you can do is send the message to
one of your acq{iaintances hoping that he or she is “closer” to the target
than you are. With over 60,000 users participating in the experiment, they
found that 384 out of the approximately 24,000 message chains made it to
designated target peopLe (there were 18 targets from 13 different countries
all over the world). Of these 384 chains, 50% had alength smaller than 5-7,
depending on whether the' target was located in the same country as where
the chain started.

What we have just descr1bed is the phenomenon of messages traveling
through a network of e-mail users. Users are linked by virtue of knowing
each other, and the resulting netWork exhibits properties of small worlds,
effectively connecting every person to-the others through relatively small
chains of such links. Describing and- characterrzmg these and other net-
works forms the essence of network sc1ence

1.2.2 Traditional social networks

Long before the Internet started to play a role in many people’s lives, so-
ciologists and other researchers from the humamtles have been looking at
the structure of groups: of people. In most cases, relatlvely small groups
were considered, neceSSarﬂy because analysis of large- groups was often not
feasible. S

An important contribution to social network analy51s came from Jacob
Moreno who introduced sociograms in the 1930s. A sociogram can be seen
as a graphical representation of a network: people are represented by dots
(called Vertices) and their relationships by lines connecting those dots (called
edges). An'example we will come across in Chapter@]rs one in Wthh aclass
of chrldren are asked who they like and dislike. It is not hard to' imagine
that we can use a graphical representation to represent who likes whorn as
shown in FigurelT. :

‘Decades later, under the influence of mathematicians, sociograms and
such were formalized into graphs, our central object of study. As men-
’,f'tloned graphs are mathematical objects, and as such they come along with .
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Figure 1.3: The representation of a sociogram expressing affection between people.
The absence of a hnk indicates neutrality. /

a theoretical framework that allows researchers to fogﬁs on the structure of
networks in order to make statements about the beha’Vior of an entire social
group. A A

Social network analy51s has been important f for the further development
of graph theory, for example with respect to mtroducmg metrics for identi-
fying importance of people or groups. For example, a person having many
connections to other people may be considered relatively important. Like-
wise, a person at the center of a network. would seem to be more influential
than someone at the edge. What graph theory provides us are the tools to
formally describe what we mean by:relatively important, or having more
influence. Moreover, using graph theory we can easily come up with al-
ternatives for describing importance and such. Having such tools has also
facilitated being more precise in statements regarding the position or role
that person has within a commumty We w111 come across such formalities
in Chapter 9] '

1.3 Networks everywhere

Communication networks and social networks are two classes of networks
that many people are aware of. However, there are many more networks
as shown in Flgure [1.4, What should immediately become. clear is that net-
works occur in very different scientific disciplines: economics, organiza-
tional stud;es, social sciences, biology, logistics, and so forth. What s more,
the termir{blogy that is used to describe the different networks irteach disci-
pline is largely the same, which makes it relatively easy for members of dif-
ferent'‘communities to cooperate in understanding the foundations of com-
plex networks. What is even more striking is the fact that networks from
Very different disciplines often look so much alike. This common terminol-
_ogy and the strong resemblance of networks across scientific disciplines has
/" been instrumental in boosting network science. R
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1-12 CHAPTER 1. INTRODUCTION
| Network | Vertices Edges Description
_ Airline airports flights Consider the scheduled flights (of a
“trans- specific) carrier between two airports.
portation
Street junctions | road A road segment extends exactly
plans. segment between two junctions. A variationr is to
distinguish between one-way and
. two-way segments. /
Train *| stations connec- Two stations are connected only if there
trans- tion is a train connection scheduled that
portation does not pass (possibly without
S stopping) any intermediate stations.
Railway junctions | track Consider the actual railway tracks.
network segment Where track segments merge or cross,
. we have junctions’
Brain neurons | synapses | Each neuron can‘be considered to
consist of inpufs (called dendrites) and
outputs (called axon). Synapses carry
. electrical signals between neurons.
Genetic genes transerip- | In genetic (regulatory) networks we
networks tion model how genes influence each other,
factor in par’ﬁcular, how the product of one
gen’é determines the rate at which
“gn’/other gene is transcribed (i.e., at
which rate it produces its own output).
Ant junctions | phero- | In order for ants to tell each other where
colonies mone sources of food are, they produce
trails pheromones which is a chemical that
can be picked up by other ants.
y Pheromones jointly constitute paths.
Citation authors citation In scientific literature, it is common
networks practice to (extensively) refer to related
published work and sources of
statements, in turn. leadmg to citation
y networks.
Tele- number call Networks of phone Calls reflect (mostly)
phone pairs of people exchangmg information,
calls thus forming a social network
technically represented by phone
) numbers and actual calls.
Reputa- /| people rating In electronic trading networks such as
tion e-Bay, buyers rate transactions. As
networks buyers in turn can also be sellers, we
obtain a network in which rates reﬂect
the reputation between people.
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. Understanding complex networks requires the right set of tools. In our
‘"‘xgase, the tools we need come from a field of mathematics known as grap,,h"
theory. In this book, you'll learn about the essential elements of graph the-
ory.in order to obtain insight into modern networks. Next to that, we dis-
cuss a number of concepts that are normally not found in traditional text-
books on graph theory, such as random networks and various metrlcs for
charactenzlng graphs.

1.4 Orgamzatlon of this book

In the follow1ng chapters we’ll go through the foundat1ons of graph theory
and move on into parts that are normally discussed in more advanced text-
books on networks. The goal of this text is to provide only an awareness
and basic understandlng of complex networks, for which reason none of
the advanced mathematics that accompany complex networks is discussed.
To make matters easier, spec1a1 notes are included that generally provide
further information, such as’ the following:

Note 1.1 (More information) /
This is an example of how add1t10na1 51de notes are presented. Text in such
notes can always be skipped as notes dp not affect the flow of the main text.

There are different types of notes

Study tips: Studying graph theory is not always easy, not because the ma-
terial is so difficult, but because identifying the best approach to tackle
a specific problem may not be obvious. I have compiled various tips
based on experienée in teaching (and once niyself learning) graph the-
ory. Students are strongly encouraged to read these tips and put them
to their own advantage ~

Mathematical language For many people, mathemaths is and remains a
barrier to-accessing otherwise interesting material. ‘The language of
mathemat1c1ans as well as the commonly used tools and techniques
are sometlmes even intimidating. However, there are so rnany cases in
Wthh the barrier is only virtual. The only thing that is needed is get-
tlng acquainted with some basics and learning how to apply: them. In
notes focusing on mathematical language, I generally take a step back

" on previously presented material and translate the math into plain En-
glish, explain mathematical notations, and so forth. These notes‘are
meant to help understand the math, but do not serve as a replacement.
Mathematics simply offers a level of precision that is difficult to match\\.
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with (informal) English, yet the notations should not be something to
keep anyone away from reaching a deeper understanding. '

Proof techniques: Notably in Chapters 2 and [3 some time is taken to ex-
\plam a bit more about how to prove theorems. One of the main dlfﬁ—
culties that I experienced when first studying graph theory and more
generally, combinatorics, was finding structure in proofs. As in virtu-
ally any other field of mathematics, graph theory uses a whole array
of proof techniques. In these notes, the most commonly used ones are
made exp11c1t aiming at creating a better awareness of available tech-
niques so that students may have less of a feeling of walking in the

dark when it comes to solving mathematical problems

Algorithmics: Graph theory involves many algorlthms, such as, for ex-
ample, finding shortest paths, identifying reachable vertices, deter-
mining s1m11ar1ty, and so on. Traditionally, algorrthms have always
been described using math, but that language is not particularly well-
equipped for expressmg the flow of control inherent to most algo-
rithms. In algorithmic notes some of graph algorithms are expressed
in pseudo code, roughly following atraditional programming lan-
guage. In virtually all cases, this description leads to a better sepa-
ration of the actual math and the steps comprising an algorithm.

More information: These type of notes contain a wide variety of informa-
tion, ranging from additional background material to more difficult
mathematical material such-as proofs. In all cases, these notes do not
interfere with the main tex’t and may Be skipped on first reading.

Proofs that have been marked “(*)” may be skrpped at first reading: they are
to be considered the tougher parts of the material:.

The book is roughly organized into two parts The first parts covers
Chapters2H6l These chapters roughly cover the same material that can usu-
ally be found in standard textbooks on graph theory. EXcept for Chapter [6}
this material is to’ ‘be considered essential for studying graph theory and
should in any case be covered. Chapter [f] can be considered as a compi-
lation of variotis metrics from different disciplines to characterize graphs,
their structures, and the positions that different nodes have in networks.

The second part consists of Chapters [7H9 and discusses (graph models
of) real-world networks. Notably Chapter [7]on random networks contains
material that is often presented only in more advanced textbooks yet which
I con51der to be crucial for raising scientific interest in modern network sci-
ence. Random networks are important from a conceptual modeling pomt
of view, from an analysis point of view, and are important for explaining
’,,f‘the emergent behavior we see in real-world systems. By keeping explana- "
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tions as simple as possible and attempting to stick only to the core elements,

“this material should be relatively easy to access for anyone having essen<
tially learned only high-school mathematics. The two succeeding chapte'i*s
discuss theory and practice of real-world systems: computer networks and
social networks respectively.
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2-2 CHAPTER 2. FOUNDATIONS

" In the previous chapter we have informally introduced the notion of a net-
‘work and have given several examples. In order to study networks, we need
to-use a terminology that allows us to be precise. For example, when we
speak about the distance between two nodes in a network, what do we re-
ally mean? Likewise, is it possible to specify how well connected a network
is? These and other statements can be formulated accurately by adopting
terminology from graph theory. Graph theory is a field in mathematics that
gained popularity in the 19th and 20th century, mainly because it allowed to
describe phenomena from very different fields: communication infrastruc-
tures, drawing ‘and coloring maps, scheduling tasks, and soc1al structures,
just to name a few, ,

We will first concentrate only on the foundations of graph theory. To this
end, we will use the language of mathematics, as it allows us to be precise
and concise. However; to many this language with its many symbols and
often peculiar notations can easily form an obstacle to grasp the essence
for what it is being used." For this reason, we will gently and gradually
introduce notations while prov1d1ng more verbose descriptions alongside
the more formal definitions. You are encouraged to pay explicit attention
to the formalities: in the end, the.y will prove to be much more convenient
to use than verbose verbal descriptions “The latter often simply fail to be
precise enough to completely understand what is going on. It is also not
that difficult, as most notations come: dlrectly from set theory.

2.1 Formalities

Let us start with discussing- what is actually meant by a network. To this
end, we first concentrate on some basic formal concepts and notations from
graph theory, together w1th a few fundamental properties that characterize
networks. After having studied this section, you will have already learned
a lot about the world of graphs and should also feel rnore comfortable with
mathematical notat1ons '

211 Graphs and vertex degrees

As said, the’ networks that have been introduced so far are mathematlcally
known as graphs. In its simplest form, a graph is a collection of vertices
that can’'be connected to each other by means of edges. In particular, each
edge. of graph joins exactly two vertices. Using a formal notation, a graph is
deﬁned as follows.

Deflnltlon 2.1: A graph G consists of a collection V of vertices and a collectzon\
’,,f‘edges E, for which we write G = (V,E). Each edge e € E is said to join two "
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vertices, which are called its end points. If e joins u,v € V, we write e = (u,0).

" Vertex u and v in this case are said to be adjacent. Edge e is said to be mczdent
wzth vertices u and v, respectively. ’

We will often write V(G) and E(G) to denote the set of vertices and eédges
associated with graph G, respectively. It is important to realize that an edge
can actﬁally be represented as an unordered tuple of two Vertices" that is,
its end points. For this reason, we make no distinction between (v,u) and
(1,v): they both represent the fact that vertex u and v are ad]acent

This definition may already raise a few questions. First of all, is it pos-
sible that an edge joins the same vertices, that is, can an nge form a loop?
There is nothing in the definition that prevents this, and indeed, such edges
are allowed. Likewise, you may be wondering whether two vertices u and v
may be joined by multlple edges, that is, a set of edges each having 1 and v
as their end points. Indeed, this is also possible, and we shall be discussing
a few examples shortly. A graph that does not have loops or multiple edges
is called simple. ‘ :

Likewise, there is nothlng that prohibits a. graph from having no vertices
at all. Of course, in that case there will alsQ,be no edges. Such a trivial graph
is called empty. Another special case is formed by a simple graph having n
vertices, with each vertex being adjacent to every other vertex. This graph
is also known as a complete graph A complete graph with n vertices is
commonly denoted as Kj. N

As an aside, notice that when we wrlte (u,v), we can say only that 1 and
v are adajacent, that is, that there is at leastpne edge that joins the two. It is
not possible using this notation to distinguish different edges that happen
to join both 1 and v. If we wanted to make that distinction, we would have
to write something like el = (u,v) and e, = (u,v). In other words, we
would have to explicitly enumerate the edges that join 1 and v. Of course,
when dealing with simple graphs, there can be no mistake about which edge
we are considering, when we write (1,0). Here we see an example where
mathematics allows us to be precise and unamblguous We will encounter
many more of such examples. ™,

As in so many practical situations, it is often convement to talk about
your nelghbors In graph-theoretical terms, the neighbors of a vertex u are
formed by ‘the vertices that are adjacent to v. To be precise, We have the
followmg definition. .

Deflmtlon 2.2: For any graph G and vertex v € V(G), the neighbor set N( ) of
vis, the set of vertices (other than v) adjacent to v, that is

N(v) € {w e V(G) |v#w,Fe € E(G):e = (u,0)}
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‘. Note 2.1 (Mathematical language) |
“The formal notation is Definition 2.2)is very precise, yet can be somewhat m—//
tlmldatmg Let us decypher it a bit. First, we use the symbol %¢f to express
that. what is written on the left-hand side is defined by what is written on, the
rrght hand side. In other words, s/

N(v) def | ..

is nothing But accurately stating that N(v) is defined by what foHows on the
right hand of <€ def . Recall that the symbol ‘3" is the existential quanhﬁer used
in set theory to express statements like “there exists an ...” Keepmg this in mind,
you should now be able to see that the right-hand 51de translates into English
to the following statement /

The set of vertzces w in G, with w not equal to v, such that there exists an
edge e in G that j ]oms v and w. !

We will be encountering many more of these formal statements. If you have
trouble correctly interpreting them we encourage you to make translations like
the previous one to actually practlce reading mathematics. After a while, you
will notice that these translations come naturally by themselves.

The word “graph” comes from th,e:':fact that it is often very convenient to
use a graphical representation, as ’slh/ow‘ﬁ\in Figure In this example, we
have a graph G with eight vertices and a‘total of 18 edges. Each vertex is
represented as a black dot wher,éés edges are‘wdrawn as lines. When drawing
a graph, it is often convenient’ to add labels. BOth vertices and edges can be
labeled. We shall generally’ not use subscripts when labeling vertices and
edges in our drawings of graphs. This means that, a label such as e13 from
Figure[2.1]is the same as’ e13 in our text. R

It should be clear that there may be many dlfferent ways to draw a graph.
In the first place, there is no reason why we would stick to just dots and
lines, although it i$ common practice to do so. Secondly, there are, in prin-
ciple, no rules concerning on where to position the drawn vertices, nor are
there any rules stating that a line should be drawn in a straight fashion.
However, the way that we draw graphs is often important when it comes to
Visualizing’certain aspects. We return to this issue extensively in Section2.4]

An important property of a vertex is the number of edges that are inci-
dent w1th it. This number is called the degree of a vertex. '

Defmltlon 2.3: The number of edges incident with a vertex v is called the degree of
v, denoted as 5(v). Loops are counted twice.

’,,/Let us consider our example from Figure again. In this case, because "

Copyrighted material - January 2010 - Draft




Copyrighted material

2.1. FORMALITIES

- January 2010 - Draft

2-5
V(G) = {Ul, 108}
E(G) = {e1,...,e18}
e1 = (v1,02) €10 = (v, 07)
ey = (v1,v5) e = (vs,07)
e3 = (v2,v8) e12 = (Vs Us)
ey = (v3,05) e13 = (vg,07)
es = (v3,v4) e1q = (V7,0s)
€6 = (04,05) €15 ='(04,0s)
e7 = (05,06) €16= (U2, 03)
eg = (v2,05) g7 = (v1,07)
eg = (v1,06) €18 = (05, 0s)

Figure 2.1: A\h,‘example of a graph with eight verticéé and 18 edges.

there are four edges incident with vertex vy, wel’have that 6(v;) = 4. We can
complete the picture by conSidering every vertex, which gives us:

Vertex | Degree | Incident edges Neighbors
U1 4 <Ulrvz> <01105>/ <Ul,06>, <01,"07> U2,05,06,07
(%] 4 <Ulrvz>' <'02, U3>, <02/ >' <UZ, US> U1,03,05,08
03 3 | (vz,03), (v3,04), (v3,05) 2,04, U5
04 4 | (vs,v4), (vs,v5),{vs,07), (Va, Vg) 3,05, 07,08
5 7 | (v1,05), (v2,05), (v3,05), <U4, vs), (v5,06), | V1,02,03, 04, Vg,
(vs,07), (05, 5) 07,08
6 4 | (v1,96),(vs,6), (v6,07), <U6, vg) v1,05,07,08
07 5 | (v1,07),{v4,07), (vs,07), (ve, V7), (v7,08) | V1,04, 05,6, U
g 5 | (v2,vs), (vs,08), (vs,08), (Vs Vs) <U7r vg) | V2, 04,5, 06, V7

When adding the degrees of all vertices from G, we' fmd that the total sum
is 36, which is exactly twice the number of edges. This. brmgs us to our first

theorem:

Theorem 2.1: For all graphs G, the sum of the vertex degrees is thce the number

of edges, that is,

Proof/ When we count the edges of a graph G by enumerating for edéh ver-
tex v of G the edges incident with that vertex v, we are counting each edge

lexactly twice. Hence, Y ,cc 6(v) =2+ |E(G)]|.
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‘. Note 2.2 (Mathematical language) |

“Again, we encounter some formal mathematical notations. In this case, we use
the standard symbol ¥ as an abbreviation for summation. Thus, Y1 ; x; is thé
same as x1 + xp + x3 + - - - + x,. In many cases, the summation is srmply over
all elements ina specrflc set, such as in our example where we consider all the
vertices.i .in a graph. In that case, if we assume that V(G) consists of the Vertlces
01,02, .. .\",\vn, the notation Yoev(G) 4(v) is to be interpreted as: g

Y. b ) 5(01) +6(vn) + -+ 6(vn)
veV(G)

Note, furthermore _that we use the notation |S| to denote the size of a set S. In
our example, |E(G )}.thus denotes the size of E(G) or, in cher words, the total
number of edges in graph G. g

There is also an interesting EOrollary that follows"from this property, namely
that the number of vertices with an odd degree must be even. This can
be easily seen if we split the vertices V of a graph into two groups: V4
containing all vertices with odd degree and Veven with all vertices having
even degree. Clearly, if we take the sum of all the degrees from vertices in
V,44, and those from V,yep,, we will have summed up all vertex degrees, that

is,
Y. 6(v)+ Z v) =) 6

veVou4 " 0EVpen veV

which is even. Because the sﬁm of even vertex _degrees is obviously even,
we know that Y ey, 6(v ) is even. This can only mean that },cy . 0(0)
must also be even. Combining this with the fact that all vertex degrees in
V,44 are odd, we conclude that the number of vertices with odd degree must
be even, that is, |V,4,{ is even. We have thus just proven:

Corollary 2.1: For,,dhy graph, the number of vertices with odd degree is even.

The vertex-degree is a simple, yet powerful concept. As we shall see
throughout this text, vertex degrees are used in many different ways. For
example, when considering social networks, we can use vertex degrees to
express the importance of a person within a social group. Also, when we
discuss the structure of real-world communication networks such as the In-
ternet, it will turn out that we can a learn a lot by considering the distribution
of vertex degrees. More specifically, by simply ordering vertices by their
y”ertex degree, we will be able to obtain insight in how such a network is.
/actually organized.
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2.1.2 Degree sequence

“L\isting the vertex degrees of a graph gives us a degree sequence. The Ver’ge’ir

degrees are usually listed in descending order, in which case we refer to'an
ordered degree sequence. For example, if we consider the eight Vertlces of
graph G from Figure 2.1} we have the following vertex degrees

vertex: | v | U2 | U3 | U4 | Us | Vg | U7 | Vg | -
“|degree: | 4 | 4 | 3 | 4|7 | 4|5 |5}

which, when orderrng these degrees in descending order Ieads to the or-
dered degree sequence
[7,5,5,4,4,4,4,3]

If every vertex has the same degree, the graph is called regular. In a k-
regular graph each vertex has degree k. As a spec1a1 case, 3-regular graphs
are also called cubic graphs

When considering degree sequences, it is common practice to focus only
on simple graphs, that is, graphs without loops and multiple edges. An
interesting question that comes to mind is when we are given a list of num-
bers, is there also a simple graph whose’ degree sequence corresponds to
that list? There are some obvious cases Where we already know that a given
list cannot correspond to a degree sequence. For example, we have just
proven that the sum of vertex degrees is always even. Therefore, a mini-
mal requirement is that the sum of the elements of that list should be even
as well. Likewise, it is not d1ff1cult to see that, for example, the sequence
4, 4, 3, 3] cannot correspond to a degree sequence. In this case, if this were
a degree sequence, we would be dealing with a graph of four vertices. The
first vertex is supposed to’ have four incident edges In the case of simple
graphs, each of these edges should be incident with a different vertex. How-
ever, there are only three vertices left to choose from, so [4, 4, 3, 3] can never
correspond to the degree sequence of a simple graph

Of course, takmg a trial-and-error approach to see whether a list corre-
sponds to a degree sequence is not the way to go. Fortunately, there is a
systematic way to see whether a given list of numbers corresponds to the
degree sequence of a simple graph, in which case the sequence is said to be
graphic. Let’s return to our graph from Figure 2.1} but now assume that we
are givery only thelist [7,5,5, 4, 4, 4, 4, 3]. We ask ourselves whether this list
is graphic If this is the case, we should be able to construct a graph that has
this degree sequence. Note that this graph need not necessarily be the same
as the one from Figure[2.1] This is how we can address this issue. ‘

e Consider [7,5,5,4,4,4,4,3]. If this sequence is graphic correspond;
ing to a graph, say Gy, then we should be able to construct G; from".
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another graph G, by adding a vertex v; to G, and joining v1 to seven
other vertices from G,. This would then explain that G; has a vertex”
with highest degree 7. Note that for this construction to work, 1t is

necessary that we can construct Gj.

It should be clear that if we do not change the ordering of Vertex de—
grees, that the degree sequence of G; is equal to [4,4,3,3,3,3, 2] First,
it contains one element less than the degree sequence of Gy. Second,
the first element of the degree sequence of G, corresponds to the sec-
ond element of G;’s degree sequence: it’s the degree of the same ver-
tex, yet for. Goit should be one less than in G; because this vertex is not
yet joined to. the added vertex v;. Likewise, the second element of G,’s
degree sequence corresponds to the third one in the degree sequence
of G1, and so orn., /

If 4,4,3,33,3, 2} is graphic we can apply the same trick: G, should
be constructable from a graph Gz by addinga vertex v, and joining v,
to four vertices from G3 Following a completely analogous procedure
as before, v, is joined to. the vertices from Gz such that these vertices
will then have vertex degree 4,3,3,and 3, respectively. This can only
mean that in G3 they will have degree 3,2,2,and 2, respectively, lead-
ing to the following list: 3, 2,2, 2,3, 2].

Note that in this example, the ,,fl\\fth element is the same as the sixth
element in the degree sequence of G,. The first four elements represent
vertices that will be joined | to the new vertex v,. The other elements
represent vertices that remain untouched and will thus have the same
number of incident edges in Go. ‘

Continuing this line of reasoning, if [3, 3, 2 2,2, 2] is the (now ordered)
degree sequence of G, then we should be able to construct G3 from a
graph G, to which we have added a vertex'v3. This vertex would
be joined to the vertices having degree 2, 1, and. 1 in Gy, respectively,
yielding the list [2,1,1,2,2]. Again, note that this list contains one
element less than the degree sequence of Gs, but that now its fourth
and subsequent elements represent vertices that have the same vertex
degree i 1n ‘G4 and Gs.

We now have that if ordered list [2, 2,2, 1, 1] is graphlc then so should
1, 1L 1, 1], corresponding to a graph Gs.

L11<ew1se, if [1,1,1, 1] is graphic, then so should the list of Vertex de-

_grees [0, 1, 1] correspond to a graph Ge. .
Finally, if the ordered list [1, 1, 0] is graphic, then so should [O O]

which is true: it is a graph G7 with two vertices and no edges.
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We can safely conclude that the sequence [7, 5, 5, 4, 4, 4, 4, 3] indeed corre-

“sponds to a simple graph. The construction of the graph G is illustrated
in Figure 2.2 which shows how each graph Gy, Gy, .. ., Gg is constructed by
adding a vertex to the previous one, starting from graph G;. The answer to
whether G is the same as the graph from Figure[2.1]is a question we defer
until later. In fact, it turns out to be question that is generally not easy to
resolve. .

) oo o oo oo

G7. Gs Gs
oo oo RN
G4 G3

Gy

Figure 2.2: The construction oﬁ/'graph Gy frorﬁ”previous graphs based on degree
sequences.

Intuitively, it shoqlﬂ be clear that we have jusf‘introduced a systematic
way of checking whether a given list of numbers corresponds to the degree
sequence of a graph. It also forms the essence of the proof of the following
theorem that tells us when a list of numbers is indeed graphic.

Theorem 2.2/,,(/I/—|avel—Hakimi): Consider a list s = [dy,do, ..., dn] of n numbers
in descending order. This list is graphic if and only if s* = [d{,d5, ..., d;_,] of
n — 1 numbers is graphic as well, where

a4 —

1

di—l—l -1 fOTi = 1,2,. ..,d]
ditq otherwise
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Note 2.3 (Mathematical language)
N ote that this theorem consists of fwo statements:
‘ L if s* is graphic then so is s
2. 1f s is graphic then so is s*
This is ‘the meaning of “if and only if,” which is often abbreviated to iff. We will

encounter more of such theorems, and in order to prove them correct, proofs in
these cases: w1ll always consist of two parts. 4

Proof of Theoremlﬂl. To prove this theorem, let us first assume that s*
graphic. We then need to show that s is also graphic.’ ‘Let G* be a sim-
ple graph with degree sequence s*. We now construct a simple graph G
from G* with degree s‘equence s as follows (and in dbing so, we show that
s is graphic). Take G* and add a vertex u. For'readability, let k = d;
and consider the k vertices v1,0y,...,v; from G’k having respectively de-
gree df,d;, .. .,d;:. We then\‘jpin these vertices’ to the newly added vertex
u. Obviously, u now has degree k, but also each vertex v; now has degree
df + 1. Because all other vertices of G* are not joined with u, their vertex
degree is left unaffected. As a conSequenCe the newly constructed graph G
has degree sequence [k, dj + 1, d5 + 1 Sdp+1, dk+1' ..., d_], whichis
precisely s.

Let us now consider the oppos1te 1f s is graphic, we need to show that
s* is so as well. In other words, we need to find a graph G* that has degree
sequence s*. To this end, we consider three_dlfferent sets of vertices from
G. Let u be a vertex with degree k =dy. Let V.= {v1,0s,...,0;} be the re-
spectlve vertices with the k next highest degrees dy,ds, ..., diyq1. Finally, let

= {wy,wy, ..., Wy _k_ 1} be the remaining n — k — 1 vertices with degree
dk+2, dias, - dn, respectlvely E

Consider the graph G* by removing u from G, along with the k edges
incident with u. If each of these edges is incident with. one of the vertices
frorn V, then 0bV10usly G* is a graph with degree sequence (dy —1,d3 —

A1 —1, dk+2, ..,dy), which is precisely s* *

N ow Cons1der the situation that u is adjacent to a vertex from W, say w;.
If for some Vertex vj € V, the degree of v; and w; are the same, i.e., é(w;) =
4(v}), then‘we can simply swap w; and v; in the original construction of the
sets V arid W, meaning that (u,w;) is now an edge incident with'a vertex
from V'instead of W. However, if §(w;) < 6(vg) (ie., 6(w;) is less than the
degree of any vertex from V) we cannot apply such an exchange.

“The problem that we need to solve is that there is now a vertex v; not ad-
j/acent to u whose degree will remain the same instead of being decremented\
/by 1. Likewise, by simply removing u we would decrease the degree of w;, "
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while we would like to see it unaffected if we want to realize the degree
"‘xsequence s*. Note, however, that because 6(v;) > &(w;), there is a vertex x
ad]acent to v; but not adjacent to w; (note also that x # u), as shown in Flg—
uref2.3(a). In constructing G* we now first remove edges (u, w;) and <v], x),
and fhen add edges (x,w;) and (1, v; i), leading to the situation shown in Fig-
ure !b) The effect is that we now have a graph G’ in which u is.adjacent
to v; instead of w;, but without affecting the degree of u, v;, x, or wl In other
words, G has the degree sequence s. If u is now adjacent to vertices only
from V, we have already shown that s* is graphic. If u is still adjacent to a
vertex from W; ‘we apply the same method to construct a graph G" in which
u is adjacent to one more vertex from V. If necessary, we repeat this method
until u is adjacent only to vertices from V, at which pomt we know that s*
is graphic. O

@) )

Figure 2.3: Changing a graph so that it meets the sets V and W of the Havel-Hakimi
proof. .

Note 2.4 (Proof technlques) y
The proof of the Havel-Hakimi theorem illustrates a number of important issues
in graph theory. In the’ first place, it is a proof by Constructlon. In the case of
the Havel-Hakimi theorem this means that we show that the theorem holds by
actually constructiﬁg a graph from a given degree sequerice In general, prov-
ing properties by’ ‘construction is very powerful: not only do we demonstrate
the existence of a property, we also show how to get there. In contrast with non-
constructive proofs we merely prove that some property must exist, often by first
assuming that it does not exist and subsequently arriving at a Contradlctlon We
will come’across more of these proofs, but also ones in which we merely show
thata property must exist, without giving a graph that has the specific property.
Another important issue in proving the Havel-Hakimi theorem, is that we
show the power of visualization. Visualizing situations, either explicitly on
paper or otherwise merely in your mind, is particularly useful in the cas‘é\of
graphs, and should come as no surprise. When graphs are studied for the first

’ time, it is tempting to draw complete examples, that is, graphs in which each\‘
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.‘ .. edge joins two vertices. However, as you become more experienced, it turns |

“out that sketching graphs as is done in Figure[2.3|is actually more illustrative as
these drawings reflect the essence of what you are trying to prove. Irrelevant
details are thus avoided. You are encouraged to go for the sketches. '

Note that two graphs with the same degree sequence need not be the
same. In other words, when given a degree sequence, it may bepossible to
construct several, different, graphs that have that sequence, as is illustrated
in Figure “The two graphs in Figure 2.4(a) have the §,z{ine degree se-
quence, yet they are truly different. The same holds for thetwo graphs from
Figure[2.4(b). We return to the notion of similarity of grgphs in Section[2.2]

Figure 2.4: ifferent graphs with the same ordered \degree sequence:
@)[3,3,2,2,2],and (b) [7,5,5,4,4, 4,4, 3].

2.1.3 /Syyubgraphs

Another important concept of graphs is that of a subgraph. A graph H.is a
subgraph of G if H consists of a subset of the edges and vertices of G, sﬁch
ﬁhét the end points of edges in H are also contained in H. Strictly speaking,.
“we have the following:
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Definition 2.4: A graph H is a subgraph of Gif V(H) C V(G)and E(H) C E(G)
“such that for all e € E(H) with e = (u,v), we have that u,v € V(H). When HLS
a subgmph of G, we write H C G.

As an example, Figure shows a so-called cubic graph (i.e., 3- regular
graph) w1th 8 vertices and three of its subgraphs. S

Gy Gy Gs3
Figure 2.5: The cubic graph\‘Q‘ with 8 vertices and t,h’i‘ee subgraphs Gy, Gy, and Gs.

When analyzing propertieé‘ of graphs, it is often convenient to consider
subgraphs formed by a spec1f1c ‘subset of vertices. These are so-called in-
duced subgraphs, which are constructed by taking a subset V* of vertices
and adding each edge from the orlgmal graph that connects two vertices
from V*. Formally, we have: N

Definition 2.5: Consider a graph G and a subset V* C V(G). The subgraph
induced by V* has vertex set V' and edge set E* defined by

E* def fe gr"E(G)|e = (u,v) wi\th\u,v eV}

Likewise, if E* C E(G), the subgraph induced by E*\h‘c\zs edge set E* and a vertex
set V* defined by

V*’”"’iEf{u 0 EV(G)Fe € E* ie = <ﬁ o)}

The subgmph mduced by V* or E* is written as G[V*] or G[E*] respectzvely

Note 2.5 (Mathematlcal language)

Note that we used one of those awkward, yet precise mathematlcal statements
when .defining a subgraph induced by a set of edges. In this case, the. mathe-
matlcal statement ~

vt L0 € V(G)|Fe € E* te = (u,0)}

* should be translated into plain English as follows:
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V* is the set of vertices from V (G) formed by the end points of edges in
E*.

If‘we would literally translate from math, we would have

~ V* is defined by all vertices u and v from V (G) for which there exists an
edge in E* that joins u and v.

When readmg this second version, it is important to try to move away from all
the math and come up with something like the first one, which is more intuitive
and actually sunpler

A special induced shbgraph is the one by which we simply remove a specific
vertex, say v: G[V (G )\{v}] We came across this type-of graph in our proof
of Theorem 2.2] Instead of using the notation G[V(G)\{v}] we will often
simply write G — v. Likewise, if ¢ is an edge, we will often write G — e in-
stead of G[E(G)\{e}]. Slrmlar simplified notations will be used when deal-
ing with subsets of vertices or. edges respectlvely

2.2 Graph representations\\

It should be clear from the presentation so far that graphs can be drawn in
different ways, but also that when considering their formal definition, they
are merely described in terms of vertices and edges. Let us now pay atten-
tion to how we can convenientl}’? represent graphs This issue is particularly
important when we need to represent very large graphs for automated pro-
cessing by computers.

2.2.1 Data structures

There are different ways to represent graphs. Perhaps ’che most appealing
one is to use an ad] acency matrix. Consider a graph G with n vertices and
m edges. Its adjacency matrix is nothing else but a table A Wlth n rows and
n columns with entry A[i, j] denoting the number of edges ]ommg vertex v;
and v;. To 111ustrate, Flgureshows a simple graph with its accOmpanymg
adjacency matrix. ",

It is nhot difficult to see that the following properties hold:

0 An adjacency matrix is symmetric, thatis for all i, j, Afi, j| = A[j, i]. Thls
- property reflects the fact that an edge is represented as an unordered
pair of vertices e = (v;,v;) = (v}, v;). “
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e A graph G is simple if and only if for all i,j, A[i,j] < 1and A[i,i] = 0. .
In other words, there can be at most one edge joining vertices v; and
v; and, in particular, no edge joining a vertex to itself. g

. The sum of values in row i is equal to the degree of vertex v;, that is,

o(v) = iy Al

|01 vy vz Sy
w12 1 170
(%) 1 0 2 0
n|1 270 1
o |0 0 1 2

Figure 2.6: A gréph with its associated/ adjacency matrix.

As an alternative, we can afso use an incidence matrix of a graph as its
representation. An incidence matrix M of graph G consists of n rows and m
columns such that M[i, j| counts the number of times that edge e; is incident
with vertex v;. Note that M[i, j] is elther 0,1, or 2: an edge can be only not
incident with vertex v;, it has vertex v;- -as exactly one of its end points, or
is a loop joining vertex v; with 1tself F1gure 2.7shows the incidence matrix
for the graph from Figure . Agam the followmg properties are easy to
verify:

e A graph G has no 100ps if and only if for all i,j, M[i,j] <1.

® The sum of all Values in row i is equal to the degree of vertex v;. In
mathematical terms, this is expressed as Vi : 6(v 1&) i1 M[i, j].

* Because each’ edge has exactly two, not necessarlly dlstmct end points,
we know that forall j, Y' { M[i,j] = 2. "

One of the problems with using either an adjacency matr1x or an inci-
dence matrix is that without further optimizations, the total number of el-
ements for representing a graph is 1 x 1 or n x m, respectively. This is not
very efficient when having to deal with very large graphs, espec1a11y when
the number of edges is relatively small. To see why this is true, consider the
representat1on of an adjacency matrix in a computer. Assume that we use
only a single byte to count the number of edges joining a pair of Vertlces

Without any further optimizations, a graph with 100,000 vertices would re-
/" quire a total of 100,000 x 100,000 bytes of storage, that is, close to 10 Gbyte‘.\.
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[e1 e e3 ey es e ey
»n|2 1 1 0 0 0 0
v2 |0 1 0 0 1 1 0/

v3/0 0 1 1 1 1 0

vy [0 0 0 1 0 0 .2

Fig‘ure 2.7: A graph with its associated incidence mqtﬁx.

Using an incidence matrix and assuming a total of 250,000 edges, a straight-
forward, nonoptimized. representation would requiré/ close to 25 Gbytes of
storage. Both representations, even when applying all kinds of storage op-
timizations, generally tend to be rather inefficient.

An often more efficient representation, and used in practice, is that of an
edge list. In this case, we merely list the edges of a graph G by specifying
for each edge which vertices it is incident with. Note that this representa-
tion grows linearly with the number of eédges. For example, the edge-list
representation of the graph from Flgurenm

((v1,01), (v1,02), (v1,03), <Uz,va) (v2,03), (v3,04), (v4,04))

In particular, with m edges, we ,would need to store only 2 - m data items.
Assuming that a vertex can be reépresented by four bytes, this means that for
our example graph with 100,000 vertices and 250,000 edges, we would need
only close to 2 Mbytes of storage. In practice, this number will be larger
because we need additional data structures to easﬂy navigate through the
edge list. Nevertheless, the total amount of required storage will generally
stay significantly less than what is needed for an ad;acency or incidence
matrix.

It should be clear that by simply going through this hst - we also find the
vertices of the associated graph, provided that each vertex is incident with
at least one edge. In practice, an edge list is often accompanied by a list of
vertices, forxéxample, to describe attached labels (such as “v1 ”).\\

222 Graph isomorphism

An 1mportant observation is that all these representations are mdependent
of//the way that we draw a graph. Consider the graphs shown in Figure [2.
No matter whether we represent each graph by its adjacency matrix, inci‘a\
~dence matrix, or edge list, if we properly attach labels to vertices and edges, "
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we will find that their respective representations are exactly the same. As a/,x""

“.consequence, they should also be considered to be the same. This notion of
similarity is formalized through what is known as graph isomorphism.

Figure 2.8: Six different drawingswéf graphs\w\ith the same representation, that is,
isomorphic graphs.

Definition 2.6: Consider two graphs G = (V,E) anii*@* = (V*,E*). Gand G*
are isomorphic if there exists a one-to-one mapping ¢-: V. — V* such that for
every edge e € E with e = (u,v), there is a unique edge e* € E* with e* =

(), ¢(0)).

Stated differenﬂy, two graphs G and G* are isomorphic if we can uniquely
map the vertices and edges of G to those of G* such that if two vertices were
joined in G by a number of edges, their counterparts in G* will be joined by
the same number of edges.

Note 2.6 (Mathematical language)
Qéuldn’t wejust talk about the same graphs, you might wonder, instead of ué‘ing
‘a term like isomorphism? However, “isomorphism” is a well-defined mathemat-
" ical concept that is used for more than just graphs. In essence, it is used in those\‘
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) . situations where we are dealing with sets (like vertices), and that the elements in
“those sets are somehow organized in a specific way. Isomorphism is then used//
to. -express that two sets have essentially the same elements when you ignore
labelmg issues, but also that their organization is the same. An 1somorphlsm is

then a structure -preserving mapping between two sets. ‘

In man}}‘ cases, checking whether two graphs are isomorphic. is relatively
simple as there are a number of important necessary requlrements that need
to be fulfilled. For example, it should be obvious that the two graphs need
to have the same number of vertices and edges in order to. be isomorphic. A
stronger requlrement is that they have the same ordered degree sequence,
which we formulate in the following theorem.

Theorem 2.3: If two graphs G and G* are zsomorphlc then their respective ordered
degree sequences should be the sane. .

Proof. Let ¢ be the one-to-one. mappmg by wh1ch G and G* are known to
be isomorphic. Consider vertex i from G and its adjacent vertices vy, ..., v;.
By definition, each edge ¢; = (u,v;) incident with u in G is mapped to a
unique edge e/ = (¢p(u), p(v;)) in G* Bécause each edge e; is incident with
¢(u), we must have that 6(u) < 6(¢p(u)).

Now consider a vertex v* € V(G*) that is adjacent to ¢(u). By defini-
tion of isomorphism, we know that the edge e* = (¢(u),v*) must uniquely
map to an edge e = (¢~ 1(¢(1)), ¢ 1 (v*)).in G, where ¢! denotes the
inverse mappmg of ¢. Because ¢ is a one-to-one mapping, we also know
that ¢~ (¢(u)) = u, and thus that e = (1,¢~1(v*)). In other words, every
edge incident with ¢(u) i in 'G* will be incident w1th u in G. This means that
Sp(w) < 6u). ~

We conclude that (5(u) = 6(¢(u)) for all vertices (5‘f\G, implying that the
ordered degree sequences of G and G* should be the seime. O

Unfortunately, thls theorem gives us only a necessary condltlon for two
graphs to be 1somorph1c yet it is not a sufficient condition. In other words,
if two graphs have the same ordered degree sequence, then that fact alone
is not sufficient to conclude that they are also isomorphic. Yet to’ be isomor-
phic, it is'necessary for their respective ordered degree sequences to be the
same. - "

Note 2.7 (Mathematical language) s
/The difference between necessary and sufficient conditions seems an obvious one,
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yet they are surprisingly often confused in mathematical proofs. Formally, in - ’

*_graph theory, conditions are used to prove properties of graphs. When a con-"
\dltlon C is said to be necessary, this means that a property P can hold only if C
is'met. When a condition C is said to be sufficient, this means that if C is met,
then- ‘property P will hold true. And indeed, when property P is true if and only
if condition C is met, indicates that C is a necessary and sufficient condrhon for
property P to be valid.

To illustra’fe consider the graphs from Figure 2:4(a), which are shown
again in Figure . Although they have the same ordered’ degree sequence,
they are not isomorphic. One way of seeing this is that the two vertices with
degree 3 are ad]acent to one another in G, but not in’ ‘G*. (There are other
structural differences, yet explaining these requires the introduction of more
graph concepts, which we defer until later.)

Figure 2.9: Two nonisomorphrc graphs with the‘\‘s‘gme ordered degree sequence.

The bad news is that there are no known easy suff1c1ent conditions that
will tell us in general whether two graphs are 1som0rph1c or not. Essen-
tially, this means that once we have found that all necessary conditions have
been fulfilled, we‘will have to resort to a trial-and-error method. For exam-
ple, with the gre{phs from Figure 2.9 we were able to successfully consider
whether the hlghest degree vertices were adjacent in both graphs In other
cases, however we may have to look at other properties.

Note. 2 8 (More information)
In the worst case, we may have to resort to an exhaustive method. Consmler a
graph G with 1 vertices {01, 0y, ...,y }, and a graph G* also with 1 vertices.: To
check for isomorphism, we need to find a one-to-one mapping between these
“ two vertex sets. With an exhaustive approach, we simply go through all possi-‘*x\
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.. ble mappings to see if there is one that establishes isomorphism. Unfortunately, |
“there may be quite a few mappings that we need to check. To be precise, there/,//
are potentlally n! mappings to consider, where g

ety . (n-1)-(n-2)---2-1

(to be pronounced as n factorial). This is relatively easy to see as fOHOWS For
any mapplng, we have 1 choices for mapping v, to one of the vertices ‘from G*.
After that, there are n — 1 possibilities left for mapping v; to a vertex from G¥,
and then another n — 2 for mapping v3, and so on. Finally, after hav1ng made a
choice for each Vertex v1,02,...,0y_1, we have only one more optlon left for vy,.

Checking n! mappmgs is no pleasure game, which is easﬂy seen by consid-
ering the following table ‘

n| n ‘n‘ n! n n!
1 1 6 720 11 [ 7 39916800
2 2 7 | 5040 12 |/ 479,001,600
3 6 8 | 40320 13/  6,227,020,800
4| 24 9 362,880 14 87,178,291,200
5 | 120 10 | 3,628,800 15 | 1,307,674,368,000

In fact, for large n, its factorial can Be\appr/o'kimated by

which reaches amazingly high nu_rribers e\fen for relatively small values of n.
There is also no chance that brute-force computations with a computer are go-
ing to bring any serious help | here. For example if a computer were able to
check whether one specific mapplng could establish isomorphism between two
graphs in only 1 nanosecond (which is 10~ seconds) it would still take about
500 years to go through all possible mappings for two, 25-Vertex graphs. More
cleverness is needed. g

We note that algorlthms do exist that can efﬁc1ently test isomorphism for
many graphs up to’approximately 100 vertices, with perhaps the fastest one
being nauty devised by McKay|[[1980]. Also, efficient algonthms exist for graphs
for which the max1ma1 vertex degree is known to be bound by a constant [Luks,
1982].

2.3 Cdnnectivity

In all’ the graphs we have considered so far, each vertex v could be reached
from any other vertex w in the sense that we could indicate a chain of ad-
]acent vertices from v to w. In this section, we will take a closer look at this.
’,,/1rnportant concept of connectivity. We start with some basic terminology: »&
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Definition 2.7: Consider a graph G. A (vo,vy)-walk in G is an alternating,/'/

“sequence [vg, e1, 01, €. ..Uk 1, €, U] of vertices and edges from G with e; =
<Uz 1, 0;). In a closed walk vg = v. A trail is a walk in which all edges
are"distinct; a path is a trail in which also all vertices are distinct. A cycle is a
closed. trail in which all vertices except vy and vy are distinct.

Using th_e notion of a path, we define a graph to be connected wheh there is
a path befween each pair of distinct vertices. Formally, we have""

Definition 2. 8. Two distinct vertices u and v in graph G are connected if there
exists a (u,v) = - path in G. G is connected if all pairs of dlstznct vertices are
connected. /

Clearly, all the graphs we have considered so far are mdeed connected.
However, there is no'reason to assume that a graph is always connected. If
we take a look at the definition of a graph, there isnothing there that states
that all vertices should be connected. Intultlvely, this means that a graph
could also consist as a collection of components, where each component is
a connected subgraph. This can be made precise as follows:

Definition 2.9: A subgraph H of G is called q"éomponent of G if H is connected
and not contained in a connected subgraph.of G with more vertices or edges. The
number of components of G is denoted as w(G).

Note that a component is not just a subgraph: it is a maximal, connected sub-
graph. In other words, if we would consider a subgraph H of a graph G
and would find that there is a vertex not in H that is connected to a vertex
in H, then H is, by deﬁnition,"not a compdnent Maximality also incorpo-
rates edges, meaning that 1f an edge e joins tWO vertices in G, e should be
contained in H. / B

The notion of connectwlty is important, notably when considering the
robustness of networks: Robustness in this context means how well the net-
work stays connected when we remove vertices or edges For example, as
we mentioned in Chapter [} the Internet can be viewed as a (huge) graph in
which routers form the vertices and communication links between routers
the edges. In a’ ‘formal sense, the Internet is connected. However, if it were
possible to pértition the network into multiple components. by removing
only a single vertex (i.e., router) or edge (i.e., communication hnk) we could
hardly claim the Internet to be robust. In fact, it is extremely important for
networks such as the Internet to be able to sustain serious attacks and fail-
ures by which routers and links are brought down, such that connectwlty is
st111 guaranteed.

" There are many networks for which robustness in one way or another
’,/plays an important role. Let us now formalize this notion by conmdermg\
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what are known as vertex and edge cuts.

Definition 2.10: For a graph G let V* C V(G) and E* C E(G). V* is called o
vertex cut if w(G — V*) > w(G). If V* consists of a single vertex v, then v'is
called.a cut vertex. Likewise, if w(G — E*) > w(G) then E* is called an, edge
cut. IfE* consists of only a single edge e, then e is known as a cut edge. .~

Note that ‘we have used the notation G — V* to indicate the 1nduced sub-
graph G[V(G)\V*]. What the definition states is that V* is a Vertex cutof a
connected graph if the removal of vertices in V* from G will make G disinte-
grate into sevefal components. In other words, G will become" disconnected.
Analogously, an edge cut of G is a collection of edges that will make G fall
apart into multiplé‘components when those edges are removed. In the def-
inition given above, we have used the simpler notat1on G — E* to indicate
the induced subgraph G[ (G)\E*]. S

Of particular interest is the minimal vertex cut for a connected graph. In
other words, how many vertices do we need to-remove from a connected
graph before it becomes disconnected? An impértant observation is the fol-
lowing. Let x(G) denote the size of a minimal vertex cut for graph G, and
likewise, A(G) the size of a mlnlmal edge cut. Asit turns out, k(G) < A(G),
but also that A(G) is less or equal to the fninimal vertex degree. Using the
notation min S to denote the smallest value found among the elements in
set S, these properties are formulated in the following important theorem.

Theorem 2.4: (G) < A(G) < mm{}s (0)]v € V(G)}

Proof. That A(G) < min{J(v )|U € V(G)}is éasy to see. Consider a vertex
u with minimal degree, that'is, 6(1) = min{s(v )[o € V(G)}. If we simply
remove the §(u) edges incident with u, then u W1ll become isolated, and
certainly the resulting graph will have at least one more component then it
had before (namely the one consisting only of u). .

To prove that K(G) < A(G), consider a graph G Wlth A(G) = k and let
E* = {ey,e,.. ek} be a minimal edge cut of G, with ¢;.= (u;,v;). Let U
denote the set Qf vertices {uy,...,u;} and V the set {v1,..>,v;}. Note that
in this case, the vertices in either set need not be distinct. Thé“\graph G—-E*
will fall apart into exactly two components, say G; and G, (we leave it to
you to show that this is indeed true). If G; contains a vertex u diStlnct from
any u;, as shown in Figure -a) then clearly removing all Vertlces inU
will disconnect 1 from any vertex in G, so that x(G) < k.

If there is no such vertex u, then assume that V(G;) = U. C0n51der
Vertex u1. We know that u, is adjacent to d; vertices from Gy, and each: of
ﬁhese neighbors in Gy is adjacent to a vertex from V. Let E] be a set of edges.
/from E* joining vertices from the d; neighbors of u; and exactly one vertex .
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Figuf‘e\2.1 0: The two scenarios for the proof of Thegrém

from V. Likewise, let 'E3 be the d; edges from E* inc1dent with uy. This
situation is shown in Flgure ub) Obviously, d1 Fdy = |Ej UES| < |E*|.

Also, the d; 4 d; neighboring vertices of u1 form a vertex cut, shown as open
circles in Figure2.10(b). This also means that K(G) <dj+dy, < |E*| = A(G),
completing the proof. O

Note 2.9 (Study tip)

The previous proof, and notably provmg that x(G) < A(G), is a typical example
where graph theory requires insight.’ The proof is not obvious, and it can cer-
tainly not be expected that an undergraduate student would be able to devise it
from scratch. What is important, however, is.that the proof itself is understood
well. To this end, you are encoﬁraged to start, with reproducing proofs, as this
will enforce you to carefully, think about every step that is taken. Simply being
able to reproduce proofs i is - well-known techmque to successfully study graph
theory. ! .

A graph G for which «(G) > k for some k is said to be k-connected.
Likewise, graph G is k-edge-connected if A(G) > k. What this theorem
tells us is that every graph is at most 6,,,;,-edge connected; and at most 6,,,;,,-
connected, where 6,,;, = min{(v)|v € V(G)}. We showed this for edge
connectivity. Vertex connectivity is also easy to see: simply remove the 6,
vertices adjécent to a vertex of degree d,,;,;, and the latter becdmes discon-
nected. Of course, finding a lower bound for k is more 1nterest1ng, but this
turns out to be a relatively difficult problem to solve. Without going into the
rather intricate details, we can say something about a lower bound for k by
con51der1ng the notion of path independence.

/,Deflnltlon 2.11: Consider a graph G and a collection P of (u,v)-paths in G, wzth
“u,v € V(G). P is vertex independent if for all (u,v)-paths P, P, € P we have".
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that V(Py) N V(P,) = {u,v}. The collection is edge independent if for all its
‘(u v)-paths Py and P, we have that E(P;) N E(P,) = @.

In ‘other words, two (u,v)-paths P; and P, are vertex independent if they
share. only the vertices 1 and v, and are edge independent if they have no
edge in common. Using path independence, we now come to one-of the
more fundamental theorems in graph theory, formulated by the Austrlan
mathematmlan Karl Menger. g

Theorem 2.5 (Menger): Let G be a connected graph and u and v two nonadjacent
vertices in G. The minimum number of vertices in a vertex cut that disconnects
u and v is equal to-the maximum number of pairwise vertex-independent paths
between u to v. Analogously, the minimum number of edgES in an edge cut that
disconnects u and v, is equal to the maximum number of pazrwzse edge-independent
paths between u and v.

We omit the proof, and thstead refer the interes’ted reader to Bondy and
Murty|[2008], [Diestel [2005]}‘91‘ West| [2001].

Note 2.10 (Mathematical Ianguage)
Menger’s theorem should be read carefully it mentions pairwise independent
paths. In this case, the adjective pairwise.is used to make clear that we should
always consider pairs of paths when C0n51der1ng independence. And indeed,
this makes sense when you would COhSlder trying to count the number of inde-
pendent paths: being an mdependent path can only be relative to another path.
To complete the story, also note that the theorem is all about counting the
number of (1, v)-paths, and not the number of. pairs of such paths. In other
words, pairwise is an adjectiv/e’/to independent, and hpt to paths.

It is not difficult to. ‘see that Menger’s theorem leads to the following
corollary:

Corollary 2.2: A graph G is k-connected if and only if any two distinct vertices are
connected by at least k pairwise vertex-independent paths. G is k-edge connected
if and only if any two distinct vertices are connected by at least k palrwzse edge-
mdependent paths. g

Of partlcular interest is the following one:

Corollary 2.3: Each edge of a 2-edge-connected graph lies on a cycle.

Th1s corollary actually follows from the previous one, which states (for the
§pec1al case k = 2) that a graph is 2-edge-connected if and only if any.
/two distinct vertices are connected by at least 2 pairwise edge-independent .
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" paths. The latter, of course, together form a cycle. We will use this corollary

"‘xm the next chapter when discussing so-called directed graphs. s

. Intuitively, it should be clear that for any simple graph G a higher Value

of %(G), i.e., the size of a minimal vertex cut, implies that more edges are

needed. We have just seen that in every k-connected graph each vertex will

have at least k incident edges. Knowing that Y"6(v) = 2 - m, this means

that for a graph with n vertices, we would need % Y. 6(v) and thus at least

% Yk= %n k edges. But what is the minimal number of edge,s’/for a graph
to be k—connécted7 This question brings us to a so-called Harai‘y graph:

Definition 2.12: A Harary graph Hy ,, is a k-connected szmple gmph with n ver-
tices and with a mzmmal number of edges.

What we now need to figure out is actually how many edges an Harary
graph has. We will show that Hy,, has exactly [k -11/2] edges, that is, the
smallest natural number- of edges greater or equal tok-n/2. To this end, we
label the vertices in Hy , as {0,1,...,n — 1} and organize them graphically
as a circle. Following Bondy and Murty [1976] we consider the following
three cases for combinations of k and n. '

k is even: We construct Hy , by j‘aning,xeach vertex i to its k/2 closest left-
hand (i.e., clockwise) neighbors'and its k/2 closest right-hand (i.e.,
counterclockwise) neighborsl/.,,x:"\

k is odd, n is even: In this case, we construct Hy_ 1, and add n/2 edges
by joining vertex i to its left hand nelghbor at distance 5 (with 0 <
i < 7). In other words, we add edges' < DAL14+5),(2,2+73),.
<n22 n— 1> K

k is odd, n is odd: In thi/s”/case, we again first cohstruct Hjy_1,, and then add
the (n+1)/2 edgés (0, ”—”), 1,1+ ”;1>,. ) Z*,\(”Zl,n -1).

To clarify the constructlon of these graphs, Figure [2. shows graphs Hyg,
Hsg, and the construction of Hsg from Hyg.

Note 2.11 (More information)

At first 51ght constructing Harary graphs seems to be one of those typlcal math-
ematical topics: nice, but it looks as if someone got carried away-a bit. In
fact, Harary graphs address a very relevant question in commumcatlon net-
works trading off the costs between reliability and the number of communica-
tion links. A communication network constructed as an Harary graph Hk,,;“‘tells

1Of course, being a left-hand or right-hand neighbor makes sense only if we assume that a

/" vertex has an orientation. In our example, we orient a vertex toward the middle of the ring.
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Figure 2.11: Various Harary graphs: (a) H48, (b) Hs g, (c) Hy9, and (d) Hs 9. Dashed
edges are the ones added to obtain Hsg from Hyg, and Hs g from Hy g, respectively.

us that we can remove up to k”{zertices before the ‘hgtwork becomes partitioned.
This means that if we are cénsidering networks that are designed to dissemi-
nate data to every node,,Harary graphs will give us;‘the means to make them
just as robust as we want them to be, yet with a minimalnumber of links. There
are a number of Variatibns on this theme, as explained by [1977].

Admittedly, when first thought of, people considered the monetary costs of
a communication link. With the robustness of the Internet, the\“problem seems to
be less relevant.. However, suppose we formulate costs in terms .of how quickly
data is d1ssem1nated As we shall discuss in Chapter [8| we often. want to con-
struct an art1f1C1al or virtual network on top of an existing Commumcatlon net-
work such’as the Internet. In that case, we can shape the network as we like.
As discu‘ésed by Jenkins and Demers|[2001]], Harary graphs are usefuI*for con-
structlng virtual networks that will optimally disseminate data in a group of
nodes while keeping that group k-connected.

N ow that we have the procedure to construct Harary graphs, we need to

’,f'show that they indeed have a minimal number of edges while maintaining "
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the property of being k-connected. We first prove connectivity.

Theorem 2.6: The Harary graph Hy , is k-connected.

Proof Let us first consider the case that k is even. Our proof is completed if
we can.\.show that there is no vertex cut with fewer than k vertices.” “To this
end, let us assume that such a set W does exist. If we can then prove that this
assumptlon can never hold, we will have completed our proof (we come
back to this method of proving a theorem below). .

To this end, let vertices i and j belong to different components of Hy, —
W (ie, G[V (Hkn)\W]) C0n51der the set N;_,; of left-hand neighbors of
i, including i: {1,1 + 1,...,j—1,j}, and 11kew1se its rlght -hand neighbors
Nij={jj+1..,i- 1 z} In both cases, addition is taken modulo .

Let W;_; fwn NH and Wi W N, (meanlng that W = W;_,; U
Wi ). We know that |W[ < k, so we must have that either [W; ;| < k/2 or
(Wij| <k/2,asis illustrated in F1gure|: Assume that [W;_;| <k/2
Now consider an arbltrary vertex u in Hy ,; — W, lying on, say, segment
S (see Figure2.12). We know: that u is ad]acent to k/2 consecutive vertices
in either direction. As a consequence, removing less than k/2 vertices as is
done through W;_.; will still allow us to reach any vertex v on segment S. In
other words, H ,, — W will remain connected contradicting our assumption
that W was a vertex cut. O

Figu/re 2.12: Tllustration that [W N N; ;| < k/2or [W N N;._| <k/2

/,Note 2.12 (Proof techniques)
 We have just encountered our first proof by contradiction. This method is"
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) .. widely applied and you should definitely familiarize yourself with it. The prin- |
“ciple is fairly straightforward: if you want to prove some statement P to be
true, then in a proof by contradiction you assume that P cannot hold and sub¥
sequently show that this assumption will lead to something nonsensical. Non—

sense can then only mean that your assumption was incorrect. ‘

There is another important principle that surfaced in the previous proof
which is known as the pigeonhole principle. This principle simply states that
if n items heed to be spread over m < n boxes, then there will be at least one
box contammg more than one item. How did we apply this prmclple? In our
proof, we noted that the set W contained less than k elements and that we split
it into two parts WZ_> j and Wi ;. The pigeonhole principle tells us that at least
one of these two sets much have less than k/2 elements. '

What remains is to show that a Harary graph also has a minimal num-
ber of edges. For any k-connected graph, we now know that each vertex
v has a degree 6(v) > k. Let my (1) denote the minimal number of edges
for any simple, k-connected graph G. Because |E(G)| = %Zvev(c) é(v) >
5 Zvev (G) Omin = Zk , we know that my(n ) > ”—k It is not difficult to verify

that |E(Hy,)| = %, meaning that an Harary graph indeed has a minimal
number of edges N

2.4 Drawing graphs

As the saying goes, a picture does often say-more than a 1000 words. This
certainly also holds for drawihg graphs. We have already seen various ex-
amples of how the same graph can be drawn in'different ways. As it turns
out, this subject is so important that researchers have spent considerable ef-
fort on devising algorlthms for drawing graphs. In. thls section we take a
closer look at some of the results. >

24.1 Graph embeddmgs

To illustrate the importance of drawing, consider the graphs from Figure[2.13}
which shows the Petersen graph, a particular 3-regular graph:. Clearly, by
just lookmg at these drawings, it is not obvious that we are deahng with the
same graph (i.e., same in the sense of isomorphic). This instantly brmgs up
the issue of what makes a good drawing of a graph. In this example, .elther
Figure[2.13(a) or (b) is arguably the best one. B
Formally, when drawing graphs we are considering so-called graph em-
beddmgs a representation of a graph on a surface where vertices are as-,
/sociated with points on that surface. In practice, we always consider the
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" two-dimensional plane, but note that embeddings in three dimensions are

‘."‘xalso possible.
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Figure 2.14:/,/A/1 random graph with 50 vertices and 103 edges. The\ci‘rcular embed-
ding allowgfo draw each edge as a straight line that remains (reasonably) visible.

A/,c"'c/)mmonly applied embedding is the circular embedding. In fhis case,
the vertices are placed at evenly spaced points on a circle, as illustrated by

the Petersen graph in Figure c). The advantage of this representation is
_that no three vertices ever lie on the same straight line, or, in other words,
/ are ever collinear. This has the effect that each edge can be easily drawn such"
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" that it remains visible in the drawing. This is an important property, notably
‘when dealing with so-called random graphs in which pairs of vertices are”
connected by randomly chosen edges. In that case, it is generally important
to see all edges. Figure shows such a random graph with 50 vertices
and 103 edges.

There are other useful embeddings to consider. For example, an'impor-
tant class is formed by bipartite graphs: graphs of which the set of vertices
can be partitioned into two subsets such that no edge is incident to vertices
from the same subset. In other words, each edge is incident to.a vertex from
either set: ‘

Definition 2.13: A é*rgph G is bipartite if V(G) can be partitiqnéd into two disjoint
subsets Vi and V; such each edge e € E(G) has one end point in Vy and the other
in Vp: E(G) C {e = (vy,02)|ug € V1,up € Va}.

Figure 2.1 5A ranked embedding of the graph frorﬂFjgure

Bipartite graphs are sometimes conveniently drawn as ranked embed-
dings. To Qkplain, reconsider the graph from Figure Although it is
not obvious from the drawing at all, it turns out that this graph is actually
bipartite:; We can discover this by considering what the distance is between
a given vertex v and each other vertex. The distance between two vertices
v and w is informally expressed as the minimal number of edges between
v gﬁd w (also called the shortest path to which we return in ChapterE[).
This leads to a group of vertices at distance 1 (i.e., vertices adjacent to v,
“which we had defined as its neighbors), at distance 2 (vertices adjacent to "
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the vertices adjacent to v), etc. Now consider Figure for which we have

“selected an arbitrary vertex v from G and subsequently (1) ranked all other
vertices according to their distance, and (2) placed all vertices at the same
distance along the same vertical line. What we observe is that there are no
edges between vertices at the same distance. This can only mean that G is
blpartlte In fact, in this example the set of vertices can be partltloned into
six dls]omt subsets. '

These examples illustrate that examining graphs through Vlsual inspec-
tion requires.the use of computer tools. What these tools mvarlably do is
compute vertex positions in the two-dimensional plane accordlng to some
simple or complex criterion. Circular and ranked embeddings are relatively
simple. More complex ones involve spreading vertices far apart while still
keeping connected ones close to each other. An example of such an ap-
proach is a spring embedding [Eades| [1984]. In this case, the vertices are
modeled as rings connected by springs. Initially, the vertices are positioned
randomly in the two-dimensional plane, after which the springs do their
work by trying to reach an" equilibrium. To iliustrate, Figure [2.16| shows a
number of steps by which the randomly posmoned vertices in Flgure R.16(a)
are gradually brought into an equﬂlbrlum

Note 2.13 (More |nformat|on) o

As illustrated by Figure 2.16, spring embeddmgs can lead to an appealing vi-
sualization of a graph. Let s take a closer look at how the approach works. As
stated previously, Eades|[[1984] proposed to represent each vertex as a ring and
each edge as a spring. Each vertéx u is initially. posmoned in a two-dimensional
plane, with coordinates (ux,,uy) Each spring'e = (u,v) exerts an attracting
force Fuy(u, v) between the wvertices u and v it joiris\ according to the formula

Fur(u, v) def 210g(d( v)) if uand z?‘»gpe adjacent
0 otherwise -

where d(u,v) is the length of the spring between u and v.. Thls length corre-
sponds to the dlstance between u and v defined as:

d(u,v) def \/(ux —0x)? 4 (uy — vy)?

Note that'/there is nothing special to this definition of distance: if“«is a direct
applicaﬁon of the Pythagorean theorem. Besides an attracting force, Eades also
introduces a repelling force F,gp(u v) between nonadajacent vertices u* and v,
defmed as: '

Frep(14,0) ) def {O if u and v are adjacent

1/+/d(u,v) otherwise
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X Ny
/,I’

Figure 2.16: The evolgﬁon of applying a spring‘embedding to a graph.

With these forces/,deﬁned, we now have a system of attracting and repelling
vertices. When the vertices are placed randomly, it should bé‘x\clear that there
will generally/be a lot of pushing and pulling going on. In particular, if the
resulting pqshing and pulling forces on a vertex are not equal, W‘excan expect
the vertex.to be moving to a position in which there is more equilibtium. This
behaviqr"éan be simulated by means of the following algorithm: \

Algorithm 2.1 (Spring embedding):

1. Place the vertices at random locations ‘
2. For each vertex u, calculate the resulting forces in the x and y direction, respec- |
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tively:
Fy(u) def Yo zu (Fattx (1, 0) = Frep,x (1, 0))
Fy(u) def You (Fatty (1, 0) — Frepy(u,0))

3 Reposition vertex u according to:
Uy — ty + 0.1 Fe(u) and uy<—uy—|—0.1-Py(u")
4. Goto to Step 2. Stop after M iterations. /

Eartx(u,0) is the attracting force in the x direction from nelghbormg vertex v,

computed as: :

|ox — x|

. d(u,v)

The respective deflmtlon of Fasty(u,v), Frep,x(u,v), and Frep y(u,0) is analogous.
Furthermore, we have used the notation “x «— §” to denote that x takes

on the value resulting ffbm evaluating express1on s. So, in our example, uy

is adjusted by 0.1 - Fx(u) uruts In practice, a state very close to equilibrium is

reached for at most M = 100 Iteratlons g

Fatt e (u,0) 8F Fope (1, 0) -

2.4.2 Planar graphs

Let us now take a look at an 1mportant class of graphs where topology plays
a role, namely graphs that can be drawn in such a way that no edges cross
each other, so-called planar graphs

Definition 2.14: A plane graph'i isa specific embeddzng of a graph G such that no
two edges intersect. If such an- embedding exists, G. is said to be planar.

It is not difficult to see Why planarity can play an important role. Con-
sider, for example, de51grung a transportation network. If the correspond-
ing graph is planar, this means that there is no need for multi-layer cross-
ings such as bridges and tunnels. As another example; consider the design
of electrical circuits, such as those for chips. In this case, it is important
that the wires that connect components do not cross each other. Unfor-
tunately, de51gn1ng modern chips under the constraint that the associated
graph must be planar is very difficult, if not impossible. The alternative,
is to des1gn chips as a collection of layers, each layer having an:associated
planar graph. We will later discuss another intriguing application of planar
graphs, namely the coloring of maps. Before doing so, we first cons1der a
number of characteristic properties of planar graphs. 8
“'When considering a plane graph, we will observe a number of reglons
l,(also called faces), which are enclosed by the edges of the graph. For exam-
/" ple, Figure 2.17] shows a graph with 12 regions. Each region, except ry, 15\.
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" enclosed by a cycle. Region rq is referred to as an exterior region; the others
are interior regions. g

Figure 2.1 7 A plane graph with"'i2 regions.

A useful property of planar \gr.aphs wz;s'"’formulated by the famous ver-
satile Swiss mathematician Leonhard Euler (1707-1783), who is generally
considered as one of the greatest mathematicians ever.

Theorem 2.7 (Euler’s formula): For a pldhe §mph G with n vertices, m edges, and r
regions, we have that n —m +r = 2.

To prove this theorem, we ne;éd to considéhan important property of an
acyclic graph, that is, a graph containing no cycles, also known as a tree.

Lemma 2.1: For a connecﬁéél acyclic simple graph G\w‘ith n vertices, |[E(G)| =
n—1.

Proof. We prove thi’,s"ylemma by induction on the numbéi‘pf vertices. Clearly,
when 7 = 1 there-can be no edges and the lemma is seento hold. Now as-
sume the lemmaholds for all acyclic simple graphs with les.‘s\"chan n vertices.
Let H be an acyclic simple graph with n > 2 vertices, and edge (1,v) €
E(H). If we remove this edge, then the result will be two separate sub-
graphs Gy-and G, for otherwise (1, v) was part of a cycle. Both subgraphs

are acyclic, each with less than n vertices, so that [E(G1)| = [V(G)| — 1
and |E(G,)| = |V(Gz)| — 1. Because we have not removed any vertices, we
know that

JE(H)| = [E(G1)| + |E(Ga)[ +1= [V(G1)| = 1+|V(G)| ~14+1=n—1
’,f"lwhich completes the proof. O
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Note 2.14 (Proof techniques)

* This is the first time we have encountered a proof by induction. This type Of ’
\proof consists of two parts. First, a situation is shown to hold for some 1n1t1al
value 7 (in our example, the number of vertices for which we first consider-one
Vertex) Then, assuming the situation is valid for k > 1, we prove that it also
holds for k + 1. In doing so, we have then completed the proof. | ’

Proof by induction is extremely important and you should make sure that
you not only understand it well, but also that you are proficient i in applying
it. [d"Angelo.and West| [2000] devote a complete chapter to the principle of in-
duction and fi‘rpvide many examples of its use. Formally, indnétion is defined
by considering "‘fh\e natural numbers, that is, N def {1,2,.. .}7,,'We then have the
following important theorem.

Theorem 2.8 (Princip'le of induction): Let S(n) be a mzzthe’hmtical statement formu-
lated in terms a natural number n. S(n) is true if the following two statements are
true: .

1. S(1) is true . .
2. foranyk € N, if S(k) is true then S(k + 1) is true

What this theorem tells us, is that to Conduct a proof by induction, we need to
first show that S(1) holds. Secondly, we rieed to show that if S(k) is true, then
S(k +1) is also true. We can then conclude that S(n) is true for any n € IN.
In practice this means that we show; S5(1) to be true, then assume that S(k) is
true for k > 1, after which we need to shOw that S(k + 1) is true based on that
assumption. : “

Of course, showing that S(k* + 1) is true is often the nasty part. A common
approach is to try to reduce the situation for k + 1 to S(k). This is exactly what
happened in the case of our- lemma: we simply removed an edge which lead to
subgraphs of smaller size for which we knew that our statement n = m + 1 was
true. From there on, we ‘could subsequently count the number of vertices and
edges in the 0r1g1na1 graph .

Using this lemma, we can now complete our proof of Euler s formula,

again by means ‘of induction:

Proof of Theorem The proof is by induction on r, the number of regions.
If r = 1, then there is only a single region, which means there cannot be a
region ¢ enclosed by edges of G. In other words, G must be acyclic, in which
casem =n—1landthusn—m+r=n—(n—1)+1=2. Forr = 1the

formula is therefore seen to be true.

/' Now assume the formula is true for all plane graphs with less than r
l,reglons, and let G be a plane graph with r > 1 regions. Choose an edge- e
* (which is not a cut edge) and consider the subgraph G* = G —e. Asewas",

Copyrighted material

- January 2010 - Draft




Copyrighted material - January 2010 - Draft

2-36 CHAPTER 2. FOUNDATIONS

" part of a cycle, we will have merged two regions, reducing the total number
‘of regions by 1. In that case, we know that Euler’s formula is true, and as a
consequence, |V(G*)| — |E(G*)| + (r — 1) = 2. Considering that |V (G*)| =
[V(G)| and [E(G*)| = |E(G)| — 1, we now obtain |V (G)| — (|E(G)| — 1) +
r—1= \V( )| — |E(G)| 4+ r = 2, completing our proof. S

Euler s formula is important as it allows us to derive a number of proper-
ties by whlch we can more easily determine whether a given graph is planar
or not. To this end we first prove the following:

Theorem 2.9: For any connected simple planar graph G wzth n > 3 vertices and m
edges, we have that m < 3n — 6 :

Proof. Consider a regiOn f in any plane graph of G. ,Fer any interior region,
let B(f) denote the number of edges by which f is'enclosed, i.e., the length
of its “border.” Obviously, B(f) > 3 for any interior region. However, with
n > 3 we also have that the exterior region is “bounded” by at least 3 edges.
Therefore, if there are a total of 7 regions, then clearly " B(f) > 3r. On the
other hand, it is not difficult to see that }_ B( f) counts every edge in G once
or twice, and hence YB(f) < 2m, S0 that we obtain 3r < Y. B(f) < 2m,
and thus r < 3m From Theorem We then derive thatm = n+r -2 <
n-+ m 2,s0 thatm < 3n — O

Note that this theorem gives us & necessary condition for a simple graph to
be planar. In other words, if we have a snnple graph G for which m >
3n — 6, then G cannot be planar It is not a sufficient condition, as we will
show shortly. Furthermore, what we learn from this theorem is that a planar
graph will have relatively” few edges, which is 1ntu1t1vely clear. We can use
it to prove that the comp1ete graph on 5 vertices, that.i is, K5 cannot be planar.

Corollary 2.4: The Cqm;?lete graph on 5 vertices, Ks is nonpla(zar.

Proof. With n = |V (Ks)| = 5and m = |E(Ks)| = () = 10, we have that
m £ 3n — 6, so'that K5 cannot be planar. O

Note 2, 15 (More information) ~
There are two novelties in this proof. First, we introduced the notat10n (’;),
Wthh is pronounced as “n choose k,” and is defined as K

(o)« G
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2.4. DRAWING GRAPHS 2-37

Second, we are stating that the number of edges in K}, is equal to (3). Consid- '/
“xxermg that we have n vertices in K;;, it should be clear that to construct K;,, w/e”/
need to consider exactly all pairs of vertices. Obviously, there are exactly (3).0f
such pairs. Another way of counting the number of edges in K, is as follows.
Assﬁme that the vertices are labeled {1,2,...,n}. For vertex 1, we can choose
from 1.— 1 vertices to join it to. After that, there are only 1 — 2 vertices to join to
vertex 2' {because vertex 1 is already joined with vertex 2). For vertex 3, we can
choose from n — 3 vertices, and so. In other words, the total number of edges in
K is equal fo g

\E(KH)[‘; (n—1)+(m—2)+ (n—3)+-+2+1 Z%n(n —1)

To show that Z” i i= 2 n(n — 1) is left as an exercise.

Analogous to a comple’ré graph, we also have cemplete bipartite graphs
Ky, which is a simple graph consrstmg of the two disjoint set of vertices V;

and V; as in Definition 2.13|on page[2-30} with p = |Vi] and g = | V|, and a
total of p - g edges. An observatlon is now the following:

Theorem 2.10: The complete bipartité‘graph K3,3 is nonplanar.

Proof. Because n = |V(K33)| = 6-and m = |E(K33)| = 9, we find that
m < 3n — 6, so that this will not give us evidence that K3 3 is indeed nonpla-
nar. Instead, we need to follow a similar\reasoning as for the proof of The-
orem First, note that each interior region f in any Kj,4 will necessarily
be enclosed by an even number of edges. Again, if B(f) denotes the num-
ber of edges enclosing interior region f, and reahzmg that also the exterior
region will be “bounded” by at least four edges, we find that Y B(f) > 4r,
where r is the total number of regions. Because edges are counted twice,
we should have that 4r < 2m = 18. However, Euler’s formula tells us that
r=2—-n+m= 2 6 +9 = 5, so that 4r £ 18. Therefore K33 cannot be
planar. O

Note 2.16 (Mathematlcal language) .
Indeed, as we stated above, the mere fact that m < 3n — 6 is not enough to
conchrde that a graph is planar. In other words, it is not a sufficient condltlon

WitH these two results, we can now conclude that:

I,Corollary 2.5: Any connected, simple graph having a subgraph isomorphic to elther
/" Ks or K33 cannot be planar. .
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3.1. DIRECTED GRAPHS 3-3

In the previous chapter we have looked only at the very basics of graphs,

“although it should be clear that those foundations already provide a pow<
erful tool for modeling and analyzing real-world networks. In this chapter
we'consider a number of important extensions. We start with introducing
graphs in which the edges are directed, that is, pointing from one vertex to
another, Besides adding a direction to an edge, we can also associate a weight
with an edge, which often represents some kind of cost or distance. Finally,
we take a look at a specific application of graphs by which the vertices or
edges are colored As we shall see, colorings allow us to capture real-world
situations.

3.1 Directed graphs

In the graphs we have considered so far, two Vertices could be connected
by one or more edges. An edge was represented by an unordered pair of
vertices, such as (1,v) in the case of simple graphs. However, having no
ordering is not always convenient. Consider the following examples:

* Suppose we want to model a street plan as a network. This is nat-
urally done by representing\a junétion as a vertex and a street as an
edge connecting two junctions. ‘However, we need a notion of edge
direction if we want to represeﬁt one-way streets.

* Insocial relations it is often, convement to represent the fact that Alice
knows Bob, but that the opp081te is not the case. In a social network
this is done by representing people by vertices, and the “who knows
whom” relation by means of directed edge.

* In computer networks, and notably wireléSs networks, links between
two different nodes are often not symmetrlc in the sense that mes-
sages can generally be successfully sent from station A to B, but not
the other way around. Modeling such a computer network is more
convemently done using directed edges.

What we are thus seeking is a way to extend graphs that we, w111 be able to
model these and similar situations. k

3.1.1 Basms of directed graphs

The need for associating a direction with the edges of a graph leads to the
notlon of a directed graph, or simply digraph: .

/,Deflnltlon 3.1: A directed graph or digraph D consists of a collection vertlces V
" and a collection of arcs A, for which we write D = (V, A). Eacharc a = (u,0) zs‘x\.
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said to join vertex u € V to another (not necessarily distinct) vertex v. Vertex u is
‘called the tail of a, whereas v is its head.

The\ underlying graph G(D) of a digraph D is obtained by replacing each
arc a'= (u, %) with its undirected counterpart. As we shall see in later chap—
ters, analyzmg the underlying graph is often more convenient than dlrectly
considering the original digraph. Conversely, we can transform any undi-
rected graph G into a directed one, D(G), by associating a direction with
each edge. Such a digraph is also known as an orientation. We leave it as
an exercise to" prove that for a simple graph G with m edges ‘that there are
2™ different orientations possible. /

As with undirected graphs, neighbor sets play an 1mportant role in di-
rected graphs. We make a distinction between two types of neighbors:

Definition 3.2: Consider a directed graph D and vertex v € V(D). The in-
neighbor set Ny, (v) of v'consists of the adjacent vertices having an arc with v
as its head. Likewise, the out-nelghbor set Nout v) consists of the adjacent ver-
tices having an arc with v as its tall Formally we have

—

Ny (v) ¥ {we V(D)\v # w,/yia = (w,0):a€ A(D)}
Nowt(v) 4 {we V(D)\v #w,3a= (0,10) :a € A(D)}

The set of neighbors N(v) o f vertex v is: szmply the union of its in-neighbors and
out-neighbors, i.e., N(v) & N;, (v) U/Nout(p).

Note 3.1 (Mathematical Ianguage) .
Notice that the formal part of. fthis definition is almost identical to that of the
neighbor set in the case of undlrected graphs. And again, it is precise, yet can
seem somewhat mtlmldatmg at first sight. Informally, the in-neighbor set con-
sists of adjacent vertices from which v can be directly reached: they are neigh-
bors “pointing” to v. ,The out-neighbor set consists of- wvertices to which v is
“pointing.” These type of informal translations of mathematical definitions are
important to make, and as before, you are encouraged to practlce in formulating
them. .

A digraph'is said to be strict if it has no loops and no two arcs with the
same end pbints have the same orientation. Note that the notion of a strict
digraph is analogous to that of a simple undirected graph. Many concepts
that we defined for undirected graphs have their counterparts in dlgraphs
Let us start with that of vertex degree.

Deflnltlon 3.3: For a vertex v of digraph D, the number of arcs with head v is called
;fhe indegree 6;,(v) of v. Likewise, the outdegree 0oyt (v) is the number of arcs
/having v as their tail.
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" The concept of indegree and outdegree can sometimes play a surprisingly

“important role when devising or analyzing real-world networks. To give an
example, suppose we are devising a communication network in which we
model the case that node u can send a message directly to node v by means
of anarc @ = (i,0). The indegree of node v may then indicate how” many
messages v can expect per time unit, also known as the rate of 1nc0m1ng
messages, In many cases, it is desirable that this rate is 11m1ted in order to
ensure that nodes are not overloaded.

In general, considering vertex degree distributions is an 1mportant tech-
nique for analyzlng networks. A degree distribution shows’ how many ver-
tices have degree\O, 1,2,...,and so on. In many practical ,cases, we are often
more interested in. finding the distribution of the indegfees For example,
in the case of social networks, nodes with a high 1ndegree are often consid-
ered to be important. By computing the ratio of 1ndegrees between different
nodes, we can get an impression of exactly how more important certain
nodes are. We will return to vertex degree d1str1but10ns extensively in later
chapters. R /

Returning to graph- theoretlcal issues, 1t is not difficult to see that the
following analogy to undlrected.graphs holds.

Theorem 3.1: For any directed gmph D the sum of indegrees as well as the sum of
outdegrees is equal to the total number of arcs:

Z 5in Z 5031t ( )|

veV(D) veV(D)

Proof. Clearly, every arc in D has exactly one head and one tail. The sum of
the indegrees is the same as counting all arc heads and likewise, the sum of
all outdegrees is the same as counting all tails, both belng equal to the total
number of arcs. O

A natural representatlon of directed graphs is by means of an adjacency

matrix A in which Al[i, ] is equal to the number of arcs joining vertex v; to

v;. In contrast to an adjacency matrix for an undirected graph we have the
following propertles in case of a directed graph: E

e A dlgraph Disstrictif and onlyif foralliand j, Afi,j] <1 and Ali,i] =
0. In other words, there can be at most one arc joining any Vertex v; to
another vertex v;, and no arcs joining a vertex to itself. x,

i 'For each vertex i, L Ali,j] = dour(v;) and Y Afj, i] = 6 (0;). In‘qther
words, the sum of the entries in row i corresponds to the outdegree of
vertex v;, whereas the sum of the entries in column i equals the 1nde—
gree of v;. ‘
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" Note that in contrast to undirected graphs, the adjacency matrix for a di-
rected graph is nof necessarily symmetric, that is, in general, A7, j| # Al[j, ],
Rephrasmg this in natural language means that when there is an arc joining
vertex v; to v;, then there need not necessarily also be an arc joining v; to v;.
Taking the same graph from Figure 2.6/ but now with a specific orrentatron
Figure [3.1/shows an example of a digraph and its adjacency matrix. -

v3

U] Uy U3 U4 Z
vr |1 1 0 072
|0 0 1 01
o3| 1 1 0.0]2
vy |0 0 17 1|2
Y2 2 2 1]7

Figure 3.1: A dig‘r@ph with its associatedl,lé/djacency matrix.

Similarly, we can represent\"a digraph by"rneans of an incidence matrix
M. In this case, M[i, j] represents whether ‘or not vertex v; is incident to arc
;. In particular: .

1 if Verte’;(‘ vi is the tail of arc 4;
M[i,j]=¢ -1 if Vertex ;. is the head of arc a;
0 otherwzse

Unfortunately, if a digraph | has loops (i.e., arcs of the form (u, 1) that join
a vertex to itself), this representation will not work, as is also illustrated in
Figure[3.2} Partly also for this reason, it is more common to use adjacency
matrices or simply hstmg the arcs analogous to edge hst representations in
the case of undlrected graphs. ~

AN
=
b
N
AN
&)
IS
S
[
i
i)
o)
AN
NG

/0 1 -1 0 0.0 O
n|[0 -1 0 -1 1 0 0
v3/ 0 0 1 1 -1 -1 0
|0 0 0 0 0 10

v3

Figure 3.2: A digraph with its associated incidence matrix.
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3.1.2 Connectivity for directed graphs

“Connectwlty is also an important concept for directed graphs. To deflne
connect1v1ty for digraphs, we need the equivalent notions of paths.

Deflmtlon 3.4: Consider a digraph D. A directed (vo, vi)-walk in D is an alter-
nating sequence [vg, ag, vy, ay - .. Vx_1, ax_1, Vx| of vertices and arcs from D with
a; = <m ). A directed trml is a directed walk in which all arcs are distinct; a
directed path is a directed trail in which all vertices are also dlstznct A directed
cycleisa dzrected trail in which all vertices are distinct except for v and vy.

Note that the deflnltlons of walk, trail, path, and cycle are mdeed completely
analogous to those for undirected graphs. The concept of a path and a cycle
are practically spoken the most important ones. We can now define the
connectivity of a dlgraph as follows:

Definition 3.5: A dzgmph D is strongly connected 1f there exists a directed path
between every pair of distinct vertices from D. A dzgmph is weakly connected if
its underlying graph is connected ;

It is not difficult to imagine that the concept of connectivity indeed plays
an important role in directed graphs As we explained, communication net-
works are conveniently modeled as dlrected graphs. In these networks, it is
important that a message from an arbltrarlly chosen node u can be routed
through the network to any other node. This requirement is equivalent to
stating that the associated directed graph is strongly connected. Likewise,
in transportation networks it is important that for an arbitrarily chosen node
we can find a route to any othér node. Agaln this is the same as stating that
we want the associated dlrected graph to be strongly connected.

Note 3.2 (More mformatlon)

If being strongly connected is important you may conclude that weakly con-
nected digraphs are not that interesting. There is one 1mp0rtant type of weakly
connected dlgraph a so-called directed acyclic graph, or 51mply DAG. ADAG
is a directed graph without any directed cycle. In practice, DAGS are also as-
sumed to be weakly connected. .

Dlrected acyclic graphs have many applications, of which a Iarge number
deal with’expressing dependencies. For example, work plans are generally bro-
ken down into smaller units such as activities. To execute a work plan there
will be many activities that can start only after the completion of other-activi-
ties! ‘These plans are conveniently modeled as directed graphs, in which a. ver-
tex represents an activity and an arc from vertex u to v the fact that act1v1ty v

can start only after u has completed. For such plans, we demand that the graph
* is indeed acyclic.
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~ To test for connectivity in directed graphs, we can perform a simple .
reachablhty analysis. A vertex v in a digraph D is said to be reachable from~
vertex u, if there exists a directed (1, v)-path in D. To compute the vertices
that can be reached from a given vertex u, we can proceed as follows:

Algoritﬁm 3.1 (Reachable vertices): Let R;(u) denote the set of reachablq'bertices
from u found after t steps.

1. Sett <—““Q‘and Ro(u) — {u}.
2. Construct “thxe set Ryy1(u) < Re(u) Uper, (u) Nout (0).

3. If Ryyq(u) é\.\Rt(u), stop: R(u) «— Re(u). Otherwis'e, increment t and
repeat the previous step.

This is an example of a breadth-first algorithm, so called because at each
step each newly added vertex is examined. We shall discuss more of such
algorithms in Chapter [{] The essence of the algorithm is simple: we sys-
tematically expand the set R(u) of vertices reachable from u with any new
out-neighbors that can be reached once a vertex has been added to R(u).
Clearly, if no new neighbors are discovered [which is when R; 1 (1) is equal
to R¢(u)], we will have identified all reachable vertices. Then, the digraph
D will be strongly connected if and only if:

Vu e V(D)/: R(\ii‘)\\: V(D)

Note that we can also apply the same method for checking the connectivity
of an undirected graph. We leave the descrlptlon of that algorithm as an
exercise.

Note 3.3 (AIgorlthmlcs) »

This algorithm is expressed rather rigorously. As before We use the notation
x — S to express, that the variable x takes the value resultmg from evaluating
the expression S If we were to translate this algorithm into Enghsh we would
have somethmg like: .

1. Sett 00, and let Ro(u) initially contain only u.

2. Add to R¢(u) all the vertices w that can be reached by an arc from vtow,
where v is already contained in R;(u). Name this new set Ry (u)

3,//If there are no vertices that can be added to R; () we’re done.
Makmg such informal translations can considerably help in understandmg

an algorithm. However, it should also be clear that we need the precision of the.
|- formal notation if we are to construct a program that does the job. In fact, from |
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the formal notation we can readily derive the following fragment of pseudo- -
\code (We use N, to store all out-neighbors found so far, and Ry for the
Vertlces that still need to be checked.) !

t — 0; RO( ) — {M},
refj‘e\at
Ng;u — @; Rpow — Rt(”);
while R;p # @ do
select any v € Ruow; Rnow < Ruow — {0};
Nai = Naig U Nout (0);
end while;
Riyq(u) HRt(H) UNpt—t+1;
until Ry (1) = Ry 1(w);

Pseudo-code combmes concepts from programming languages with mathemat-
ical and natural- language statements. The programmmg language concepts are
generally used for expressmg the flow of control in an algorithm, that is, the
order in which statements need to be executed: The statements themselves
are written in some convenient notation. As can be seen from this example,
the next step toward an actual iﬁ’lplementatioﬁ would mostly involve program-
ming constructs for declaring and handhng sets, but is otherwise independent
of the algorithm. W

Instead of testing for strong Connectwlty, we can also ask ourselves if
and how we can provide an orlentatlon for a given (connected) undirected
graph such that the resulting directed graph is strongly connected. This
question is relevant, for example, when designing a traffic circulation plan
in which most streets should be one-way. The following theorem gives a
necessary and sufficienlt*éondition for providing such an orientation.

Theorem 3.2: There ygo'c"ists an orientation D(G) for a corz\hgcted undirected graph
G that is strongly connected if and only if A(G) > 2. In other words, G cannot be
1-edge-connected,”

Proof. Let us first consider a strongly connected orientation'D of G. We
prove, by contradiction, that G is 2-edge-connected. To that end, assume
that G is not 2-edge-connected and that the removal of e = (u,v) discon-
nects,G, that is G — e falls into two components G; and Gs. Cleérly, we
can, assign only one orientation to e, that is, D(G) will either contain the
ar¢ a = (it,0) or the arc ' = (0,1). Because all paths in G from a vertex
& € V(Gy) to avertex y € V(Gy) will contain e, it is also clear that with
/" either orientation of ¢, D(G) cannot be strongly connected, which Vlolates\.
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“._our initial assumption. Hence, G cannot be 1-edge-connected and therefore
‘rs (at least) 2-edge-connected.
. Now consider a 2-edge-connected undirected graph G. We construct an
or1entat10n D of G that is strongly connected. From Corollary 2.3/ we kr{ow
that eVery edge of G lies on a cycle. Consider the cycle C = [v1, vy, ..., 0n, 01].
We replace each edge (v;,v;, 1) with an arc (v;,v;41) and edge <vn,vg) with
arc (v, 01 ). Any edge (v;,v;) between nonadjacent vertices on. C can be
oriented arbltrarlly This situation is shown in Figure |3.3] la) “Clearly, if
V(C) = V(G) we will have constructed a strongly connected orientation
of G.

Figure 3.3: The construction of’é‘strongly connected orientation.

Assume V(C) # V(G) so thét we have not yet covered all vertices of G.
Let w be such a vertex, i.e., w' & V(C). Because G is 2- -edge-connected, we
know from Corollary 2.2t 7 that there are two edge independent paths con-
necting w to v1, as shown in Figure [3.3(b). Without loss of generality, we
may assume that these two paths partly overlap with C. One path, P;, will
have the form [w = w1, wy, ..., Wy, v}, Vj41, - - ., v1]. The other will neces-
sarily have the form [w = Wy, Wy, ..., W}, vj, vl 1, .-, 0], where 1 < i <
j < n. We then transform each edge (wx, Wyt1) to the arc (m) and
each edge (wy, wa) to (W, 11, Wy). Again, edges between nonad]acent ver-
tices on P; and P, may be oriented arbitrarily. It should be clear that all
vertices in ,/W = V(C)UV(P;) UV(P,) are connected through&two edge-
disjoint paths in D.

If there is still a vertex in V(G)\W, we simply repeat the procedure un-
til all edges have been provided with an orientation. The result will bea
strongly connected orientation of G. ~ O
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Note 3.4 (Proof techniques) y
~ This is typically one of those proofs where visualization is almost a necessity,”
\In fact, the proof by itself is not even that difficult to produce once you hqve
a fairly clear picture of what is going on. In this case, the more difficult part
is providing the correct mathematical notations and statements. As we have
argued before, in cases such as these it makes sense to practice reproduéing the
proof so'that you force yourself to be precise and to get further acquamted with

the language of mathematics. .

Another-issue worthwhile noting about this proof, is that we stated that
without loss of\generahty, we could assume that both P; and P, overlap with C.
This is an important assumption: a special case would be when there would be
no overlap. However, note that our proof also covers the cases when either one
or both paths woul\"‘d_ be edge independent from C. In thét case, the proposed
orientation would still.ensure that there is a directed path from w to v; and one
from v; to w, which is exactly what we required for being strongly connected.

Finally, note that we have made use of two proof techniques. To prove that
G is 2-edge-connected when there is a strongly connected orientation, we ap-
plied a proof by contradiction Proving that there is a strongly connected orien-
tation when G is 2-edge-connected was accomphshed by a proof by construc-
tion. As mentioned before, the latter has the strong advantage that we actually
show how to obtain such an orlentatlon

As mentioned, digraphs play an 1mportant role when modeling real-
world networks. We will come across various applications in later chapters,
but notably when c0n51der1ng ‘the Web in- Chapter |8} it will become clear
that the concepts of connectivity and (1n)degree distribution play a crucial
role in obtaining a deeper insight in the organlzatlon of the world’s largest
information system. '

3.2 Welghted graphs

Let us now dlrect our attention to another important extens1on of the foun-
dations dlscussed in Chapter[2} namely assigning weights to. edges (or arcs).
A weightis a ‘real-valued number associated with an edge. This extension is
a natural one when modeling real-world networks as graphs. FQr example,
when modeling a railway network as a graph, railway stations are natu-
rally re'presented by vertices, whereas two adjacent stations are connected
by means of an edge. We then assign a weight to an edge representmg the
dlstance between those two stations.

I,Deflnltlon 3.6: A weighted graph G is a graph for which each edge e has an asso-
/" ciated real-valued number w(e) called its weight. For any subgraph H C G, the".
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x"‘\.‘.‘weight of H is simply the sum of weights of its edges: w(H) = Yocp(m) w(e).

A .commonly adopted convention for weighted graphs is to 51mply erté/
that w((u,v)) = oo when vertices u and v are not adjacent. This also means
that for each edge e € E(G) we demand that w(e) < co.

We"often use weighted graphs to find subgraphs with a max1mal (or
minimal). weight. In particular, we can use them to determine the. distance
between two vertices, which is formally defined as follows. '

Definition 3.7 Consider an undirected graph G and two vertices u, v € V(G) Let
Pbea (u,v)- path ‘having minimal weight among all (u,v)- -paths i in G. The weight
of P is known as the (geodesic) distance d(u,v) between u and v. Path P is called
a shortest path (u, v) -path, or a geodesic between u and v.,

Finding shortest paths is a central problem in Vlrtually all communication
networks. Fortunately, there exists an efficient algorithm for computing the
shortest paths from a gi\}en vertex u to all other vertices in a given undi-
rected graph. Again, this is an example of a breadth-first algorithm.

The algorithm, due to the Dutch mathemat1c1an Edsger Dijkstra, was
developed in 1959 and forms the\core of many so-called routing algorithms
that are used in the Internet. It is-beyond doubt one of the most important
algorithms in modern communication nefworks The principle is as follows.
Consider an undirected graph G, a vertex u € V(G), and the set S(u) of
vertices whose shortest path from u has already been found. In each step
we, consider the set of vertices that are ad]acent to some vertex in S(u) but
do not belong to S(u) yet. We pick the one e among these vertices that is
closest to u and then add it to S(u).

Before we formally describe the algonthm let us consider an example.
In Figure 3.4 we see a 51mple graph for which we want to find the shortest
paths originating from vertex vg. We start with 1n1t1a1121ng S(vg) to {vo}
and consider the vertex that is closest to v. In our ‘example, this vertex is
v3, which is subsequently added to the set S(vg). In addition, we label v3
with (k, d), where kis the index of the vertex through which vy can reach v3
(which, in this case, is vg, i.e., k = 0), and d is the length of the shortest path
to v3 (with d =1 in this example).

The procedure continues with identifying the vertex closest to vg that can
be reached from any vertex in S(v), which is now equal to {v, '03} Clearly,
this is vertex v,, which is then added to S(vg) and receiving label (0,3). The
next vertex to add is vs: with S(vg) now being equal to {vg,vp,v3}, the
Vertiee’s reachable from S(vg) are vq,v4,vs5, and v, at distances 5 (Vi‘a 7),
6 (via vg), 4 (via vy), and 5 (via v3), respectively. After adding vs to S(vy)
and giving it label (2,4), we can choose either v; or vs, which are both at
,,dlstance 5 from vg. This procedure continues until all vertices from G have\\
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Figure 3.4:,,,Cromputing the shortest\aths from vy.

been added to S (vo’)r.’"’Let us now formally describe Dijlgstra’s algorithm.

Algorithm 3.2 (D,ijkstra): Consider an undirected, simple weighted graph G. Edge
weights are required to be nonnegative. Consider a vertex u. We introduce the
following sets'and labels:

. Let_S; (1) be the set of vertices to which a shortest path from vertéx\u has been
found after step t.

j,x”Each vertex v is assigned a label L(v) %f (L1 (v), Ly (v)), in which Ll(v) is
the vertex preceding v in the shortest (u,v)-path found so far, and Ly (v) the
total weight of that path.

o Let Ry(u) 9¢F S, (u) Uoes,(u) N(v), with N(v) denoting the neighbor set of
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v. In other words, Ry(u) consists of all vertices in S¢(u) and their neighbors.

1 Initialize t < 0 and So(u) < {u}. Furthermore, for allv € V(G):

L(v)<—{<u'0) ifv=u

(—,00) otherwise

2. Foreachvertexy € Ry(u)\St(u), consider the vertices N'(y) thit are neigh-
bors of y-that lie in S¢(u), i.e., N'(y) €f N(y) N S;(u). Select x € N'(y)
for which Ly (x) + w({(x,y)) is minimal. Set L(y) < (x, La(x) +w(e)).

3. Let z € Ry(u)\S¢(u) for which Ly(z) is minimal. Set S’[H( ) «— Se(u) U
{z}. If Sy11(u) = V(G), stop. Otherwise, t +— t + 1 compute R¢(u) again
and repeat the prevzous step.

Note 3.5 (Algorithmics) /

Admittedly, the formal descriptlon of Dijkstra’s aIgorlthm is not an easy read.
This is partly caused by the fact that we need to express the flow of control,
which is rather awkward. Using‘\.pseudo—codé, things become much easier to
read. Strictly following our previous notations, yet omitting the step counter ¢,
we obtain the following code fragmehfg:

S(u) — {u} o
L(u) < (u,0); foreachv € V(G) u 7& v L( ) (—,00);
while S(u) # V do .
R(u) - S( ) veS(u) N(v )/
forally € R(u)\S(u) do
forall x € N(y )ﬂS( )
if Lo(y) +w((x,y)) < L2(y) then
L(y) — (%, La(x) +w((x,1)
end if
end for
end for '
select v ¢ S(u) where L, (v) is minimal;
S(u) — S(u) U{o};

end while

What this/j:/)seudo—code actually reveals is that the flow of control irf‘Dijkstra’s
algorithrh is actually quite intricate, yet that it can be completed separafed from
setting'labels and such. Here’s a good example where pseudo-code may. help
to better understand an algorithm. :

. Dijkstra’s algorithm effectively creates what is known as a tree T(u) thia‘t\
/is said to be rooted at u, in this case meaning that only (u,v)-paths are of "
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interest. In general, using Dijkstra’s algorithm for a different vertex yields

“a different rooted tree. This can be readily observed when computing, for
example, T(vy) from Figure 3.4} which we leave as an exercise. Note also
that there may be more than one shortest path between two vertices u ‘and
v. In other words, there may be several (u,v)-paths all having the same
mlnlmal weight. :

We shall return to shortest path algorithms, as well as various. other tree-
related problems in Chapter 5

3.3 Colorlngs

As our last example of extensions to the foundations- of graph theory dis-
cussed so far, we c0n31der a simple labeling of edges’ and vertices known as
edge colorings and vertex colorings, respectlvely ‘Colorings have interest-
ing applications. ) ;

3.3.1 Edge colorings

Coloring graphs has drawn the attentlon from many researchers for the sim-
ple reason that there are so many apphcatlons that can be modeled using
graph colorings. Coloring a graph means assigning a color to vertices or
edges. In the case of edge colorings we are interested in assigning colors
such that edges incident with the same vertex have different colors. Ob-
viously, if a graph has m edges" we can use m different colors to establish
a valid edge coloring. The trick is to find the minimal number of colors
needed. Before discussing: formalities, let’s have a look at a simple, yet il-
lustrative and realistic application discussed by Hall et al.| [2001].

We consider a collection of 1 storage devices. “For whatever reason, at
a certain point it is necessary to move data between: these devices. For ex-
ample, after havingobserved the access patterns from users to data, it turns
out that certain devices receive many more read /write requests than others,
turning those de’Vices into potential bottlenecks. By rearréhging where data
is stored, it may be possible to balance the load better and as.a consequence
remove bottlenecks :

This sltuatlon can be modeled as a directed graph with mult1ple arcs.
Each storage device is represented by a vertex. We divide all ‘data into
equally sized units (which, in fact, is not unreasonable in practice,-as files
are generally divided into multiple blocks of data, each having the same
51ze) If a block needs to be migrated from device i to j, we represent’ this

l,by an arc <1 j). In this way, every data block that needs to be mlgrated is
/' represented by an arc. We now ask ourselves how quickly we can execute".
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" the complete rearrangement of data over the devices. /
" There are a few issues to consider. First, a device can be involved in only
one migration at a time. In other words, if block b is being moved from i
to j,-then neither i nor j can be involved in migrating any other block of
data. “‘Second, we assume that all devices are connected to each other. In
other words, it is possible to migrate data directly from any storage device
to any other. Finally, we make the assumption that, if b is to be moved to j,
then j has énough space left to store b. It is thus not necessary to first make
space avaﬂable on j, for example, by migrating another block b from j to,
say, device k. /

To illustrate the problem at hand, consider four devices and a total of five
blocks that need to be migrated as shown in Figure[3.5 .a) In this case, it can
be readily verified that in the final situation, there will 1 block in device
1, 1 block in device 2,2 blocks in device 3, and 1 block in device 4. Such
a migration will typ1cally have been motivated by observing accesses for
blocks, and subsequently redlstrlbutmg the blocks in such a way that, for
example, every device is recewmg a fair number of access requests per time
unit. ; '

Device 1 Device 2 Device 1 Device 2

Device 3 Dévice 4 Device. 3 Device 4

@ o)

Figure 3.5: (a) A sequenﬂél migration of blocks between\fqur devices. (b) An opti-
mal 3-step schedule shown as an optimal edge coloring.

Obviously, w’é can move each block one at a time, whfch will take five
time units. Migrations that are scheduled at time t; are shown by the label
“k” on an arc. In this case, every label as attached to an edge represents
a color. The situation in Figure [3.5) B.5(a) thus reflects a situation in'which we
have used five different colors. Note that the requirement that a device can-
not be involved in more than one migration at a time corresponds prec1sely
to that of edge colorings: all arcs or edges incident to a vertex need to have a
different color. A more efficient schedule is shown in Figure[3.5) B.5[b) in WhICh
a number of migrations take place simultaneously. The situation sketched in,
’_/F1gure B.5(b) corresponds to a minimal edge coloring with three different col-
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ors. Specifically, we can complete the migration in three time units, 1nstead

"‘xof the original five.
Formally, edge colorings are defined as follows:

Deflnltlon 3.8: Consider a connected, loopless graph G. G is k-edge coloruble zf
there ex;sts a partitioning of E(G) into k disjoint sets Ey, ..., Ex such that no two
edges frdm the same E; are incident with the same vertex.

Note 3.6 (Mathematlcal language)
A partltlorung of a set S is formally defined as a collection of sets: S 1,++.,Sksuch
that !

e Each S; is a subset of S, meaning that Vi: S; C S

¢ These sets together constitute S, thatis, S U Sy U U Sk = S, or, equiv-
alently U 15i =S5

¢ No two sets have ‘an element in common, Wthh can be mathematically
written as Vi # j : ;. nsj=0

Now consider a graph G and -a partitioning &£ of 1ts edgeset {Ey,..., Ex}. Let V]
be the set of vertices formed by the end points of edges in E;. We leave itas an
exercise to show that £ is an edge\colormg of G if and only if |V;| = 2 - |Ey].

As mentioned, the edge-coloring probIern for graphs is finding the minimal
k for which a graph G is k-edge colorable. This minimal k for a graph G is
called G’s edge chromatic number denoted by x'(G). If A(G) is the maxi-
mal degree of a vertex in graph.G, it is obvious that x’(G) > A(G). We can
even be more specific if we corisider simple“graphs:

Theorem 3.3 (Vizing): For any szmple graph G, ezther X ( ) =A(G)or X' (G) =
A(G)+1.

The proof is not d1ff1cult but somewhat involved and we omit it here. The
interested reader is. referred toBondy and Murty [1976]

3.3.2 Vertex colormgs

Perhaps more than the edge-coloring problem, researchers have paid signif-
icant attention to the vertex-coloring problem. In essence, the problem boils
down to finding a coloring of the vertices of a (simple, connected) graph
such that no two adjacent vertices have the same color. The problern be-
comes interesting when we try to use a minimal number of different colors

Deflnltlon 3.9: Consider a simple connected graph G. G is k-vertex colorable if
l,there exists a partitioning of V(G) into k disjoint sets Vi, ..., Vi such that no twq
/" vertices from the same V; are adjacent.
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Note 3.7 (Mathematical language) ,
“The mathematical formulation that no two vertices from the same V; are adja-
cent 1s: ;

YV, Vx,y € V;: Pe € E(G) 1 e = (x,y)

where 59 is to be read as “there does not exist...” In other words, for alyL"pairs
of distinct vertices in V; there is not an edge joining those two vertices. Note
that in Chapterwe mentioned that (x,y) is strictly speaking nothing else but
stating that"x and y are adjacent. If use the notation —(x,y) to indicate that x
and y are not“agljacent, we can simplify our mathematical formulgﬁon to:

WV, WX,y € Vit~ {x,y)

It is important that.‘you gradually become familiar with ,these type of formal
statements, but also that you can devise them yourself.

The vertex-coloring problern for a given graph"C is finding the minimal k
for which G is k-vertex colofable This min_irhal k is called the chromatic
number of G, denoted as x(G)." .

Before we delve into various details, let us first consider a simple, yet
illustrative application of vertex Colormgs scheduling classes. We consider
a set of n classes that need to be taught to a population of students. Two
classes are not allowed to be scheduled during the same time slot if they are
to be taught to the same group of ,students . The question is how to schedule
the classes in the minimal number of slots. "

This problem can be modeled by means of a graph G in which the n
classes are represented by n- vertices vy, .. .~Two vertices are connected
by an edge if and only if there is a group of students to which the two classes
must be taught. It is not too difficult to see that the ‘minimal number of slots
needed to teach all classes corresponds to x(G), as we formally prove next.

Theorem 3.4: The nrinimum number of time slots needed for the class-scheduling
problem is the value of x(G) of the associated graph G.

Proof. We fir’st prove that we need at most x(G) slots to schedule all classes.
From the definition of chromatic number, we know that any two vertices
with the same color cannot be adjacent. This also means that the two classes
associated with those two vertices need not be taken by the same gfoup of
students Hence, they can be scheduled at the same time, that is, for the
same time slot. In general, all vertices with the same color represent the set
Qf classes that can be scheduled at the same time. This means that x(G) slots
are sufficient to schedule all classes.
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We now prove that we need at least x(G) slots to schedule all classes.,/"
“Suppose that k < x(G) slots are sufficient. Classes in the same slot should
be taught to different groups. In the graph G, this means that the vertices
reﬁresenting those classes should be nonadjacent. As a Consequence," we
should be able to use only k different colors yielding a k-vertex colormg of
G, Wthh contradicts the fact that x(G) is minimal. O

Note 3.8 (Proof techniques) :
In our proof" we have applied two techniques: the well-known proof by contra-
diction, and what is known as a direct proof. We have applied the latter already
on several occaéipns, but this is the first time we mention ’i,t"explicitly. As its
name suggests, a direct proof is a general technique by which you show a state-
ment to hold through straightforward deduction. In our proof, this straightfor-
ward deduction is done by simply considering the defmltlon of the chromatic
number and setting up a. logical reasoning. S

An indirect proof is typically done by ehmmatmg cases, and indeed, a proof
by contradiction is an example of an indirect proof

Vertex colorings are often used in the context of scheduling and opti-
mization problems. Unfortunately; finding the chromatic number of a graph
is, in general, a notoriously difficult problem. As with determining whether
two graphs are isomorphic, we are dealing with a problem for which no
known efficient solution exists (at least.not when considering graphs for
which x > 3). In effect, to determine the chromatic number we would,
in principle, need to test all color ass1gnments before coming to conclusions
conclusions. g «

Fortunately, we can allev1ate problems a b1t .the chromatic number of a
graph G is bounded by its maximal vertex degree A( ):

Theorem 3.5: For any: (szmple connected) graph G, x(G ) < A(G) +1.

Proof. We prove. that the theorem holds by 1nduct10n on the number 7 of
vertices of G. For n = 1, we need to consider the complete graph Kj. Obvi-
ously, x(K1) = 1 and A(K7) = 0, so that the theorem holds. "

Now assume the theorem holds for all graphs on k > 1 vertices, and
consider a graph G with k + 1 vertices. Let vertex v € V(G) with 6(v) =
A(G). The graph G* = G — v has k vertices, so there exists a vertex coloring
C* of G* with x(G*) < A(G*) + 1 different colors. If A(G) = A(G*), then
in the worst case, the number of colors used in G* is x(G*) = A(G*) % 1 =
A(/ ) 4 1. Considering that v has A(G) — 1 neighbors, this means that there
_is a color available from the ones used in G* that we can use for v and Wthh
~ has not been used for any of v’s neighbors. ‘
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~ On the other hand, if A(G) > A(G*), then we can simply permit our-
selves to introduce a new color for v and use the ones from an optimal col-"
oring of G* for all other vertices. At worst, we will then have that x(G) =
X(G*) +1 < A(G*) +2. If A(G*) < A(G), then the smallest value of A(G)
for which this inequality is true, is, of course, when A(G) = A(G*) + 1
Therefore, we know that A(G*) +2 < A(G) + 1, so that we indeed have
that x(G)'< A(G) + 1. O

Coloring\v\ertices would have perhaps been just one of those”rnany graph-
theoretical problems, if not for an intriguing conjecture that proved to be
extremely difficult to tackle. Consider an arbitrary area map, such as one
consisting of countries. We ask ourselves a simple question: if we are to
color each country such that no two neighboring countries have the same
color, how many differe_ht colors do we need at mostr,?"’The answer turns out
to be four, but it took more than 120 years to find'it! Even worse, it took
a computer program to fmd the answer. Many ‘mathematicians were not
amused. B :

Let’s see what this map- colorlng problem_ has to do with vertex colorings
of graphs. First, the problem is easily translated into finding vertex color-
ings of a planar graph. Each country is fepresented by a vertex, and two
vertices are joined by an edge if arid oﬁly if they are neighbors (i.e., they
share a border) Figure [3.6|shows the map of Europe and its corresponding
planar graph.! /

In 1852, the map-coloring problem surfaced and some specific cases were
proven. However, it wasn’t until 1976 that Appel and Haken|[1976] actually
solved it. More formally, they proved: ~

Theorem 3.6: For any planar gmph G, x(G) <4

The only problem with, their proof was that it was extremely difficult to ver-
ify. First, they split the problem into over 2000 different cases. Second, they
wrote computer prOgrams to test each case. This approach was received
with a lot of reservations, notably also because researchers claimed that one
would need to formally prove the correctness of the computer programs
before considering their outcomes to be correct. It may be clear that Ap-
pel and Haken had entered the gray area between elegant mathematics and
mechanical case testing by computers. So far, a “traditional” mathematical
proof has not yet been found. It is worth noting that at that time. it took
more than 1200 hours of compute time to tackle the four-color Conjécture
By now, however, there is no more debate about the correctness of the con—
]ecture [Appel and Haken) [1986].

1For simplicity, some specific details have been omitted.
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Figure 3.6: A map of Europe ar}d/ its corréé‘ponding representation by a planar
graph, along with a four-coloring’bf the Vertices".‘w.x

To illustrate how cgr’hplications can easily sneak into mathematics, it
turns out that it is relatively easy to prove that the chromatic number of
a planar graph is less than or equal to 5. Before we giyg this proof, we need
to prove the following:

Theorem 3.7: I;f,v’éry planar graph G has a vertex v with 5(v) §5

Proof. For all planar graphs with n < 6 vertices, the theorem:is obviously
true. For planar graphs with n > 6, we prove the theorem by contradiction.
To this end, consider a planar graph G for which n > 6. Let m be the number
of edg’és of G. We know that Y ,cy(g) 0(v) = 2m. Therefore, if thé‘rg is no
veljtéx with degree 5 or less, then 6n < 2m. In addition, from Theoré‘m
we know that m < 3n — 6, and thus that 6n < 6n — 12. Obviously, this is
l,félse, meaning that our assumption that there is no vertex with degree 5 or
/" less must be false as well. D
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. Note 3.9 (Proof techniques) |
“Note that this proof by contradiction tells us that there must be a vertex with
degree less or equal to five, but it gives us no further hints on how to find
such a vertex. This is typical for existential proofs, in contrast to proofs by
constructlon

Followmg Chartrand [1977], we now prove the following theorem by induc-
tion on the number of vertices: ’

Theorem 3.8: For any planar graph G, x(G) < 5.

Proof. Let n = |V(G)|. For n = 1, the theorem is obviously true. Assume
the theorem holds for all planar graphs with k > 1-vertices and consider
a graph G with k + 1 vertices. Let vertex v with 6(v) < 5 (we just proved
that such a vertex exists),"and consider the graph G* = G — v. Because
|[V(G*)| = k, we know there exists a 5-vertex coloring of G*, with, say,
colors cy,...,cs. If not all of these colors are used by the vertices in the
neighbor set N(v) of v, we can assign the unused color to v and will thus
have constructed a 5-vertex coloring of G:"

Consider the situation that all five CoIors have been used for coloring the
vertices of N(v). Note that §(v) = 5’ so that we may assume that N(v) =
{v1,...,v5} and that vertex v; has Color ¢; according to a clockwise ordering
of these vertices around v, as shown in F;gure B.77 We will rearrange the
colors of G* such that we can assign one of the colors ¢; to v.

Figure 3,;7: The ordering of vertices adjacent to v. Vertex v; haéxgolor Cj.

Let us first assume that there is no (v1,v3)-path in G* for which all ver-
tices haVe been colored either ¢; or c3. Now consider all paths in G* that
or1g1nate in v and for which the vertices are colored either c¢; or cs. These
paths induce a subgraph H of G*. Note that v3 ¢ V(H), as this would mean
ﬁhét there is a (v1, v3)-path. For the same reason, none of v3’s neighbors can,
~bein H, ie, N(v3) N V(H) = @. What we can then do is interchange the
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colors ¢q and c3 in H, which leads to another 5-vertex coloring of G*. How-

“ever, in this case, vertex v; will be colored c3, and none of the vertices 1n'
N (v) will be colored ¢;. Therefore, we can use ¢; for v. S

‘Let us now assume that there is a (v1,v3)-path P in G* for which all ver-
tices ‘have been colored either ¢; or c3. Consider the cycle [Ug, v, U1, ] This
cycle either encloses v, (as shown in Figure [3.7), or it encloses vy ‘and vs.
Hence, because G is planar, there can be no (v, v4)-path in G* whose ver-
tices are colored using only ¢, and cy. Again, consider all paths originating
in v, and that have either color ¢, or c;. As before, these paths induce a
subgraph H’ of G*. We interchange the colors of the vertices'in H’, allowing
us to assign color ¢, to v, and thus leading to a 5-vertex coloring of G. [

There are many other properties related to coloring vertices, but we shall
not discuss these any further. By now, it should have become clear that ver-
tex coloring imposes a number of very difficult questions (such as efficiently
finding the chromatic number of a graph), and that even under relatively fa-
vorable conditions such as“planarity, taking a small step from one problem
formulation (“x < 5”) to another (“x < 4”) can make a difference between
simple and complicated solutlons '
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With the material presented in the previous chapters we have enough tools

“in our hands to start studying problems related to the traversal of networks!
Network traversal problems focus on optimizing a walk that contains all
vertices of a graph, also referred to as a spanning walk. Recall thata (vo, Uk)
walk: ‘was defined as an alternating sequence :

W = [vg, e1,v1, €2 ... 0k_1, €k, Uk

of vertices and edges where edge ¢; = (v;_1,7;). ,

One category of spanning walks that we’ll consider is the one containing
closed walks that-also traverse each edge in a graph. These walks are also
known as tours. An important question is to find tours in which edges are
additionally crossed as few times as possible. Another important category
is formed by spanning cycles. In other words, closed spanning walks in
which all vertices are distinct. This so-called Hamilton cycles play a crucial
role when we also try to minimize the total distance covered, which occurs
when considering welghted graphs Let us take a closer look at these two
types of spanning walks. /

4.1 Euler tours

We start our discussion with prdbably one of the oldest graph-theoretical
problems: is it possible to travetse a graph such that all the edges are crossed
exactly once? Of course, thiswas not how the original problem was formu-
lated. The problem originated in the city of Konigsberg (now called Kalin-
grad) that was divided by’/the river Pregel. The several parts of the city were
connected by means of seven bridges, as shown in Figure K.1 The popu-
lation of Konigsberg: had been amusing themselves. for some time with a
simple question: is it possible to walk through the city and cross each of the
bridges exactly once? The answer is simply “no,” but in Grder to understand
why, we need graph theory.

Of course; if we were dealing with a puzzle apphcable only to the old
city of Korugsberg, one could justifiable question whether it should deserve
any serious attention at all. However, it turns out that the problem is eas-
ily generahzed to other situations. An important one that we will discuss
below is finding a spanning walk that covers every street of a city, but such
that'each street is preferably passed through at most once. This is the'same
as‘finding a tour with minimal total weight, where weight is defined by the
l,length of a street. As said, we return to this important application below,
/" after discussing some basic issues. :
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KONINGSHERGA

Figure 4.1: The seven bridgéé.\crossing the river Pregel in Kénigsberg.

e0 el e2
v0 I
v1 ' o3
I v3
e4 e5
eb
v2

Figu/l,',e///4.2: The bridges of Konigsberg modeled as a grgph.

4.1.1 Cp'hstructing an Euler tour

Returning to the seven bridges of Kénigsberg, we can model the problem by
representing each area separated by a bridge as a vertex, and each bridge by
an,édge connecting two separated areas, leading to the graph (with multi‘p}e
edges) shown in Figure 4.2l The people of Konigsberg were interested in_
/finding a specific tour:
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Definition 4.1: A tour of a graph G is a (u,v)-walk in which u = v (i.e., it is a

“closed walk) and that traverses each edge in G. An Euler tour is a tour in whzch'
all edges are traversed exactly once. g

Euler tours were named after the Swiss mathematician Leonhard Euler who
1n1t1ally solved the problem of the Konigsberg bridges. To this ”end, he
proved"the following theorem:

Theorem 4 1: A connected graph G (with more than one vertex) has an Euler tour
if and only if it has no vertices of odd degree.

Proof. First, assume that P is an Euler tour of G, originatfng and ending in,
say, vertex v. Consider a vertex u different from . Obviously, u lies on P and
for each edge (wy, u V€ E(P) that is used for ‘entering” u, there is a unique
other edge (1, wy) traversed for “leaving” u. Moreover, because these edges
are traversed exactly once, edges for entering u are always uniquely paired
with edges for leaving u. Hence the degree of 1 must be even. By a similar
reasoning, the degree of v must also be even: ‘We conclude that all vertices
of G have even degree. :

Conversely, assume that all vertices of G are of even degree. We now
need to prove that G has an Euler tour, “To this end, select an arbitrary ver-
tex v and construct a trail P by subsequently traversing edges until it is no
longer possible to traverse an edge not belongmg to P. Let w be the vertex
where P ends. If w # v, then clearly we have “entered” w once more than
we have “left” it, meaning thaté(w) is odd This violates our assumption,
hence w = v and hence P must be a closed tra11

If E(P) = E(G) we havejust constructed an Euler tour and we’re done.
Now assume E(P) # E(G ), that is E(P) C E(G) Because G is connected,
there is a vertex u of P 1r1c1der1t with edges that are not part of P. Consider
the induced subgraph’ constructed by simply rem@vmg all edges that are
partof P: H %f G — E( ). Note that H may be dlsconnected Because every
vertex in G has even degree, but also every vertex in P, so will every vertex
in H have even. degree Let component H’' contain u. Agam construct a
(closed) trail P’ in H' originating in u until no more edges can be added that
are not yet contained in P'. Because |E(P')| > 0, merging "P and P’ will
yield a larger trail in G. If this larger trail does not contain all edges of G, we
repeat the procedure until we have constructed a closed trail contalmng all
edges of G. This trail will form an Euler tour. O

Note 4.1 (Proof techniques)
" Our proof by construction uses an important proof technique, called extremal- .
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) ity [West, )2001]]. The essence of this technique is that we consider extreme cases, |

“such as a path or trail of maximal length. Note that in our example, the mere//
fact that we construct P such that it is indeed of maximal length leads us to con*
Clude that it is a closed trail. There are many other situations in which explormg
extremahty is necessary to draw conclusions and we will encounter more ex-
amples throughout the text. '

Defining Ein Euler trail as a (u, v)-trail of a connected grap’h G that tra-
verses all edges exactly once, it is not difficult to see that the  following state-
ment is true: '

Theorem 4.2: A connected graph G (with more than one vertex) has an Euler trail
if and only if it has exactly two vertices of odd degree. Moreover the trail originates
and ends in the vertices of odd degree 2

Proof. First, let P be an Euler trail orlgmatmg in u and ending in v. By the
same reasoning as in the prev10us proof, all Vertrces except # and v must be
of even degree. . /

Conversely, assume G has exactly two vertices u and v of odd degree
Consider the graph G* constructed from G by adding an edge e = (u,7v).
All vertices in G* will now have even degree Because G* is obviously also
connected, we know that G* has any Euler tour P. Removing e from P yields
an Euler trail for G. O

So far, we have provided only some neces.“sary and sufficient conditions
for a graph to be Eulerian,- ‘What is missing, of course, is a procedure by
which we can construct an ‘Euler tour (if one ex1sts) ‘The most widely known
algorithm that accomphshes such a tour is due to a French mathematician,
Fleury. k

Algorithm 4.1 (Fleur’j}): Consider an Eulerian graph G.

1. Choose aln’/rzrbitmry vertex vy € V(G) and set Wy = vy.
2. Assume that we have constructed a trail
Wi = [vo, €1, v1, €2, 02, - .., Uk_1, €k, Uk

/,,//(/Zhoose an edge incident to vy, but which is not yet part of Wy, that is, e;;;_‘l =
{0k, Vkg1) and e € E(G)\E(Wy). In addition, make sure that ey q is not
a cut edge of the induced subgraph Gy = G — E(Wy.), unless there is no other._
option.
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3. We now have a trail Wy, 1. If there is no edge ex o = (Ugy1, V1) to select
from E(G)\E(Wj41), stop. Otherwise, repeat the previous step. g

Obviously, Fleury’s algorithm constructs a trail in G: at no point will an edge
be selected that is already part of the walk W constructed so far. Hence,
W, must be a trail. That the algorithm actually constructs an Euler tour is
formalizéd in the following theorem (see also|Bondy and Murty [1976]).

Theorem 4. 3 A trail constructed by Fleury’s algorithm in an Eulermn graph G is
an Euler tour ofG

Note 4.2 (Algonthmlcs)

Before we delve into the details of this theorem, note, that there is something
special about it: it states\that Fleury’s algorithm is e,0rrect As a consequence,
if we prove this theorem, we will have shown that Fleury’s algorithm indeed
finds an Euler tour if one e)dsfts. Such theorem/ proof combinations form a fun-
damental component of algorithm design in computer science. However, it is
important to make a distinction\b\etween the ebfrectness of an algorithm and the
correctness of a program that implements that algorithm. In the latter case, we
need to take into account the fact that a program is executed by a computer and
that the statements we are using havmg precise meaning, that is, have formal
semantics. g

Proof (*). Let’s first consider a’ traﬂ Wy, constructed by means of Fleury’s
algorithm that contains all edges of G. Assume that this trail starts in vy and
ends in v,,. We need to show that W,, is a closed trall, i.e., that vg = v,,. To this
end, consider the induced subgraph G, = G — E(W,). Because W,, consists
of all edges in G, each vertex in G, must have degree 0. In particular, this is
true for vertices vy and v,,. If vy # vy, then they can only have odd degrees
in G, which is impoésible, because we know that G is Eulerian and thus that
all vertices have even degree. Therefore, W, must be a Closed trail and thus
an Euler tour.

Now suppose that W), is not an Euler tour of G. Agam let Wi, be equal to
the sequence [v0, €1, U1 ...0y_1, €n, Un]. Not being an Euler tour means that
we were no longer able to select any edges incident with v, that had not
already been selected. A few observations are important. '

[ We necessarily have that vy = v,, for if this were not the case and
" there were no more edges incident with v, to select, then followmg
the same reasoning as before, é(v,) would be odd, and thus G would
not be Eulerian.
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Because W,, is assumed not to be an Euler tour, we must have tha,t/'
_ E, # @. Let S be the set of vertices incident with edges from E,,. Some
of these vertices belong to W, and others do not. Note that v, ¢ S; /for
‘otherwise this would mean that it would be incident to an edge that is
not in Wy, meaning that W, could have been expanded.

e Let S = V(G)\S. Note that vertices in S are not incident w1th edges
in En, and thus are incident only with edges from W;,. In particular,
vy € 8. .

* Let E;, be the edges that are not part of Wy, i.e., E, def E(G)\E(Wy).

* Because aH vertices in Wy, have even degree, so will all the vertices in
the induced graph Gn € GIE,]. '

e Consider a Verte_x u from G,[S]. By definition,,,u' is incident with an
edge from E,. Because G is Eulerian, the degree dg(u) of u in G is
even. Also, we just'observed that d¢, (1) is even. This can only mean
that the degree J¢, [5]\(«%1) of u in in the indueed subgraph G,[S] of Gy,
is even as well.

Let m be the largest index such t}{af; Um /6'/5 and v,,41 € S. In other words,
Uy is the “last” vertex of W, that is stﬂl in S, and thus incident with an
edge that is not part of W,,. All other vertlces Umtl,---,0p arein S and thus
incident only with edges of W,,. K S

Now consider edge e, 11 = (vm,vmﬂ} This edge is the only edge in
G, between vertices in S and S To see this, assume there is another such
edge ¢/ in W,,. Note that because e is 1nc1dent with a vertex from S, ¢’ §é
E(Wy). On the other hand; if one of its end pomts belongs to S, then ¢’
would necessarily belong, to E(W,), which by construction is impossible. In
other words, both the end points of ¢/ must belong\ to S, and hence, no ¢
exists. This also means that e,,, 1 is a cut edge of Gy,. "

Let e be any other edge in Gy, incident with vy,. In. Fleury’s algorithm
we prefer the selection of edges that are not cut edges. Because we selected
en+1, which is a-cut edge, e must also be a cut edge of G,,. It is then surely
also a cut edge of the induced subgraph G,,[S]. Because G, € G, we also
have that G,;[S] = G,[S]. As noted, all vertices in G,[S] and"thus also in
Gm[S] have even degree. However, in a graph with only even-degree ver-
tices, there cannot be a cut edge (which we leave as an exercise to the reader).

We. have now established a contradiction based on the assumptibn that
W, is not an Euler tour of G. In other words, our assumption can only be
false which completes the proof. ~0
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Note 4.3 (Study tip) )

Obviously, this is not an easy proof. However, despite its complexity, it is 1m-”/
portant to understand and be able to reproduce it, for it will force you to con-
51der every detail when making a next step. At the same time it is 1mportant
to grasp the big picture, namely that the construction of the proof is toward
reachmg a contradiction based on the fact that Fleury’s algorithm prescrlbes
that we should preferably not select a cut edge. By showing that thefe was no
other Choi‘ce (i.e., e+1 is necessarily a cut edge), yet at the same tim,e’there must
have been an alternative edge that was not a cut edge, we arrive at a contradic-
tion. This contradlctlon tells us that when executing Fleury’s algorlthm we are
constructing an Euler tour, if one exists. :

To see how Fleury’s algorithm works, consider the graph in Figure
At each step, the bold-faced edge is added to the trail W;. When cut edges
appear in Gy, they are marked as a dashed liné. These are the ones that
we should prefer not to ChOOSG, but sometimes there is just no alternative.
Although Fleury’s algorithm is apparently elegant and simple, the difficulty
in its practical execution is determmmg whether a selected next edge is a
cut edge or not. It is for this reason that more efficient algorithms have been
developed.

4.1.2 The Chinese postman problem

Let us now consider a practical apphcatlon of Euler’s research: the Chinese
postman problem, so-called because it was flrst postulated by the Chinese
mathematician [Kuan| [1962]. This problem is more general and also more
complicated than that of finding an Euler tour. Consider a weighted graph
G in which each edge has a nonnegative weight. The problem is to find a
closed walk W = [’00"; €1,01...0y_1, €y, Uy that covers all edges of G, but
with minimal weight In other words, E(W) = E(G) and Y7, w(e;) is min-
imal. Note that we do not demand that each edge is traversed exactly once,
for in that case-we would have an Euler tour, and 0bV10usly, such a walk
would automatlcally have minimal weight. Instead, we are aiming for a
closed walk'such that if it is necessary to cross an edge more than once, that
the walk is such that the total weight is kept as low as possible. .

The Chinese postman problem is a generalization of many traversal prob-
lems Consider the following examples.

Kdﬁting garbage trucks: In order to collect the garbage in a specific netgh—

borhood, garbage cans are placed on the curb once a week to be emp-
tied by trucks. An optimal route for a truck consists of passing through".
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9 10 1 12
5 6 7 8
L L
1 2 3 4 ,
Start Step 01 Step 02

Step17 . Step 18

Firglflyyre 4.3: An illustration of Fleury’s algoritiim.

each street at least once, and possibly more, but in such a way that the
total elapsed distance is minimal.

In thls example, we model the neighborhood as an undlrected graph
/in which each junction is represented by a vertex and a street as an
" edge with its weight corresponding to the length of the street. A vari-

ation of the problem is to allow a truck to start and end at a different

location. In that case, the walk need not be closed, yet we still need to
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make sure that every edge is crossed at least once.

Routmg a postman: Somewhat similar is determining an optimal route for
_ a postman. However, in this case we need to take into account. that
\,\streets normally have houses on both sides of a road. Rather than

Iettmg a postman cross the street from one side to the other all the
time, we assume that he first delivers the mail to one 31de and later to
the other

In this' case, a junction is again represented by a vertex yet a street
with houses on both sides is represented by two edges each edge ef-
fectively representmg one row of houses.

Checking a Web s1te Typically, a Web site consists of numerous pages, in
turn containing links to each other. As is so often the case, most Web
sites are notoriously poor at having their links maintained to the cor-
rect pages. This is often due to the simple reason that so many people
are responsible for maintaining their part of a site. Apart from links
that are broken (i.e., refer to nonexisting pages), it is often necessary
to manually check how pé‘g.es are linkéd to each other.

Graph theory can help by rri'odelir,lg a Web site as an undirected graph
where a page is represented by a vertex and a link by an edge having
weight 1. Note that we are not using a directed graph, as we may
need to cross a link in reverse order, for example, when going back
to the original page. If asite is to-be manually inspected, then we
are seeking a solution to-navigate through a site, but with preferably
crossing a link at most once. This is now the same as finding a directed
walk containing all edges of minimal length.

Other examples easﬂy come to mind, and some‘less obvious ones are de-
scribed by Thlmbleby [2003]] (which includes the case. of navigating through
a Web site). These examples should make clear that-we may sometimes
need to traverse an edge twice. Formally, these means that for a closed walk
W = [vg, e1, U] .Up—1, €n, Un| to be minimal, it may occur that for some
i#je= ej. .

In order to solve the Chinese postman problem, we proceed by trans-
forming a non-Eulerian graph into a Eulerian one by simply" duplicating
edges. Duphcatmg an edge ¢ = (u,v) means that we simply add an ex-
tra edge e* = (u,v) with the same weight as e. The trick, of coufse, is to
duplicate as few edges as possible and such that the added total werght
of the resulting graph is minimal. Once we have transformed the original

l,graph into a Eulerian one, we can apply Fleury’s algorithm to find an Euler
/ tour. Note that by ensuring that the total weight of the transformed graph\.
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is minimal, we also ensure that our Euler tour in the transformed graph is
‘mlmmal

" Unfortunately, transforming a graph to a Eulerian one that has as less
welght as possible is not trivial. For example, suppose that edge ¢ = <u, )
is incident with a vertex v with odd degree and vertex w with even degree
Duphcatrng e will force us to subsequently reconsider vertex w, which in the
new situation will then have odd degree. A general solution, but which is
too complicated for our purposes to describe here, is given by [Edmonds and
Johnsonl [1973]. A special case that is easy to solve is when there are only
two vertices having odd degree, say u and v. We can then use Dijkstra’s
algorithm to find-a (u,v)-path having minimal weight, ar'id subsequently
duplicate each edge on that path. We leave it as an exerclse to show that the
result is indeed a mlmmum—we1ght Eulerian graph.

This approach can be easily generalized. Recall from Chapter P that ev-
ery graph has an even number of vertices with odd degree, say 2k. What we
are seeking are k paths each connecting two odd -degree vertices such that
no two paths have a source and destination vertex in common, and such that
the sum of their respective werghts is rrummal Following |(Gibbons| [1985],
we tackle this problem as follows '

Algorithm 4.2 (Chinese postman): Coﬁsidér a weighted, connected graph G with
odd-degree vertices V35 = {v1, .. v2k} where k>1.

1. For each pair of distinct odd- degree vertlces vl and vj, find a minimum-weight
(vi,v)-path P; ;. / :

2. Construct a weighted complete graph on Zk wvertices in which vertex v; and
vj are joined by an edge. having weight w(P; ])

3. Find the set E of k edges e1,-..,e such that Zw(el is minimal and no two
edges are incident wzth the same vertex. .

4. For each edge e 6 E, with e = (vi,0)), duplicate the edges of P, j in graph G.

The resulting graph’ G* is Eulerian with minimal weight, for whzch we then apply
Fleury’s algorzthm to find a minimum-weight Euler tour.

Let’s Con51der a simple example from [Gibbons| [1985] to demonstrate this
algorithm. , Frgure [£.4(a) shows our initial graph with odd- degree vertices
01,02,03, ‘and v4. We first find minimum-weight paths between® all these
vertices. It is not difficult to verify that the following paths 1ndeed have
mmrmal weight: ~

/,,/Pl,z = [v1, v2] (weight: 3) Dy 5 = [vg, U3, us, ug, v3] (Weight: 5)
P1,3 = [01, Uo, 03] (weight: 3) P2,4 = [02, Ug, 04} (weight: 2)
Py 4 = [v1, Uy, us, vg] (Weight: 5) P54 = [v3, ug, us, v4] (weight: 4)
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. Our next step is consider the weighted complete graph on the four vertices

"v1,0, 03, and vy as shown in Figure b). We are seeking to find a set of two
edges such that their total weight is minimal, and such that they do no have
any end points in common. This is achieved by the set {(v1,v3), (v2,74)},
corrésponding to the two paths P; 3 and P, 4. The edges of these two paths
are then duplicated, leading to the Euler graph with minimal welght as
shown in Flgure A.4(c). ;

Figure 4.4: An example Qf”éolving the Chinese poéﬁ;nan problem. (a) The initial
graph, (b) finding the optimal paths, (c) the expanded graph.

Note 4.4 (More mformatlon) ~
The solution to the Chinese postman problem builds on an lmportant topic in
general grg\ph theory, namely that of matchings. A matching M in.a graph G is
a subset of the edges of G such that no two edges from M are incidént with the
same Vertex Matchings are typically applied to situations in which we need to
team up pairs of some sort, and where each pair is subject to a constramt
Consider, for example, a group of n people py, ..., p, and m tasks tl, N .
w1th n > m. A person p; can fulfill task #; with a certain expertise ¢; ; [0,1],
,,/where the value 0 represents the case that pi cannot fulfill #;. Assume that for
" each task there is at least one person who can fulfill that task. We ask our-x‘x\
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) .. selves what the best assignment of people to tasks is. This situation can be |
“modeled by means of a weighted bipartite graph, for which we are then seek-
1ng a maximum-weight matching. A

‘In the case of the Chinese postman problem, we are actually looking for a
perfect matching: a matching M such that every vertex in G is incident with
an edge from M. There are various solutions to finding optimal (werghted)
matchmgs, but we will not go into further details here. The 1nterested teader is
referred to Grbbons [[1985].

4.2 Hamiltoﬁ‘cycles

Where Euler tours focus on traversing every edge m a graph, Hamilton
walks deal with traversmg every vertex in a graph, In this section we con-
centrate on the problem of trying to constructa (closed) walk such that every
vertex is visited exactly once. As we shall see, not only is this an important
problem, it also turns out to be notoriously d1ff1cult if we want to optimize
on the distance traveled. ‘ ’

421 Properties of Hamiltoniﬁ‘n grérphs

We start with precisely defining what a Hamiltonian graph is, along with a
number of example applications. ©

Definition 4.2: Consider a connected graph G A Hamilton path of G is a path
that contains every vertex of G. Likewise, a Hamllton cycle is a cycle containing
every vertex of G. G is called Hamzltoman if it has. a Hamilton cycle.

What makes the issue of (non )Hamiltonian graphs so difficult is that, in con-
trast to Euler tours, there is no known efficient procedure by which one can
in general determine whether a graph is Hamiltonian. or not. On the other
hand, finding Hamllton cycles, or closed trails that minimize the number of
duplicate visits to-a vertex is important. To illustrate, consider the following
two problems, Wthh are representative for a wide range of applications.

Transportatidn problems: Consider scheduling a service that needs to pick
up people at n different locations. The problem is to find the most effi-
cient route (e.g., expressed in the smallest traveling distance) such that
all 1 locations are visited. This problem can be formulated in terms of

“a road map with locations represented as vertices and roads between
" pairs of locations as weighted edges. We are interested in finding a
minimal weighted Hamiltonian subgraph containing all vertices, poxs‘*—x
sibly after expanding the graph to account for traversing an edge more .
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than once. There are many variations on such transportation prob-
lems, of which a nice overview is provided by Applegate et al. [2007] '
We return to this problem later in this chapter. /

Dr1111ng holes: There are many cases in which we need to drill holes ina
“board, such as for electrical circuits. This requires the schedullng of a
drllhng machine by which holes are drilled one by one. To rhinimize
the ‘time it takes to drill all holes, we should minimize the distance
that the machine (or equivalently, the board) needs to‘make when
moving from hole to hole. We can model this problem’ as a complete
graph with the vertices forming the holes to be drilled and the weight
on each edge representing the geometric distance of the edges two
ends on the board. An optimal schedule Corresponds to a minimal
weighted Ham11ton cycle. To illustrate, Figure @ka) shows an exam-
ple in which some 2400 points need to be drilled into a board. Fig-
ure [4.5) Hb) shows one possible schedule, Whereas Figure .C) shows
an optimal solution in which the machine needs to “travel” half the
distance of the previoﬁs schedule. The example is discussed in more
detail by Grotschel and Padberg [1993].

These two examples are mstances of what is known as the traveling
salesman problem. As mentioned, a serious issue is that there are no known
efficient solutions for determining /whether a graph is Hamiltonian or not.
Worse, if we are interested in finding a‘minimal-weighted Hamilton cycle,
we will have a tough problem to solve as it will most likely require a lot
of computational resources. Considering the many applications related to
traveling salesman problems, it should come as no surprise that researchers
and practitioners have paid considerable efforts to finding efficient methods
for (near-)optimal solutions. .

Fortunately, there are some reasonable startmg points to finding good
solutions. For one, we have the following necessary"condition for a graph
to be Hamiltonian: ‘if we consider a subset S of the Vert1ces of a graph and
subsequently remove those vertices, the graph should fall apart into at most
S| components More formally:

Theorem 4. 4: If graph G is Hamiltonian, then for every proper nonempty subset
ScC V(G) we have that w(G — S) < |S|.

Proof.’ Con31der a Hamilton cycle C of G. If we consider any proper nonempty
subset S C V(G), then obviously, because every vertex is visited exactly
once, the number of components in C — S will be less or equal to |S|. How-
_ever, because C contains all vertices of G, we also have that w(G — S) <
w(C — S), which completes the proof. O
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(©)

Figure 45 An example of scheduling a drilling machine with (a) the holes that need
to be drllled (b) a schedule, and (C) an optimal schedule. Taken with permlssmn

from []Grotschel and Padberg] 1993
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Note 4.5 (More information) }

“\This is one of those examples where a simple diagram helps to understand”/
what is going on. Figure [.6] shows a graph G and an arbitrary set S of ver-
tlces from G. We have also sketched a Hamilton cycle C, which runs through
every vertex in S. Effectively, we split the cycle C into alternating segments
54,51, 52, S5,.--,Sn, Sn, each segment S; consisting of a number of consecutive
vertices ‘from S, and each segment S; consisting of consecutive vertices not in
S. In the "‘worst” situation, each subgraph induced by a segment,gi is a com-
ponent of the graph G — S, i.e., G[S;] is disconnected from the Sther parts of
G —S. The max1mal number of segments consisting of Vertlces outside S that
we can obtain, is when each segment S; consists of exactly 1 vertex Hence, this
maximal is equal to |S |

Figure 4.6: Segmentation of a Hz;milton cyele for an arbitrary set S of vertices.

The previous theorem prov1des us w1th anecessary condition for a graph
to be Hamiltonian. In 1952, the mathematician Gabriel Dirac proved the fol-
lowing sufficient condition, which essentlally states that a graph is Hamil-
tonian if each vertex is connected to at least half of the other vertices

Theorem 4.5 (Dirac): If st a simple graph with n :{V(G)| vertices, n > 3 and
each vertex v has degree"& (v) >n/2, then G is Hamiltohjun.

Proof. A relatively simple proof is by contradiction: assume the theorem is
false. Let G be a non-Hamiltonian graph with n > 3 vertices and for which
5(v) > n/2 for each of its vertices. Moreover, assume that G-has a maximal
number of edges i.e., adding a single edge (while keeping G 51mple) would
make it Hamiltonian. Let u and w be two nonadjacent vertices. By construc-
tion of G we know that if we add an edge e = (u, w), the resulting’ graph G*
would be Hamiltonian, and thus there exists a Hamilton path (1, w)~path p
inG with u = [v1, 2, ..., Uy = w], as shown in Figure 4.7 ua)
~'Now consider the followmg two sets of vertices:

§ = N(u) = {vil{w,v;) € E(G)} and T = {v;|(vi_1,w) € E(G)}
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Figure 4\.7\: (a) A Hamilton path in G, and (b) the constructed Hamilton ey’éle in G.

S consists of the neighbors of u, whereas T consists of the successors on
P of neighbors of w. Note that |S| > n/2. Likewise, because P contains
all vertices in G, T contains as many elements as there are edges (v;_1, w),
which corresponds to §(w). This means that |T| > 1/2. Furthermore, vertex
u is not contained in S _(because it cannot be a nelghbor of itself), nor is it
contained in T (which contains only successors of other vertices on P). In
other words, S, T C {vs,..,v,}, which, together with the fact that |S| +
|T| > n, means that the two sets have at least one vertex in common. Let this
be vertex v;. We now have the situation that v] is a neighbor of u, and that
v;’s predecessor v;_1 is a nelghbor of w. But in that case, we can construct
the Hamilton cycle [u = vq, vj, 01 ... 0n.= W, 0j_1,0j_2...01 = u], shown
in Figure ub) Note that this cycle does not contain edge (u, w). In other
words, we have just shown that G 1s Hamﬂtoman, which contradicts our
initial assumption. This means that there is no vertex v; € SN T and thus
SN T| = 0. On the other hand, weknow that u¢SUT,sothat [SUT| < n.
This now brings us to:

o(u) +o(w) :|S| +|T|=1S UT|+ ISNT|<n

which cannot be true, meéhing that we cannot aseume the theorem is false.

Note 4.6 (Proof technlques) ~
It is interesting to note that the proof of Dirac’s theorem merely states that a
Hamilton cyclé exists. It does not explain how to construct such a.cycle. Again,
we see an irr{portant concept in mathematical proof techniques: th\e\distinction
between a,ri existential proof and a proof by construction. There are rhany cases
in which'we know that a solution to a (graph theoretical) problem exists, but
that frultless attempts have been made to find a specific solution. However
for Dirac’s theorem, a (nontrivial) proof by construction does indeed exist.. We
re,fér the interested reader to [Dharwadker| [2004]. Furthermore, note that We
have again made use of extremality in our proof, in this example by assuming.
~"a maximal graph that was not Hamiltonian. ‘
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Note 4.7 (More information) )
~ Dirac’s theorem provides a sufficient condition for a graph to be Hamiltonian,”
\Several attempts have been made to provide a weaker sufficient condition, that
is,a condition that can be met by a larger number of graphs. When looklng
Carefully at the proof, we see that we never actually use the requirement that
5(v) >.n/2, but rather that §(u) + 6(v) > n. Furthermore, strictly speaking we
never used the requirement that G needed to be a maximal non—Harnlltonlan
graph. Instead we only needed the property that the graph G + (u,v) was

Ham11t0n1an Thls leads to the following theorem:

Theorem 4.6 (Ore): Let G be a simple graph with n vertices. If ’u'tmd v are distinct,
nonadjacent vertices with 5(u) + 6(v) > n, then G is Hamilfonian if and only if
G+ (u,v) is Hamlltoman

As you may imagine, the proof is very much like that (yf Dlrac s theorem. Using
this theorem, another sufficient condition was formulated based on what is
known as the closure of a graph

Definition 4.3: Consider a gmph G with n vertzces The closure of G is obtained by
iteratively joining each nonadjacent, pair of vertzces u and v for which 6(u) + 6(v) >
until no such pairs exist anymore. /

We can then simply prove the follc‘)‘Wing’/theorem by applying Ore’s theorem

every time we add an edge in the conétfuction of the closure of a graph:

Theorem 4.7 (Bondy-Chvéatal): A szmple graph G with n vertices is Hamiltonian if
and only if its closure is Hamzltomzm .

4.2.2 Findinga Hamllton cycle

Let us now concentrate some more on actually f1nd1ng Hamilton cycles (in
a simple graph). As we’ve mentioned before, determ1n1ng whether a graph
is Hamiltonian is'a notoriously difficult problem in the" sense that there is
no known computationally efficient algorithm. In essence, this means that
we can follow only a trial-and-error approach when atternpting to find a
Hamilton Cycle, or simply doing it brute force by trying to find-all cycles. To
illustrate the latter, we can try to systematically find all cycles by means of
an algonthm akin to the one for determining reachable vertices in a. d1rected
graph! N

We start with randomly selecting a vertex, say v1, and construct the set
of reachable vertices as R([v1]) = N(v;), where [0;] stands for the sequence
_consisting only of vertex v1. For each vertex u € R([v1]) we then construct
/ the set R([v1, u]) = N(u)\{v1}. In other words, R([vy, u]) consists of all\\.
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2
1 3
5 4
(a)

Figure 4.8: (a) A simple graph and(b) all paths originating in vertex 1.

neighbors of u reachable after traversing the path [v1, u], but excluding v;.
Similarly, for any set R([v1, vz]) and vertex u € R([v1, v]), we can Construct
the set R([v1, vp, u]) con51st1ng of the neighbors of u, excluding vy and v,
In general, we have :

R([vl,vz, oo, 0x)) = N(vp)\{o1, .. /kal}

To illustrate, consider the simple graph in Figure and the exploration
of all paths originating in vertex 1. In this example, R([1,3]) = N(3)\{1},
which is equal. to the set {2,4}. Likewise, R([1,2,4]) = {3, 5} The vertices
in Figure .b) that are colored white are adjacent to vertex 1, meaning that
we can complete a Hamilton cycle. One such cycle is [1, 3, 2, 4, 5, 1]

The whole idea is that we continue constructing a set R([vq}...., vi])
until it becomes empty for some k. Of course, this will be the case for any
k> J(V(G)| as we will have inspected all vertices by then. On the other
hand itis possible that for k < |V(G)| a set already becomes empty, as ié“the

" TRemember that V\W contains those elements of V that are not also in W. This means thal\\
/it also excludes the elements that are in W but not in V/ h
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“. case with R([1,2,4,3]) and R([1, 2, 4, 5]) in Figure[4.8, When a set becomes

"‘xgmpty, we consider only the ones with k = |V(G)| and check whether Un. e
N (v1). If so, we will have discovered a Hamilton cycle. /

“Exhaustively enumerating all Hamilton cycles can work only for srnall
graphs When graphs grow even beyond something like 10 or 15 vertices,
other approaches are needed. A relatively simple one that fits into a trial-
and-error, approach is the following, due to [Posal [1976] and descrlbed in
detail by [Vandegriend| [1998]. This algorithm makes use of what is known
as a rotational transformation, which is sketched in Figure 9] The idea is
that once we have a path [v1, vy, ..., vj_1, v}, ..., Ux_1, v and a “shortcut”
by means of an edge (01, vj) that we consider explormg an alternative path
[v Vi1, - vz,vl,vf, cery Uk_1, Ukl

@
Yt V2 Vi VJ Vit %
o 0 —>0—>0 0 —>0
®

Figure 4.9: Rotational transformat1on by Wthh the original path (a) is transformed
to another one (b) after fmdmg the edge (0,0 ]>

Algorithm 4.3 (Posa): Cons’%der agraph G and let u EV(G) be a randomly selected
vertex. This vertex fornts the first vertex of a path P that is expanded as follows.
Let last(P) denote the last vertex of P. Note that initially, last(P) = u.

1. Randomly /,sé/iect a neighboring vertex v € N(last(P)), \."such that (1) prefer-
ably, v does not lie on P, and (2) ifv € V(P), then v has not been previously
selected as neighbor of a last vertex before. If no such vertex exzsts stop.

2. Ifv, §Z V(P), set P« P+ (last(P),v), i.e., expand P with the edge e =
(last( ),0)2. N

3[f v € V(P) then apply a rotational transformation of P using <last(P) ),
/" leading to path P* with a new last vertex last(P*). If last(P*) has not yet
been the last vertex for paths of the current length, set P «— P*.

2Formally, this means considering the induced graph G[E(P) U {e}]
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4. If in the possibly modified version of P we now have that V(P) = V(G), ~
check if (u,last(P)) € E(G). If so, we have found a Hamilton cycle. Other-*"
wise, continue with step 1. :

The {)Vprking of this algorithm is best illustrated through an example._,Con—
sider the graph G shown in Figure and assume we have already con-
structed path P as also shown. This construction comes from simply apply-
ing the preference rule, by which we attempt to add new Vertlces until that
is no longer p0551ble We now have the path ’

P=1,2,34,5,6

At that point, we can select only from vertices that already lie on P. Assume
we randomly selected. vertex 4. We then apply a rotatlonal transformation
using edge (6,4), meaning that after visiting vertex 4 we continue with ver-
tex 6 from where we contmue along the original path but in reversed order.
This leads to

P [1,2,3,4,6, 5]

from which we then should select vertex 7 resultmg in path P shown in Fig-
ure uc) Unfortunately, there is no edge (1,7), so that we continue with
step 1 of Posa’s algorithm. Assume. ‘we'select vertex 2. A rotational trans-
formation then yields that we contmue with vertex 7 after visiting vertex 2,
to subsequently walk the (2,7)- segment of P” but in the reversed direction,
yielding

P’”—[1275643]

Because (1,3) € E(G), we ha,ve just found a Ha_mﬂton cycle, completing the
algorithm.

4.2.3 Optimal Hamllton cycles

Finding a Hamiltonv Cycle can already be a computatlonally hard problem;
finding the best Hamilton cycle is even more difficult. Best in this context
is defined on a weighted graph in which each edge e has a nonnegative
weight w(e). We are now seeking Hamilton cycles with mi‘nimal weight,
ie, Yecr(c w( ) should be minimal among all Hamilton cycles..

Fmdmg an optimal Hamilton cycle becomes much easier if - we can as-
sume that a graph is complete. In many practical situations, this is'actually
a reasonable assumption, as we will explain shortly. A simple approach to-
ward tackling this problem is to first construct a trivial Hamilton cycle,and
then to subsequently try to modify that cycle such that its total weight " re-
duces In the case of a weighted complete graph with vertices v1, vy, ..., Uy
’,f’we can start with the Hamilton cycle C = [v1, vy, ..., vy, v1]. This cycle
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Figure 4.10: Tllustration of Posa’s \él‘gorithm'”starting from an initial path (a), and
applying rotational transformation after selecting vertex 4 (b), adding vertex 7 (c)
and selecting vertex 2 followed by a rotational transformation (d).

can be modified by deleting thgr'édges <vl-&,\“v\,<+1> and (v}, vj;1) and replacing
them by edges (v;, v;) and (v;11,vj41), as shown in Figure If

w((o3,0)) + ({0111, 2j41)) < 0((03,0342)) + 0((2),542)

we will have found a bétter Hamilton cycle than C:.

As said, assuming that we're dealing with a complete graph is a reason-
able assumption in‘many practical cases, such as finding the optimal route
for a traveling salesman. In that case, we are considering n locations con-
nected in some geographical network. We are seeking a closed route such
that every location is visited exactly once. This situation can be modeled as a
weighted graph with 1 vertices, where two vertices are joined.only if there
is a connection between the two in the real network. The corresponding
edge has a weight that reflects the real-world distance between its two end
points. We can also model the network through a complete graph in which
an edge has an extraordinary high weight whenever its two end poinis are
not connected in the real world. Clearly, an optimal Hamilton cycle will

l,ﬁever include such an edge, for which reason it can’t hurt to include it whé‘n
/ representing the geographical network as a graph.
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(a) (b)

Figure 4.11: Mod1fy1ng a Hamilton cycle in a complete graph (a) to a p0551bly better
one (b). .

Exact solutions for t}‘i‘e& traveling salesman problem have been found for
very large networks, inclﬁding the Swedish rogd map (with over 24,000)
cities. Impressive is also the near-optimal solution for China, comprising
over 71,000 cities and provably.to close as 0.0024% of the optimal®.

Note 4.8 (More information) .y
If the traveling salesman problem is so Cornputatlonally difficult, how could

one ever know that a solution is the best one, or otherwise so close to the best
one? The trick is not to try to actually flnd the best solution, but to estimate
the length of the best solution. More spec1f1cally, we can try to compute what
is known as a lower bound: the lowest value that is known that no Hamilton
cycle in a given graph can ever reach. If we assume that the minimal weight of
an edge is equal to 1, then a, trivial lower bound is also 1. In fact, for any simple,
connected graph with 1 vertices and minimal edge we1ght w, it should be clear
that no Hamilton cycle will have a weight less than 7 - w.

It is not hard to imagine that we can generally come to much better estima-
tions of a lower bounds, although these do require some mathernatlcs that are
beyond the level of most undergraduate courses. For this reason, we shall not
discuss them an}’} further. However, you may ask how you cén actually prove
that a solution’is optimal. The answer is quite simple: assume some approach
finds a Harnﬂton cycle and at the same time using completely different meth-
ods, we happen to know that a lower bound is equal to LW. In other words, we
have shown that for all Hamilton cycles C, we know that for weight w( )of C
we have w(C) > LW, then obviously, if we find a C for which w(C) = LW, that
cycle must be optimal. Note that this just tells us that only one solution has been

found

3See alsohttp://www.tsp.gatech.edu/world/countries.html
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. Another issue is that in real networks links may not be symmetric: the
“distance from A to B may be different than the one from B to A. For exam*
ple, many end users are connected to the Internet through what is known-as
an ADSL subscription. Such a subscription is characterized by the fact that
data that is received by the end user is transmitted at a higher rate than data
that is“sent by that user. In such situations, we need to model the, network
as a welghted directed graph, and subsequently find an optlrnal directed
Hamilton cycle g

The questlon that comes to mind is how we can use techmques for find-
ing (optimal) Hamilton cycles in undirected graphs for the directed case.
The answer to th1s question lies in transforming welghted directed graphs
to an equivalent Welghted undirected form. To this end; we proceed as fol-
lows. Consider a directed Hamiltonian graph D with n. We construct a
undirected Hamiltonian graph D with 37 vertices by representing each ver-
tex v € V(D) by the trlplet (Vin, v, Vout ), as shownin F1gure-

(a)

Figure 4.12: Transforming (a) a dlrected Hamlltoman graph to (b) an equivalent
undirected graph. ;

In the case we are dealiﬁg with weights, x‘t‘he weight of an arc (i, 0) is
represented by the same we1ght on the edge (uout,vm> whereas all other
edges have weight 0. We now have: E

Theorem 4.8: A dlrected graph D is Hamiltonian if and only if its transformed
undirected version D is Hamiltonian.

Proof. First assume that D is Hamiltonian and let C = [vl, UZ, U L vl] be

a Hamilton//,cycle. Clearly, the cycle

A 1,1 .2 2 2 11"
C= [Z) Ooutr Vins Vs outr - vln' o" voutf Oips 0 ]

isa Hamllton cycle in D. ~

Conversely, consider a Hamilton cycle € in D. ObVlously, for each ver-

tex v* € V(D), C contains the edges (vf, o) and (oF,o¥,,), for otherw1se

it would be impossible to have visited vertex v¥. For this reason, C corre-

/ sponds to a unique directed Hamilton cycle C in D. D
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In the case of the directed equivalent of the traveling salesman problem,

‘we need to assume that the corresponding weighted directed graph D is”
strongly connected. In that case, when there is no direct connection from
location A to B (e.g., because we are dealing with one-way streets), we can
still be sure that in the transformed complete graph with 3n vertices, there
will be an (A, B)-path corresponding to a directed (A, B)-path in D,
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In the previous chapter we occasionally came across graphs lacking cycles.

“Such graphs are also known as trees. Trees form a special type of graph and
are important to study if only for their common and widespread use in di-
verse fields of practice and science. In this chapter we shall take a closer. Took
at trees, starting with presenting various applications. We will then take a
look at some formal issues, after which we concentrate on the Constructlon
of optlmal trees that can be used span an entire graph, or for flndmg shortest
pathsina welghted directed or undirected graph. g

5.1 Backgf‘oynd

Before we delve ir{fq various details and formalities, let/u"s first consider why
trees receive so much‘attention. There are different fields in which trees are
extensively applied. Below, we just mention two of the more salient ones.

51.1 Treesin transpoft@tion networks

A compelling example of the application of trees is in transportation net-
works. Typical examples of such networks include communication net-
works and traffic networks, but also networks related to logistics such as
those reflecting the transportation"of goods. In many cases, we need to
solve the problem of minimizing transportatlon costs from a source to mul-
tiple destinations (or vice versa). In practice, this boils down to finding the
cheapest paths in a network. We already came across this problem when
we discussed Dijkstra’s algorithm in Chapter 3| In that case, finding the
cheapest paths involved building a tree rooted at a particular vertex u and
constructing all cheapest (v, u)-paths from other vertices v. We will return
to finding cheapest paths later in this chapter. .

A variation of this problem is that of setting up a communication in-
frastructure between-a collection of nodes but such ‘that the total costs are
minimized. For example, the nodes could be towns, fhe infrastructure is a
railway network, and the costs between two nodes Corresponds to the dis-
tance that needs to be covered. This example is also known as the connector
problem. .

The connector problem has practical instances in commumcatlon net-
works. Consider the delivery of video streams over the Internet. A famous
project that aimed at efficiently providing the facilities for such'a service
was the MBone [Eriksson] 1994; Macedonia and Brutzman, [1994], an abbre-
viation for Multicast Backbone. This network consisted of many so-called
MBone routers, which were just normal computers spread across the Inter—

l,net Important was the fact that two such routers would maintain a perma—
/" nent connection that could be used for streaming audio and video packets.".
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(a)

(b)

Figu’fé 5.1: (a) A map of the MBone overlay network as of July 1993, and (b) a
spénning tree of that network.
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In graph terminology, the routers formed the vertices, whereas the connec-

"‘xtions would form edges. The result is what is known as an overlay network;
a concept we shall also come across when discussing peer-to-peer networks
in Chapter /

To_give an idea, Figure f.1{a) shows a map of the MBone network as
of July'1993. At that point, there where approximately 400 MBone routers
rnalntalnlng the connections as shown. It is worth mentioning t that we are
already deahng with a network that has only a few cycles. Figure [5.1] 5.1]b)
shows a spanning tree of the MBone, that is, an acyclic connected subgraph
of the MBone with the same set of vertices. How we can Compute such a tree
is discussed below. With a spanning tree in place, there is no further need
to set up routes. In the case of the MBone, nodes could join or leave groups,
with each group eSSentlally representing those nodes that were interested
in the same video stream. Members of the same group were subsequently
connected to each other by means of a spanning tree. Note that in this case,
a spanning tree needed to. reach out only to the nodes in the same group,
and not necessarily to all no@es comprising the MBone.

5.1.2 Trees as data structures

Trees are also used extensively to organize data in computer systems. In
particular, they appear as so-called rooted trees, which is a tree with a single
vertex designated as the root. To gi\}en\an example of how trees can be used
to represent data, consider the followmg 'well-known arithmetic expressmn
describing one solution (if it ex1sts) of the quadratlc equation ax? + bx + c:

B —b+\/b2—4aq

2a

Computers need to process such expressions, to Wthh end they first need
to be stored. This can be done conveniently in the form of the rooted tree
shown in Figure [5.2] . 2| The tree contains two types of nodes The leaf nodes,
which are the ones having degree 1 forming the “lowest level” nodes, con-
tain the variables or constants. In our example, we have one Variable, namely
x, and three Constants, a, b, and c. The other, intermediate nodes, represent
operations. B

The link between the original expression and the tree may be: better un-
derstood if we rewrite the expression as k

= (=b+sqrt(bxb—4x(axc)))/(2xa)

l,,where we now use the function sqrt(y) as an equivalent notation for \/y
/' Note how each operator has either one or two descendants, depending on".
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Figure 5.2: T}\te‘yrepresentation of an arithmetic exprgésion as a tree.

whether we are dealing w1th a unary operator (wﬁich operates on one vari-
able or constant), or a binary operator (which takes two arguments).

Note 5.1 (More information)
In fact, we can replace each of the other Qperatlons with functions like sgrt as
follows:

operation fﬁnétion type

= eq " binary
+ sum . binary
— min . binary
5 mul binary
Vi div bihary
- neg unary
va sqrt unary*‘»\

As said, we make a distinction between bimzry and unary operations, where it
should be noted that the operation “—" is used in two different forms. Note
also that sqrt is mdeed a unary operation. With these functlons, we can rewrite
our original expressmn as: .

eq(x chv(add(neg(b) sqrt(min(mul(b,b), mul(4,mul(a,b))))), mul(?_ u)))

What has happened in comparison to the original expression, is that we have
switchéd from what is known as an infix notation to a prefix notation. In the
former, operators are placed between variables and constants, whereas with. the
latter they are placed in front of them. To a computer it makes no differeﬁég:.
The only thing that does matter is the organization of the rooted tree as givert.
/in Figure[5.2} as this tree is an unambiguous representation of the expression. ‘
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. The common terminology for rooted trees that are used for data struc-
“tures is to say that every node has one or more descendants. Likewise, each
node except the root node is said to have a parent. Note also that each node
u having k descendants is the root of k subtrees, each subtree in turn rooted
by a respective descendant of 1. A special case is a binary tree in, Wthh
there are exactly two descendants for each intermediate node.

Blnary trees come in handy when we need to quickly look up ‘elements
in a finite ordered set. An ordered set S = {x1,xy,...,x,}, has the property
that x; < x;'if i < j. As an example, any finite subset of na,tural numbers
forms an ordered set. Consider the set

S:{3681215202127323334454951566061}

This set consists of 17 elements. To represent it as a bmary tree, each element
will be represented by a node. We demand for each node x that all elements
in the left subtree represent values that are less than x, and all elements in
the right subtree have larger values. Leaf nodes store no value; they are
simply added for convenience as we discuss next.

Figure [5.3] shows the representation of our set S as a binary tree. Now
suppose that we wish to look up the element x = 16, which is not contained
in S. In this case, we start at the rdqt ncide, which has value 27, continue in
its left subtree reaching 12. If x = 16:is contained in S, it must be stored in
the right subtree, which brings us to”héde 20, and from there on to 15, where
we can stop the traversal, now knowing that 16 is not in S.

27

Figure/5/.3: The representation of a set of natural numbers as a bihgry tree.

Now compare this lookup operation with the situation that we had rep-
resented S as a list. In that case, we would start from the first element and
subsequently move through the list until reaching the first element larger
l,t’han 16. On average, a lookup operation would require inspecting |S| /2 el-
~ ements if S had been represented as a list. In the case of using binary trees‘,\.
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*. one can show that the number of operations are approximately log,(|S|), .
‘which is considerably less as S becomes larger. Further details on how to”
use trees for representing data in computers can be found in [Goodrich and
Tamassm 2002]. /

5.2 Fundamentals

Before dlscussmg various tree-related algorithms, let’s first cons1der a few
characteristic features of trees. We start with the following observatlon.

Theorem 5.1: For ﬁny connected graph G with n vertices and m"édges, n<m+1

Proof. The proof proceeds by induction on the number of edges m. Clearly,
if m = 1, we necessarily have n = 2 so that the theorem is true. Now assume
the theorem is true for all graphs with fewer than k edges and consider a
graph G with exactly k edges and n vertices.

Suppose that G contains a'cycle C. In that case, choose an arbitrary edge
e € E(C) and construct the induced subgraph G* = G — ¢. Because e was
lying on the cycle C, G* will still be connected, meaning that n = |V (G*)| <
[E(G)|+1 = (k—1)+1 = k. .But in"/that case, we certainly have that
n<k+1.

If G does not contain a cycle, fmd a longest path P in G. Let u and
w be the end points of P. Note that the. degree of each these nodes must
be 1, for otherwise P could not have been a longest path. Now consider
the induced subgraph G* = G'— u. Clearly; G* is connected and we have
|V(G*)] = n—1and E(G*) = k — 1. By induction, we thus also have that
n—-1<(k—-1)+1=k, and thusn <k+1, corﬁpleting our proof. O

Note 5.2 (Proof techmques) »
Again, we have encountered a proof by induction. Note that the approach we
have taken is comrmon to many such proofs. After having proven that the theo-
rem holds for ar/,l*ihitial, generally almost trivial case, we procee‘d\with assuming
that the theorefn holds up until and including the case that m = k- We then con-
sider a 51tuat10n with k + 1 edges. In our attempt to prove the theorem, we try
to reduce the new graph to one with at least one edge less, knowing that in that
case we ¢an assume the theorem holds. This brings us to a new startmg situa-
tion from where on we need to show that the theorem also holds in the orlgmal
situation with k + 1 edges.
/Furthermore, note also that we have combined a proof by induction w1th
extremahty by lookmg at a longest path P, from which we then remove an edge\
““at the extreme.” As we stated before, it is important to fully understand these
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proofs as they enforce you to understand details and techniques that are com- - [
. mon to many graph-theoretical problems. ’

It should now come as no real surprise that trees obey the followmg prop—
erty:

Theorem 5 2; For any tree T with n vertices and m edges, n = m + 1.

Note that we' already proved this theorem in Chapter [2] (Lemma 2.1] on
page[2-34). We leave it as an exercise to the reader to provide an alterna-
tive proof, based on the proof of Theorem[5.1] Interestingly, the implication
formulated in the prev1ous proof also holds in the opp051te direction:

Theorem 5.3: A connected graph G with n vertices und m edges for which n =
m+1, is a tree. :

Proof. We prove the theorem by contradiction. To this end, assume G is not
a tree, i.e., it contains a cycle C: Let edge e-€ E(C). Obviously, the induced
subgraph G — e is still connected, but with one edge less than G. From
Theorem[5.]lwe know that |V(G —¢)| <'|[E(G—e)|+1. With V(G —e)| =n
and |E(G —e)| = m — 1, we thus have that n < (m — 1) + 1 = m. However,
we assumed that n = m + 1, whi(fh “contradicts that n < m. Hence, our
initial assumption, namely that G'is not a tree, was false. O

Let us proceed with another iﬁportant characterization of trees:

Theorem 5.4: A graph G is @ tree if and only if there exlsts exactly one path between
every two vertices u and v

Proof. Recall that the phrase “if and only if” means’ that we need to prove
two things: (1) If G is a tree then there exists a unique path between every
two vertices and (2) if there exists a unique path between every two vertices,
then G is tree k

(1) Let Gx’be a tree and let u and v be two distinct vertices, Because G
is connected, there exists a (u,v)-path P. Assume there'is another,
distinct (u,v)-path Q. Let x be the last vertex on P that is also on Q
when traversing P starting from u. In other words, the next vertex

 following x will be different for P and for Q, as shown in Flgure
Likewise, let i be the first vertex succeeding x that is common to both
P and Q again. We have now identified a cycle in G, contradicting that
G was a tree. :
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Figuré‘§.4: The construction of a cycle based on two distinct (1, v)—path’s,,;'"’

()

Now a§sume that G is not a tree. Note that because ther/e/is a path be-
tween every two vertices, G is connected. If G is not a tree, there must

be a cycle C = [v,00,...,00 = vq]. Clearly, for eVéry two distinct
vertices v; and vj (i < ]) on C we have also have two distinct (v;, v])

paths: P; = [Ul, Viy1, -+, 0j_1,0;] and P = [v,, Vi1, +.., 02,01 =
Un, Uy_1, -- ]+1, } Wthh contradicts the umqueness of paths O

Before we provide another characterization of trees, we prove the following,
intuitively simple theorem: g

Theorem 5.5: An edge e of a gmph G is a cut edge if and only if e is not part of any
cycle of G.

Proof. Again, we need to prove two thmgs (1) If e is not part of any cycle,

G.
1)

)

then e is a cut edge, and (2) ifeis a cut edge, it cannot be part of any cycle of

By contradiction: assume, that e=(u, v) is not a cut edge (and not part
of any cycle). If e is not'a cut edge, then u and v must still be in the
same component of G — e. This implies that there is a (u,v)-path P
in G — e connecting u# and v. However, this ‘also means that P + e is a
cyclein G, Wthh violates our assumption. *

Again, by contradlctlon lete = (u,v) be a cut edge of G and let x and
y be two vertices in different components of G —'e. Because there is
an (x,y) path P in G connecting x and y, we necessarlly have that e
is part of P. Assume that u precedes v when traversing P from x to
y. Let Py'be the (x, u)-path part of P and P, the (v, y)-path that is part
of P. If e were part of a cycle C, then u and v would be connected in
G —e through the path C —e. Let u* be the first vertex common to
Pl and C — e when traversing P; from x. Likewise, let v* be the first

,,,Vertex common to P; and C — e when traversing P, from y. Let a g b

" denote that part of path Q that connects vertex a to b. Clearly, the path

P P
x bt 8 2 y connects x and y in G — ¢, contradicting that’ e
was a cut edge. Hence, e cannot be part of any cycle. O
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| Note 5.3 (Study tip) I
* For this proof, it is helpful to draw a diagram for case (2). We deliberately leave”
\thls is an exercise, anticipating that you will gain more insight in the construc-
tlon of the proof. !

With thié*result, we can now easily prove the following characteriiation:

Theorem 56A connected graph G is a tree if and only if every ede is a cut edge.

Proof. Again we. need to prove two things: (1) If Gis a tree’/ then every edge
is a cut edge, and (2) if every edge is a cut edge, then G is a tree.

(1) Let Gbe a tree ‘and e an edge of G. Because G contams no cycles, e is
also not contamed\m any cycle, meaning that’ it must be a cut edge.

(2) Assume G contains\‘a cycle C. However, v’&e now know that none of
the edges of C can be a cut edge, which, means that not every edge in
G is a cut edge, contradlctlng our startmg point. O

To summarize, we have descrlbed the followmg equivalent statements (1-5)
for a graph G with n vertices and 1 edges

G is a tree, that is, it is connected and acyclic.

G is connected with n = m, 41,

G is acyclic withn = m + 1. .

There exists a unlque path between every two vertices.

G is connected and ‘évery edge is a cut edge

SR Y e

G does not Contam a cycle and adding a smgle edge creates a unique
onein G. : ~

We leave the proof of the last statement as an exercise to the reader. These
theorems together provide a handful of characterizations of trees which
will show to be useful when determining properties of various networks.
In what follows, we shall concentrate on constructing spec1f1c trees as sub-
graphs of networks. ‘

5.3 ,/Spanning trees
A/s/we’ve mentioned, a spanning tree of a connected graph G is an achclic

l,c’/onnected subgraph of G containing all of G’s vertices. It is not difﬁcult\tQ
/' see that every connected graph G has a spanning tree. Let T be a spanning.
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"._subgraph of G with a minimal number of edges. Clearly, every edge ¢ in
T is a cut edge of T, for otherwise T would not be minimal. Hence, from*"
Theorem B.6|we know that T is necessarily a tree. /

More interesting than just noticing that a connected graph G has a span-
ning tree, is finding a minimal spanning tree in a weighted connected graph
G. In other words, our goal is to find a spanning tree T with minimal
weight among all spanning trees of G. Recall that the weight of a sub-
graph H is'simply defined as the total sum of the weights of ‘H’s edges:
w(H) = Zee}g( ) w(e). A famous algorithm that efficiently constructs such
a tree was de51gned by Kruskal [1956]. g

Note 5.4 (More |nformatlon) /

By the way, Kruskal was not the first to have devised a solutlon to the minimal
spanning tree problem, which is generally attributed to the Czech mathemati-
cian Otakar Borfivka back: in 1926, even before graph, theory was “invented.” Tt
is uncertain whether there was already a solution as early as 1909. See also Gra-
ham and Hell [1985].

Algorithm 5.1 (Kruskal): Consider a.\weighted’ygmph G where each edge e has been
assigned a real-valued weight w(e) € R. Choose an edge e with minimal weight.

1. Suppose that edges Ey = {61,62, . ‘ek} have been chosen so far. Choose
a next edge ey from E(G)\Ej such that the following two conditions are
met:

(1) The induced subgmp’h Gre1 = Gl{er, ea, ..., e, exsq }] is acyclic (note
that we are not demanding that Gy 11 is also connected).

(2) The weight w(ekH) is minimal, i.e., for ull e € E(G)\Ey, we know
that w(e) > ZU(€k+1) R

2. Stop when there is no more edge to select in the previoﬁ's step.

To get an 1mpressmn how Kruskal’s algorithm works, Flgure 5.5 shows
a weighted Complete graph on eight vertices. The edges have been assigned
random weights. If we sort the edges by weight, we can see more clearly
how the algorithm works, as expressed in Figure[5.6] The resultmg tree has
a total weight of 190. ~

From this table we can also see that the algorithm is relatively eff1c1ent
we SImply need to sort all edges by their weight and subsequently 1nspect
each edge starting from the one with the lowest weight. Of course, things
gét somewhat more complicated when cycles need to be detected, yet even
“then no big issues arise. For example, when inspecting an edge e = (1,0), *
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Figﬁre 5.5: Applying Kruskal’s algorithm to finding a minimal spanning‘«tree.
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Edge | Weight | Comment
1 Selection 1: added
5 Selection 2: added
13 Selection 3: added
23 Selection 4: added
26 Selection 5: added
38 Cannot add: creates a cycle [1,7, 3, 4, 1] )
46 Cannot add: creates a cycle [1,5,7,3,4,1]."
50 Selection 6: added
~ 65 Cannot add: creates a cycle [1,5,8,7,3, 4, 1]
N 72 Selection 7: added, completing the tree
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Figure 5.6: The evalﬁa(tion of Kruskal’s algorithm on the g’faph from Figure

we need merely check whether e is joining two vertices that are already in
the same component, for in that case there would be a (u,v)-path P, thus
leading to the cycle P +e. If the two end pomts are not in the same com-
ponent, we can safely add e. Iden’afymg the components in a graph is rel-
atively easy and is left as an exercise. This also means that we can easily
check whether e connects two dlfferent components, which, together with
the fact that it has minimal weight of: the remaining edges, is enough to add
it to the subgraph constructed so far.

What remains is to show that Kruskal’s algorithm is correct in the sense
that it indeed provides us with-an optimal spanning tree. We formulate this
as the following theorem (see alsoBondy and Murty] [1976]):

Theorem 5.7: Consider @ wezghted graph G with n vertzces Any spanning tree
Topt of G constructed by Kruskal’s algorithm has minimal wezght

Proof. Thisis typlCally a theorem that we should prove by contradiction. To
this end, con51der an arbitrary spanning tree T # Tt Let 1( ) denote the
smallest index 7 such that when adding edges to Ty accordmg to Kruskal’s
algorithm, edge e; ¢ E(T). Now assume that T,p; is not optimal.and let T be
a spanning tree with maximal ((T). In other words, for any other Spanning
tree T’ ;é Topt, we have that T contains at least as many edges from Tgpt
as T'. We will now construct an optimal spanning tree T for which t( I >
«T), ‘thus contradicting our choice of T and our assumption that Topt is. not
opt1mal N
/ Suppose that ((T) = k, meaning that all edges ey, ey, ..., are both\
/edges in T as well as in T,p. It can be easily seen that the graph T + ¢
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contains a unique cycle C. Let é be an edge of C such that é ¢ E(T,), but -

"¢ € E(T). Because ¢ lies on C, it cannot be a cut edge of T + e;. This also
means that T = (T + ¢;) — & is also a connected subgraph of G, and thus
also a spanrung tree. Note that the total weight w(T) of T is equal to

w(T) = w(T) +w(ex) —w(@)

An import;mt observation is that edge e, was chosen to be one w1th minimal
weight that kept the constructed subgraph up to that point acyclic. Clearly,
the graph induced by edges ey, er,...,er_1,€1is also acyclic,/,sb that we must
conclude that w(¢) > w(ex), and hence, w(T) < w(T). This can only mean
that T is also optimal. However, because ¢ € E(T), we know that «(T) >
1(T), which contradlcts our choice of T, namely as the tree with the largest
value for ¢. O

5.4 Routingin commumcatron networks

Trees play a prominent role 1n commumcatlon networks, whose main job
is ensuring that messages are sent from thelr source to their intended des-
tination(s), also referred to as message routing. How message routing is
accomplished is laid down in a routing protocol: a collection of specifica-
tions describing exactly what to do-‘when a node in a network receives a
message from source A that is destined for node B. In general, a node in a
communication network can be viewed as consisting of several interfaces,
where each interface connects that node to exactly one other node in the net-
work. In this way, we can represent a communication network as a graph
with nodes as vertices and links between two nodes as edges. An interface
is actually the end point of a link, and its representation coincides with the
vertex representing the node to which that link is attached.

A node usually maintains a routing table. Each row in this table speci-
fies to which interface a message should be forwarded; given its source and
destination, and optionally also the interface through which it arrived. An
important function of a routing protocol is constructing these tables. This
is exactly what we established when discussing Dijkstra’s shortest path al-
gorithm in Séction each node maintained exact information on the next
closest node to which a message should be routed, including how. far a mes-
sage would still need to travel. K

Crucial for routing is that messages are not endlessly forwarded “Techni-
cally, this means that for every destination u messages should follow paths
in‘a spanning tree that is said to be rooted at u, hence called a rooted tree. In

l,partlcular and analogous to what we also mentioned in Section 3.2} rooted
/ in this case means that we are interested only in (v, u)-paths, where v 1r1d1-\\.
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cates the source node. With u being the destination node, such a rooted tree
"is also called a sink tree for u. g

5. 4 1 D1]kstra s algorithm

The issue for routing protocols is to construct these sink trees, one- for ev-
ery node in the network. A famous one is Dijkstra’s algorithm, Wthh we
already discussed in Chapter B} There, we illustrated how the’ algorlthm
works for undirected graphs. It is not difficult to see that the algorlthm also
works for dlrected graphs, and, in fact, that it can be easily formulated to
construct sink trees The only restriction we demand is that the weight as-
sociated with an arc is nonnegative. Dijkstra’s solution for constructing op-
timal routes is so 1mp0rtant that it is worthwhile also cons1der1ng its coun-
terpart for directed graphs For example, it is widely, deployed in communi-
cation networks where itis known as a link-state routing protocol (see, for
example, Moy [1995]). The. following description of the algorithm is nearly
identical to the one given in Chapter except that we now construct paths
to the root vertex u. »

Algorithm 5.2 (Dijkstra, sink tree conétructlon) : Consider a directed, weighted graph
D where weights are nonnegative, and a vertex u € V(D). We introduce the
following sets and labels: A

e Let S;(u) be the set of vertices from whzch a shortest path to vertex u has been
found after step t. g .

* Each vertex v is assigned, d label L(v) def (Ll( v), Lo (v)), in which Ly (v) is
the vertex succeeding vin the shortest (v, u)~path found so far, and Ly (v)
the total weight of that path.

o Let Ry(u)fs;(y ) ves;(u) Nin(0), with Nin(zf)\denoting the set of in-
neighbors of v. In other words, Ry(u) consists of all vertices in St(u) and
the vertices frgm where St(u) can be reached through an.arc.

1. Initialize t<— 0 and So(u) < {u}. Furthermore, for all v GV(G)

L(v)e{(u'o) ifv=u

(—,c0) otherwise

2.,/150r each vertex y € Ry(u)\S¢(u), consider the vertices N, ,(y) that a;e‘_‘out—
* neighbors of y that lie in S;(u), i.e., N, (y) % Nour (y) N St (u). Select xe
N.,.(y) for which Ly(x) + w((y, %)) is minimal. Set L(y) < (x, La(x) +.

w(e)).
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3. Let z € Ry(u)\St(u) for which Ly(z) is minimal. Set Syyq1(u) < S¢(u) U -
{z}. If S11(u) = V(G), stop. Otherwise, t + t + 1, compute Ry(u) again
and repeat the previous step.

To illustrate this algorithm, let us reconsider the graph from Figure 34} but
now Wlth its edges be directed, as shown in Figure 5.7 What we see is
that we can apply the same steps, but, of course, because the graph is now
directed, we obtain a different (directed) tree rooted at vertex 0. " Again, we
can formulate this version of Dijkstra’s algorithm in pseudo -code, which is
left to the reader /

v2(0,3)

l\/e;/(on) 4 v6

203 V5 (4.11)

v3(0,1) 4 V6 (4,9)

v2(0,3)

v2(0,3) ] V5 (4,11)

va@1), 4 V6 (4.9)

203 4 V5 (4,11) 203 V5 (4,11)

301 4 v6 (4.9) V3o, 4 V6 (4.9)

Flgure 5.7: Applying Dijkstra’s algorithm to construct a sink tree in a welghted
dlrected graph. <
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Note 5.5 (Mathematical language) /
“Despite our deliberate use of formal notations, by now it should be clear from
thg mathematical description what the principle behind Dijkstra’s algorithm i’,s'./
Every time we have completed the set S(u), we attempt to expand it by addihg
a vertex from the next ring of vertices from where S(u) can be reached,’ and
subseqUently add the vertex closest to , as shown in Figure5.8}

Figure 5.8: An illusfrgtion of the relatién between S and R.

To properly understand algorithms such as thé one from Dijkstra, it is important
to develop these type of high-level insight/,s;’r Drawings generally help a lot and
force you to translate the mathematical.concepts into simpler principles, in turn,
assisting in understanding those conceﬁig.

Although Dijkstra’s algorithrr{’is relati{?ely simple, it is not obvious that
it is also correct. We follow Goodnch and Tamassm [2002] in proving its
correctness. E

Theorem 5.8: Given a weigﬁied directed graph D. Wﬁ"en applying Dijkstra’s algo-
rithm to a vertex u, each time a vertex z is added to the set St ( ), La(z) corresponds
to the length of a shortest (z, u)-path. ~

Proof. By contradlctlon Let d(w, u) denote the total weight of an optimal
(w, u)-path and assume that for some vertex v, L (v) > d(v,1). Let z be the
first vertex that was added to an S;(u) for which Ly(z) > d (z,u). In other
words, up until and including step ¢ we have that for all vertices v € S¢(u),

Ly(v) = d(v u), but S;1(u) contains, for the first time a vertex z for which
Lo(z) > d(z,u). Because z was selected (after t steps), we know thatL,(z) <
o0 and thus that there is a (z, u)-path. In particular, there must be a shortest
(z,u)-path, say P. Let y be the last vertex on that path (from z to u) that is
nqt"in S¢(u), and x its successor (and thus in S¢(u)). By choice of z, we kr{bw
that Lo(x) = d(x,u), i.e, La(x) is equal to the total weight of an optimal

/(x,u)-path.

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft
5.4. ROUTING IN COMMUNICATION NETWORKS 5-19

When x was selected (say, at step #'), we also evaluated y and possi-
“bly adjusted L, (y) so that the value of Ly(y) is in any case at most Ly(x) +
w((y,%)),ie., Ly(y) < La(x) +w((y,%)). On the other hand, because y is.on
the shortest (z, u)-path P, x is the successor of y on P, and Ly (x) = d(x,u),
we necessarily have that Ly(x) +w((y, %)) = d(x,u) +w((y, x)) mustcorre-
spond to the length of a shortest (y, u) path, i.e. Ly(x) +w({y,x)) = d(y,u).
However, we have to realize that y was not selected to be included in an
St(u), which can only mean that L(z) < Ly(y). Because y is on a shortest
(z,u)-path, we also have

d(z,y)+d(y,u) =d(z,u)

and because d(y, u)z 0, we have

La(2) < Laly) = d(y, ) < dly,u) +d(z,y) = d(z,0)

contradicting our choice of 3, ‘Hence, the assum}'ﬁtion that there exists a z that
was added to S;(u) with Lz( ) > d(z,u) is false completing our proof. [J

5.4.2 The Bellman-Ford algo‘ﬁthm"/

An important observation is that in order to execute Dijkstra’s algorithm, we
need to know exactly what the graph looks like. In other words, we need to
know which vertices are adjacent to each other and what the weight of their
respective connecting edges are. We say that we need to know the topol-
ogy of the graph. In practice, when a node i in a communication network
receives a message intended for node v, it needs to forward that message
along the optimal sink tree for v. The same holds for any other incoming
message regardless its destination, As a consequence, node u will have to
precompute the optimal sink tree for each node in the network. In real net-
works, we therefore see that the topology of a network is first spread to all
nodes in that netWork (and, of course, on a regular basis. because networks
change). . *

Given this situation, one can ask whether it is poss1ble to compute op-
timal sink trees without having to know the topology in advance. In fact, it
is actually’ not necessary that a node needs to know a complete smk tree, as
long as it knows to which next node it should forward an incoming message
and that this forwarding is done along an optimal sink tree. A solution to
this problem was provided by several people, but is generally known as the
Bellman-Ford algorithm. It was the basis for one of the first widely ap}ﬁlied

l,rbuting protocols in the Internet, but for reasons we briefly discuss below, it
~ has been largely replaced by protocols based on Dijkstra’s algorithm. ‘
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~ The protocol can be completely described from the perspective of anode.
To this end, we proceed in rounds by letting each node v; compute the op-*"
tlmal path to other nodes based on the information that is available to v; in
that round. Let d'(i,j) denote the total weight of the optimal (v;, v}) path
that vertex v; has found after round . We denote this total weight as the
routing cost of getting a message from v; to v;. Initially, we have .~

i, j) — {0 ifi =j

oo otherwise

In other words, we let each node initially set the cost to itself to be zero, and
the cost to any other node as infinite. We now let v; ad]ust its value of dt as
follows: ‘
dt“(z ]) — kél]}]l(l’;l {w(v;, o) +d (k ])}

in which N(v;) is the collectlon of neighboring 1 nodes of v; and w(v;, vg) the
weight of edge (v;, vg). Note that as soon as dt] becomes anything else than
infinite, v; will have d1scovered\. a path to v;. In particular, after the first
round, v; will discover a path to-each of its respective neighbors, namely
the path consisting of the edge connecting v; to that neighbor. After two
rounds, optimal paths of length 2 wiILhave been discovered, and so on.

g Destznatzon

vo: | (0,20) | [ ( G v) L 3) | (6,0) | I I |
o1 [©0) [2e2) [(7,03) ] L 1 I |
v: [ (3v0) | (2,01) [(0,02) | | | (1,0s5) | | \
v3: [(1 v0) [(7 vl) [ [ (0,v3) [ [ [(4,06) [ ‘
v (6o) | ] | [ (0,04) [ (5,05)] (3,06) [ \
vs [~ [Qw) ] [Go) [(005) [ [(407)]
v | I [ (403) [ Boa) [ [ (0,06) [ (2,7) ]
o ] [ [ 1 [ (4,05) Hz,vamo,w) |

Figure 5.9: The routing tables for the nodes in the undirected version of Flgure.
after one’ round of the Bellman-Ford algorithm.

In practice, the algorithm is implemented by letting nodes exchangé“‘in—
formation found in their respective routing tables. Consider the undirected
/version of Figure Each node (which is represented by a vertex of the .
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“. graph shown in Figure[5.7) will initially know only about itself and no other

“node. After one round, the routing tables for each node will be as shown in
Flgure E We use the notation (d,v) to indicate that a path of cost d has
been found, for which messages are to be forwarded to adjacent node v.

NQW consider node v, who, after one round, has discovered pathé to vy
and v3: At a certain moment, node v, and v3 will each pass their routing
table to vl Assume that vz was first. In that case, v; learns tl‘iat v3 has
discovered-a path to node vy at cost 1. Because v; has a path to v3, it has now
discovered a- path to v at cost 8, for which it need only forward messages
to its neighbor. v3. However, as soon as v, has passed its. routing table to
v1, the latter will. discover a better path to vy, namely one. via v, and at total
cost w(vy,vy) + d(vz, vy) =2+3=5. :

Completely analogous, v will eventually pass 1ts routmg table to vy,
in which case v, will discover a path to v3 at cost- w(vz, v3) + d(vg,v3) =
3+1=4.Itcanbe reachly verified that after the second round, the routing
tables will be as shown in Figure . Note that there are two different
paths of equal cost between nodes (%] and Vs

" Destiriation

) 01 02 3 vy Us s v7
v : [ (0,00) | (5,02) [ (B02) [ (1Lws) | (6,v4) | (402) | (5,03) | \
v [(5,02) [ (0,01) | (202) [ (7,05)] | 3oy) [ (1L,03) | ‘
v2: [(3,20) | (201) [(0,02) [ (400) [ (6,05) [ (Lvs) | | (5,05) |
v3: [[(Loo) | (7,01) | (400) [ (0,03) | (Z00) | | (4,9) | (6,v6) |
(O [(6,00) [ [(6;’%)5) [(7,06) [(0,04) [(5 v5) [ (3,v6) [(5,06) ‘
vs: | (4,02) | (3,02) L/”(llvz) | | (5,v4) [.(0,05) | (6,07) | (4,v7) |
v6: [ (503) [ (1L,03) ] | (4,v3) | (3,04) [ (6,07) | (0,06) | (2,07) ]
v7: | | [ (ws) [ (6,v6) | (506) ((4,@5? ( (2,06) | (0,07) ]

Figure 5.10: The routmg tables for the nodes in the undlrected Versmn of Flgure.
after two rounds of the Bellman-Ford algorithm. y

Reconsider the routing table for node v;. Again, v, will eventually pass
its now updated table to vy, reporting a cost of d(vy,v3) = 4 of-a path it
discovéred to v3. As soon as v; obtains this information, it will have found
a beffer path to vy than the direct connection through edge (v1,v3), namely
via vs. The cost for this path are w(vy, v2) +d(v2,v3) = 2 +4 = 6. Hence, v;

/WIH adjust its routing table accordingly. Note that the only thing v; knows,
/" is that messages for destination v3 should be routed via v;. In particular, v .
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" is unaware of the length of its newly discovered path to v3, i.e., the number
"of edges of that path.
" The Bellman-Ford algorithm is particularly attractive because it allows
each\node to gradually discover optimal paths to the currently reach,able
nodes-in the network. It is important to realize that the algorithm is‘com-
pletely decentralized: all decisions that a node takes concerning optimal
routes is based entirely on local information, without the need to be com-
plete. In contrast, Dijkstra’s algorithm requires that the complete topology of
the network is first disseminated to each node before each can start comput-
ing optimal routes (i.e., sink trees). Nevertheless, the algorithm had some
serious drawbacks in practice, eventually making it less popular. Further
information on applymg the protocol in practice (where it is generally re-
ferred to as a dlstance-vector routing protocol) can be found in [Malkin
and Steenstrup} [1995].

Note 5.6 (More mformatlon) :
There is one particularly nasty problem inherent, fo the Bellman-Ford protocol.
Consider a network in which the\nodes are orgamzed as a straight line:

viov2v3 v VB e

Assume that the distance between two adjacent nodes is always 1 (ie.,
d(v;,v;y1) = 1). Eventually, the nodes w1]1 bulld the following routing tables:

Destinatie‘n

i vy V3 N Vg
vr: [ (0,01) | (o) [ 201) [ (3 /01) U rvl) | 5,v1) |
025[(101)[(07’2)[(/3)[( 3)[( v3) [ (4,03) |
03 : [(2102)"[(1102) | (0,03) | (1,74) [(2 vg) [ (3,04) |
041[(3,,03)[(203)[(/3)[( vg) | (1, 5)[( vs) |
U5 : [,(4104) [(3104) [(2 4) [( 4) [(0 vs5) [.\(‘1‘/06) ‘
% f (5.05) | (4,v5) | B,vs) | (2,05) | (Lws) | (0}‘236) \

Now suppose that the link between node v; and v, breaks. In other words, vy
can no longer directly reach v;. As a consequence, node v, will have to discover
an alternative route to v1, and “fortunately,” notices that v3 is advertlsmg that it
has a path to 1 of routing cost 2. Of course, this advertised path is [v3, vg, v1],
but this information is withheld from v,. The only thing that v, gets to know
from v3 is that the latter has discovered a path to v; of cost 2. Node v, will then
update its routing-table entry for getting to node vy with (3,v,) and advertlse\
l//that it has discovered a path to v; of cost 3. ‘
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The problem will now become clear: vz had registered the entry (2,v;) - '/
“\based on the initially advertised routing cost by v, (which was 1), and its own”/
routing cost of getting to v (also 1). Now that v, is advertising a routing Cost
of 8, v3 will adjust its entry to (4,v,), and subsequently advertise a routing cost
of 4 to get to v1. As soon as this new routing-cost information reaches’ vy, it
will ad]ust its advertised cost from 3 to 5. This process will not stop as' long as
the link ‘between v; and v, remains defect. The result is known as the count-
o-mﬁmty problem which turned out to have no easy fix. In practlcal settings,
the Bellman-Ford algorithm is used with a full advertisement of the path, al-
lowing a node. to discover whether it is part of that path, avmdmg the mistake
of choosing a path with a known broken link. :

5.4.3 A note on algorlthmlc performance

Realizing that Dijkstra’s algorlthm as well as the Bellman-Ford algorithm
lie at the heart of some of the most important routing algorithms in the In-
ternet, it is worthwhile seeing how efficient these algorithms actually are.
In particular, we can ask ourselves how long it will take to find a sink tree
as a function of the number of vertices,” As it turns out, in most cases Di-
jkstra’s algorithm will outperformthe Bellman-Ford solution. In particu-
lar, when graphs are large and have imany edges, Dijkstra will generally be
more efficient. To illustrate, Figutéshows the time to compute a sink
tree as a function of the size of the graph. (expressed in the number of ver-
tices). Figure [5.11a) shows the results for'a so-called grid graph: a graph
in which the vertices and edges are organized as in a two-dimensional grid.
Figure 5.11|b) shows the time needed to compute a sink tree in a complete
graph. Indeed, we can sée that Bellman-Ford outperforms Dijkstra’s algo-
rithm for grid graphs, but not for complete graphs:.

These results are not so surprising when taking a closer look at the num-
ber of algorithmic steps that we need to take for each algorithm. Let us first
consider Dijkstra’s algorithm. At each step t, we need to'inspect all vertices
in Ry (u)\S¢(u), after which we expand S;(u) with one vertex. If # denotes
the total set of vertices, then each step thus requires considering in the order
of 1 vertices, which we repeat 1 times. In other words, we can expect that
the compﬁtational time of Dijkstra’s algorithm is roughly proportional to
n?.
Fof the Bellman-Ford algorithm, we observe something different. At

each step, each vertex needs to inspect the information collected at each of
its’ ne1ghbors In total, the vertices needs to inspect roughly m other Vertlces
l,where m is the total number of edges. The total number of steps we need to
/ perform is equal to the length of the longest shortest path and can be shown\\.
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Dijkstra

Bellman-Ford -~

Computaﬂoﬁél time
Computational time

Dijkstra - "Bellmgﬁ-Ford

\\‘Number of vertices Number of vertiqe’é

@ ®)

Figure 5.11: The tlme needed to compute a sink tree in (a) & gr1d graph and (b) a
complete graph. \ .

to increase proportional to-the number of vertices. Hence, the computa-
tional time of the Bellman—Ford algorithm is appr0x1mately proportional to
n-m. ‘ .

We stress that these are merely back-of- the -envelope calculations. Indeed,
when considering that the minimal number of edges that we need for a
graph of 1 vertices to be connected is'equal to 1 — 1 (as we showed in Theo-
rem [5.1), we could equally argue that the Bellman-Ford algorithm will take
at least also in the order of - n — 1 ~ n? time units to complete. More de-
tails need to be considered to arriv'é at more. accurate calculations, but which
goes beyond the scope of this, text. What our calculations do show, is that
the more edges a graph has, we may indeed expect that the Bellman-Ford
algorithm performs comparatlvely less than D1]kstra s algorithm.

Note 5.7 (Mathematlcal language) »
Above, we stated that we needed to consider in the order of n vertices. This can
be made mathematlcally precise using what is known as the _big O notation,
which allows usto describe the behavior of a function f(x) for. large values of
x. The basic 1dea is that we want to capture what can be called the dommatmg
components’ of a function. For example the function f(x) = ax? +bx+cis
completely dominated by the term ax? when x becomes very large. The other
terms eyentually hardly play a role anymore, regardless how big the Constants
b and ¢ are. In fact, the form of f(x) is completely determined by the term: X2
Formally, we write f(x) ~ O(g(x)) when there exists a constant M ' >0
such that for all x > xy we have that |f(x)| < M- |g(x)|. In other words, apaljt
ffom a constant factor M, function f(x) will always be bounded by functior.
g(x) after some value xj as shown in Figure ‘
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We can also provide a lower bound for a function f(x), in which case we .|
" write f(x) ~ Q(g(x)) meaning that there exists a constant M’ such that for’
some value x(, we know that |f(x)| > M’ -|g(x)|. Note that f(x) ~ Q(g(x))if
and only if g(x) ~ O(f(x)). Finally, a function f(x) can eventually have exactly
the same form as another function g(x), or more precisely, there exist constants
M and-M’ such that for all x > xy we have that M’ - [g(x)| < |f(x)| < M*|g(x)].
In this case, we write f(x) ~ ©(g(x)). More information on computational
complexi’f‘y\can be found in [Goodrich and Tamassial [2002].

. Xp X —»

Figure 5.12: Bouﬁding the fuﬁction f(x) by g(x).

There is no doubt that the Bellman-Ford algorithm is elegant: it is fully
decentralized, nodes need only publish their routing tables when an update
occurs, and in practice it is generally just as-efficient as Dijkstra’s algorithm.
Nevertheless, the algorithm is often less popular than Dijkstra’s. One of its
major problems is that when edge weights change often, nodes need to con-
tinuously adjust their routing tables, and propagate those changes through-
out the network. If that propagation takes longer. than the time between
changes, we obviously have a problem. In the case of the Bellman-Ford
algorithm, these problems can become so serious that constructing optimal
sink trees is no longer possible, and special measures are needed. As it turns
out, Dijkstra’s algonthm is less susceptible to these propaganon issues. Both
type of algorlthms continue to play a key role in the design and implemen-
tation of communication networks. B

As a 51de note, both algorithms are considered to be computatlonally
efficient, meaning that their running time is in the order of some polynormal
functlon such as, n? or n3. In contrast, problems that require algorithms
with' a computational effort that grows exponentially in the problem size
(whlch in our examples is expressed in terms of the size of a graph), are
l,called computationally inefficient. Unfortunately, many graph problems
/ fall into this class, such as finding Hamilton cycles, or determining whether".
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» two graphs are isomorphic. A standard text that discusses these issues is
ﬂGarey and Johnson, 1979] ’
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CHAPTER 6 _

NETWORK ANALYSIS
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Up to this point we have discussed some of the more elementary issues con-

“cerning graphs. In the real world, we are often confronted with a network
and wish to examine some of its properties in order to get more insight'in
what we're actually dealing with. This is particularly true when dealing
with large networks that exhibit apparently random structures. In the fol-
lowing. chapters we will have a closer look at many of these networks, but
before d01ng so, we take a look at some of the basic techniques that we can
use to analyze those structures. o

Network analysis is an emerging field of research, often founded on the
use of various‘mathematical tools and methods (see, e.g., [Brandes and Er-
lebach|[2005]), ahd is also considered as a subarea of what"/is known as data
mining of graphs [Cook and Holder, 2007]. In the following, we consider
several metrics used.in a myriad of sciences to analyze networks. We start
with focusing on vertex degrees, followed by taking a closer at so-called
distance statistics. An important concept that is used to characterize many
real-world networks is CIustering, which is discnssed next. After that, we
pay attention to the notion of centrahty, Whlch is particularly important for
social networks. ‘ :

6.1 Vertex degrees

Perhaps one of the simplest starting points for network analysis is taking a
look at vertex degrees. As we know from Theorem. 2.4} the minimal vertex
degree is an upper bound for the vertex and-edge connectivity of a graph.
However, there are other propertles to examine through vertex degrees. For
example, using degrees allows us to identify the key players in social net-
works: those nodes with a high vertex degree.

Also, degrees, and notably degree sequences can be used to derive infor-
mation on the structure of a network. For example, if most vertex degrees
are the same, we are dealing with a more or less regular network in which
vertices have eciual roles. On the other hand, with very skewed degree
sequences, that is, sequences in which a few vertices have" relat1ve1y high
degrees in comparison to others, these high-degree vertices play the role of
hubs, of Wthh the removal may actually partition a connected network into
several components. .

Flnally, as we already discussed, if we are to test isomorphism between
two'graphs, we can start with testing whether their respective degree se-
quences are the same. If they are not, then Theorem [2.3|tells us that they
_cannot be isomorphic. In the following, we first take a look at degree distri-
~ butions, followed by a few words on degree correlations. R
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Figure 6.1: Two different graphs GAcomplex ar{d\.Gmeplex and their respective his-
tograms of vertex degrees.

6.1.1 Degree distribﬂtion

A degree sequence can often best be plotted by means of a histogram. In
that case, for a simjble, connected graph having n Verticés{ we plot the val-
ues h(d) ¥f [{v € V(G)|6(v) = d}|. In other words, h(d) is the number of
vertices having degree d. If for some value D we have that /i(d) = 0 for all
d > D, we §ifnply discard those h(d). Obviously, Zg;é h(d) :n To illus-
trate, consider the graphs in Figure which we will denote aS‘xQAmelex
and GBgypiex, respectively. From the figure, we may suspect that they are
different (and, in fact, if we consider other embeddings this difference will
be more evident), but expressing this difference may be somewhat difficult.
However, when considering their respective degree distributions, we see
;hét we are indeed dealing with two very different graphs. To complete this,
/simple analysis, we note that both graphs have 100 vertices, with the graph
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“. from Figure[6.1[a) having 300 edges, and the one from (b) having 317 edges. "

. There are different ways to visualize degree distributions. Above we
used histograms. We can also consider the fraction of vertices that have a
certain degree, i.e., draw h(d)/n. This technique is actually used to ap-
proXimate the probability P[6(u) = d] that a vertex u has degree d. An-
other techmque is to first order the vertices according to their degree, and
then plot. the degree vertex. Effectively, we consider the degree’ sequence
[d1, da, ...;dy] of a graph and subsequently plot dy for each k. To illustrate,
Figure [6.2) shows this alternative way of displaying vertex degrees for our
two example graphs from Figurel6. ;

10F .
9 [~ 12k
sl - 10} -
7t 8 -—-—

6l 6L T e
5} e 4t T e
4t - 2} .

20 40 60 80 100 S 20 40 60 80 100

(@) (b)

Figure 6.2: Visualizing the vertex degrees of GAwmplex and GBgyypley after ranking
the vertices according to their degree The y—ax1s shows the vertex degree, the x-axis
the respective vertex rank. ‘

When displaying vertex degrees, we sometimes also need to consider the
scaling of the axis. Consider the following exarnple of a 10,000-node graph,
as shown in Figure[6.3] (whlch we discuss in more detail in Chapter[7). As
in our previous example, we rank the vertices accordmg to their degree and
subsequently plot the vertex degree of each k' vertex. In Figure|6. a) we
have used a 11near scale for both axes. Unfortunately, we see that most ver-
tices have the same low degree, implying that it is dlfﬁcult to see what is
going on. :

In F1gure@b) we have used logarithmic scales for both axes. In other
words, the displayed distance between two points on an axis is proportional
to the loganthm of the actual distance between those two points. To illus-
trate, the displayed distance between x = 10 and x = 100 is the. same as
the one between x = 100 and x = 1000. The result is dramatic: ‘we can
now  easily imagine that a straight line through all the data points can be
drawn, implying that the vertex degree distribution follows some kind of
/,exponentlal function. We will return to these issues in Chapter [/} In gen—
/ eral, displaying the distribution of vertex degrees in many cases provides a*.
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Figure 6.3: leferent representations of visualizing vertex degrees (a) using linear
scales for the axes, and (b) using logarithmic scales. .

lot of information, and we shall make use of this tedinique quite often.

Note 6.1 (More |nformat|on) \
In many cases, being able to chsplay a vertex degree distribution allows us to
more adequately apply a technique known-as curve fitting. This is a well-
known statistical technique by which we, fry to find a (continuous) function
f(x) through a set of data points, such. that the total error we make is minimal.
To explain, consider the degree sequence [d1, da, ..., dy). In this case, we have
n data points (k,dy). When finding a suitable curve through these data points,
we will be generally looking for a relatlvely simple function f(x), in turn im-
plying that we will not always have an exact fit for every data point. In other
words, for every value of k ther'e will be a difference between f(k) and di. In
practice, we then try to f1nd a function that mlmm}zes the so-called least square
error €:

€= kZ (dx *f(dk))z

=1 \

Other error metrics aré also possible. Most packages for\'d\ata analysis or data
plotting have facilities on board for simple and often also advanced curve fit-
ting. We will not, delve into any further details. More 1nformat10n on the tech-
nicalities can be found in [Judd et al., 2009]. -

6.1.2 Degree correlations

Be81des ]ust displaying vertex degrees, we are often interested to what ex-
tent vertices of the same or different degrees are also joined. For example

in social networks high-degree vertices seem to generally be joined to each
other, whereas in many technological networks, high-degree vertices are
’,f’]omed with low-degree ones [Newman)2002]. The underlying phenomenon *.
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that we are dealing with is that in real-world networks we often see that sim-

“ilar nodes tend to link to each other, or, in contrast, that there is a tendency'
for dissimilar nodes to have links. The extent to which this phenomenon
occurs is known as assortative mixing. Similarity is defined by all kinds
of network—specrﬁc properties: the subject of Web pages, the preferences or
taste of. people, the number of shared files in peer-to-peer computer net-
works, etc. These properties are normally not captured when modeling
real-world networks. At best, we can assign a type to a vertex and then
ask ourselves to what extent vertices of the same or different type are joined
(asis discussed by Newman| [2003b]). s

A much srmpler approach is to consider only the Vertex degree and to
measure the degree correlation between the respective, degrees of two adja-
cent vertices. Informally, the correlation between two variables x and y tells
us to what extent we ‘can expect that if we see a change in x, we will also
see a change in y. If the correlation is positive, then an increase in x should
show us also an increase in y. In the case of a negative correlation, an in-
crease in x will show a decrease in the value of y. It is important to realize
that we are dealing with observed changes. In other words, x and y are two
observable variables such as humldrty and the growth of a plant in the case
of a biological system. R

Formally, correlation is defmed through what is known as a correlation
coefficient: 2

Definition 6.1: Let x and y be two stochustzc variables, for which we have a series
of observation pairs (x1,Y1), (xz,yz) (xmyn) The correlation coefficient
r(x,y) between x and y is defined as:

r(x, y) def 2 L (6 —X) (]/‘t—?))
\/ Y (3 — %) ~\/%Z?;1<yi—y)2

7 : def 1 def 1
where X is the avemge over the x;’s: % 9¢ =Yg xg, and szewzse vE Y v

Note that the expressron for r(x,y) can be slightly snnphﬁed to

(.X ]/) dﬁf Zl l(( )(yl y))
\/Ez 1xl—x \/Ez lyl )

Note 6.2 (Mathematical language)

If'you have never seen formal definitions of correlations before, they can
,,/be quite intimidating. For our purposes, it is merely important that you
“ have some intuition of where they come from. First, consider the expression‘*x\
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Y ((xi = X)(y; — ¥)). Each term (x; — X) measures to what extent the observed

“value x; deviates from the average observed values of x. If x and y are positively
cbrrelated we would expect to see that each product (x; — X) (y; — y) would also
be posmve (and certainly nonzero). In essence, the only thing that we are domg
is 51mply computing the average over all these products, for which reason we

divide the sum by the total number of observations, n. A

So what are these terms in the denominator? As we just mentioned, (xl —X)
measures the deviation of x; from the average over all observations. In order
to truly comf)are such deviations, we need to normalize our measdrements In
other words, we need to make sure that the ranges of values that We are compar-
ing are more or less the same, otherwise we will be biasing our measurements
towards the Varlable with the largest ranges. One approach is to simply divide
our observations by the average deviation, that is, 1 Z(Jgi"? X). However, for
reasons that are beyond the scope of this text, it is common practice to use a

different “average,” narr{ely 1 Z(xl- —¥)2, which is’/ known as the standard
deviation. /

It should be noted that thls .explanation does not do just to the mathematical
statistics underlying the deflmtlon of the correlatlon coefficient. In fact, the defi-
nition should actually be fine- tuned More 1nformat10n can be found inMandel
[1984] or[Judd et al.|[2009]. !

Taking this formal definition of correiation as our basis, we can now de-
fine the correlation between vertex- degrees To this end, we make use of a
graph’s adjacency matrix A. Recall that for.a simple graph G with vertex set
V(G) = {v1,v2,...,04}, Ali, ]] = 1if there is an edge joining vertex v; and
vj, and otherwise A[z jl=0..

Definition 6.2: Let G be a szmple graph with degree sequence d=[dy,dy, ..., dy]
and adjacency matrix A. /Let V(G) = {vy,0y,.. .,vn}\be such that 6(v;) = d;.
The degree correlation ofG is defined as:
def 1 1 2;1 i+1 ((d a) (d] - E) ’ A{Z’]D

Yit(di —d)?

where d denotes”the average vertex degree, i.e., 1 YU, d;.

rdeg(G)

The snmlarlty between r(x,y) and rdeg(G) should be obV10us ‘Except for
the use of the adjacency matrix, it is seen that the form of the respective
nominators is virtually the same, with d essentially replacing both x and
y in r(x y). That the same holds for the denominator can be seen when
conmdermg that k

\/ Y (d; —d)?- \/ Y (di—d)?2 = Z(d —d)?
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Note 6.3 (Mathematical language) }
. Note how we used the adjacency matrix A to elegantly sum up all possible”/
\edges between two vertices, but discarding those that are not part of G. An

equlvalent yet more concise notation is the following: /

def Z]>l(( d) (d] _7d) : [1’]])
Zl 1 (d - d)Z }
in wh1ch case we assume that the exact values of i and j are clear from the
context in Wthh the summation is used. ya
For an alternatlve notation in which the adjacency matrix, is not used at all,

we assume that the edges in G are indexed such that ¢; ] E(G) if and only if
(1) there is an edge joining vertex v; and v}, and (2) i > ] Thls brings us to:

s e (6~ D)@ - D))
- )2

Tdeg (G)

“‘@(G)

The drawback of this notatiOx} is that it is less e)(plicit in exactly which vertex
degrees we should take into account. On the other hand, you could argue that
it expresses more concisely what degree corrélation is.

An even simpler metric for cap’glifir}g vertex correlations is proposed by
Li et al|[2005] who define the scale-freeness of a graph:

Definition 6.3: Let G be a simple g’ﬁzph with degree sequence [dy, dy, ..., d,] and
adjacency matrix A. Let V(G).= {v1,vz,...,0,} be such that 6(v;) = d;. The
scale-freeness s(G) of G is defined as

Q=% L (e AlL),

An important observation is that s(G) is maximal when high-degree ver-
tices are conneéted to each other. In other words, the scale—fl:eeness is larger
when hubs are attached to other hubs, forming a kind of cluster. However,
the drawback of the form just given, is that it makes it difficult to compare
graphs w’ith each other. Therefore, we again need some kind of normal-
ization: This can be achieved by considering what the maximal attamable
scale~freeness is for all graphs with the same degree sequence:

Deflnltlon 6.4: Let G be a simple graph with degree sequence d = [dy, da, .. dn]
_and adjacency matrix A. Let V(G) = {v1,vy,...,0n} be such that 6(v;) = d;.
/" Let G(d) be the collection of graphs with degree sequence d. The normuhzed\
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scale-freeness S(G) of G is defined as

T X (di-d))

S(C) = S (H)[H € G(d)T

Of course the problem in this case is to find the maximal scale-freeness,
which boﬂs down to finding a graph H having degree sequence dand a
maximal Value s(H). The procedure is too involved for our purposes, and
the interested: reader is referred to|Li et al.| [2005] for further infbrmation.

6.2 Distance \s\tatistics

Besides vertex- degree distributions, various distance: statlst1cs form an im-
portant class for network analysis. The distance between two vertices v and
w in a graph is expressed in terms of the length of the shortest path between
vand w. : :

Definition 6.5: Let G be a directed or undirectedﬁ graph and u,v € V(G). The
(geodesic) distance between u and- v, denoted as d(u,v), is the length of a shortest
(u, v)-path. ;

Note that we have given an alternative definition for distance: in the case
of weighted graphs, the distance between two vertices u and v is generally
defined in terms of a (1, v)-path hav1ng rn1n1ma1 weight. The length of such
a path, however, need not be minimal. In practice, which type of distance is
meant is generally easy to understand from the context in which it is used.
Furthermore, we discussed in Chapter [j] how to compute shortest paths,
and demonstrated that there are efficient ways to find those paths. Note
that in an undirected graph d(u,v) = d(v,u), but that this need not be the
case for a directed graph.

What can we learn from distance statistics? Agaln they can be used
to see to what extent two networks are different or not. but also to give
an indication of the relative importance of each of the nodes in a network.
Let us first consider a few simple metrics (see also [Brinkmeier and Shank,
2005]). The eccentricity of a vertex u tells us how far the farthest vertex
from u is posrtloned in the network. The radius of a network, deﬁned as the
minimum’ over all eccentricity values, is an indication of how dlsseparate
the vertices in a network actually are. Finally, the diameter 31mply tells
what the maximal distance in a network is. Formally, we have:

Deflnltlon 6.6: Consider a connected graph G and let d(u,v) denote the dzstance
between vertices u and v. The eccentricity e(u) of a vertex u in G is defined as.
smax{d(u,v)[v € V(G)}. The radius rad(G) is equal to min{e(u)|u € V(G)}.
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Finally, the diameter of G is the maximal shortest path between any two vertzces
"‘xdzam(G) max{d(u,v)|u,v € V(G)}. '

Note that these definitions apply to directed as well as undirected graphs

Although the diameter gives us useful information, it may not be power-
ful enough to discriminate among graphs. An equally important and related
metric for network analysis is to consider the distribution of path lengths.
In partlcular The average distance between vertices can prov1de useful in-
formation. g

Definition 6.7:\L‘et G be a connected graph with vertex set V, anﬁ let d(u) denote
the average length.of the shortest paths from vertex u to any ot,ld'ér vertex v in G:

) duv

veV v#u

N 1
n_\d(u) def V=1

The average path length d (G ) is defined as
def d‘».u = — d(u,v
i ZV W=, 2,

u,veV,u#v

The characteristic path length of G\“is\ deﬁned as the median over all d(u).

Note 6.4 (Mathematical Ianguage) .

Recall that the median over a set of n nondecreasmg values x1,xp,...,Xy is
equal to x(, 1)/, in case n is odd If n is even, the median is often taken equal
to (x,/2 + X, 241)/2. In other words, the medlan separates the higher values
from the lower values into’ two equally-sized subsets. As we shall see later, the
characteristic path length is particularly important when dealing with networks
with only a few high- degree vertices and many low- degree vertices.

Note 6.5 (More |nformat|on)
Why even bother about the characteristic path length? The problem with the
average path length is that its computation becomes quite cumbersome for very
large gra,phs As we explained in Chapter [5] the time to compute all shortest
paths to a given vertex following Dijkstra’s algorithm is roughly proportlonal
ton ,w1th n being the number of vertices. In order to compute the average path
length we need to compute the shortest paths between all pa1rs of vertices, of
which the computational effort is proportional to roughly 1%, It is not dlfflCult

o imagine that for large graphs, with, say more than a few thousand vertices,

* this can indeed be rather time-consuming. To illustrate, such a computation‘*x\
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) .. for a 10,000-node network can easily take tens of hours on a modern desktop
“‘Computer /
. As an alternative, we can also try to estimate the average path length. As it
turns out, there are extremely efficient techniques to do this for the Characterlstlc
path length, but not for the average path length. Considering that for many
cases the two metrics return approximately the same value, con31der1ng the
characterlshc path length is often preferred. ’

Let us cor151der these metrics for the graph Ggipipie shown in Figurel6.
Regarding the eccentr1c1ty of each vertex and average distances between
vertices, these can be easily derived by considering the length of the shortest
paths between pairs of vertices, as shown in Figure 64 E As a consequence,
the radius of the graph is equal to 5, whereas the diameter is equal to 9.
Likewise, we can compute the average path length of the graph to be 4.29.
By ordering the average path lengths of the vertices, we obtain the sequence
[3.17,3.50,3.67, 4.00, 4.33, 5.33, 6 OO] from whtch we compute the character-
istic path length to be 4.

1 5  Vertex

1.2 3 4 5 6 7 e(u) du)

ﬁs 1 001 5 3 3 7 2| 7 350

7N 7. 2 1°0 5 2 4 7 3| 7 367

4 % 3 5 5 0 7 4 2 3| 7 433
oo . 4 3 227 0 6 9 5| 9 533
5 /5>. 5 3 44 6 0 6 1| 6 400

\4'2 6 6 7 7 2.9 6 0 5| 9 600

8 7 2 3 35 1 5 0| 5 317

Figure 6.4: The distance between vertices of the graph Gs,m ple (left) and the resulting
eccentricity and average path lengths.

To complete thié section, for our graphs from Figure|6 we find the fol-
lowing values for these distance metrics, again illustrating that we are in-
deed deahng with two very different graphs: .

Metric GAcomplex GBcomplex

Average eccentricity 4.59 4.09
Radius 4 3
Diameter 6 5
Average path length 2.96 2.67
Characteristic path length 2.95 2.63
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6.3 Clustering coefficient

Another, often used metric is what is known as the clustering coefficient.
T}{e\ idea behind this coefficient is rather simple: we want to see, for a gii/en
vertex v, to what extent the neighbors of v are also neighbors of each-other.
In other words, to what extent are vertices adjacent to v also adjacent’to each
other. Before we delve into all kinds of formalities, let us brleﬂy consider
why measurmg clustering is important. g

6.3.1 Some effects of clustering

A common way toward spreading information is snnply havmg a node up-
date its neighbors. Inﬂturn, neighbors can inform theirneighbors, and so on.
There are many variations to this model, such as having a node select only
one or a few of its neighbors, or deciding to stop spreading updates when it
notices that a selected neighbor already has the information. Informally, this
type of dissemination is often described in the form of gossiping models,
also known as epidemic dissemination [Eugster et al., 2004]. The model is
very general: instead of information we can also consider spreading of dis-
eases, but also viruses over the Internet. Another example is that of forming
of opinions, which often depends on what the majority of your community
thinks. We shall return to these issues in more detail when discussing peer-
to-peer networks in Chapter[§] .~ -

When considering real-world networks, we often see that they are orga-
nized as a collection of interconnected groups. In terms of social networks,
this means that we can often clearly distinguish communities of nodes with
many links between its members, yet relatively few links between nodes
that belong to different communities. Actually indicating which nodes be-
long to which commulﬁties may not be easy at all, Also, nodes generally
belong to more than one community. However, we can express the existence
of communities by 1 ‘means of a clustering coefficient. As shown by Xu and
Liul [2008], it turns out that there is a clear relationship between the speed by
which information is disseminated in social networks and the clustering co-
efficient: the hlgher the degree of clustering, the slower the dissemination.
To a certain’extent, this result may seem quite obvious, but from a formal
(i-e., mathematrcal) point of view, it turns out to be not so trivial:.

What this means is that if we want to design a dissemination protocol,
we may need to take special measures in highly clustered networks in order
to guarantee a certain performance regarding the dissemination speed This
alone has been enough reason for researchers to define and measure the

l,clustermg coefficient of a network.
~ Besides this reason, measuring the clustering coefficient obviously al-\.
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lows us to simply compare different networks, without necessarily wanting
‘to make use of the actual values of the respective coefficients. In this sense,*'
clustermg coefficients can help in classifying networks.

6.3. 2 Local view

We first cons1der clustering from the perspective of vertices, as orlgmally
introduced by Watts and Strogatz [1998]. From this so-called local view,
the best clustering that we can achieve is that all neighbors are adjacent to
each other. In'other words, the neighbor set N(v) of v forms a complete
graph. Letting 11, = |N(v)|, we know that N(v) will havé a maximum of
(%) = Ino(no — 1)‘edges For the clustering coefficient, we then simply take
a look at the ratio between the actual number of edges and the attainable
maximum.

Definition 6.8: Consider a \simple connected, undirecte’ﬁ graph G and vertex v €
V(G) with neighbor set N (v):. Let ny = |N(v)| and iy be the number of edges in
the subgraph induced by N(v), i.e., m, = |E(G [N (0)])|. The clustering coeffi-
cient cc(v) for vertex v with degreg o(v) is deﬁned as

ce(o) de! {m”/("”j‘f A if8(0) > 1

- undefined otherwise

Note that we require that a vertex’ is ad]acent to at least two other distinct
vertices. Taking this into account the clustering coefficient CC(G) for the
entire graph is defined as the average over all (well defined) clustering co-
efficients of its vertices:

Definition 6.9: Consider a szmple connected graph G Let V* denote the set of
vertices {v € V(G )|(5( ) > 1}. The clustering coeﬁicwnt CC(G) for G is
defined as 8

CC(G) f ! Y cc(v)
. ‘V*| veV* .
This notion of clustering can easily be extended to directed graphs, in which
case we merely need to distinguish the case that we have an arc (v, @) from
v to w from'an arc (w,d). The neighbor set N(v) of a vertex v will have a
maximum number of 2 - (') = ny(n, — 1) arcs, i.e., twice as many arcs in
comparison to the number of edges in the undirected case. This brings us
to:

Defiﬁition 6.10: Let D be a simple connected, directed graph D. Consider Ue}“tgx
v’ € V(D) with neighbor set N(v). Let n, = |N(v)| and my be the number of
/arcs in the subgraph induced by N(v), i.e., my = |A(G[N(v)])|. The clustering .
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coefficient cc(v) for vertex v with degree 5(v) = 6;,(v) + Sout () is defined as

ce(v) def {mv/(z- (%)) = nv(nmv”_l) ifé(v) >1

- undefined otherwise

In our definition for the clustering coefficient of a graph we did not make a
distinction between directed and undirected graphs. Indeed, the definition
stays the same. /

Now conSIder the case of a weighted, undirected graph As we men-
tioned, the clustermg coefficient indicates the extent to which nodes in a
network form (more or less) closed groups. If weights represent the inten-
sity by which, for example, interactions take place, then weights are also
indicative for the strength, or closedness of a group: This reasoning moti-
vated Barrat et al. [2004] to introduce a weighted clustering coefficient. To
this end, rather than merely considering the degree of a vertex v, they first
take into account a welghted form of the vertex degree, called the vertex
strength: A :

Definition 6.11: Consider a simp.\le.\weighted/,ii’ndirected graph G with vertex set
V(G) = {v1,v2,...,vn} and adjacency matrix A. The vertex strength o(v;) of
vertex v; is defined as the total sum of theweights of edges incident with v;:

[N

o(0r) 4 i’%u«%}z,v]» Alij

g

We can now define the weigﬁted clustering Ceefficient as:

Definition 6.12: Consider a szmple weighted undzrected graph G with vertex set
V(G) = {vy,0,,.. vn} and adjacency matrix A. The weighted clustering
coefficient cc(v;) of vertex v; is defined as: ~

(£ (ol +wlen)-Alij-AlLK-AlK
def’/ ¢ s, k€E(G)

ce(vy) = 2-(7(01')((5(0,4)71) lf‘s(vz) >1
/ undefined othe?wise

where i is the edge joining v; and v;.

We leave it as an exercise to the reader to show that in the spec1al case that
all weights are equal to 1, the weighted clustering coefficient is equal to the
Clusterlng coefficient for an unweighted graph.
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) . Note 6.6 (Mathematical language) /

“The notations used for the last clustering coefficient may appear somewhat in-
tricate. Let’s inspect them a bit further. First note how we have again con-
Vemently made use of the adjacency matrix to simplify our notation. In the

expressmn
n

o(v;) €Y w((v;,0)) - Ali, f]
. =1 ;

Ali,j] will be _equal to 0 when there is no edge joining vertex v; aﬂd vj, effec-
tively meaning that we will be ignoring the term w((v;, v;)) (recall that for a
nonexistent edge e, weletw(e) = o). An equivalent def1n1t1ony could have been
formulated using ‘the neighbor set N(v) of vertex v, leading th:

o) Y w(()

Z)]‘EN(Z),)

Somewhat more compﬁeated is the actual expres,s”ion for the clustering coef-
ficient in a weighted undirected graph. In this case, the product A[i, j] - A[i, k] -
Alj, k] in the nominator effectlvely allows us to’ consider only those cases in
which vertices v;, v, and vy are. all pairwise, ]omed ie., forming a complete
subgraph. For this triangle, we are actually interested in the edge joining v;’s
neighbors v; and vy. The weight that we as51gn to the fact that these two neigh-
bors are ]omed is determined entirely- by how important v; and vy are to v;,
which is expressed by the respective, weights of the edges ¢;; = (v;,v;) and

ejx = (vj,vr). In the end, the 1mportance of the adjacency of vj and vy for v; is
simply expressed as the weight w(el i)+ w( k)

A few other observations may further help understand the definition of
cluster coefficient for weighted graphs. Note that because of the unordered
way we are summing over edges we will actually be considering all pairs of
edges incident with v; tw19e and thus also the trlangles at v;. This explains the
factor 2 in the denominator. Finally, the division by the strength of v; will now
put a relative weight on‘the importance of two of v;’s neIghbors being adjacent,
allowing the clustermg around different vertices to be compared to each other.

6.3.3 Global view

As explamed by Newman|[2003a] there is a reasonable alternatlve definition
for the Clustermg coefficient based on the number of triples and trlangles in
a graph G, which are defined as follows: )

Deflnitlon 6.13: Consider a simple, undirected graph G and a vertex v € V(G)
A trlangle at v is a complete subgraph of G with exactly three vertices, mcludmg
v A triple at v is a subgraph of exactly three vertices and two edges, where v is,
/incident with the two edges.
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We will use the notations 1, (v) to denote the number of triples at v, and

“n(v) the number of triangles at v. Likewise, we can consider the total num<
ber 115 (G) of distinct triangles of a graph G and its number 15 (G) of dlstmct
triples. We define the transitivity of a graph as follows:

Defin\i*tinon 6.14: Let G be a simple, connected graph with nx(G) distinct ﬂtv*rz/'angles
and np (G) distinct triples. The network transitivity T(G) is defined as the ratio
1a(G)/n4(G).

Network tran51t1V1ty is considered a global view on clustermg, as it consid-
ers the network as a whole instead of the situation local to vertices. To illus-
trate these two approaches, let us return to graph Gsimple, from Figure (6.4} It
is not difficult to see that for each vertex we have the followmg

Vertox 12 3 4 5 6 7
cc: 1/3 0 1/3  undefined 1 1 1/3
na: 3 3. 3 0o 1 1 6

This leads to a clustering ceefficient of CC (Gs,mple) = 3/6 for the graph
itself. Regarding the tran51t1V1ty, we need to first count the number of trian-
gles, of which there are only two. The total number of distinct triples is 17
(by simply summing up 714 (v)), Wthh means that T(Gjppre) = 2/17.

This method can, of course, also be applied to our larger examples from
Figure[6.1} for which we find: ’

Metric GA‘gomplex GBcomplex

Clustering coefficient 0.209 0.049
Transitivity 0.064 0.019

The difference between clustering coeff1c1ent and network transitivity
is subtle, yet important to make, if only for the reason that different com-
munities often loosely speak about the clustering coeff1c1ent of a graph G
without making clear whether they mean CC(G) or T(G). In the case of
social networks, the clustering coefficient of a graph is also known as the
network den51ty, which is formally defined as follows [Hage and Harary,
1983; Wasserman and Faust} [1994]:

Definition 6. 15 Consider a simple, undirected graph G with n vertices: and m edges.
The network density p(G) of G is defined as m/ (3). ‘

In other words, the network density tells us to what extent a graph is com-
pleté or not, which is intuitively what we also used for defining the cluster-
ing coefficient. However, it is fairly easy to see that the network density“‘and
l,clustermg coefficient are not the same, which we leave as an exercise to the

/" reader.
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‘. Note 6.7 (More information) |
“The two notions of clustering are clearly related, especially when Considering//
that we can also define the clustering coefficient of a vertex in terms of tr1ang1es

and trlples Clearly, we have

ce(v) = Zi((z)) and also na(v) = (5(20))

Furthermof‘e( it should also be clear that
‘ 1
() =3 ¥ na(0)
veV*
to account for the féi'ct that each triangle is counted three/,tiﬁmes if we consider
each vertex of the graph. However, only in special cases will we see that

na(G) ZQ‘A&(U) an e na(v
Taa©) mme M 9T (i)

are equal.

y

Figure 6.5: A graph w1th different clustering coefﬁClent and transitivity.

The difference between the two metrics is also 1llustrated in Figure 6.5 . Let Gy
be the subgraph induced by vertices {x, y,01,0y, ..., 0% }. It is not difficult to see
that for every subg;aph Gy we have ~

2

1 ifu=ov;forl <i §k
celu) = oy Tl SiRk
= m Uy =xXx0ru—= y

k
05-k(k+1)

As a consequence, we see that

1 2 +k+4
- 2. 4k 1)==-—""17
/ cc(e) k+2( k+1Jr ) k2 +3k+2
a}r{athus
klimCC(G):
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| To compute network transitivity, we need to count the number of triangles, -
“xxwhich is equal to k. With np (v;) = 1 and np(x) = np(y) = (kgl) = %k(k—i— 1),
we find that

k 1
W) = s Rk Dk k+2
and tﬁus
lim 7(G) = 0

We can extend the notion of transitivity to weighted, graphs following
an approach suggested by |Opsahl and Panzarasa| [2009]]. In this case, we
need to assign a weight to triples and triangles, after which we compute the
transitivity of a graph by considering the ratio of the ‘cumulative weights on
the triangles and that of the triples. Let us start w1th defining precisely what
the weight of a triple or trlangle is.

Definition 6.16: Let G be a szmple undirected welghted graph and consider vertex
v € V(G). If H is a triple or a'triangle at v wWhere edges ey and ey are incident
with v, then the triple weight wx(H) and trzungle weight wy (H), respectively
is equal to the average of the weights of ey and ey, i.e.,

wa(H) % L (wler) +wlen)) and w0 (H) % L uer) + w(e)

In principle, the triple of trianglé weight\\can also be defined as, for exam-
ple, max{w(e;), w(e2)}, but we shall not con51der such details here. Using
these definitions, we can thén define the translt1v1ty of a weighted graph as
follows. :

Definition 6.17: Let G lge'/a simple, undirected weight\éd\ graph with Hy its set of
triangles, and Hy its set of triples. The network transitivity T(G) is defined as

L wa(H)
T(G) def HeHp

T L wa(H)

HeHp

Note that thls definition is identical to that of transitivity in an unwelghted
graph when setting weights equal to 1.

Fmally, Opsahl and Panzarasa|[2009] extend their definition of trans1t1v—
1ty to directed graphs, be they weighted or not. In this case, they 51mply
use the same definition of weights for triples and triangles, respectively, but
l,restrlct the enumeration of these subgraphs to so-called nonvacuous trlples
/ and transitive triangles:
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" Definition 6.18: Consider a (strict) directed graph D. Let H be a triple at v, with
‘its neighbors u and w in H. H is a nonvacuous triple if either (i1,9), (v,0) €~
A(H) or (w,9), (v,11) € A(H). If H was a triangle at v, then H is transitive if
A(H) = {(w,3), (0,%), ()} or A(H) = {(w,3), (0,11), (w, i) }. ’

In other words, H as a triple is nonvacuous if there exists either a, ( u,w)-
path via'v or a (w, u)-path via v, and H as a triangle is transitive. if w can
be reached from u both through an arc (i, @) and a path in H via v, or u
can be reachied from w through an arc (w, 1) and a directed path through
v. Figure \“shows all possible (non)vacuous triples and /(/r’ion)transitive

triangles. .

Vacuous Non-vacuous Vacuous /  Non-vacuous

Non-transitive Transitive ;?’(Non-transitive Transitive

Non-transitive Tfansitive Non-transi.tiye Transitive

Figure 6.6: (Non)vacuous trlples and (non)transitive trlangles at (the marked) ver-
tex v. \

We will often use the clustering coefficient or network transitivity to
compare dlfferent random graphs. Both metrics are used.in practice, yet
computing network transitivity for large graphs can be somewhat ineffi-
cient provided special measures are taken. We will not go into'details here,
but will return to various examples when discussing concrete examples of
random graphs throughout the remaining chapters. ~

6.4/,/"/Centrality

Ahother important metric for network analysis is deciding on whether thefe\
/are any vertices “more important” than others. The importance of a vertex "
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is, of course, dependent on what a graph is actually modeling. For exam-

“ple, when dealing with networks representing relationships between peo<
ple, a vertex with a high degree may characterize an influential person,xTn
a communication network, however, the importance of a vertex may be de-
termined by the number of shortest paths of which it is member, for in that
case it may be an indication of its workload regarding processmg and for-
warding’ messages.

In network analysis, this concept of importance is referred to as central-
ity [Kotschutzki et al},[2005]. Perhaps one of the simplest not1ons of central-
ity is 1dent1fy1ng the center of a graph. It is formed by those vertices whose
eccentricity is equal to the radius of a graph: :

Definition 6.19: Conszder a (strongly) connected graph G. The center C(G) of
a graph G is the set of vertices with minimal eccentnczty, ie, C(G) ¥ {v ¢

V(G)le(v) = rad(G)}.

Intuitively, a vertex is at the center of a graph when it is at minimal distance
from all other vertices. Usmg the eccentr1c1ty of a vertex u, we can then
define its centrality as: :

Definition 6.20: Consider a (strongly) connected gnzph G. The (eccentricity based)
vertex centrality cp(u) of a vertex u-€ V(G) is defined as 1/¢e(u).

All vertices in the center of a graph have maximal centrality, whereas indeed
all vertices at the “edges” of a graph have very low centrality. Returning to
graph Ggjyple from F1guren we ‘find that the center consists only of vertex
7. With some computational effort, it can ‘be shown that graph GAoyprex
from Figure|6.1] E 1/has no less than 43 vertices in 1ts center, whereas GBopplex
has only two vertices in the center. "

Eccentricity can be used for determining whether certain functions in
a network have been optlmally placed. For exarnple, when deciding on
placing certain bu1ld1ngs in a city, we may want to take into account that
those buildings should be conveniently reached, such as fire stations. In
effect, the dec151on is to place certain functionality withirt. a spec1f1c range of
all nodes. ’ B

Eccentr1c1ty measures the maximum distance to any other node in a net-
work. In some cases, it is more important to know how close anode is to all
other nodes This means that we need to take into account all the distances
from one node to the others. In that case, we simply take the total. dlstance
of one ‘node to every node into account:

Deflnltlon 6.21: Consider a (strongly) connected graph G. The closeness cch‘(‘u\) of
avertex u € V(G) is defined as cc(u) ¥ 1/ (Lyey(c) d(u,0)). “
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Returning to our example, it is clear that a fire station should be close to
‘any arbitrarily chosen node. In that case, we want to optimize on the trav-"
eling distance when a fire breaks out. However, matters become different in
the case of services that need to be accessed simultaneously from different
nodes; such as with hospitals, a town hall, shopping centers, and so forth.
This is where closeness comes into play. In those cases, we want to-place a
service conveniently close to as many nodes as possible, which is clearly a
different criterion than minimizing the maximum distance that needs to be
traveled.

For Gszmple we find the following values for the closeness of its vertices.
Although vertex 7 forms the center of Gsimple, it is not the vertex closest to
all others, which is Vertex 1.

Vertex 1 2 3 1 5 6 7
Y, ) 21 2 2 32 24 3 29
cc(u): 0048 0045 0037 0031 0.042 0027 0034

Note that comparing closeness between vertices of different graphs may
not be very useful. For example; when considering unweighted graphs, we
see that the closeness of a vertex: decreasés as the graph consists of more
vertices. For this reason, comparing. the closeness of vertices is useful only
relative to a given graph.

Vertex centrality and closeness are both related to the reachability of a
vertex, and as such may indeed mdlcate the importance of a vertex. How-
ever, we have also seen another type of 1mportant vertices, namely cut ver-
tices, whose removal actually: ‘partitions a graph One can argue that such
vertices form the center of a’'graph. Based on this observation, notably re-
searchers in the social sciences have introduced ‘what is referred to as be-
tweenness. The basic idea is simple: if a vertex lies.on many shortest paths
connecting two other vertices, it is an important vertex. The reasoning is
that the removal of stuch a vertex will directly influence the cost of the con-
nectivity between, other vertices, as other (i.e., longer) shortest paths will
have to be followed Formally, we have: g

Definition 6.22: ‘Let G bea simple, (strongly) connected gmph Let S(x,y) be the
set of shortest paths between two vertices x,y € V(G), and S(x,u, ) € S(x,y)
the ones that pass through vertex u € V(G). The betweenness centrality cp(u)
of vertex it is defined as

y [S(x,u,y)

= L TSl y)

Note that because G is (strongly) connected, |S(x,y)| > 0 for all pairs of
/distinct vertices x and y.
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. In the following chapters we will apply these and other metrics to spe-
“cific types of graphs. As we’ll see, more metrics can be defined to differ<
entiate and characterize graphs, but many of these metrics are more easﬂy
explamed and motivated given the specific context in which graphs and
networks are used to model real-world situations. /
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CHAPTER 7 _

RANDOM NETWORKS
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" Up to this point we have largely covered the core of traditional graph theory.

" This core contains material that is mainly related to well-structured graphs,y
often of limited size, which is used for the type of applications we have
dlscussed in the previous chapters. We now draw our attention to athher
type of graph for which the theoretical foundations were laid downi in the
late 1950s by Paul Erdés and Alfréd Rényi, namely graphs that were con-
structed by randomly adding edges. The field remained somewhat esoteric
until the turn of the century when scientists began to discover that many
natural phenomena could be described in terms of random graphs. This
eventually lead to a boost in research on what have been coined complex net-
works, research that is found in a myriad of fields, ranging from neurology
to traffic managefnent to communication networks. Not without reason,
this research is often referred to as the new science of networks [Barabasi, [2002;
Buchanan) 2002} Watts, 2004; [Lewis} 2009]. ,

In this chapter, we Wlll take a first look at thesé random graphs (or ran-

dom networks as they are more often called). It is also here that this book
starts deviating from more frgditional texts on"graph theory.

7.1 Introduction

Intuitively, a random network is a (snnple, connected) graph G in which
pairs of vertices are connected by some probability. In general, this means
that we start with a collection of # vertices and for each of the (3) possible
edges, we add edge (1, v) with.some probablhty Puv- In the simplest case,
Puv is the same for every pair, of distinct vertices 1 and v.

Initially driven by curiosity only, random networks are now considered
to be important for the SImple reason that they allow us to model many
real-world phenomena .

Spatial systems: In_r’nany cases, real-world networks have a spatial dimen-
sion in the sense that there is some notion of distance between nodes.
Examples include railway networks, airline netwdrks, computer net-
works, electr1c1ty networks, and neural networks. Modehng such net-
works as graphs implies that we need to let the probab1hty of adding
an edge be dependent on the distance between nodes in'the real net-
work: the larger the distance between two nodes, the smaller the prob-
ab1hty of attaching them in the corresponding random graph As it

~turns out, if we take this spatial dimension into account, along with
" some other properties that we discuss later on, random graphs can be
used to accurately model real-world spatial networks. *

- Food webs: A food web (also called a food chain) describes the feeding re:\.

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

7-4 CHAPTER 7. RANDOM NETWORKS

lationships between organisms, that is, who eats whom. Obviously,
we can model food webs as directed graphs. In particular, it turns out”

_ that in order to get insight in the resilience of ecosystems in terms of

" the extinction of species, modeling food webs as random graphs is an
\appropnate technique. Unlike many other real-world networks; food
webs are generally relatively small (in the order of tens of a few hun-
dreds of nodes). Also, there is controversy regarding their structure,
which deviates from some of the more well-known random graphs
(see, e.g:,[Dunne et al|[2002])). In this case, using techniqties from net-
work ana1y51s as introduced in Chapter 2] and the theory of random
graphs alloWs us to better understand the nature of food webs.

Collaboration netwt),rks: An important class of networks is formed by var-
ious collaborations between human beings. Farﬁous is the analysis of
networks of movie actors, formed by creatmg a graph of actors, link-
ing any two who have ever played in the sarhe movie (see also [Watts,
1999])). Likewise, it turned out that modehng collaborations between
scientists using network. analys1s techmques and random-graph the-
ory has provided insight in how science is formed. In particular, there
is a body of work on citation networks, reflecting which scientific ar-
ticles are cited in other articles, Su’éh networks provide insight in the
influence of published work.

In order to study real-world nef{/vorl{‘s, it is necessary that we delve into
the properties of random networks These properties can be explained us-
ing the terminology that has been 1ntroduced so far, and form the basis for
proper network analysis. ‘

7.2 Classical random networks

As mentioned, random networks have been 1ntr0duced and studied for
several decades. Paul Erdos and Alfréd Rényi 1ntroduced what are now
known as cla551ca1” random networks, or Erdés-Rényi networks [Erdos
and Rényi, 1959] The basic idea is that we consider a 51mple, connected
graph on n Vertlces, and that every two vertices are ad]acent with some
probab1hty p. Erdos and Rényi introduced two different types" of random
graphs. - :

Definition 7.1: An Erdés-Rényi model of a random network on n vertiees, also
referred to as an ER random graph, is an undirected graph Gy, in which each two
(distinct) vertices are connected by an edge with probability p. For a given number
M of edges, the ER random graph G, 1 is an undirected graph in which each of the,

/M edges is incident to randomly chosen pairs of vertices.
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It is important to note that two graphs G1 and G2, p may be very different.

"‘xAlthough they will both have n vertices, because an edge e = (u,v) between
two vertices u and v exists only with a probability p, it may well be that
e e E(G1 ), yet that e ¢ E(G2 ). In this light, we use the notation ER(n p)
to denote the set of all ER random graphs with n vertices and probablhty p
that two distinct vertices are joined.

Note" that an ER(n, p) graph is simple: there are no loops and there is
at most one edge between two distinct vertices. In contrast, the’ formal def-
inition of a G, » random graph allows loops and multiple- ‘edges, but in
practice we often see that they are restricted to their simple counterparts. In
this book, we concentrate exclusively on ER(n, p) graphs.’

7.2.1 Degree dlstrlbutlon

Let us first see what we can expect when con51der1ng vertex degrees. For
each vertex u of an ER(n, p) graph, we know that there are at most n — 1
other vertices to which it can be connected. Let P[5(u) = k] denote the
probability that the degree of. vertex u is k. ‘Because there are a maximum
of n—1 other vertices that can be a nelghbor of u, it should be clear that
there are (" 1Y possibilities for Choosmg k different vertices to be adjacent to
u. The probab1hty of having u ]omed with exactly k other vertices (and thus
not with exactly n — 1 — k vertices) is equal to pF- (1 —p)" 17k, so that

Pistw =k = (") 0y

Note that our reasoning for the degree dlStI‘lbuthl’l of u applies to all vertices

of an ER(n,p) graph. Formally, this means ‘that we can treat the vertex

degree as a random variable ¢, for which we have just shown that it follows

what is known as a binomial distribution. In line with this observation,

we can speak of the probablhty that a vertex degree. has value k, and write
P[5 = K]. :

Note 7.1 (Mathematlcal language) \
Probability arid stochastics play an important role in random—graph theory, al-
though we. shall consider only a few concepts. The notion of a random variable
is 1mp0rtant Intuitively, it is a variable whose values can each Occur with a
certain probability. In the case of discrete random variables, there are only a
finite- ‘number of possible values. This is the case, for example, when cons1der—
ing the possible vertex degrees in an ER(, p) graph. Throughout this book we
consider only discrete random variables.

) " To characterize a (discrete) random variable X, we need to consider all 1ts

* possible values. A simple example is where X denotes the possible outcomes‘\\

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

7-6 CHAPTER 7. RANDOM NETWORKS

. of flipping a coin, for which there are only two possible outcomes: head or |
“tail. Normally, each of these values can occur with equal probability, which 1s/,//

expressed as:
1

P[X = head] =P[X = tail] = 5
LikeWise we can treat the vertex degree of an ER(n, p) graph asa random vari-
able § w1th possible outcomes any value from the set {0, 1,. -1}, and sub-
sequently compute the probabilities P[§ = k] for 0 < k < n. In general if we
know that X can take values only from {x1,x,..., xn}, it should be clear that

N
2Pm:m:1

Given, for example, the distribution of the vertex degrees, we will regularly
ask ourselves what the average vertex degree will be. For any discrete random
variable X the notion of average is more accurately expressed in terms of its
mean, also known as its expected value, defined as

Xﬁgznrm;x
R

At first sight, this may seem a rather\strar’ige definition, but when giving the
matter some thought it is not difficult'to see that it boils down to computing
what is known as a weighted average./”First, if asked to compute the average of
all x;, anyone would do the obvious-and compute

XA X+ Ay
S N N

In essence, what we're doing'is giving an equal weight to the contribution that
each x; has to the average, of X. In terms of probabilities we are interested the

expected occurrence of each x;, which is determined by the probabihty P[X = x;].
In our example of ]ust computmg the average, P[X = xl] = N for each x;, and
indeed, :
: N
x—i—/x 4+ 4x 1
S N:sz'ﬁzzxi'ﬂ’[xi‘~ff]

K i=1 i=1 .

If it turns out//tl‘iat the expected occurrence of x; is higher than thaf‘q\f, say, xj, x;’s
contribution to the average of X will be higher than that of x;. In other words,
we should weigh x; more than x;, which, in turn, is expressed by the probabihty
P[X = xl] This explains why we can also speak of a weighted average:.

The/n’riean vertex degree of an ER(n, p) graph is thus computed as

n—1
SUfE] 4 Y kP[5 =
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We can now prove the following:

Theorem 7.1: The expected value for the vertex degree of an ER(n, p) gmph is
equal top(n—1). ,

Proof. “To compute the mean vertex degree, we proceed as follows:’,n"x

n—1 n—1

LkPE=K = X (7)kpt(1-py

k=1 o k—1

RS (n—2)! k-1 n—1-k
= -1 1
p(n )kg k—1)(n—k=1)! P (1-p)
_ TN = () | K TP
p(n—1) ;0”(”_1 s P (1=p)
n—2

O

In other words, our best gﬁess at what the vertex degree of an arbitrarily
chosen vertex from an ER(n p)is, isp(n—1).

We will often use the abbreviation P[k] instead: of P[6 = k]. Let’s take a
few specific examples of ER(n, p) graphs and analyze some of their prop-
erties with the techniques introduced in the previous Chapter In particular,
we first consider the case where n = 100 and p = 0.3 _As mentioned, it
is important to realize is that there are many different (i.e., nomsomorphlc)
graphs that quahfy as being an ER(100,0.3) graph. As a consequence, if we
are to consider an example, we will have to construct a specific. ER(100,0.3)
graph. There are various ways to do this, to which we return later, but for
now, let'G be such a constructed graph. In our case, G is constructed to be
connected, simplifying our analysis. ~

We have just derived an exact expression for the vertex degree dlstrlbu—
tion of ER(, p) graphs, which is shown in Figure|7.1} la) as the smooth curve.
l,However because we are considering one specific random graph, the d1s—
/ tribution of vertex degrees for G may differ from this one, as is also shown." .
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" The situation changes when considering larger random graphs, as shown
in Figure [77[b). In general, if we consider increasingly larger graphs with
the same expected vertex degree as G, we would see that our specific exam-
ples.would also better approximate the theoretical degree distribution, To
give a hint on why this is so, two observations are important. First, by con-
sidering graphs with the same expected vertex degree, we will essentially
see that the range of observed vertex degrees is the same for all graphs, in-
dependent“of their respective size. Second, if the possible vertex degrees
are the same, larger graphs will have many more vertices of degree k than
smaller graphs: As a consequence, the fluctuation (i.e., standard deviation)
that we can expect to see in the number of vertices having degree k will also
be smaller. It is beyond the scope of this text to explam these matters in
more detail. « :

Note 7.2 (More |nformat|on)

These examples illustrate that when analyzing a network it may sometimes
be difficult (if not 1mp0551b1e) to draw the correct. ¢onclusion as to what kind of
network we’re actually dealing wrth For example by just looking at the specific
vertex degrees of graph G from Frgure .a)/ we may not even suspect that we
are dealing with an ER(100,0.3) graph. We could be more confident in the case
of the ER(2000,0.015) graph in Figurelb), but in both cases we would need
to formulate a statistical test to draw any: real conclusions. In practice, we simply
use several metrics to see what kmd of graph we’re dealing with.

7.2.2 Other metrics for random graphs

Let’s consider some other metrrcs for ER random graphs. First, Fronczak
et al.| [2004] show that for (1arge) random graphs H. € ER(n, p), the average
path length can be estlmated as

Z(pp) = ) —
where v is the so-called Euler constant (which is approxrmately equal to
0.5772). We have just seen that the average vertex degree 6 for an ER(n, p)
graph is equal to p(n — 1), which means that for large n, we Can also esti-
mate the average path length as: k

d(H):W +05

To. grve an impression of what this means, Figure [7.2 shows these estlma-
tions for different ER graphs. In Figure [7.2(a) we vary the number of ver-
’,x"’tICES, but keep the average vertex degree constant for differently sized graphs
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Figure 7.1: Degree dlstrlbutlon of a ER(100,0. 3) random graph, and the val-
ues for one specific graph G from that class (a), and Slmllarly for a graph G* €
ER(2000,0.015) (b). .

In this way, we ‘can compare graphs having different nefwork densities. In
Figure[7.2{b) we show the effect of adding more edges (and thus increasing
the network density and average vertex degree) while keeping the number
of vertices constant. Clearly, the average path length drops loganthmlcally
What about the clustering coefficient? Recall that the clustering coeffi-
cient of a vertex is computed as the fraction of edges found between the
nelghbors of that vertex, and the maximum number of possible edges be-
tween those neighbors. It is not difficult to see that for an ER(#, p) random
l,graph the expected value of the cluster coefficient is equal to p, which we
~ formally prove next. R
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Figure 7.2: The average path length for (a) ER random graphs of different sizes and
fixed average vertex degree, and (b) while varying the average vertex degrees for
fixed-size graphs. Flgure (a) uses a logarithmic x-axis.

Theorem 7.2: The clustering coefficient of any ER(n, p) is equal ‘i‘axp.

Proof. Consrder an ER(n, p) graph Gy, , and an arbitrary vertex v e V(Gn,p)
with nelghbor set N(v). Let n, = [N(v)|. Any two distinct neighbors have
probablhty p to be joined by an edge. Therefore, with ('5) possible nelghbor
paits, we can expect a total of p - (y) between v’s nerghbors The maximum
number of edges is equal to ('y), so that cc(v) = p, and thus also CC(G,, p)
0
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Figure 7.3: The evolutlon of the size of the giant component in graphs G, from
ER(2000,p) as a functlon of p-

Indeed, when we con51der our example graphs from Figure[7.1 we find that
CC(G) =0. 299 “and CC(G ) = 0.0150

When we take a look at the connectivity of a random graph G, we find
an interesting relationship between the probability p of connecting two ver-
tices and the size of the components-of G. It turns out that when increasing
p, not only does the network density of G increase (this should come as no
surprise), but also that most vertices are contained in one component while
the rest are scattered among a few very small ones. This one component is
generally referred to as the giant component. The formal mathematics un-
derlying the theory of the size of components in random graphs is beyond
the scope of this text. However, it is not difficult to take an experimental
approach to observe what is going on by simply constructing graphs with a
fixed number of vertices, but changing p. Figure[7J] nillustrates how the size
of the giant component evolves in relation to increasing p. In this case, we
take a look at the' number of vertices in the largest component of a graph
Gy € ER(2000, p) while changing p. "

Itis mterestmg to see how quite suddenly the giant component appears:
as soon as p comes close to even a small value such as 0.005, we see that
the giant. ‘component swiftly moves from containing less than' 25% of all
vertices to a near 100% when p = 0.015. In other words, vertices qulckly
join together in a single component. «

Moreover, and in line with this observation, random graphs generally
tend to be very well connected. In other words, for a random graph G, the

_size of the minimal vertex cut x(G) turns out to be fairly large. In fact, in
/ many real-world situations we often have to remove 70-80% of the Vertices‘\.
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" before the remaining graph partitions into several components. What is re-
‘markable even in that case, is that we will again find most vertices grouped”
into a single, large component, along with a few, very small components
(mdstly consisting of just a single vertex). Figure [7.4{ shows what happéns
if we take our example graph G* from ER(2000,0.015) and systematlcally
remove’ wvertices. At the same time, we count how many vertices are not in
the giant Component

What Flgure [7.4 shows is that we may need to remove as much as 70%
of all vertices before the graph partitions. However, even in that case, we
will still find most of the vertices in the same component. Even after having
removed 95% of all vertices, half of the remaining vertices will be connected
through a path. Note that the fraction of vertices in thé giant component
decreases when having removed more than 98% of the wvertices. (It's not that
difficult to figure out why) r

We have just discussed an important feature of random graphs, which
emerges from the basic properties of such graphs. As we will see through-
out the remainder of the text, many real-world networks combine a large
size with randomness, and indeed, most of these networks demonstrate to
be naturally resilient to (massivé‘).\node failﬁres.

7.3 Small worlds

In 1967, Stanley Milgram, at that,,rtime é\professor of social psychology at
Harvard, was interested to know what the probability was that two ran-
domly selected people would know each other. This eventually led to the

08l R
0.6 , o
04 L oo

02

Fractidn\qutside giant component

0.80 0.85 0.90 0.95 1.00
Fraction of vertices removed

Flgure 7.4: The fraction of vertices outside of the giant component when removmgr
vertlces from an ER(2000,0.015) graph.
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" question how far any two persons were separated from each other. Distance

“was expressed in terms of “A knows B, who knows C, who knows D,...,”
and so on. In other words, separation was determined by the chain of ac-
quamtances through which one person would eventually reach someone
else.” :
In terrns of graphs, Milgram was interested to know the average path
length in. what is known as a social network. In such a network, a vertex
represents‘a person, and an edge between two vertices A and B tells us that
A and B are acquaintances. Milgram measured the average path length by
asking arb1trary people to send letters to target persons. Let Zach be such
a target, and let-Alice be a person currently in possession of the letter. If
Alice didn’t know. Zach, she would have to send the letter to one of her
acquaintances, say Bob, under the assumption that she would expect Bob to
know better than her how to reach Zach. In the original experiment, letters
where initially sent fror places in the Mid-West of the United States with
the targets being located in Massachusetts. Much to his surprise, for those
letters that made it to their destmatlon, it took an average of only 5.5 hops,
leading to the now famous phrase six degrees of separation.”

What does this have to do with random graphs? What Milgram demon-
strated, and what has been shown to hold in many real-world situations, is
that the average shortest path length is relatively small. We already saw this
to also be true for ER random graphs However, in many social networks,
we also know that people tend to group into relatively small clusters: Alice’s
acquaintances also know each other. In other words, many social networks
(and, in fact, others as well), tend to have a high clustering coefficient.

What we are thus faced with are networks that combine the properties
of ER random graphs, yet differ when it comes- to the clustering coefficient.
Watts and Strogatz [1998] were the first to propose a method to construct
such networks, whlch’,has since then spawned a wealth of research on con-
structing and studying similar random graphs, now collectively referred to
as small-world networks. The procedure proposed by. Watts and Strogatz
is as follows: "

Algorithm 7.1~ (Watts -Strogatz): Consider a set of n vertices {vl“,‘ 2, .. ., Uy} and
an (even) nuinber k. In order to ensure that the graph will have relatzvely few edges
(ie., it is sparse) choose n and k such that n >k > In(n) > 1.

1. Order the n vertices into a ring and connect each vertex to 1ts ﬁrst k/2
. /left-hand (clockwise) neighbors, and to its k/2 right-hand ( counterclocszse)
neighbors, leading to graph G'. g

) !Recall that we orient a vertex toward the middle of the ring in order to give sensible mean-
/" ing to left- and right-hand. .
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2. With probability p, replace each edge (u, v) with an edge (u, w) where w is a
~ randomly chosen vertex from V (G) other than u, and such that (u, w) is not*"
already contained in edge set of (the modified) G. ’

The resultmg graph is called a Watts-Strogatz random graph (or szmply a WS
graph). We also refer toa WS(n, k, p) graph.

The notatlon n > k” means that n should be much larger than k. N ote that,
just as with ER random graphs, WS(#, k, p) actually denotes a collection of
graphs. To get a first impression of the effect of changing p, Flgure-shows
a small WS graph of only 20 vertices. With k = 8, and In(n) & 3, we also see
that this example barely meets the conditions for proper WS graphs.

Figure 7.5: Three WS graphs with n= 20 k = 8 and (a) p = 0.0, (b) p = 0.20, and
(c) p = 0.90, respectively. <

It is not difficult to see that the maximum dlstance between any two con-
nected vertices in Figure|7: a) is equal to 3. In general for a Watts-Strogatz
graph from WS(n, k, 0), it can be shown that this maximum distance is equal
to the smallest 1nteger 1arger or equal to (n/2)/ k/ 2) (i.e., [n/k]). What
Watts and Strogatz establish with their construction is that many vertices
will stay close together, but that most vertices will also haye a link to a ver-
tex that is relativély far away. In social networks, such a ‘link represents a
tie between different communities, and as we shall discuss later, these so-
called weak links play a crucial role in many societies (see also
[2006]). As a consequence, one would expect to see randomness: combmed
with a hlgh degree of clustering.

And indeed, when examining the clustering coefficient for large ‘Watts-
Strogatz graphs, it turns out that it stays close to the value we find for the
casé in which p = 0, even for relatively large values of p. To be specific, we
observe the following:
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Figure 7.6: The labeling of vertices lef,t”émd right of u.

Theorem 7.3: For any Watts- Strogatz graph G from WS(n,k,0) the cluster coeffi-

cient for G is equal to CC(G) = Ek 2%

Proof (*). In the following, we shall///rﬁéke use of a simple distance metric

dy (i, j) & rrur1~{II*J| n=li=jlh

which tells us how far two nodes are when measured along the “outer ring”

of a WS graph. For example, in Figure Ha) d20 (1,20) = 1,d%°(1,18) = 3,
and so on. We have dehberately used the notatlon dj to indicate the case
k = 2 for a WS(n, k,0) graph. Indeed, a WS(n,2,0)" graph is nothing but a
collection of vertices organized as ring.

Let u be an arbltrary vertex from G and con51der the subgraph H in-
duced by its set’of k neighbors N(u). N(u) thus consists.of u’s k/2 right-
hand (i.e., cogﬁter clockwise) neighbors {v; y Uy yeees U /2} énd likewise, its
k/2 left—hand (i-e., clockwise) neighbors {vf, v; e, v,j/z} as \Shown in Fig-
urelZ6
Consider the degree of vertex vy . The “farthest” right-hand"neighbor
of Y is Ui /o, Where farthest is defined with respect to the distance ‘metric
day. _This means that v; has k/2 — 1 right-hand neighbors in H. L11<ew1se
vy ‘hask/2 -2 right-hand neighbors, and, in general, v;” has k/2 —i rlght—
~hand neighbors in H. Clearly, each vertex v; is missing only u as its left-
/ hand neighbor in H, meaning that it has k/ 2 — 1 left-hand neighbors. We"
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can therefore conclude that the vertex degree of v;” is equal to

57 = (’;—i)+(’;—1> —k—i-1

A completely analogous reasoning holds for all vertices v;", so that (5( =
k —i—1.'As a consequence, the total number of edges in H is equal to

EH)| = 3 ¥ ¢
. veV(H)
Nz
lk/2 k/2
= 1Y ((k—i—l)—F(k—i—l))/,’_ Y (k—i—1)
i= 1 / i—
Knowing that } 3%, i = %m(m—i— 1), we obtain
k/2 k)2
[E(H)| = 2:&—1—1y_wz — Y
i=1 i=1

:kmwfnfau@wm+n
~ k-2

Because |V(H)| = k, we comp’ﬁte the clusteffng coefficient cc(u) for vertex
u as

k(k —2)
k(k—1)

ce(u) :(||V((2H))|) =

a2
S 4k-1)

N|— |00l

Because all vertices ’a’f’e the same in G, CC(G) = cc(u), éompleting the proof.
/ N 0

As we mentioned, the idea behind Watts-Strogatz graphs:is to combine
properties of classical random graphs with high clustering coefficients. What
the prev10ué. theorem tells us is that the clustering coefficient of a WS (1, k, O)
graph is independent of its size and that for large values of k it is close to 3.

As we already saw, a characteristic property of ER random graphs is
the relatlvely short average path length. For a WS(n,k,0) graph, however,
it is not difficult to see that the average shortest-path length between two
yertlces may be relatively long. For example, for a WS(n,k,0) graph we

“have the following theorem.
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Theorem 7.4: For any Watts-Strogatz graph G from WS(n, k, ) the average shortes/t'_"/
"‘xpath length d(u) from a given vertex u to any other vertex in G is approximated

by

. (n=1)(n+k—-1)

d(u) ~ T

Proof. C(\)nsider a given vertex u. Using the same notation as béfore, let

L(u,1) bethe k/2 left-hand neighbors {v],v5, .. vlfﬂ} of vertex u. Like-
wise, let L(u 2) = {v{/p.1,---,0; } be the set of k/2 left- hand next neigh-
bors, i.e., nelghbors of u at dlstance 2. In general, we have that L(u,m) is the
set of vertices {v (m—1)k/2417" mk/Z} left of u connected to u by a (short-
est) path of length m. Another way to see this is noting ‘that each vertex in
L(u,m) is connected to a vertex from L(u,m — 1). L(it,m) thus consists of
all left-hand nelghbors of u at (shortest) distance m. Slmllarly, we can define
the sets R(u, m) of rlght -hand neighbors at dlstance m. Note also that the
index p of the farthest vertex v}‘; contained in any L(u, m) will be less than
approximately (n —1)/2, Wthh is roughly at the other end of the ring along
which the vertices have been organized. Because all sets L(u, m) have equal

(n l)/2

size, this also means that m < Th1s gives us:

(n—1)/k

i~ L (il z>+; IR (u z)i)wi(nf/k(l’]ﬁ“';)

i=1 i=1

where i - |L(u,i)| is nothing elsé but th‘é\.\.cumulative length of the short-
est paths to u’s left-hand vertices, and likewise, i - [R(u,7)| the cumulative
length of such paths to u’s rjght—hand Vertice's..‘ This then leads to

= B ()

i=1

and completes the proof O

What does thls mean? It tells us that WS(n,k,0) graphs may show a
high clusterlng coefficient, yet miss the property of small worlds, that is,
having small average shortest-path lengths. However, it turns out that by
only shghtly increasing p, the average path length of a Watts- Strogatz graph
drops rapidly. On the other hand, the clustering coefficient stays relatively
high except when p becomes large as well. These two effects are illustrated
in Figure [7.7] . In this case, we have examined a range of WS(1000,30, p)
graphs, varying p from very small to relatively large. We compute the clus-
_tering coefficients CC(G), but normalize each one of by division through
7 the clustering coefficient for the case that p = 0. Likewise, we compute the"
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average path lengths d(G), again normalized by division through the value
in case p = 0. What Figure[7.7] shows is that when increasing p, the aver-"
age path length drops rapidly, but the clustering coefficient stays relatlvely
hlgh ,

08|
Normalized cluster coefficient

0.6}

04 [ N

[ Norn{‘a_[ized average path length

AN L L 5 y

0.0 0:1 0.2 03 04 0.5

Figure 7.7: The relation betwee\r‘\,\clustering coefficiént and average path length for
increasing value of p in a WS$(1000,30, p) graph.

7.4 Scale-free networks

The Watts-Strogatz model of networks is generally considered to represent
small-world phenomenon. However, WS random graphs often do not cap-
ture (other) properties of real-world networks; such as communication net-
works or biological networks. It was the work by Albert-Laszl6 Barabasi
and his student Réka Albert which caused an avalanche of research on so-
called scale-free networks. Roughly speaking, they showed that real-world
networks such as the World Wide Web, actor collaboréﬁons, and many more,
exhibit a structure in which there are a few high-degree nodes, but that the
number of nodes with a high degree decreases exponentially [Barabasi and
Albert, [1999]. In‘ this section, we will take a closer look at thls phenomenon
(and will also be more precise in our formulation). k

7.4.1 Fu’ﬁdamentals

By now; it has become common practice to call a network scale free if the
dlStI‘Ibuthl’l of vertex degrees follows a power law. Roughly speaking this
means that the probability that an arbitrary node has degree k is propor-
tional to (1/k)* for some number « > 1 called the scaling exponent. In
’,/mathematlcal terms, P[k] o< k™%,
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. For most real-world scale-free networks, it turns out that 2 < a < 3. As
“an example, consider an artificially constructed scale-free network G with
2000 nodes. Figure [7.8shows the degree distribution of G. For clarity, we
show the distribution in two different ways. Figure[7.8(a) gives us the usual
way of displaying relationships, namely using linear scales for the y'and y
axes. In Figure[7:8|b) we show the same results, but now using a logarithmic
scale for-both axes. In this case, we essentially see a straight line. To be
more spec1f1c using a curve-fitting method as briefly descnbed in Note
on page[6-6} one can show that

Plk] ~ 324 -x7%62 123

400 ¢ 400
200 | .
300 ¢ 100 ’

200 |
ol
100 § L

\_ 10 ‘-_‘__

0 500 1000 1500 zbqo 5 10 50 100 500 2000
Node ID (ranked according to degree“)x Node ID (ranked according to degree)

@) ke (b)

Figure 7.8: The distribution of Ver‘tex degfees of a scale-free network with 2000
nodes, shown as (a) a linear plot and as(b)a log;log plot.

The network from Flgure [7:8 contains 2000 mnodes with a median vertex
degree of 7. In other words, half of the vertices have a degree of 7 or less.
Interestingly enough, the highest-degree node is connected to no less that
382 other nodes, whereas the second-highest vertex ‘degree is 160. This oc-
currence of a few hubs is typical for scale-free networks. To complete the
picture, in our example network only 10% of the nodes have a degree larger
than 50.

Note 7.3 (More information) Y
To undetstand why such networks are called scale-free, we note that formally a
functlon f(x) is called scale-free when it satisfies the following property:

fbx) = C(b) - f(x)

/,,W”Vhere C(b) is some constant dependent only on b. The basic idea is that tﬁe
* overall form of the function f does not change when considering values for x "
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.‘ . that are a factor b larger. As it turns out, power-law distributions obey this
“property, i.e., if f(x) = x~*, we find that /

fbx) = (bx)™* = b7 -x™" = b~ f(x)

Thls can be nicely illustrated by our example scale-free graph G from Flgure
Figure|7.9| -shows the degree distribution for nodes ranked between posltlon 10
and 100, and between 100 and 1000, respectively. What is 1mmed1ately clear
is that the form of the degree distribution is almost the same, i.e., mdependent
of the range of. rankings we consider. This aspect is characterlstlc for scale-free
distributions.

70 a3
60 [ ~. 20 ,'..
0 15 =
40 f e, -
30 ¢ e 10F S T—
20 | 5t
10 ¢
20 40 60 8\"0\_\ 200 400 600 800
Node ID (ranked according to degf‘ee) Node ID (ranked according to degree)
(a) (b)

Figure 7.9: The degree distribution of nodes ranked between (a) 10 and 100,
and (b) between 100 and 1000. ’ »

ER random networks have been defined as graphs where there is a prob-
ability that two vertices are adjacent. Watts- Strdgatz networks are con-
structed by rewiring edges that is, changing a well-structured graph by
probabilistically rep051t10n1ng its current edges between different vertices
regardless the degree of the original end points. As explained by Dorogovt-
sev et al.|[2003] /a’hd Vega-Redondo| [2007], scale-free graph\s\are fundamen-
tally different because it appears that we can construct them bnly through a
growth process - combined with what is referred to as preferential attachment.
In other words, to understand the structure of real-world networks (which
are generally scale free), we need to concentrate on how they have ‘come to
existence by observing how new nodes attach themselves to existing nodes.

Baraba51 and Albert| [1999] were the first to devise a procedure for the
construction of scale-free networks. Their procedure combines the growmg
of a network with attaching new nodes to existing ones with certain prefer-
’,f'ences. The algorithm is as follows:
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~ Algorithm 7.2 (Barabasi-Albert): Consider a (relatively small) ER random gmph
GO with ng vertices V. At each step s > 0: '

1 Add a new vertex vs to Vy_1 (ie., Vs «— Vi1 U {vs}). )
2; ~Add m < ng edges to the graph, each edge being incident with vs and a ‘vertex
u from Vs—1 chosen with probability :
S(u)
Zwevs,1 (5('(/0)

that is, chbqsing a vertex u is proportional to the current,z}értex degree of u.
Vertex u must not have been previously chosen during this step.

Pselect u] =

3. Stop when n vertzces have been added, otherwise repeat the previous two
steps. '

The resulting graph is called a Barabdsi-Albert mndom graph , or simply a BA
graph. We also refer to a BA(n no, m) graph. ’

Obviously, after ¢ steps We will have a graph with ¢ 4 ng vertices and
t-m+ |E(Gp)| edges. (Note that Gy may have no edges to begin with.)
Barabasi and Albert| [1999] show- that for this model, the probability P[k]
that an arbitrary vertex v has degre‘e‘\k/,ié proportional to k=3

Note 7.4 (More information)

To get a better grasp on why the degree dlstrlbutlon of a BA graph is propor-
tional to k3, we adopt the notaﬁons and approach as found in [Vega-Redondo),
2007] (and which were or1g1nally introduced by Dorogovtsev et al.|[2000]). For-
mally, we have the followmg .

Theorem 7.5: For any BA(n, no,m) graph G, the probébi]ity that vertex v € V(G)
has degree k > m is given by:

2m(m+1) 1
Pkl = 77—~ & —
k= s+ =

Proof (*). Let qt(s k) denote the probability that at step ¢ vertex s has degree
k (with s < ). In order for the degree of vs to increase by 1, it'is necessary
that v; aj:taches to vs. There are m opportunities to let this happen -each with
probability IP[select u] as given above. If we assume that |E(Gg)| = 0, we know
that there are a total of m(t — 1) edges just before step t so that };,cy, ,4(v) =
2|E{ = 2m(t — 1). In other words, the probability that vs will be attached to v;
is’
g 5(vs) _om(k—-1) k-1

Ywev,, 0(w) 2m(t—1) 2(t—1)

IP[attach to vs] = m -
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) . The probability that the degree of vs was k and stays so, is equal to 1 — -1 t 0
‘Combining these two results, it should then be clear that !

\\\q\‘t\(S,k): (22‘;7_1)) Gi—1(s,k—1) + (nﬁ)-qt_l(s,k) ’_,(/7:/1)

The fir"st term represents the situation where the new node attaches to s,
whereas the second term covers the case where s’s degree stays the same
(namely k).

We are 1nterested in finding the distribution P [k] of the vertex degrees af-
ter ¢ steps. In ather words, we want to know the probability | that any vertex
v1,...,0t has degree k. The probablhty that vertex s has degree k at step t is
largely 1ndependent of that of vertex s’ > s, certainly when s is large. This
means that we can anply compute P [k] as

"“P{[\k} - Z g (s, k)

Using expression (7.1) we need to distinguish two cases. First, If k > m we
know that the added vertex vy does not belong to ‘the set of vertices with degree
k, so that we have .

(1 1
Z%Sk é(_l)sth 1(Sk ) (1*ﬁ)2%—1(5/k)

However, if k = m, it must be the Case that vy is in this set as well. In other
words,

th(s,m) thlsm +<\ )thlsm

To keep matters srmple we, W111 first concentrate On the situation that k > m.
We are seeking to express, qt(s k) in terms of the probabrhty D, [k]. By straight-
forward algebraic mampulatron we obtain the followmg

¢ -1
Ytk = - 1(t12%1sk—n)

~ll

s=1 s=1

Kn,ot/ving that

t t
gwom=(1zmem)=mm
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and tlim P;[k] = Plk], we find

(k+2)P[K] — (k—1)Pk —1] = 0

When we consider the special case k = m, we apply exactly the same algebralc
marupulatlons to find that

(m+2)P[m] — (m—1)Pm—1] =2

Of course, P{ n — 1] = 0, as there can be no vertex with a degree 1ower than m,
which means that Plm] = 2/(m+ 2). We now have: ’
k=15 k—1k-2  mmd D(m+2)
Pl = k+2p[ U= kA= = gy
Substituting P[m] in this\ equation gives us '/

2m(m+1)

P W=t w2

which completes the proof. O

It should be mentioned that BA:;?g/:raphs are not the only ones for con-
structing scale-free networks. One particular interesting extension to the
Barabasi-Albert model is the followmg

Algorithm 7.3 (Generalized Baraba3| -Albert): Conszder a small graph Go with ng
vertices Vjy and no edges. At each step s > 0O: )

1. Add a new vertex 05’ to Vs_1.

2. Add m < ng edges each edge being mczdent to. s and a vertex u from
Vi_1 chosen with probability proportional to its current degree 6(u) (and
not prevzously chosen in this step). .

3. For some constant ¢ > 0 add another cm edges between iﬂertzces from V,_1q,
where the probability of adding an edge between vertices u and w is propor-
tional to the product 5(u) - 6(w), and under the condition that (u,w) does
not y’et exist.

4. Stop when n vertices have been added.

As shown by [Dorogovtsev et al.|[2003], the resulting graph corresponds to
a scale free network for which the vertex degree is proportional to

Plk] o k= %F 1)
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In other words, for c = 0 we have a BA graph, but for increasing values of
"C{ the exponent converges to 2. g

7. 4 2 - Properties of scale-free networks

As it may have become clear by now, formal analysis of random networks
is generally far from trivial. This is certainly also true for the scale—free net-
works discussed previously. The consequence of this observation is that in
order to attain insight in the properties of scale-free networks; we need to
simply apply the network analysis tools from Chapter [f] and see what we
can learn from experlments

Let us first consider the clustering coefficient. As we have seen for ER
random graphs, the clustering coefficient can be expressed independently
of the size of the graph, For Watts-Strogatz graphs, we have shown that the
clustering coefficient is large and stays almost the same even for relatively
large rewiring probabilities More importantly is that for Watts-Strogatz
graphs the clustering coefficient is independent’ of the number of vertices.

The situation for scale-free networks is more complicated. In fact, find-
ing an analytical expression that estimates the clustering coefficient for gen-
eral scale-free networks has not yet been found. [Fronczak et al.[2003] con-
sidered the situation for BA random: graphs and, in particular, looked at the
clustering coefficient cc(vs) of vertex vs after t steps had taken place in the
construction of a BA(t, ng, m) graph (of course, s < t). They find:

Al nz‘\\* 74?;1 n’(s

When evaluating this somewhat ghastly express10n for fixed values of m
and ¢, yet varying s, we obtam low clustering coeff1c1ents as shown in Fig-
ure[Z100 / N

To see how these Values compare to those of an ER random graph, we
consider an ER random graph with the same number. _of vertices and the
same average vertex degree. We first compute the average vertex degree
of a BA(n,ng, m) ‘graph for very large n. As proven in Note[7.4] n 4] the degree
distribution for a BA graph is given by

2m(m+1)
. k(k+1)(k+2)
Taking e’kactly the same approach for computing the average vertex- degree

for an’ER random graph, the average vertex degree for a BA random graph
can, be computed as:

Plk] =

— [e9) k
5(G) = E[k] = k:zmk - Plk] = 2m(m + 1)kzzm CESER 2m
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Figure 7.10: The Clﬁ'sfgering coefficient for vertices v in a B’A'(lo() 000, 119, 8) graph.

(We leave it as an exercise to the reader to show that this computation of
[E[k] is indeed correct.) For-a vertex of an ER random graph, we know that
cc(v) = p and that 6(v) = p(n — 1). In other words, to get the same average
vertex degree for an ER random graph as-that of a BA graph, we need to
take p equal to 2m/(n — 1). For our example from Figure [7.10 E we then
find that cc(v) = 16/9999 ~ 0.00016. Thls means that roughly speaking, the
clustering coefficient in BA graphs is an order higher than that of ER graphs,
yet it remains relatively small. Conmdermg that many real-world networks
combine scale-freeness and high clustering, it is clear that BA graphs do not
form an adequate model of real'life. We return to this issue shortly.

What about average path lengths? [Fronczak et al[2004] derive the fol-
lowing estimation of the average path length for a BA(n,ng,m) random
graph:

In(m/2) — 1 f*fy

d(BA)/ In(n) — Y415

In(In(n)) + In(m/2)
where 7 is the Euler constant, which we also came acfoss when estimating
the average path length for ER random graphs. To get a better idea of what
this estimation means, we can make a comparison with ER random graphs.
To this end, consider ER and BA random graphs having the same average
vertex degree, and compare their reswe average path lengths The re-

sult for = 10 is shown in Figure [7.11| (and again using a hnear and a
logarlthmlc scale for the x axis).

What is illustrated in this figure is that BA graphs tend to systematlcally
have a relatively much lower average path length than ER random graphs
Con51der1ng that the average path length for random graphs is already very

low, this is a somewhat remarkable result. On the other hand, unlike ER
~ random graphs, we are now dealing with graphs containing hubs: Vertlces\\.
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Figure 7.11: Comparing the’éverage path length of ER\and BA random graphs with
the same average vertex degree on a (a) linear plot and (B)\a log-linear plot.

with high degrees, essentially acting as intermediates between other, less
well-connected vertices. For example, one may expect that the eccentricity
of a hub is rélatively low: a hub is simply close to every Verfex But this
also means that most vertices can easily reach other by means: of a path
contammg a hub.

We-are thus dealing with what are also called super small worlds And
although being able to reach another vertex in only a few steps is a nice
property of a large graph, the hubs do form a potential bottleneck. In com-
munication networks, they would generally need to process a lot of tran-
’,,/'51ent traffic. Worse is that they may also be vulnerable to attacks. Intuitively, "
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" systematically disabling hubs should quickly partition a network into sev-
"‘xeral disjoint components, a highly unde51rable situation.
. To illustrate these matters, Figure [7.12 shows what happens when we
systematlcally remove vertices from a scale free graph in comparison £0 re-
moving the best-connected vertices from an ER random graph. We also
show the effect of removing randomly selected vertices from a scale-free
graph (which is very similar to randomly removing vertices from an ER
graph). A scale-free network is thus seen to be sensitive to a targeted attack,
but just as robust as an ER random graph in the case of a random attack.

10}, p
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g i . network d ":.

o 06 ] Random N ot

9 [ H network #

304 i &
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£ [ /‘  :@8 Scale-free

& 02 S, network,

u b random removal
! - A....’ra L ,

0.2 0\.'4‘. 0 6 0.8 1.0

Fractlcm of removed vertices

Figure 7.12: The fraction of Verticesl,di/ltsi&g the giant component when removing
hubs from a scale-free graph, and these froman ER random graph.

7.4.3 Related networks

As we mentioned, the- Baraba51 Albert approach for constructing a scale-
free graph has one 1mportant shortcoming when comparmg it to real-world
networks: its relatively low clustering coefficient. A better understanding
of real-world pheénomena should normally be reflected. by better models
and in this sense, a BA random graph is difficult to validate against many
real-world data. Therefore, researchers have been seeking solutions for con-
structing scale-free graphs that have a high clustering coefficient.

As argued by [Dorogovtsev et al.| [2003]], constructing such graphs is ac-
tually qulte simple. The trick is to make sure that there are many triangles.
This can be achieved, for example, by adding an edge to a triple at each step
of the growing process. (Recall that a triple was a subgraph with 3 vertices
and 2 edges.) Holme and Kim|[2002] provide a scheme that combines scale—
l,freeness and at the same time allows to tune to what extent clustering is to
/" be provided. Their algorithm proceeds as follows: R
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VS
<< Wy
u
Figure 7.13: The subgraph in which a newly added vertex is Contamed when at-
taching to vertex u:. :

Algorithm 7.4 (Barabési\lAlbert with tunable clustering): Co’hsider a small graph Gg
with ng vertices Vg and nd‘edges Ateachsteps > 0:

1. Add a new vertex vs to Vs 1.

2. Select a vertex u from V,_y. that is not ad]acent to vs and with a probability
proportional to its degree & (it ) Add edgg; {vs,u). Add the remaining m — 1
edges as follows: : 4

a) If m — 1 edges have been udded continue with Step[3| Otherwise, pro-
ceed with the next step. ™

b) With probability q: select’ a vertex w that is adjacent to u, but not to
vs. If no such vertex exists, continue. wzth Step[2q Otherwise, add edge
(vs, w) and continue with StepPa,

c) Select a vertex u' from Vs—1 that is not adjacent to vs and with a
probabzlzty proportlomzl to its degree 5(u ) Add edge (vs,u') and set
u—u'. Contznue with Step@

3. Stop when n vertzces have been added, otherwise repeat from Stepl[1}

What happens in thls approach, is that with probability q ‘we explicitly con-
struct a triangle between the newly added vertex v;, the vertex u to with
it attaches, and one of u’s neighbors w. Intuitively, it should be clear that
we are more or less controlling the clustering coefficient of vertex vs. For
example, if we choose g = 1, and under the assumption that u ‘h‘as k<m
neighboré w1y, Wy, . .., Wk, Vs will connect to u as shown in Figure|7.13| From
Chapter [6} where we examined the situation that none of the Vertlces w;
were adjacent to each other, we know that the clustering coefficient for u
and vs is high (and which will grow if edges (w;, w;) exist).

Holme and Kim|[2002] show that their approach yields graphs in Wthh\
’,,f‘the distribution of the vertex degree follows a power law with scaling ex- .
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ponent & = 3. Although they do not derive an analytical expression for the

“‘xclustering coefficient, experiments show that by varying g, clustering can
easﬂy be varied between the one observed for pure BA random graphs, and
hlgh values such as 0.5.
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CHAPTER 8 _

MODERN COMPUTER NETWORKS
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Modern life is difficult to imagine without the Internet. What started in the

“late 1960s as a simple network of a handful of computers has now grown
into an immensely complex communication infrastructure with hundreds
of millions of computers and which continues to grow. The Internet-as a
computer network is often taken to be the same as the World Wide Web (or
just sifnply Web), yet they are fundamentally different. In this chapter we
will start. with first taking a look at computer networks, in partlcular the
Internet. Second, we’ll dive a bit into what are known as overlay networks.

These networks are characterized by the fact that a (often very large) group
of computers maintain their own communication network and as such form
a special type of subnetwork using the Internet as their foundation. Thirdly,
we'll pay attention to the World Wide Web and explam where and how it
differs from the Internet .

8.1 The Internet

The Internet as a communication network consists of a huge collection of
computers connected to each other. The organization of the Internet essen-
tially follows a hierarchical structure consisting of home networks, com-
puter networks in organizations, networks that are owned by Internet Ser-
vice Providers, and backbone networks, among other types of computer net-
works. They are all connected together, often using the same infrastructure
as used for telephony. Connections may. occur through guided media (i.e.,
wires), but we are increasingly seeing wireless connections for communica-
tion as well. In addition, the’communication devices vary tremendously:
ultra-small networked sens,drs, smartphones}l_aptop computers and work-
stations, servers, routers,,,zihd supercomputers.\“One may wonder how it is
even possible to say anything sensible about the structure of the Internet? To
answer this question,_,lét's first consider some of tfi‘e basics and then move
onto the phenomenon of interconnected networks. \

8.1.1 Comput’/er networks
Small-area networks

There are- d1fferent ways of characterizing networks, but one that is conve-
nient for our discussion here is simply looking at the physical dlameter ofa
computer network. Typically, networks that span areas up to at most, say,
a few hundred meters are characterized by a relatively high density of net-
worked computers, also referred to as hosts. Hosts send packets to each
l,other through the network that connects them. These networks differ from
~ ones that span large areas, in the sense that routing plays a less prominenf\.
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role. Routing a packet from a source host A to its destination host B means
‘that the packet is required to follow a communication path from A to B,”
Typically, such paths are set up using one of the shortest path algorithms
we discussed in Chapter[5] Without going into further details, setting up or
finding a route in a small-area network is relatively easy. Moreover, these
small-area networks are generally owned and managed by a smgle admin-
istrative orgamzatlon

To get an impression of what we’re dealing with, Figure shows the
typical organization of a small-area network. Such a network consists of
several local-area networks, or LANS, each typically belng a collection of
10-100 computers. connected by means of what is known as a switch. The
switch ensures thata packet addressed to one of its connected computers is
forwarded to that Computer '

———> Internet

Router

Se,c’(.lrity
gateway Firewall

Figure 8.1: A typlcal example of a small-area network, con51stmg of a collection of
connected local- area networks.

Addresses’ﬂ

LANS c¢an be connected to each other by directly connecting their respectlve
sw1tches effectively leading to a larger LAN. In addition, it is common prac-
tice to use connect LANs through internal routers, which we will explain
gﬁortly What is important for our discussion is that each networked host,
~has an address. Having an address allows us to send data packets from one
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host to another. If we concentrate on the most common case for modern net-

“works, there are two types of addresses we need to distinguish. First, each
host has a world-wide unique identifier in the form of a 48-bit number. This
so-called MAC address comes with the host when it is manufactured (or,
more: precisely, is associated to a host’s network hardware). When a, host is
connected to a port of a switch (see Figure[8.2), the switch can autornatlcally
discover" the host’'s MAC address to subsequently uniquely associate the
specific port with that address. As a consequence, when a host with MAC
address MA1 (connected to port P1) requests a packet to be forwarded to
host MA2 (connected to port P2), the switch uses the port i identifiers to for-
ward the packet from port P1 to P2, and thus 1mphc1tly from address MA1
to address MA2.

N EyE SN SR FgE EgE SgE SN
el L L L L L L .Y .
\ ﬁ/fromhost

Figure 8.2: A 16-port sr}vitch as Lrsed in local-area networks.

More important, however, is the fact that a host can be assigned an IP ad-
dress, where IP stands for Intemet Protocol. Unlike a MAC address which
is persistent, meaning that it cannot be Changed an IP address needs to be
explicitly assigned when a host is connected to a network. Address assign-
ment can be done manually or automatically;: and can be done statically or
dynamically. For example, in some cases a separate address assignment ser-
vice is used to hand out IP addresses with an associated lease time. When a
lease expires, the host. will need to get a new IP address!.

A host with IP address IA1 normally uses that address to send a packet
to a destination, say a host with IP address IA2. In contrast to MAC ad-
dresses, an IP address can be used to truly route packets through a commu-
nication network In this case, routers are represented as the nodes of such a
network, and physrcal links between routers as its edges. In essence, when-
ever a hostwants to send a packet, it needs to make sure that the packet gets
to a router, who will then take care of the rest. To this end, it 51mply sends
the packet using the MAC address of a locally accessible router as'its desti-
nation. From there on, it’s the router’s job to forward the packet toward its
destrnatlon '

y !The mechanism just described is generally implemented by means of a so-called DHCP
/" server, where DHCP stands for Dynamic Host Configuration Protocol. h
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32 bits

/—/%

’ network identifier| host identifier ‘

Flgure 8.3: The structure of an IP address, consisting of a network 1dent1f1er and a
host 1dent1f1er g

To avoid that routers need to discover routes to every individual host,
a simple aggregation takes place by splitting an IP address into two parts:
a network 1dent1ﬁer and a host identifier as shown in F1gure B.3 In the
following we will not distinguish among the different types of IP addresses
and consider only the ones that are made up of 32-bit numbers. We assume
that 16 bits have been reserved for the network identifier and 16 for the host
identifier. This means that there can be at most 216 = 32,768 different net-
works, each having at most2'¢ hosts. Whenevera company wants to create
a network, it needs to be assfgned one or several network identifiers. These
identifiers are assigned by a global organization, and will therefore need to
be requested. Stepping over méiny practioaI matters, in our example net-
work from Figure[8.1) we would need at least three network identifiers: one
for the server group, one for LAN #1,-and one for the connected LAN's #2
and #3. When taking routing decisions;a router considers only the network
address and completely ignores the host identifier. So, for example, when
router R1 from Frguremrecelves a packet addressed to a host on LAN #2, it
only takes a look at the network identifier in that address and subsequently
forwards the packet to the sw1tch of LAN #3,'who will then take over the
responsibility of getting that packet to its destination.

It turned out that the’ ‘total number of available network identifiers in
the Internet was not enough to support its growth .Therefore, alternative
schemes and technical solutions are being used to ensure that each host can
be assigned an IP address Nevertheless, the basic approach just described,
namely that each host is addressed by means of a pair of <network,host>
identifiers has been left unaltered. This observation is 1mportant as routers
take dec151ons on where to forward packets to using only network identi-
fiers.

Other small-area networks

Besrdes these small-area networks, there are two other types of networks
worth mentioning. The first one is formed by home networks, which typ-
1cally consist of one to several end-user computers, along with networked
“devices such as set-top boxes for digital TV, Internet-enabled telephones,
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and multimedia centers. These type of networks are growing fast in terms

“of what they offer to end users. Typically, we are seeing that many domestic
apphances are becoming network aware, if alone to smoothly regulate en-
ergy consumption. In addition, many home networks facilitate installation
of sensors for monitoring purposes (think of burglar systems, networked
smoké*and fire detectors, surveillance cameras, and so forth). A h,dme net-
work generally has only a single IP address associated with it, which is sub-
sequently shared between all the devices. It is beyond the scope of this text
to explain how this sharing is realized. What is important is that a home net-
work from the outside is often indistinguishable from a smgle networked
computer: both have a globally unique IP address.

Secondly, there are also (wireless) access networks, whose sole purpose
is to allow devices to connect to the Internet. Typ;cally, access networks
support wireless connection setups to mobile devices. When making use of
such a network, a device is usually provided with a dynamically assigned
IP address whose network identifier is inherited from the access network.
By keeping track of which device was a551gned which IP address, packets
are routed to the access network from where a router or switch can forward
the packet to its destination.

Large-area networks

Small-area networks form what is’known as the edge of the Internet: net-
works beyond which packets are no longer forwarded. In practice, we see
these small-area networks be connected to larger networks owned by orga-
nizations who make it their business to provide many end users and organi-
zations access to the Internet, or which offer the services to transmit packets
across the Internet. These Internet Service Providers, or simply ISPs, gen-
erally span much 1arge’i‘ geographical areas than small-area networks. In
contrast to the small~area networks discussed prev10usly, routing plays an
important role.

The smallest large area networks consist of the access networks we just
discussed (and.in this sense, there is usually not a clear-cut distinction be-
tween small and large-area networks). Examples include modern wireless
access netwérks that span a whole neighborhood or even a city. In addition,
there are many local ISPs that not only provide Internet access, but also basic
services such as e-mail. .

These so-called tier-3 networks have what is known as a peerlng rela-
tlonshlp with tier-2 networks. A peering relationship between networks
N1 and N2 may occur when N1 has a router that is connected through

_a direct link with a router of N2. Such routers are also known as border
/ gateways, as they allow for traffic to flow into and from the network, that\\.
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is, they operate at the border of a network. Tier-2 networks are often con-
nected to other Tier-2 networks, allowing packets to cross larger areas. As”
said, routing plays a prominent role in these cases. Regional ISPs, such as
those covering a (small) country are typical examples of tier-2 networks:

Finally, we distinguish tier-1 networks, which provide the backbone of
the Internet. End users usually never connect directly to tier-1 networks.
Instead, these backbones provide services and routing capablhtles only to
tier-2 networks Note that there may be several tier-1 networks operating in
the same area: This allows regional ISPs to choose from which network they
will make use. In fact, ISPs may change their peering relatlonshlps without
end users even notlcmg ;

8.1.2 Measuring the topology of the Internet

All of the networks we drscussed so far are usually each managed by a sep-
arate administrative unit. Thls is certainly the case for large-area networks.
For small-area networks, we"often see that the networks are still managed
separately (as is typically the case for corporate local-area networks), or
management is partly delegated to end users (as with home networks).
Roughly speaking, a collection of networks that fall under the regime of the
same administration and that follow’ the'same policy regarding how to route
packets, is known as an autonomous'x‘system or simply AS. By connecting
autonomous systems, we essentially obtain the structure of the Internet. In
other words, the Internet can be represented as a graph where a vertex rep-
resents an autonomous system, and an edge the fact that two autonomous
systems have a peering relatlonshlp As of this. wr1t1ng, there are more than
25,000 autonomous systems

The AS topology

Discovering what is. known as the AS topology of the Internet is on the sur-
face relatively easy ‘provided certain details are not taken into account (and
which we will indeed skip for now). Each autonomous systern is assigned
a unique number called its AS number. Note that this assighment is done
through a central authority, as is the case for assigning network addresses.

Each AS announces which networks fall under its regime by essentrally
advertrsrng (AS number, network identifier) pairs. Such announcements are
made by the AS’s border gateways discussed previously, and are p1cked up
by the respective neighboring border gateway of an adjacent AS. As an ex-
ample assume that AS 1 manages a network with identifier nid. A border
gateway connecting AS 1 to AS 2 may send the pair (AS1, nid) to AS 2. At
/that point, AS 2 will have discovered a route to network nid. AS 2, in turn,
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may advertise this information to its own neighbors, in which case it would
"‘xsend the tuple (AS2, AS1,nid) to its neighbors. e

. You may have noticed that this approach toward discovering routes is
essentlally the same as the one applied in the Bellman-Ford algorithm we
discussed in Chapter Bl And indeed, the core of the so-called Border Gate-
way Protocol (BGP) which is deployed for discovering routes between au-
tonomous systems is exactly this routing algorithm. However, instead of
only reporting distances, BGP requires that an AS advertises the complete
path it found to a destination. This information will allow a recipient to de-
cide whether it will actually use that path for routing packets. Generally, a
gateway will keep only information on its discovered shortest path to a net-
work. Information on paths that are longer is simply discarded. What we
are thus seeing is that (1) border gateways learn about shortest paths to net-
works in other autonomous systems, and (2) advertlse this information to
their neighbors, allowmg each in turn, to dlscover paths to those networks
as well. x v
With over 25,000 autonomous systems, eaCh having many networks to
which packets must be routed, it is clear that the information that must be
stored at a border gateway can be huge. . In principle, each gateway is re-
quired to have an entry for every discovered network. Even with using
many sophisticated techniques to combme routing information, a border
gateway is currently required to store close to 300,000 entries. These entries
are exclusively used to decide to whichnext AS an incoming packet is to be
routed. In addition, every gateway stores. information on well over 800,000
routes. In principle, those routes cover all' paths between networks in the
Internet. S N

With this in mind, it may now be clear how 3 We can discover the AS topol-
ogy of the Internet: we simply retrieve the routmg tables from border gate-
ways in order to collect as many routes as possible. Of course, this is much
easier said than done: As explained by [Huston| [2006], many ASes use mul-
tiple AS numbers resulting in approximately twice as many observed ASes
as there are in reality. In addition, an AS may decide not to advertise a link
to one of its nerghbors because it simply doesn’t want to support traffic of
other ASes over that link. In other words, there may be a connection be-
tween two border gateways from different ASes, but this is not reflected in
BGP routmg tables. Another source of errors is the dynam1c1ty of the ta-
bles: when a link is temporarily out-of-order, it may not show up in routmg
tables ‘We return to this issue shortly.

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

8-10 CHAPTER 8. MODERN COMPUTER NETWORKS

A snapshot of the AS topology

Essentially using the method just described, [Chi et al|[2008] have collected’/
data on how autonomous systems link to each other. Taking a single snap-
shot from October 2008, we obtain a network consisting of over 30, 000ver-
tices and more than 100,000 edges. Figure illustrates that we are ap-
parently dealing with a scale-free network, although the data pomts do not
quite fit a stra1ght line.

1000 |

Vertex degree

10

1 10 100 1000 10,000
Node ID”((anked aozfording to degree)

Figure 8.4: The degree distribution of tﬁfe::AS topology using BGP router data. The
x and y axis are scaled logarithmically. k

There are a number of interesting points to observe about this topology.
First, it may be somewhat surp’ﬁsing to see how well connected some of the
autonomous systems are. If we consider the degrees of the top-10 ASes, we
find the following;: :

Rank: | 1 .2 [ 3 | 4[5 67718910
Degree: 33092371 2232|2162 1816|1512 | 1273| 1180|1029 | 1012

Not only do we seg that the top AS is connected to more than 10% of all other
ASes, we can also observe that this type of connectedness drops rapidly as
one would expect from a scale-free network. As we discussed before, such
a degree distribution may have a serious adverse effect on the fobustness of
the network, in the sense that a targeted attack by which we remove well-
connected nodes may easily lead to partitioning the network.

Haddadi et al.|[2008] have analyzed other properties of the AS topology
found from BGP routers. Not only did they find high clustering coefficients
for: the top 1000 nodes, these nodes are also connected to each other formmg
an almost complete graph. In line with these observations is the distribu-
’,,f‘tlon of shortest paths: most paths are no longer than three or four hops,
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and virtually all ASes are separated by a shortest path of maximum length -

“six. Again, we see the small-world phenomenon occur in the network of
autonomous systems. ’

Note 8.1 (More information)
Unfortunately, just taking a snapshot of the AS topology may not provrde
enough information of what is going on. There are two problems,that need
to be addressed. The first one is caused by the fact that even with’/ data from
a large number of BGP routers, one can never be sure to have captured all ex-
isting peering; relationships between autonomous systems. In fact it turns out
that finding the. actual links at a given time may indeed be very difficult. The
second problem has to do with the fact that large real-world networks are in
continuous flux: hnks and nodes may appear to come and go all the time due
to intermittent fallures, making it more difficult to 1dent1fy truly new peering
relationships or those that have been discontinued.

Consequently, when we're interested in 1dent1fy1ng the real topology of the
AS network, we need to do a bit more than just analyze a few snapshots. We
will not go into further detaﬂs here, but refer the" interested reader to|Chi et al.
[2008] and [Raz and Cohen|[2006]. The latter ,pyrovide evidence that more than
30% of the existing links are missing from th’é AS topologies derived from BGP
routers. In fact, Oliveira et al|[2008] argue: that only the observed links between
the autonomous systems for tier-1 networks are reasonably accurate. For tier-3
networks, using BGP routing 1nformat1on is argued to be highly incomplete.

8.2 DPeer-to-peer overlay networks

As will have become clear, by now, the Internet is simply huge. In practice,
we see that the Internet is used as a universal platform for a wide variety of
applications. Perhaps the most well-known applfcation is the Web, which
we will discuss in Sectron B.3] In many cases, Internet applications are or-
ganized according, to what is known as a client-server-architecture. In this
case, the core of an application is hosted by a special cOmputer, known as
a server. The rest of the application consists of a program hosted on a so-
called client computer This client program can send a request to the server,
where it is processed after which the server sends a reply back:to the client.
A well-known example of this client-server architecture is actually the Web:
the chent program is formed by a Web browser; the server is the computer
mamtammg a specific Web site. «

A client-server architecture can be represented by a simple graph in
Wthh clients and server are represented by vertices, and where each client
vertex is joined with the vertex representing the server, as shown in F1g—

7 ure BB
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Client
Server
Client
Client Client

Figure 8 5‘ Representing a client-server architecture as a graph. In thls example
there are four chents !

Although it Wpuld seem that the server in a client-server architecture
may easily become a performance bottleneck, you need to realize that clients
come and go quickly: In most cases, a client merely sends a request to the
server, the server processes that request, and subsequently sends an answer
back. After that, the client and server each go their own way. In graph-
theoretical terms, the edge between a client and server will eventually be
broken again. Nevertheless;: in case we are deahng with requests that re-
quire substantial server processmg time, or when responses require return-
ing huge amounts of data, servers can indeed become a bottleneck because
they can only process a limited number of requests per time unit. It is be-
yond the scope of this text to go into these matters in more detail. See[Tanen-
baum and van Steen| [2007] for more information.

Since the late 1990s, researchers have been exploring alternative archi-
tectures to address scalability problems for large, distributed applications
whose constituents are spread, across the Ihternet In principle, each con-
stituent, called a peer, consists of a program:. that is being executed on a
single computer. Each peer ‘maintains a list, called a partial view, of other
peers that form part of the distributed application: This partial view has the
sole purpose to allow for the exchange of applicatién—specific data between
two peers. If we were to represent such a distributed apphcatlon as a graph,
each peer would be represented by a vertex and an edge would represent
the fact that two peers would have each other in their’ respective partial
views. Taking all these peers and their respective partial VleWS into account
leads to what is known as a (peer-to-peer) overlay network: a communica-
tion networkbetween the constituents comprising a distributed*e}pplication.

8.2.1 Structured overlay networks

One, 1mportant type of overlay network is formed by networks that are or-
gamzed in a structured fashion. In particular, the partial view of each peer
is filled with references to very specific peers as opposed to having a partial
/view with references to randomly chosen peers. We will discuss the latter
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type in the following section.

Tl]e Chord peer-to-peer network

To make these matters concrete, let’s consider the Chord peer-to-peer net-
work*‘[_Stoica et al., 2003]. The principle behind Chord is relatively,néimple,
which is also the reason why we’ll use it to explain structured peer-to-peer
networks.. A survey of other, similar systems, is provided by'/ Lua et al.
[2005].

Chord is a. distributed application that can be used to eff1c1ently store
and locate data- across a huge collection of hosts. Each host is required to
have a unique identifier, represented by an m-bit number. Typically, m =
128, meaning that there can be as much as 2'?® ~ 34 x 10°® identifiers.
That’s enough to fill'every square millimeter land of the Earth with more
than 2 x 10'8 hosts. It Should suffice for a while. In practice, this means that
when a host needs to join a Chord network, it can simply generate its own
random identifier without 1 running any serlous risk that some other host has
generated the same identifier. '

A host in a Chord network i is assumed to store data. To keep matters
simple, we assume that data is stored in afile, with each file having a unique
key. Like host identifiers, each kéy is an m-bit number. The fundamental
principle in Chord is that the file w1th key k is stored on the host with the
smallest identifier id greater or equal to k. Computing if id > k is done in
modulo M arithmetic, where M =m

Note 8.2 (Mathematical Ianguage) «

Recall that modulo M ar1thmet1c is applied to mteger numbers, mapping all
numbers to values between Qand M —1. A common notation is k mod M. So,
with M = 32, we would have:

k  kmod 32
4 4
31 31
32 0
-5 27
—-31 1

To 111ustrate, consider a Chord network with m = 5, meaning that M =
25 = 32. Suppose we have peers (i.e., hosts) with identifiers 1, 4, 9, 11 14,
18; 20 21, and 28. It is convenient to represent this system as a ring; as
/,shown in Figure 8.6, We simply denote the peer with identifier p as peer
/" p. The actual peers are shown as gray-colored circles; the rest of the unused.
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identifiers are represented by dashed circles. As shown, the peer withid =1

‘will be responsible for storing files with key 29, 30, 31,0, and 1, respectlvely
Indeed in modulo M arithmetic we may have that 1 > 31.

e
L
Peer 1 stores
27 files with keys SN
26 29, 30, 31,0, 1
Peer 9 stores
files with keys
. 56,7,8,9
1 ‘Peer 20 stores
22 file\with key 21 10

Figure 8.6: The representatien:’ef a Chord network as a ring.

The peer responsible for stormg a f11e w1th key k is called the successor
of k: g

Definition 8.1: Consider a file w’z‘ih key k. Ina Cho?d‘peer—to—peer network, the peer
with the smallest identifier p,xé k is called the succeé‘sgr of k, denoted as succ(k).

Perhaps a bit confusing, but it is important to note that if p = k, succ(k) = p.
Central to the design of Chord is efficiently looking up data by means
of keys. A naive wéy of doing a lookup is as follows. Assume that the
peer with 1der1t1fler p (i.e., peer p) is requested to look up a file with key
k. Ifp <k peer p can simply forward the request to its left-hand (i.e.,
clockwise) nelghbor in the ring, a process which is repeated-until the first
peer is reached, say g, with g > k. Likewise, if p > k, peer p can still simply
forward the request to its left-hand neighbor, until a peer g is found with
the smallest identifier ¢ > k. It is not difficult to see that thls search’ strategy
would, on average, require that a request is forwarded 2 »1 times, where 1 is
the total number of peers. If n = 10,000, it would take forever to locate, the
flle N
A much more efficient approach is to let every peer store “shortcuts” t‘(‘)\
’,,f"other peers at increasingly longer distances. These shortcuts are stored in .
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a peer’s partial view, which is called a finger table in Chord. Each finger
“table FT), of peer p consists of m entries, numbered 1,2,...,m, and denoted
as FTy[1],..., FT,[m]. Entry i contains the successor of key p+2i-1

FT,[i] = succ(p +2'71).

In other ‘words, entry i contains a shortcut to the peer respon51b1e for ke
p +2i~1. The finger tables for our example Chord network from Figure
are shown in Flgure ;

i succ(p +2")

-

Q| [WO[N[—= |

| oo [

N

00| O (00| [~

N[N

I INIRI YN
o] N[l
@ LS
S
= o

Figure 8.7: Finger tables for the peer§ from Figure

Let’s check a few of theée finger tables:

 Consider FTy = [9,9,9, 14, 20]. FT4[1] should contain succ(4+2!~1) =
succ(5). The-peer responsible for key 5 is indeed 9. The same holds for
FTy[2] = succ(4+2271) = succ(6) and FTy[3] = succ(4+2371) =
succ(8). Likewise with FTy = succ(4 +2*71) = succ(12), the responsi-
ble peer for key 12 is indeed peer 14. Finally, FT5 = succ(4 +25°1) =
succ(20), which brings us to peer 20.

. For peer 21, we have FTy; = [28, 28, 28, 1, 9]. For the first three entries,
we are seeking the successor peers for 21 + 1, 21 + 2, and 21 4, re-
" spectively, which is indeed peer 28. FTy; [4] = succ(21 4 8) = sué‘c.(29),
for which peer 1 is responsible. Finally, FTy;[5] = succ(21 + 16). =
succ(37). Because we need to apply modulo 32 arithmetic, we firid
that FT»;[5] = succ(37 mod 32) = succ(5), which leads us to peer 9.
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It is now not hard to imagine how an arbitrary peer p receiving a request to
look up key k proceeds: it looks in its finger table to identify peer g satisfying

q=FT,li] <k < FT,[i +1]

In case. p < k < FT,[1], q is selected to be FTy[1]. Likewise, if FT) [m] <k,
q is selected to be FT,[m]. The lookup request is then forwarded to g. This
process is repeated until the request arrives at the peer respon51ble for k.

Key | Initial | Lookup path

peer
15 4 4 — 14 — 18
~22 4 4—20—21—28"

18 20 20 -4 — 14— 18
Figuré“‘B‘\.B: Some example lookup’//paths.

To illustrate, consider the\lookup requests from Figure [8.8] Using the
notation k@p to denote that a request for key k is initially issued at peer p,
we have: '

15@4: Because FTy[4] < 15 < FTy[5 ] the request is forwarded from peer 4
to peer FTy[4] = 14. There, we need to apply the rule that p = 14 <
15 < FTp[1], so that the request is forwarded to FTy4[1] = 18, where it
reaches its destination. g

22@4: For this request, we f1r1d that FTy[5] <“ 22, so that the request is for-
warded to peer FT4[5] = 20. There, key 22 satisfies FTy[1] < 22 <
FTy[2], so that it is forwarded to peer FTy, (1] = 21. Again, noting
that p = 21 < 22 < FT,[1], the request reaches its destination peer 28.

18@20: This is a somewhat tricky case. First, note that because p = 20 # 18,
we cannot forward the request to FT,[1]. Instead, we eventually find
that FTy[5) < 18, so that it is forwarded to peer 4. From there, it is
easy to see that by using the same reasoning as for request 15@4, we
find the remaining path 4 — 14 — 18. .

The Chord graph

Now that we have explained the basic principles of Chord, let’s con51der
it from a different point of view, namely as graph. It should be clear ‘how
we 'can represent a Chord network as a (directed) graph: each peer is repre-
sented as a vertex and if peer p has a reference to peer ¢ in its finger table,
’,f’we add the arc (p, ). This leads to the graph representation of our example .
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Chord network shown in Figure 8.9 Note that we should indeed represent -
“a Chord network as a directed graph: if p has q in its finger table, this does
not mean that g also has a reference to p. g

Figure 8.9: The representatlon of the Chord network from Figure . as a directed
graph. .

Of course, Chord networks beeome’/interesting when we consider ones
with many peers. Already by looking”at a network with 100 peers as shown
in Figure 8.10, we can observe that we- ‘may be dealing with a small-world
graph. First, we see that every vertex is Jomed with a vertex opposite its
own position in the ring. In partlcular suppose we would renumber the n
verticesto 1,2, ...,n and agaiﬁ use the distarlce metric

dy (i, ) 4 minf]i — jl,n — Ji —il

which we introduced in Chapter [7)in the proof of Theorem . Recall that
this metric measured the distance between vertices ‘along the “outer ring”
of the graph. With/d}, we then see that (V1rtually) every vertex p is joined
with a vertex at rOughly distances %n, }Ln, }sn , 1. .

This observatlon also suggests that the average path length which corre-
sponds to the‘average number of vertices to which a lookup request needs
to be forwarded, will most likely be proportional to log,(n):. To test this
hypothes1s we can generate a series of Chord networks and compute the
average path length for each of them. Figure 8.1 shows the result for a
series-of such networks. The figure also shows a loganthrmc functlon that
can, be found using a standard curve-fitting method (see again Note[6.T] on
page [6-6). As can be observed, not only does the average path length in-
_crease logarithmically with the size of the network, it is also relatively small
/" Note that the path length has been computed for a directed graph.
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i
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Figure 8.10: A Chord network wit}.{“m = 2,,8/'and n = 100 peers (orientation not
shown).

Note 8.3 (More information)
That the average path length indeed increases only logarithmically can be

proven formally as follows (sée also [Stoica et al|[2003]).

Theorem 8.1: Consider q/’thord network with m-bit i;ientiﬁers and n peers. The
number of peers that need to be contacted in order to look up\‘q& key k is proportional to

log, (n).

Proof. Assume thét we issue a lookup request for key k a."tx‘peer p. Let z be
the peer that immediately precedes succ(k). Assuming that p % z, peer p will
forward the peéiuest to the closest predecessor of k that p can ﬁfl‘d in its finger
table. This is'exactly the rule stating that the next peer g should satisfy:

q = FTy[i] <k < FT,i +1]

Let i be'such that z is in the interval [p + 2/, p + 2'). What p will do is contact
the /,fii‘st peer g in this interval, which is precisely succ(p +2/~1). Note'that
g < p| > 2/~1, but at the same time |q — z| < 2/ —2~1 = 2/~1 In other words,
,,q”/lies numerically closer to z than to p, i.e., d}(p,q) > d3!(g,z) where M = 2m;
This also means that d}(g,z) < 1d3!(p, z). The latter observation is important,
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Figure 8.11: The average path length for a series of Chord networks with m = 28
and increasing number peers /

for it means that each time a request is forwarded the distance to z measured
according to metric d is at least halved.

What does this mean after havmg forwarded the request 2 log, (1) times and
reaching, say, peer r? Considering that we half the distance to z in every step,
we will have a total reduction of ( )21082( n) = p2logy(n) — plog,(n™*) = 1/p2,
The distance between p and k will be‘at most 2m, meaning thatin 2 logz( n) steps,
the distance between r and z will, be at most 2" /n?. Because we are assuming
that peer identifiers and keys are drawn umformly at random, the probability
that we have chosen a peer 1dent1f1er from an interval of length L for an n-peer
Chord network, is equal to 1’ x L/2™. In other wbrds, the probability that there
is peer with an identifier etween k and r, is equa1‘~to nx (2m/ nz) /2" =1/n,
which is negligible for large n. We conclude that the \rmmber of peers that need
to be contacted before,r'esolving a lookup request is prdpprtional tolog,(n). O

Let us take a look at some other properties of Chord networks, starting
with the degrée distribution. Because we are dealing with a directed graph,
we should make a distinction between the distribution indegrees and out-
degrees. Consider a Chord network with n = 10000 peers and using m-bit
identifre’rs. Figure shows the histograms for the indegrees as_\ well as
the outdegrees. When it comes to the indegrees, the distribution seems to
follow an exponential curve (note, however, that we are not dealing with
a power-law distribution). This also means that there are a few peers w1th

_many incoming arcs, in turn, meaning that they may need to process many
/" lookup requests. The outdegrees are more or less symmetrically centered".
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around 13.5. As argued by [Stoica et al.| [2003], each finger table will have
‘only approximately log, (1) unique entries, which in our example comes”
down to log,(10,000) = 13.3.

600 |-,
" F 3500
. /
500 |1 @ 2500
] e
H ML o
w 400 | N 5 1500
3 I I 8
3 i g 500
£ 300 f | m
] I 12 13 14 15 16 17
o i Outdegree
200 |
100 f
L 1 1
20 40 60 80 100

Indegree

Figure 8.12: The distributions of in&égrees’/end outdegrees for a Chord network
with 7 = 10000 peers using 28-bit identifiers.

What about the clustering coefﬁcient'f‘ ‘To keep matters simple, we drop
the orientation of a Chord network and compute the clustering coefficient
of the corresponding undlrected graph for various network sizes. The result
is shown in Figure [8.13] Futst compared to an E;‘dos Rényi random graph,
we see that the clustering coefficient is very high. Moreover, the cluster
coefficient only slowly decreases when the network: grows. Combined with
the fact that the average path length is low, we may indeed conclude that
Chord networks constltute small-world networks.

8.2.2 Random overlay networks

Processes in- dlstrlbuted applications such as Chord apply strlct rules for
mamtammg partial views, effectively leading to a well—structured overlay.
In contrast, in the case of random overlay networks, also referred to as un-
structured peer-to-peer networks, the goal is keep a high degree of ran-
domniess in the partial view. In other words, the goal is to let entries refer to
seeﬁlingly randomly chosen peers. In this section, we will take a closer look
.:,a/t/a class of random overlay networks that are constructed through what is
~known as gossiping.
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0.09 |

Figure 8.13: The clustermg coefficient Chord networks of Varlous sizes using 28-bit
identifiers. '

A framework for epidemi‘é-based networks

As said, many unstructured peer-to-peer networks maintain an overlay that
resembles a random graph. There are numerous ways to do this, and in
many cases we see that this mamtenance is done using centralized compo-
nents. In other words, special centrél,s"érvers are used assist in maintaining
some form of randomness in the overlay network. A fully decentralized ap-
proach can be achieved by making use of what are known as epidemic pro-
tocols. In an epidemic protocol,a peer (again, meaning a host) uniformly at
random chooses another peepf&) exchange data with. It’s as simple as that.

More formally, we have the following. Coﬁs\ider a collection of peers P =
{p1,p2, ..., pu}, each capable of storing a potentially very large collection of
files. Each file f has a yersion number v(f) telﬁng how often the file has
changed. To keep matters simple, we assume that \e@Ch file has exactly one
associated peer own (f) that is allowed to change that file. Let v(f, p) denote
the version of file-f currently stored at peer p, and F S( p) the set of files
stored at p. If f is not stored at peer p, then v(f,p) = O It should be
obvious that s

Vf,p:o(f,own(f)) = o(f,p)

The prinéipal goal of an epidemic protocol is to make sure that evéry update
to a file is disseminated to all peers. To this end, each peer p € P periodically
chooses uniformly at random another peer g € P, and proceeds as follows:

"1 forall f € FS(p): if u(f,p) > v(f,q), then FS(q) «— FS(q) N {f},
possibly replacing an older version of f that was stored at g.
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2. for all f € FS(q): if o(f,p) < v(f,q), then FS(p) — FS(p) N {f}, =
again possibly replacing an older version of f that was stored at p.

Note that after these two steps, both peers p and g have exactly the same set
of files and for each file also the same version. This protocol forms the core
of a scheme that was proposed to maintain replicated databases by Demers
etal. [1987] It is widely applied in modern distributed systems to eff1c1ently
disseminate. 1nformat10n

Note 8.4 (More information) .

Epidemic protocols are extremely efficient when it comes to spreadlng data. To
see why, consider a'collection of n peers in which initially éach peer except py
stores nothing. Peer p1 stores a data item d. Let us f1rst consider two simple
strategies: .

1. When peer p contacts g, only if p already storcs d and g does not, will p
send d to g. In other words, p pushes data 1tem d to g if p has it stored,
otherwise nothing happens :

2. When peer p contacts g, only if q already stores d and p does not, will g
return d in response to p’s request Int other words, p pulls data item d
from g if p does not yet have it stored otherwise nothing happens.

We assume that each peer contacts another peer once every T time units. T is
called the cycle time: after T time umts we\ know that every peer has contacted
exactly one, randomly chosen otherpeer. We therefore also say that a cycle has
completed after T time units. Let"p be the \probability that an arbitrary peer
has not yet obtained d after i cycles in the push case and p;” the same probability
but when we apply only a pull strategy. N

For the pull case, it is not difficult to see that p +1 = (p; )2: the peer did not
yet have d in the i cycle and it contacted another peer who also did not have
d during the i cycle. "

The push case is only slightly more complicated. In' order for a peer p to
stay bereft of d, it will have to be contacted only by peers who also do not
have d stored. In. other words, none of the peers that had stored d during the

th cycle should ‘contact p. The probability that one such peer does not contact
pis (1— —) it has n — 1 peers to choose from one of them' being p. The
probability, that it will contact p is therefore nf If pl is the probabﬂlty that
a peer w’ill/ not have seen d up until the i*" cycle, we can expect that xa\fraction
of (1 —p;") will have already stored d. In other words we can expect.a total
of n(IF pi) peers to have stored d after reaching the i*" cycle. None of them
should contact peer p if we want p to stay ignorant of d, leading us to: ’
L e

+ _ .+
P =0 (1= =
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| To get an impression of the speed by which a data item is spread across a net- - i

“\‘work using only the push or pull approach, consider Figure m We con>”
s1der a 100,000 node network in which initially only a single peer stores dafa
1tem d. Clearly, both approaches show that as soon as the data item has been
suffrc1ently spread (which happens around cycle 13), dissemination speeds up
tremendously

Probability of not having see‘r’i'data item

Cycle's

Figure 8.14: An illustration of the speed of epidemic-based dissemination of
data. !

Finally, when applying both pull an‘d\push when exchanging data, for a
peer to remain ignorant of d, it should neither contact a peer that has stored d,
nor be contacted by a peer storing d. In other .‘words pf = =pT-p; . Again, we
see that once dissemination has reached a few peers, within only a few cycles
the whole network will know about d. .

When dealing wrth very large networks, eprdemlc protocols bump into
a practical problem how can a peer uniformly at randorn select another
peer? In pr1nc1ple doing so requires that the selecting peer knows all the
other peers in the network, yet having such complete knowledge is infeasi-
ble. Fortunately, we can take a much simpler approach by again considering
partial views and letting peers exchange entries using an ep1dem1c protocol.
The crucial difference with a normal epidemic protocol is that a peer p now
selects another peer chosen from its partial view. This is best explarned by
assurmng that each peer is split into two programs that are executed. simul-
taneously, called its active part and its passive part, respectively. The ‘two
programs are outlined in Figure[8. .
 Letus first concentrate on the active part of a peer p. We use the notatron
/' PV, to denote the partial view of peer p. As shown, peer p waits for a fixed'
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Active part Passive part
repeat repeat
wait T skip
. q < select1 from PV, skip
. Rp « selects from PV skip
~send Ry U{p}\{q} tog receive RZ fromanyp
skip Ry < select s from PV, ~
receive R} from g send RyU{q}\{p} to p
PV) p- select m from PV, U Rp PV, « selectm from PVq U RI,J
until forever until forever /
“(a) ()

Figure 8.15: The basms of an epidemic exchange of references from partial views.
Each peer consists of an ( ) active part and a (b) passive part

amount of time, after which it selects a peer"q from its partial view PV),
which it will later on exchange data with. Thls waiting time, or cycle time
as it is called, is the same for every’ peer. We assume that within a cycle time,
each peer will initiate an exchange with-another peer exactly once, albeit that
every peer does this at a different moment. When all peers have finished
such an exchange, we say that a round has completed.

After peer p has selected g, it continues to select s entries from PV, (we
assume s > 1), denoted as the set Ryp. This set extended with a reference to
p itself but always excluding ¢, is then sent to 4. Meanwhile, peer g has been
passively waiting for any mcommg message. 'In our example, it receives
a message from peer p, in particular the set Rq .Of course, we have that
Rq = R, U{p}. As w1th p, peer g will then select s entries from its own
part1al view, and send those along with a reference to itself back to p. At
this point, both p and g are in the same state. Conceptually, each first adds
the references received from its peer to its partial view, and then shrinks the
partial view to afixed size of m entries, bringing it back to the original size.

In our explanatlon we have deliberately left open many choices. In-
deed, Flgureﬁ 8.15| can be considered as a framework for a w1de variety of
epidemic-based protocols, as discussed extensively in Jelasity et al|[2007].
For example, should p select a peer g randomly from its partial view, or per-
haps the the peer that has been in its view the longest? Likewise, there are
different choices for selecting the s references to be sent to : random ones,
the’ freshest ones, the oldest ones, etc. Finally, we need to decide on how- to
shrink the partial view again to its original size. In the following, we Wlﬂ\
’,,f"concentrate one specific protocol that fits this framework, called Newscast. -
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Newscast: an epidemic-based peer-to-peer network

‘Newscast is an epidemic-based network, originally developed to facﬂitgte
large-scale computing on the Internet (see Jelasity et al| [2010] for an iip-
dated original description of Newscast). The protocol is extremely 51mple,
yet shows interesting emergent behavior. We will discuss a slightly-simpli-
fied version of Newscast, for which we return to the framework shown in
Figure “ In particular, we have the various parameters set as described

in Figure -

Issue “{ Policy Description
view size ‘m =30 | Each partial view has size 30
peer random | Each peer uniformly at random selects a peer
selection from its partial view .
reference random | A random selection of s peers is selected from a
selection “. | partial view to be exchanged with the selected

"l peer /
view size random | If the view size has grown beyond m, a random
reduction selectlon of references is removed to bring it back

to 51ze m

Figure 8.16: Parameter settiné‘s\for,t}/le (adapted) Newscast protocol.

Let us first see whether Newscast is indeed capable of producing an
overlay network that resembles‘a randém graph. To start with, we con-
sider the situation that every partial view is initially filled with references
to randomly chosen peers, and then see how the protocol affects the degree
distribution. As in the Case of Chord, representmg a Newscast network is
done by modeling every. peer as a vertex and a reference to peer g as stored
in the partial view of péer p as an arc from p to g. For Newscast, the outde-
gree of every vertex is equal to m, so let’s consider the indegree distribution.
We consider a 10,Q00—node network. Figure shoW‘s,\the distribution for
the initial network and one after 200 rounds. As said, a round is defined as
the situation in-which each peer has initiated an exchange with exactly one
other peer. In”/terms of Figure a), a round corresponds\to one iteration
of the repeat . until loop. K

What can be clearly seen from Figure[8.17]is that the degree dlstrlbutlon
changes’ from being symmetric to fairly skewed, with some peers: having a
relatively high indegree. When giving the matter some thought, this'should
actually come as no surprise: there is simply a nonzero probability that cer-
tain references to peers are spread across many peers because they are sim-

/,ply not removed when shrinking a partial view back to its original size .
/" By applying other strategies than just randomly selecting peers as we dld\\.
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Figure 8.17: (a) The initial indegree distribution of a Newscast network and (b) the
31tuat1on after 200 rounds. \
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for Newscast, we can achieve much better distributions (see, e.g., Voulgarls
"‘~et al.|[2005]). '

. Let’s take a closer look at the average path length for Newscast net—
works As with Chord, we take the orientation of the graphs into account,
i.e., we consider the length of paths in the associated directed graph The
first thlng to note is that Newscast networks are not always strongly con-
nected. In other words, there are peers who cannot be reached by any other
peer in the network. However, when conducting a reachability analysis, it
turns out that such peers are few, and completely isolated.” We therefore
ignore them and concentrate only on the largest strongly Cormected compo-
nent, which confams virtually all peers.

Figure 8. shows the average path length as the size of the network
increases. In Comparlson to Chord, we see that the aVerage path length is
considerably smaller (see Figure B.11). The figure ‘also show the average
path length for a comparable dlrected ER random graph. As can be seen,
Newscast comes close to what we would expect, to see from ER graphs when
considering path lengths. ) g

3.2

30 f
28 [

26 [

Newscésﬁ

ER random graph

Average path length

240

5 10 15 20
Network size (x 1000)

Figure 8.18: The gi}erage path length for Newscast netwofks of increasing size.

When it Coines to the clustering coefficient, we see the following Again,
we simplify" matters by dropping the orlentatlon in the Newscast graph and
consider its undirected counterpart. Figure [8.19)shows how the. clustermg
coefficient evolves as the number of peers increases. For compatison, the
figure also shows the clustering coefficient for an ER(n, p) random:graph,
where p is taken equal to 30/ (1 — 1). Recall that for an ER(, p) graﬁh the
avérage vertex degree is equal to p(n — 1). For our Newscast graphs, we

have fixed the outdegree to 30, and thus also the average indegree. As'a
/" consequence, for a comparable ER(1, p) graph we'll have p(n — 1) = 30. In".
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Figure 8.19: The evolutlon of the clustering coefficient i in Newscast graphs as the
number of peers increases. .

contrast to Chord, we can sée; that Newscast _af)pears to be much closer to
Erdés-Rényi random graphs than small-world networks.

83 The World Wide Web

The Internet is the network that facili’fétes the undisputable biggest success
of information systems: the World 'Wide Web, or simply the Web. Started
around the late 1980s as a system to allow end users to easily browse through
documents by means of hyperlinks, it has grown into a gigantic distributed
information system with a virtually uncountable number of documents.
Moreover, the system is in continuous flux: notonly is content added and
changed every minute, the number of participating sites that act as sources
of information continues to grow at an exponential pace
In this section we will explore the Web from the perspectlve of graphs.

To do so, we first take a look at the basic orgamzahon that is needed to
understand how jts structure can be analyzed. )

8.3.1 The orgamzatlon of the Web

The Web is essentlally organized into a vast number of Web s1tes A site is
a logical’ collection of Web documents with a uniquely associated ‘domain
name, such as, for example, www.distributed-systems.net. Using a 51te s do-
mainname it becomes possible to access its documents as we explain below
NetCraft Ltd. reported the existence of close to 75 million active Web sfres
m the Fall of 2008. In the Summer of 2008, Google Inc. reported that they.
“had discovered 1 trillion (i.e., 10'?) Web pages! When realizing that many
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" documents are not being seen by Google, imagining the actual size of the
"‘xWeb is virtually impossible. 7

. Asite, in turn, is hosted by a Web server or collection of servers. For our
purposes, a Web server can best be thought of as a computer that is used
to return a page. The browser that issued the request, is known as, a Web
client."The 75 million sites that were discovered by NetCraft were hosted
on 65 mllhon servers. Each such server essentially operates as ‘shown in
Figure[8.20} A browser issues a so-called HTTP request for a Web page to
the server. HTTP stands for the HyperText Transfer Protocol, ‘the standard
communication protocol used in the Web. Such a request contains the do-
main name of the site, which is uniquely associated with the IP address of
the server hosting the site. Before an HTTP request can be sent, the Web
client first looks up the site’s IP address using its domain name. This can be
done using what is kﬁown as the Domain Name System, or simply DNS,
but which we shall not discuss any further here- (see, e.g., [Albitz and Liu
[2001] or [Levien! [2005] for further details). ,

The request as sent to the server contalns"'én exact reference to the re-
quired document (which we describe shortly)" The reference is subsequently
processed by the Web server, all@wmg it to fetch the document from its local
file system or database. At that pomt the document is returned to the client.

Client machine Seh/er machine 2. Server fetches
document

Browser / \Neb

y yy

| Q ,/3,.rf-'/\;;esponse ] |

1.Get documént request (HTTP)

Figure 8.20: Thé'basic communication between a WeBxclient and server.

A documenf/ that is, a Web page, may contain a reférence to another
document by means of a hyperlink. A hyperlink takes the form of what is
known as a'Uniform Resource Locator, or simply URL. To 1llustrate con-
sider the followmg URL:

http //www.distributed-systems.net/main.html

In thls case, we have a reference to a Web page stored as the file main.html
on "the Web site with domain name www.distributed-systems.net. The addl—
l,tlonal “http://” tells us that this page can be accessed, or better, retrieved, by
~ sending an HTTP request. R
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~ Once a client has received a page, it can fetch other pages through these
‘URLs. For our purposes, it is important to realize that the combination of
Web pages and the URLs they contain form the essential ingredients for
constructmg a graph. In particular, if we represent a page as a vertex, then
clearly every URL contained in that page can be represented as an ar¢ in a
directed: graph from that page to the page referenced by the URL. Summa—
rizing, we are dealing with a graph estimated to consist of at least a trillion
vertices and many more arcs.

8.3.2 Measurmg the topology of the Web

Retrieving this so- Called Web graph is practically undoable if alone for the
fact that it changes even more quickly than AS peering, relationships. Unfor-
tunately, there are several other problems that stand in the way of accurately
measuring how pages link to each other. In this section we will go into fur-
ther details on how the strueture of the Web grapli can be discovered.

Crawling the Web

In the beginning of the Web, dochmentsy{'rere formatted using a relatively
simple markup language: the Hyi)erTe"xt Markup Language (HTML). A
markup language is nothing but a series of commands that are inserted in
the main text to tell a browser howit should render pages. For example,
a command such as “<em>" can be used. ‘to emphasize a piece of text on a
display. Most important for our purposes, rs that a Web page can contain a
reference to another page, such as: ~

<a href="http://www. dlstnbuted -systems. net/mam html/">main page</a>

which tells a browser that if that reference is act1vated (e.g., by clicking
with a mouse pomter on the text “main page” shown on the display), that
it should fetch the page named www.distributed-systems.net/main.html. Life
would be so much simpler if all references would be so exp11c1t as in this ex-
ample. Unfortunately, discovering how Web pages are linked to each other
turns out to be’a bit more complicated. To understand why this is the case,
we need to delve into how the Web structure is actually measutred.

A crucial tool for discovering Web structure is a so-called crawler: a
program that automatically fetches pages that are referenced from a given
page. The basic principle of a crawler is shown in Figure[8.21] Starting from
a set. of seed pages, it processes a page by extracting the references to other
pages. Each of these references is appended to a list, called the front1er
reflecting the pages that have been found but not yet inspected. When a
/page has been processed, it is stored in a local repository.
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Seed
document(s)

: ; Remove reference
Frontier from head of Iist]
A

Fetch page

Extract references;
append to frontier

Store page

Figure 8.2.“|‘~:“ The principal operation of q/Web crawler.

After having processed the seed pages, the crawler removes the refer-
ence that is at the head of the frontier and fetches the referenced page. It
then simply extracts the references again, appending each of them to the
frontier, after which the page is stored-locally. It should be clear that in this
way, one should indeed be able to fetch and store all pages that are reachable
from the seed pages. That the repository for crawling and searching needs
to be huge is exemplified by Google’s approach. It has been estimated that
by 2006, Google used approximately 500,000 servers, spread across the In-
ternet (see also [Barroso et al,|[2003]). However, if we are interested only in
discovering the topology of the Web, pages obviously need not be stored. In
that case, we need “merely” build up a directed graph in which each vertex
represents a fetched page, and every reference is represented by an arc.

As explained by Thelwall [2004] and |Liul[2007]], tﬁere are several difficul-
ties that need to be dealt with. First, modern Web pages are no longer simple
documents formatted in HTML. Instead, they may consist of different parts,
some of which are complete programs (written in, for example, JavaScript).
Finding references in such documents can be close to impossible, certainly if
their creators have deliberately applied techniques to obfuscate references.
Obscuring references is sometimes done on purpose to prevent Web pages
from being indexed.

Second, many Web pages nowadays are not stored statically in file sys-
tems at a server’s site, but are instead constructed and composed dynami-
cally from a database query that is effectively part of the HTTP request. The

l,p/roblem is aggravated when the server is using programs to completely
/ generate pages to be returned to the requesting client. As a consequence‘,\.
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" we see that many references in the returned page are often personalized
(i-e., based on specific information associated with the client), but also that”
the same request may return different pages (i.e., pages are also dependent
on when they were requested). Conceptually, this means that the graph that
repreéents the Web of pages that refer to each other, changes not only be-
cause edges are different all the time, but also because vertices effectlvely
often exist only once and then disappear again for good. ,

Thirdly, and related to dynamic Web pages, crawlers need to. be aware of
spider traps. In this case, the references returned to a crawler depend on the
order in which the crawler has visited pages from a given site. It may thus
happen that when a crawler has fetched page A and discovered a reference
to page B, that the server hosting B may generate a reference 74 to page A
again that is contained in B, but that is interpreted by the crawler as a new
reference (i.e., it fails to recogmze that r 4 refers to A which it had already
analyzed). ‘ o

Finally, Web sites may slmply install special flles that are required to be
read by all crawlers and which specify exactly ' which parts of the Web site
are not to be inspected by crawlers. Although there is nothing that prevents
a crawler to still inspect those parts when such behavior is discovered, an
administrator will most likely prevent any traffic from the site from which
the crawler is operating. .

Sampling the Web topology

There are other issues that make Web page discovery difficult, but one in
particular is important when focusing on dlscovery topologies. It will come
as no surprise that being able to fetch all Web pages, and thus building an
accurate Web graph is practlcally impossible. By the end of 2008, the num-
ber of Web pages that have been discovered and indexed by search engines
(also referred to as the surface Web), is estimated to-be approximately 25
billion (i.e., 25 x 10%). The actual size of the Web is likely an order of mag-
nitude larger. Therefore, to get an impression of any network statistics re-
garding the Web graph, we are forced to consider only a sample. In other
words, to discover certain properties of the Web graph we necessarily need
to resort to collecting a subgraph. The question is how to make sure that
such a subgraph is representative for the structure of the entire Web graph.
To thi’é end, Becchetti et al.| [2006] made a comparison betweeh\several
crawlirig strategies. Note that when a crawler collects pages, it appends
the réferences it finds to the front1er This opens up several alternatives for
1nspect1ng next pages. In Figure 821 we suggested that pages are fetched
from the head of the frontier. ThlS is one common strategy, which leads.
’,,f"to what is known as a breadth-first inspection. What happens is that first
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all seed pages are inspected. When this is completed, the crawler inspects

“the pages that are directly linked from the seed pages, that is, at distance
1. .Subsequently, the pages at distance 2 from the seed pages are 1nspected
and so on.

An alternative approach is not to select the head of the frontier, but to
randomly select a reference from the frontier each time a new page is to be
inspected. Also, one can take the popularity of a page into account, for ex-
ample by considering the number of pages that are know to point to it (i.e.,
the indegree of a page). This latter strategy is closely related to the strategy
followed by GQogle to determine the importance of a Web page, known as
PageRank [Brin‘and Page) [1998] . ,

An important conclusion from their study, is that breadth first inspec-
tion of pages leads to reasonable subgraphs, pr0V1ded that these graphs
by themselves are relatlvely large. For many of their network statistics, it
turned out that a subgraph had to contain approxlmately 50% of the origi-
nal set of vertices in order to produce representative results. This is actually
quite a dramatic result, as it. seems to imply that obtaining a representative
sample of the Web may turn out to be extremely difficult.

And indeed, a recent study by[Serrano et al|[2007] shows that there may
be significant differences between Varioﬁs samples. Before we go into de-
tails, let us first consider some 1mportant structural properties of a Web sub-
graph. By the latter, we mean a graph that has been obtained by crawling a
substantial number of Web pages and subsequently representing the pages
and links between them as a directed graph.

In their famous study of two crawls of the AltaVista search engine com-
prising a set of over 200 m;lllon pages and ‘1.5 billion links, [Broder et al
[2000] suggested to represent the Web as the bowtie shown in Figure[S.
An interesting aspect of their study was that thelr sample most likely cov-
ered close to 16% of thé surface Web at that time, whlch may be argued to
be large enough to be considered representative.

Broder et al. made a distinction between the followmg groups of Web

pages:

SCC The Strongly Connected Component (SCC) consists of a group of Web
pages‘of which the corresponding directed graph is strongly connected.
In other words, between any pair of vertices there exists: a d1rected
path from one vertex to the other. "

IN Thls group of IN pages cannot be reached from any page in the SCC,
" but the SCC can be reached from pages in IN. More formally, for every
vertex v € IN and w € SCC, there exists a directed (v, w)-path but r no
directed (w, v)-path.
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Tendril
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Figure 8.22: The macfb@copic structure of the Web froin [Broder et al.,2000].

OUT Pages in OUT can be fe§1ched from th_e"'lSCC, but are not part of the
SCC. In particular, this means that for any vertex v € OUT and w €
SCC, there exists a directed (w, v)-path, but no (v, w)-path.

TENDRILS A tendril is a Collectldn of pages connected to either IN or
OUT, but whose pages do not, belong to either IN, OUT, or SCC. For
example, a tendril TEN connected to IN consists of pages that can be
reached from one or more pages in IN but any path from a page v €
IN to a page in TEN will never lead toa page in SCC. Note that a ten-
dril itself may form a strongly connected- component. Furthermore, it
may very well be the‘case that certain tendrils can be reached from a
page in IN, but also’ offer a path to a page in OUT, while none of the
pages in that tendr11 belong to SCC. In this case, the tendril is called a
tube . , ~

DISCONNECTED' This group consists of pages that eannot be reached
from any of the other four groups. Typically, these pages are never
found when crawling the Web. Alternatively, if a crawler starts from
a dlsconnected page, it will never reach any page in IN, SCC OUT, or
a tendr11 3

Broder et al] found that there were approximately 44 million pages inIN,
OUT; and all the tendrils. The SCC consisted of roughly 56 million pages
and a total of some close to 17 million pages were disconnected. If we were
to consider this sample representative for the entire Web, it should be clear
’,,f"that any crawler can easily miss a substantial part of all available Web pages. "
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For example, when the collection of seeds is drawn from OUT, or any of the
"‘xtendrﬂs it will be impossible to reach SCC. '
«_ Returning to|Serrano et al. [2007], these authors have shown that the, se-
lect1or1 of seed pages is important when it comes to finding the pages ‘that
matter. In fact, it turns out that even when considering very large samples
the ratlo of pages in IN, OUT and SCC may vary widely. To give'an idea
of what we’re dealing with, Serrano et al| considered four different large
samples, of which the characteristic properties are shown in Fig'ure B-23] In
Figure .b) we visualize the relative differences between IN, SCC, and
OUT, and compare it to the structure found earlier by Broder et al.| The con-
clusion is clear: desplte the fact that we may be sampling a very large part of
the Web, it is difficult to conclude that the sample may | be representative for
the entire Web graph. Apparently, we have not yet found a valid technique
for representative samphng (see also|Cothey [2004])

Component Sample 1 | Sample 2 ,Sample 3 | Sample 4
SCC 56.46% 65.28% .1 85.87% 72.30%
IN 17.24% 1.69% 2.28% 0.03%
OuT 17.94% 31.88% 11.26% 27.64%
Other 8.36%". 1:15% 0.59% 0.02%
Total size 80.57M |- 18.52M 49.30M 41.29M
@,
AItaVist;*.\

Figure 8.23: an’{paring the relative sizes of IN, OUT, and SC\C‘ for different Web
subgraphs. (a) The actual figures; (b) Relative comparison. From |Serrano et al.
[2007]. '

Charébteristics of Web graphs

Let us now take a look at some of the properties of Web graphs. Varlous
l,studles are based on the Stanford WebBase project [Cho et al| 2006], in
" which various crawls are being conducted and made available to the public."
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" Based on one such crawl, comprising more than 200 million pages, Donato|

‘et al.{[2007]] analyzed some of the characteristics of Web graphs. S

" As mentioned, Web graphs are directed: a hyperlink contained in page

A referrlng to page B, is naturally represented by an arc from vertex A to

B. In the case of vertex degree distributions, it is important to make a dis-

tinction'between indegrees and outdegrees. Figure[8.24]shows the irtdegree

dlstrlbutlon of the |[Donato et al| WebBase crawl. Clearly, the graph tells us

that we are deahng with a power-law distribution. In this case, At turns out
that g

Pl =K o 137

which coincides w1th other, independently carried out crawls Note that, in
light of our previous discussion on the difficulty of sarnphng the Web graph,
samples appear to comc;de when considering the indegree distribution.

100,000,000 -
10,000,000
1,000,000
100,000 -
10,000 -
1000

100

10 1

1 19" 100 1000 10,000 100,000

Indeg reé\

Number of vertices

Figure 8.24: The dlstrlbutlon of indegrees of a WebBase crawl From [Donato et al.,
2007]). : .

It is interesting"at this point to compare the actual indqgree distribution
with the PageRank algorithm that is used to distinguish important pages,
i.e., pages thatapparently contain much-wanted information. PageRank is
used in Google and is based on indegrees. In particular, the mnk of apagei
is recurswely defined as:

rank(i) = (1 —d)+d ) mnk(j))
(i) E

Wf\ere d € [0,1) is known as a damping factor. What we see is that the rank of
/page i is determined by the page rank of the pages referring to i. Intuitively, "
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" this means that a page is considered important, not only if many other pages
"‘xare referring to it, but notably when it is referred to by many other 1mportanf'
pages It is believed that for PageRank as used in Google, d = 0.85.

"What the optimal value for d should be is unclear, but neither d = 0 or
d close to 1 produces good ranks [Boldi et al},2005]. As it turns out, there is
only a weak correlation between the rank of a page and its indegree [Pan-
durangan et al, 2006]. In other words, it is not necessarily the case that a
page with a high rank also has a high indegree, and vice versa. On the other
hand, several studies show that if we compute the distribution of PageRank
values, we agam find a power-law distribution with scalmg exponent 2.1.
Again, we are confronted with the difficulty of drawing strong conclusions
on the structure of the Web graph, even when using apparently reasonable
metrics and samplmg techniques.

For the outdegree distribution we observe a Very dlfferent behavior, as
shown in Figure [8.25] There is not a clear explanation why the outdegree
doesnot fita power—law distribution but one poésibility is that links to other
pages need to be provided by the maintainers of Web pages. These main-
tainers may simply not have- the patlence (or the need) to include many
hyperlinks in their pages.

100,000,000 1
10,000,000
1,000,000 -
§ 100,000 |
§ 10,000 -
5 1000 {
3 1004 .
£
= 10y ‘
AR 10 100 1000

Outdegree

Figure 8.25: The/aistribution of outdegrees of a WebBase cf&wl. From [Donato
etal}2007].

Letus: now consider some other characteristics of Web graphs. In a study
based on a simple Web crawl from 1998, /Adamic|[1999] constructed a graph
by C0n51der1ng Web sites instead of pages. In particular, a graph was con-
structed by which vertex A has an arc to vertex B, if there was a Web- page
hosted by site A that referred to a page hosted by B. In this way, a graph

~was constructed comprising roughly 150,000 vertices (after discarding leaf
/ vertices, i.e., having degree 1). For the underlying undirected graph, the av-".
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" erage path length was estimated to be 3.1, while the cluster coefficient was
‘found to be 0.1078. Clearly, we are dealing with a small-world network. '

“.When considering the directed graph, the largest strongly connected
component (SCC) consisted of approximately 65,000 sites, which is of- the
same order as the Web graph examined by Broder et al.. However, [ Adamic
found an average shortest directed path length of 4.2, whereas [Broder et al.
found this to be equal to approximately 16. For the SCC of the latter, the
average shortest path length in the underlying undirected graph was esti-
mated to be 6:83. The difference between these observations may be caused
by considering 51tes versus pages.

Copyrighted material - January 2010 - Draft




SOCIAL NETWORKS

Copyrighted material - January 2010 - Draft

_ CHAPTER 9 _

.,/ W e
/\ //.\ \’\ \\ /
., \.W,,,.\A.\\\w\w\\ il
A W
NNYOR A2
W s i |
W
Yo N
T
0 ISR

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

9.1. SOCIAL NETWORK ANALYSIS: INTRODUCTION 9-3

So far, our applications of graph theory have been taken from fairly tech-

“nical communication networks. In these networks, the nodes are generally
formed by computers or other devices. However, graph theory has also
been extensively used to analyze social structures, also known as social net-
works In a social network, a node represents a social entity, typically” a per-
son, ant organization, and so on. An edge stands for a specific relatlonshlp
between" its incident nodes. In contrast to other areas in social sciences in
which it is'important to understand what characterizes social entities (e.g.,
by considering their attributes), social network analysis concentrates on the
structure of rélationships and tries to explain social phenorr{ena from those
structures. It should come as no surprise that graph theory plays a key role
in social network analy31s :

9.1 Social netwdi‘lg analysis: introductiqﬁ

Let us start our discussion with a motivating exatnple to illustrate the appli-
cability of social network analys1s We also brleﬂy consider some historical
background before delving 1nto the spec1f1c metrics that are used to analyze
social networks. ~

9.1.1 Examples

An illustrative example of how social network analysis can be effectively
used is described in [Michael, 1997] The example has also been used as a
case study in [de Nooy et al. [2005] from which we take the results of the
analysis. The case is about a small wood-processmg firm in which manage-
ment proposed a new compensation package." This led to a strike, letting
management believe that the communication to-the workers had been far
from optimal. They decided to have the social network analyzed. To this
end, the workers were asked to indicate how often.and with whom they
discussed the strike" Frequency was measured on a 5—point scale, leading to
a graph in which‘two people were hnked if they frequently talked to each
other. This graph is shown in Figure[9. :

There are-a number of properties that can be derived from this graph
and which ¢an be explained when we take a closer look at the individual
members.” First, there are apparently three clusters. The smallest one is
formed by four workers, namely Eduardo, Domingo, Carlos, and Alej andro.
These’ workers all used Spanish as their first language. Of these, Ale]andro
was’ most proficient in English. In addition, Bob spoke some Spanish, which
most likely contributes to the link with Alejandro. Another cluster is formed

/,by Frank, Gill, Tke, Mike, Bob, Hal, John, Lanny, and Karl (all represented
/" as a gray-colored vertex). It turned out that these workers formed a group‘\.
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Frank O

Figure 9.1: The relationsni‘p between workers on strike,,/in a wood-processing firm.

of younger people, who did not speak that.often with the older co-workers.
The latter formed the third cluste“r,‘ consiéting of Norm, Ozzie, Paul, Sam,
Wendle, Xavier, Vern, Ted, Utrecht, Rusé, and Quint.

This clustering reflects what is known in sociology as homophily: the
tendency of people to maintain stronger relatlonshlps with those who are
similar to themselves. / ~

The two union negotiators,. Sam and Wendle, were initially responsible
for proposing and opening the discussion onthe new package. However,
by taking a look at the network, it is not difficult to see that neither of them
actually forms an ideal source for initiating communication. Intuitively, Bob
and Norm, and to a certain extent also Alejandro, fbrm the most important
people in this network. And indeed, when management approached Bob
and Norm directly to explain what the new package was all about, within
only short time all' workers understood the deal and were: w1111ng to negoti-
ate. The strike ended. *

Let us con31der another example, this time Concentratmg on the Medici
family. This highly influential and powerful family orlglnated from Flo-
rence where Giovani di Bicci created the Medici Bank, making him one
of the wealthlest men of Florence. His son, Cosimo de’ Medici; _contin-
ued along the same path as his father and is considered as the founder of
the Medici dynasty, a dynasty which lasted for approximately 200 years
Cosimo de’ Medici understood what it takes to get power and stay in power:
make sure that the right people get married to each other. [Padgett and|
’,,/Ansell [1993] analyzed the Medici dynasty during the first half the 1400s, *.
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_including an overview of marriages between the Med1c1 s and other fami- -
hes leading to the social network as shown in Figure 9. ’
Guadagni

Peruzzi Bischeri

() Lambertes
Pucci
Strozzi
Tornabuon Albizzi
~ Castellan
Barbadori

Girtori
Acciaiuol 2

Pazzi

Salviati

Figure 9.2: The relatlon between influential Florentine famlhes in the beginning of
the 15th century.

Following Jackson [2008] we provide a 51mple analysis of this network.
A serious and in-depth analysrs of the actual social relationships is given by
Padgett and Ansell| [1993]. For our analy51s it is interesting to note that the
Strozzi family not only had more money, but were also better represented
in the local legislature. Nevertheless, the Medici’s eventually became more
powerful. Let’s see what a possible’ reason could be, by looking at the be-
tweenness centrality. Recall that the betweermess centrality cg(u) of a ver-
tex u is defined as

LSy
C?f’v(’”) & )

where S(x,u,y) is the collectron of shortest (x, y) paths containing u, and
S(x,y) is the set of shortest paths between vertices x and y. If we normalize
cp(u) by the possible pairs of families that u can connect, i.e., by (n —1)(n —
) /2, one can compute that the betweenness centrahty for the Medici’s is
equal to 0.522, whereas this value is only 0.103 for the Strozzi’s. Phrasing
this differently, the Medici’s were on more than 50% of all'shortest paths in
the network, whereas the Strozzi’s covered only 10%. Indeed; when it comes
to exertmg power, the Medici’s were seemingly in a much better posmon

9.1.2 Historical background

Although social network analysis sometimes appears to be a novel disci-
phne that recently emerged as another part of the science of networks, it
s, in fact, since long a well-established area of research. Already in the
~ beginning of the previous century, psychologists were using diagrams to\\.
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" represent relationships between social entities. An important contribution
‘was made by Jacob Moreno who introduced the sociogram in the 1930s. In”
a soc1ogram an individual is represented by a point, and relationships & be-
tween individuals by lines — indeed, a graph. The importance of Moreno’s
sociograms lies in the fact that he suggested that one could derive specific
characteristics from sociograms, like identifying influential people, identi-
fying flows of information, and so on. And indeed, they have pro{/en to be
a powerful tool for discovering structure in social groups. We wﬂl return to
one specific use below. /

With Moreno’s sociograms, the scene was set for further work in what is
known as soc1ometry, which is all about quantitatively measurmg social re-
lationships. An 1mportant concept that arouse was that of a triad. A triad is
a subgraph of a sociogram consisting of three points that could be connected
to each other. Obv1ously, triads are related to trlangles which we discussed
in Chapter|[f] Formally, the distinction between a triad and a triangle is that
in the latter the three vertices are joined with each other. For a triad, this
need not be the case. Triads became importarit for studying the presence
and evolution of social subgroups. For example, [Cartwright and Harary
[1956] developed a theory on social balance in which they considered sub-
groups of at least three individual.‘s',xas shéwn in Figure

Figure 9.3: A,,ti;iad to be analyzed for\‘spcial balance.

In this particular case, the relationships between individuals was as-
sumed to be symmetric: if Alice liked Bob, then Bob would also like Al-
ice. If we represer& “like each other” with a “+” and “dislike each other”
with a “—,” we can speak of balanced and imbalanced triads as reflected in
Figure 0.4] The important observation here is that a sociogram is used to
analyze a somal group as a whole by considering all its members’ perspec-
tives on théir relationships simultaneously. In other words, the focus is on
dlscovermg structures within the social group. In this way, one would be
able to’ make statements about, for example, the stability or balance. of an
entire group, and to what extent one could expect that relationships would
change (under the assumption that groups aim for balance). We will return
to this phenomenon later in this chapter.

The idea of focusing on the discovery of global structures through the
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A-B | B-C | A-C | B/l | Description
+ + + B Everyone likes each other

+ + - | The dislike between A and C stresses the rela-
tion B has with either of them

+ - + | The dislike between B and C stresses the rela!/
A tion A has with either of them ;

. — | B | AandB like each other, and both dislike G

- L+ —+ | The dislike between A and B stresses,th/e rela-
A tion C has with either of them !

_ + — B B and C like each other, and bothl,d’i/slike A
_ -+ B | Aand C like each other, and both dislike B

_ _ _ I | Nobody likes each other

Figure 9.4: The possible balanced (B) or imbalanced (I) relatlons in a triad based on
liking or disliking each other /

analysis of small-scale interactions, such as occurred in triads, led to new
analysis techniques. In particular, researchers became interested in being
able to identify different subgroups. -In terms of graphs, this meant that
techniques needed to be developed. ‘that would allow the identification of
components, yet allowing components to sometimes still be connected to
each other. To illustrate, consider our example of the workers at the wood-
processing firm again. Soc1ologlsts were interested to see which people ac-
tually formed groups within that community'and were able to identify three
of them, as mentioned before. These groups can be more easily visualized
when considering the adjécency matrix of the associated network, as shown
in Figure[9.5(a). For Clarlty, we omit the names of the workers. A cell (i, f)
is colored black if worker i and j are linked to each other. By simply re-
ordenng the rows and columns, we obtain an equlvalent matrix, shown in
Figure [9.5(b). ThIS last matrix reveals more strongly than the first one that
there are 1ndeed subgroups among the workers. :

Although we have only visualized group boundaries, formal methods
will indeed reveal that such groups can be identified. What we have shown
in Figure - is known as block modeling, which was one of the earlier
techniques for identifying subgroups. More techniques were eventually de-
veloped to allow for sometimes sophisticated clustering of nodes (see also
Porter et al.| [2009]). -

/Tt was not until the 1950s that researchers started talking more system—

l,atlcally about networks and would start using graph-theoretical concepts
/' to express structural aspects of networks. The relationship between so-
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®)

Figure 9.5: (a) The adj,acency matrix of the network from,,rF/igure and (b) the
same matrix after reordei‘ipg rows and columns. From [de Nooy et al., 2005].

ciograms and the more rigorous approach implied by the use of mathemat-
ics was thus gradually introduced. However; it would take at least another
decade until the ties between social networks and mathematics had come
to substantial strength. Of part1cu1ar influence was the work by Mark Gra-
novetter on what he called weak ties: links between different social clusters
that proved to be essential for 1nformat10r1 dissemination, and thus reach-
ing out to other groups than one’s own [Granovetter, [1973]. Understanding
Granovetter’s work required a mathematical approach to social networks.

Social network analysis evolved steadily ever since then, and many rig-
orous techniques have been déveloped. We have now reached a new point.
As mentioned, sociologists developed variousmodels on how groups of
people organize themselves. One particular famous one is the small-world
organization, which we discussed in Chapter[7] 7| The problem that researchers
faced was how to vahdate those models: setting up soclologlcal experiments
with many part1c1pants is far from trivial as Milgram- experienced in the
late 1960s (recall that we discussed Milgram’s experiments in Chapter [7).
With online commun1t1es researchers suddenly have tremendous sociolog-
ical data sets in their hands. As we will also discuss in this Chapter we can
apply similar analyses to these sets not only to validate models of how so-
cial networks evolve or how they are structured, but also to chscover new
propertles that are inherently tied to the size of a network. .

As argued by Kleinberg|[2008], it is equally important that the analy51s
of these online social communities will perhaps put us in a much better
posmon to devise large-scale distributed computer systems such as the fully
decentralized peer-to-peer systems discussed in Chapter [8| We are already.
’,f'seemg better search strategies that are based on grouping peers by a notion .
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of similarity, and many other phenomena related to social networking.

913 Sociograms in practice: a teacher’s aid

Let us consider an example of a sociogram. One particular use of sociograms
is in classrooms allowing a teacher to obtain better insight in the social struc-
ture of the class. In such cases, each child may be asked to list'the three
persons he or she likes the most (known as a positive nomination) or the
least (i.e., negatlve nominations). An example is shown in Flgure. 9.6| which
is based on material from Sherman [2000] An entry (i, j) marked “+” indi-
cates that child 7 liked child j, whereas a “—” indicates th@t i disliked j.

Sex [ID JT[2[3[4[5]6]7]8 T0[T1[12] I3[ T4 15[ 161718 [19]20 [ 21 [22[23 [ 24

F 1 + — |- + + |-

M 2 !“l + + + - |-

F 3 [ ] = — + + -

F 1 [ 1 — + |+ +

F 5 [+ H — + [+

F 6 |- + | 1 + -1+ -

M 7 + [ 1N -+ — — +

3 8 + - I 1 + - + —

M 9 + R | + -~ -

M 10 ¥ — Nl = + + =

M | 11 + 1= l + + - |-

F 2 |+ — Bl | -+ +

F 3 + REERl | + —=1=

F 14 +[ -1+ — [ 1 + -

M | 15 + = El | + + [ -

F 16 + + [ 1 + - |-

M | 17 — + [ ] +[ -] - +

M | 18 — + | IS — T+ +

M | 19 — + | = + | 1K

F 20 — — + — + + [l

F 21 [-[- + + - [+ [

M | 22 — — + - [+ B [+]

M | 23 |- + + — + —

M | 24 + + - + —li
+ J2]4 1[4 ]2]1[4]0][1[0[8[8][3[1]|4]6]|3[0][7]6]0][2]3]2
— [4[2[0[T[0[4[4[0 4o [T[T[T[2[3[1]2[0[7[6[10[4[3]3

Figure 96 Data on the three most liked or dislikea\elassmates.

When conéidering only the positive nominations, we obtain the social
network shown in Figure[0.7(a). In this case, boys are represented by black-
colored Vertlces whereas girls are shown as white-colored vertices. We in-
stantly see that the two groups are more or less separated: boys ‘and girls
each tend to form their own subgroup, as is further illustrated after reorder—
mg the adjacency matrix, shown in Figure 0.7(b). 8

“There are other issues that make this an interesting case. For example

/by simply considering the distribution of indegrees, one can get an impres-
/ sion of the position of certain children. In this case, we should also con-*.
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Figurqé]: (a) The sociogram for positive nominations represented as a aixected
graph. Boys are represented by black-colored vertices; girls by white-colored. ver-
tices. (b) After reordering the adjacency matrix, the two subgroups become more

apparent.
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“. sider the negative nominations as given by Figure[9.6} We see that children

“#11 and #12 are very popular (having very high indegrees for the positive
fiominations) whereas #10 and #21 are very unpopular. There is much con-
troversy regarding child #19 (and to a lesser extent #20), who received rel-
atlvely many positive and negative nominations. There are also neglected
children, namely those who are not mentioned at all (children #8 and #18).

Let us concentrate somewhat more on who is important and who is not
by considering the largest strongly connected component of our classroom
graph. This’ component consists of all children except #3, #6, #8, #10, #18,
#21, #22, and #24 The eccentricity of a member was defined in Chapter [f]
as the maximum distance of that member to any other member. For our
subgroup, we obtam :

Chﬂd: 12457 ]911]12
Eccentricity: | 5 | 6 | 6 | 4 | 7 |7 | 7 | 5
Child: |13 | 14 | 15 | 16 1771 19 | 20 | 23
Eccentricity: | 6 | 3 | 6 | 5 |6 | 5| 4 | 6

Interestingly, child #14 is closest to any other child, whereas the popular
ones do not really differentiate from the others. When reconsidering Fig-
ure 9.7(a), we can see that child #14 is One of the few children who nomi-
nated a boy (#7) and a girl (#20). TQ,/éee to what extent a child is close to
every other member of the group, W’e\cpmpute the closeness values:

Child: 1 2 4.7 5 ] 7 9 11 12
Close: | 0.023 | 0.021 | 0.018 | 0.025 |[*0.018 | 0.018 | 0.018 | 0.022
Child: | 13 14 |15 16 17 19 20 23
Close: | 0.018 | 0.030 .{ 0.021 | 0.021 | 0.021 | 0.025 | 0.025 | 0.021

However, as we ha\(e’/argued before, closeness\‘may not always be a good
indicator of importance. For example, if child #14 was removed from the
class, how harmful would that be for passing on mformanon? In fact, it
turns out that because #14 is really not that well Connected she also does
not play a cruc;,1al role in these matters. Sociologists have introduced be-
tweenness centrality as an indicator for importance. As explained before
and in Chapter [f this metric takes into account whether or not a vertex is
lying on the shortest path between two other vertices. If we compute the be-
tweenness centrality for each of our group members, we get the followmg
values ~

7 Child: [ 1 2 4 5 7 9 1 | 12
Betweenness: | 0.140 | 0.153 | 0.050 | 0.105 | 0.083 | 0.007 | 0.155 | 0.220

/ Child: | 13 14 15 16 17 19 20 23 -
Betweenness: | 0.016 | 0.054 | 0.083 | 0.140 | 0.017 | 0.466 | 0.469 | 0.029
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" The results are interesting: without doubt children #19 and #20 play crucial
‘roles when it comes to connecting the two groups of boys and girls, and thus”
in" ‘passing information between the two subgroups. Indeed, if we would
remove either one from the subgroup, it would fall apart in the sense that
we would no longer have a strongly connected component.

9.2 Sdine basic concepts

Now that we have given an overview of social networks and a typical ex-
ample of how ’rhey can be applied, let’s take a step further and consider
a few of the more important concepts in social network analysis and how
these concepts relate to the theoretical framework offered by graphs. In our
discussion, we largely follow the structure as presented by |Wasserman and
Faust{[1994].

9.2.1 Centrality and prestlge

As we have mentioned, 1dent1fy1ng 1mportant soc1al entities forms a recur-
ring topic in social network analysis. Up to this point we have introduced
the following metrics to assist in fmdmg/those entities:

Vertex centrality: A metric that tellétx:iis to what extent a vertex is at the
center of a graph, by considering its maximum distance to all other
vertices. Typically, vertices “at the edge of the network are generally
considered less influential, than those at its center.

Closeness: This metric consn;iers the Centrahty as measured by the distance
to each other vertex in the graph. The hlgher the value, the closer a
vertex is to every other vertex.

Betweenness centrahty This important metric deﬁnes centrality of a ver-
tex u by considering the fraction of shortest paths that cross u. The
more such paths, the more important u is to be considered.

All of these metrfcs should be considered with care, as we .illustrated in the
previous sectlon with our classroom example. For instance, we saw that
a popular person may not be the one that is most efficient for spreadlng
information. K

Note further that these metrics can be defined for directed as well as
undlrected graphs, as they are all based on a notion of distance between
vertices. However, when considering directed graphs, it is useful to make a
dlstlnct1on between the distance to other nodes (as one would use for mea-
eﬁring centrality), and the distance from other nodes. In particular, if we
“want to indicate the prestige of a vertex u, counting how many other vertices
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" refer to u as a metric for prestige seems to make sense. In particular, we
"‘xhave 4

Deflnltlon 9.1: Let D be a directed graph. The degree prestige pgeq(v) of a vgffex
vE V( ) is defined as its indegree d;,,(v).

One can argue that degree prestige is a rather crude metric as it cons1d—
ers only direct relationships, namely the vertices that are ad]acent tov. A
more subtle way of measuring prestige is to also consider the vertices that
can reach v through a directed path. In sociological terms, these vertices
are called v’s influence domain. In that case, we can compute the average
distance to Vertex v of the vertices in its influence domam leading to the
following deflrutlon :

Definition 9.2: Let D be a directed graph with n vertices, The influence domain
R~ (v) is the set of vertzCes from where v can be reached through a directed path,
that is, R~ (v) f {u ¢ V(D)| existsa (u,v) path} The proximity prestige
Pprox(v) of a vertex v is deﬁned as

v de;\'\ ‘R (Z) l/(n _ 1)
Pprox( ) = ZuQR’ v,///d(u,v)/lR (U)|

where d(u, v) denotes the length of the éﬁﬁertest (u,v)-path in D.

Note that for proximity prestige we cdr\sider (1) the fraction of all vertices
that can influence v (and exclude v),ie., |RT ( )|/ (n —1) and (2) the average
distance of those vertices to vy

Note 9.1 (Mathematical language) |
The definition of proxlmlty prestige may not be 1nstantly obvious, for which
reason it is 1mportant to make sure that you understand what it means. The
definition is also a good example to illustrate the precision ‘of mathematics over
a more verbal explanatlon ~
First, it is important to realize why we are considering the fraction of in-
fluential vertices, i.e., |R™(v)|/(n — 1). In doing so, proximity prestlge can be
expressed mdependent of the size of a graph, which is obviously an advantage
as it allow's us to more easily compare different networks. It should also be clear
why we ‘divide |R™ (v)| by n — 1 and not n: because we do not consider.a vertex
to be in its own influential domain, there are at most n — 1 vertices who' can.
/Second, if we are going to consider the fraction of influential vertices, we
should also consider the average distance of those vertices to v and not ]ust
,,/merely the total distance. Again, this method of measurement allows us to
* better compare graphs.
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‘ Finally, note that proximity prestige is always a value between 0 and 1. To
“this end, we first rewrite its definition to: !

et IR @/ (1 -1)
Pt =5 e o)

so that we can more easily consider the case where there are no Vertlces inv’s
influential domain. In that case, [R™(v)| = 0, and 50 is pprox(v). At the other
end of the spectrum is the situation that we can reach v from every vertex, but
moreover, each one is an in-neighbor of v. We then have that [R7(v)| = n —1
and ¥,cRr - (o) d(‘b{, v) = n — 1. As a consequence, we see that pp,/(}x(v) =1

Let’s reconsider our classroom example and také a look at proximity
prestige within the largest strongly connected component. We make the
following assumption: if child i has positively nominated child j, then the
behavior of child j will affect child i. In other words, the directed graph
of positive nominations can be seen as a directed graph of who influences
whom by simply reversing the orientation of each arc. Using this reversed
orientation, Figure [0.8]shows the distance between pairs of vertices, i.e., a
cell (i, f) gives the shortest distance from vertex j to vertex i. These distances
have been computed using the direétéd graph obtained by reversing the
orientation of the graph from Flgure

The various values for proximity prestlge lie quite close to each other,
but again we see that children #19 and #20 have the highest score. Consid-
ering that these two also had the highest betWeenness centrality, the social
picture is becoming COIlSlStenﬂy clear. B

One of the problems that social scientists have been struggling with is
that the metrics we have’ been discussing so far consu:ler importance with-
out taking into account the importance of the nommatmg vertex. In partic-
ular, it seems reasonable to rank a person higher when that person has been
nominated by another highly ranked person. Note that. this is analogous
to the PageRank- metric discussed in Chapter [ Bl The idea as used in social
networks is qulte simple and brings us to the following defmltlon of ranked
prestige: A

Definition 9.3: Consider a simple directed graph D with vertex set {1 2. ,n}

with ad]acency matrix A (i.e., Ali,j] = 1 if and only if there is an arc <z ]>) The
ranked prestige of a vertex k is defined as:

n
prank(k) d:ef Z A[i/ k] ’ prank(i)
i=1,i#k
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Distance from j to i

ID|1 2 4 5 7 9 11 12 13 14 15 16 17 19 20 23[ pprox(v) |
.1]0 4 3 1 4 5 3 1 2 2 3 2 4 2 1 4 0.366'
214 0 45 212356 1 33 12 2 0.341
412 5 0 3 5 6 4 1 1 4 4 1 5 3 2 5 0294
5f1 5 2 05 6 4 2 1 1 4 2 5 3 2 5[ 0313
7|5 1 5 6 02 1 4 6 7 2 4 2 2 3 1]/ 02%
9|51 5 6 1 0 1 4 6 7 2 4 2 2 3 2{ 0294
1mf5 1.5 6 2 2 0 4 6 7 1 4 1 2 3 2 0.294
2|1 4.2 2 4 5 3 0 3 3 3 1 4 2 1.4 0.357
B3][2 5 1 35 6 4 1 0 4 4 1 5 3 2 5 0.294
41 4 3°1 4 5 3 2 2 0 3 2 4 2,71 4 0.366
514 2 4513 2 35 6 03 2 1 2 1 0.341
62 4 1 34 5 3 1 2 4 3 0 4.2 1 4 0.349
74 2 4 5 3 3 1 3 5 6 2 3 0 1 2 1 0.333
93 23 4 23 1 2 4 5 1 272 0 1 2 0.405
20|2 3 2 3 3 4 2 1 3 4 2 ¥ 3 1 0 3 0.405
234 2 45 3 3.1 35 6 2.3 1 1 2 0 0.333

Figure 9.8: Computing the proxinﬁ‘ty prestige"'for the classroom example. Each cell
(row, column) denotes the distance from colusmn to row.

Note that in order to compute Pran k(k), we need to compute the ranked
prestige of every vertex. Fortun’étely, the aB‘ove equation is one of a total of n
(one for each vertex), giving rise to a set of n equatlons in n unknowns. Stan-
dard mathematical techniques can be applied to solve these equations, al-
though for even relatively small values of 1, using software packages comes
in handy. To illustrate the principle, let us con31der a small social network
with only three people A, B, and C. Each person is ‘asked to give a weight
0 < w < 1 to the other two, expressing the relative preference of one person
over the other. So, for example, if A prefers B over C, she may express this
by assigning a, welght of 0.7 to B and 0.3 to C. Likewise, if B has no pref-
erence for erther A or C, he should assign a weight of 0.5 to. both of them.
Note that the total weight that a person can assign to the others is always
equal to L ‘Let’s assume that the weights have been assigned as follows

ID| A B C
A| — 05 04
B |01 — 06
cl|09 05 —
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where we use the same notation as in Figure[9.8} cell (i, j) denotes the weight
"ass1gned by person j to person i. We now need to solve the following equa—*'
tlons ‘

Pmnk(A) = 05- prunk( ) +04- pmnk( )
prank(B) = 01- pmnk(A) +0.6- Prank(c>
ank(c) = 09- pmnk( ) +0.5- prunk( )

To s1rnp11fy our notation a bit, we use the variables x, y, and z 1n place of
Prank(A), Pmnk( ), and py;ux(C), respectively. This then leads to:’

x = 05y+04z
y = 0.Ix+0.6z
z = 09x4 0.5y

If we would solve tnis set of equations, we would find'that x =y = z = 0.
However, what we are“really interested in, is to see hbw the ranks compare
to each other. By demanding that ranks need to be nonzero, we arrive at a
different solution by snnply computing y and z relative to x, which gives us
thatz = %zx and y = 32x Iti is common pract1ce to ensure that

Z(\Pmnk (l) )2: 1

which in our example would rnean‘that

2 Dy 2+ o T 1
147) 35 B
which, in turn, leads to: . !
x=05 ./ y=048 " z=071

These values now express/,,tne ranked prestige ot“A, B, and C, respectively.

Note 9.2 (More mformatlon)

What we have actually been doing is computing what is known as an eigen-
vector. To explain, let W denote the matrix of nonnegative. weights assigned
betweenn > 1 people such that Wi, j] is the weight a551gned by person j to i.
As in our example we require that for each person j, Zl 1 WIi, ]] = 1 and that
W[j,j] = 0. Let p be the vector of ranked prestiges: R

! P=(prr2.. ’p”) = (pmnk( ) Prank(2 )r'“rpmnk(n))\

Using the abbreviation w;; = W[i, j], we need to solve the set of equatiens
Wip1 twpp2+ -t Wipn = p1
Wop1 +warpa+ -+ Winpn = P2
Wy1p1 + W2p2 + -+ Wunpn =  Pn
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which can be more concisely written in matrix form as

Wi Wi v Wiy p1 p1

Wy Wy v Wy p2 p2

Wyl Wp2 -+ Wan Pn Pn
or, equivalently

In rnathernatical terms, p is the eigenvector that Corresponds ‘with the eigen-
value 1. As Inentloned above, we generally require that v/Y.(p;)?> = 1, so that
we can often find a.unique solution for an eigenvector. For. $ocial network anal-
ysis, this eigenvector- corresponds to the ranked prestlges

In general, e1genvectors are computed by first f1nd1ng solutions to the more
general equation

W.-p=Ap

with A being a scalar. Several solutions may exist; each known as an eigenvalue.
In our case, because we demand that ), wy; = =1, one can show that the largest
eigenvalue is A = 1. We will not go into thls material any further. A good
introduction can be found in [W1111ams 2()01]

Let us finally see how we can compute the ranked prestige for each of the
children in our classroom example. Again, we concentrate on the strongly
connected component, consisting of 16 children. We need to construct a
matrix that reflects the weight that child j assigns to child i. We follow two
approaches. First, we consider the positive nominations and assign an equal
weight to each nomination given by the same child. In other words, if A has
nominated three other children, we assume that each of these three has the
same influence on A. From Figure .8, we can seen that each child within
the strongly connected component nominates exactly three other children
in the same component so that every weight is equal to . In that case, the
ranked prestlge turns out to be as follows:

Child: | 1 2 4 5 7 9 1 ]| 12
Ranked pres.: | 0.148 | 0.171 | 0.132 | 0.056 | 0.123 | 0.057 | 0:332 | 0.369

Child: | 13 14 15 16 17 19 20. | 23
Ranke’d pres.: | 0.062 | 0.018 | 0313 | 0332 | 0179 | 0433 | 0434 | 0.205

Qur second approach entails the distance between children. In partlc—
ular, reconsider the graph representing the positive nominations shown in
I,Flgure 9.7 We now take the distance from child i to child j (in this graph)
/" as an indication of the how highly i ranks j. In particular, the larger the"
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distance, the lower the ranking. Let M be the maximum eccentricity be-
‘tween two children in the largest strongly connected component. From our”
prev10us observations, we know that M = 7. If d(i, j) denotes the shortest

dlstance from child 7 to j, we define the weight w;; that i assigns to j as:,

oy det M=)
7T L (M-dG)

jeR™ (i)

Using these weights, we can then compute the ranked prestiges as:

Child: | 1 2 1 5 7 9 11 12
Ranked pres.: | 0.240 | 0.253 | 0.230 | 0.187 | 0.238 | 0.198 | 0.286 | 0.282

Child: | 13 | 14 15 16 17 | 19 20 23
Ranked pres.: | 0.195 | 0,134 | 0282 | 0.279 | 0.245 | 0315 | 0.311 | 0.252

Before we come to conclusions, we summarize our findings for the class-
room in Figure 9.9] We also show the normalized values, obtained by di-
viding the measured importance. by the found maximum importance for a
specific metric. What we see is that differént metrics lead to sometimes very
different results. For example, the relative importance of children #4 and #5
depends on which metric we use: in the case of betweenness #5 is more im-
portant than #4, but this changes when ranked prestige as metric. Further-
more, it appears that ranked prestlge generally leads to a greater variation
(which is good). All metrics show the importance of children #19 and #20.

9.2.2 Structural balance

As stated by Wasserman- and Faust [1994], a f1rst 1mportant result from so-
cial network analysis was the theory of structural balance. The theory con-
siders the sentiment relationships between people within a group, which
are commonly modeled as positive of negative. In particular, the theory is
concerned with examining whether the relationships between people are
such that the group as a whole can be considered stable, or in balance. In its
simplest form, the theory considers triads, that is, groups of three people.
We briefly discussed triads and balance in Section9.1.2]and will con51der it
in more detall here.

Let us first start with precisely defining balance. To this end we need
the deﬁnltlon of a signed graph: )

Deflnltlon 9.4: A signed graph is a simple graph G in which each edge is labeled
with either a positive (“+") or negative (“—") sign. We denote the sign of an edge\
’,,f"e as sign(e).
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Eccentricity

Closeness

Betweenness

Proximity prestige

Ranked prestige 1

Réﬁkecl prestige 2

50719)

0.023 (0.767)

0.140 (0.299)

0.366 (0.904)

0.148 (0.341)

0240 (0.762)

6 (0.857)

0.021 (0.700)

0.153 (0.326)

0.341 (0.842)

0.171 (0.394) |

0.253 (0.803)

6 (0.857).

0.018 (0.600)

0.050 (0.107)

0.294 (0.726)

0.132 (0.304)

0.230 (0.730)

4(0.571)

'0.025 (0.833)

0.105 (0.224)

0.313 (0.773)

0.056 (0.129)

0.187 (0.594)

7 (1.000

0.018 (0.600)

0.083 (0.177)

0.294 (0.726)

0.123 (0:283)

0.238 (0.756)

©| ~a| a| | o] —=| Child

7 (1.000

0.018 (0.600)

0.007 (0.015)

0.294 (0.726)

0.0571(0.131)

0.198 (0.629)

7 (1.000

0.018(0.600)

0.155 (0.330)

0.294 (0.726)

0.332 (0.765)

0.286 (0.908)

5(0.714

0.022 (0:733)

0.220 (0.469)

0.357 (0.881)

0369 (0.850)

0.282 (0.895)

6 (0.857

0.018 (0.600)

0.016 (0.034)

0.294 (0.726) |

0.062 (0.143)

0.195 (0.619)

0.030 (1.000).

0.054 (0.115)

0.366 (0.904)

0.018 (0.041)

0.134 (0.425)

6 (0.857

0.021 (0.700)

10.083 (0.177)

0.341 (0.842)

0.313 (0.721)

0.282 (0.895)

5(0.714

0.021 (0.700)

0.140 (0.299)

0.349 (0:862)

0.332 (0.765)

0.279 (0.886)

6 (0.857

0.021 (0.700)

0.017 (0.036)

0.333(0.822)

0.179 (0.412)

0.245 (0.778)

5(0.714

0.025 (0.833)

0.466(0.994)

0.405 (1.000)

0.433 (0.998)

0.315 (1.000)

4(0.571

0.025 (0.833)

0.469 (1.000)

0.405 (1.000)

0.434 (1.000)

0.311 (0.987)

)
)
)
)
)
3 (0.429)
)
)
)
)
)
)

6 (0.857

0.021 (0.700)

0.333 (0.822)

0.205 (0.472)

0.252 (0.800)

0.029 (0.062))]

Figure 9.9: Summary of the importance measures for the classroom example, with
the normalized values shown betweén brackets.

A signed graph can be undirected or directed. For a signed graph G, we will
use the notation E* (G)’ to denote the positive- 51gned edges and E~(G) for
negative-signed edges. .

The common interpretation of a positively signed edge between vertices
A and B is that the two people represented by the vertices like each other.
Analogously, a ‘negative sign is to be interpreted as that they dislike each
other. In the case of a signed directed graph, the likeness need not be sym-
metric. If A likes B, then this is represented by a positively 51gned arc <A B).
A negatlvely signed arc from A to B means that A dislikes B. The absence
of an ar¢ (or edge in the case of an undirected graph) implies that two peo-
ple nelther like nor dislike each other. In the following, we will concentrate
only on undirected signed graphs. 8

“In Figure 9.4 we discussed how the various combinations of l1k1ng and
l,/dlshkmg between people in a triad would lead to an (im)balanced situation.
/It can be readily seen that the balanced situation of a triad occurs if and\\
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only if there are zero or an even number of negative signed edges. This
"observatlon is generalized as follows: g

Defmltlon 9.5: Consider an undirected signed graph G. The product of two szgns
51 and sy is again a sign, denoted as sy - sp. It is negative if and only if exactly
one of sy and s, is negative. The sign of a trail T is the product of the szgns of its

edges: 51gn( ) = eg(r)sign(e). '
Note that the effect of multlplymg signs can be easily understood 1f we sub-
stitute +1 for ”+” and —1 for “—." ’

Note 9.3 (Mathematlcal language) ;

By now, you should' be used to the fact that from time to tlme new mathematical
symbols find their way into the text. In the previous defmltlon we have used
the symbol “I1” as an abbreviation for multiplication, analogously to using the
summation sign “} .” In partlcular we have /

H" ‘1x, defyy X xp x -+ Xy

Note 9.4 (Mathematical language) \

The definition of the product of a sign‘is a crude example of how mathemati-
cians define what are known as (ab,s{facxt‘)xalgebras. Algebras tell us how we
can manipulate concepts such as signs, by providing basic rules concerning, for
example, addition or multiplicatiéh In the caée of signs, we are interested only
in multiplications. Adding more precision, we. could have also included the
following rules: !

Commutative: s; - s,,z’/: 59+ 51
Associative: (s sz) 83 =81 (s283)
Note furthermore thatlfhe sign I = “+” acts as an 1den’E1ty, i.e, for all signs s,

wehave that I - s = s - [ = s. This same role of identity is played by the number
“1” in our usual numbermg systems.

A path (or Cycle) is positive if it has zero or an even number of negative-
signed edges A negative-signed path (or cycle) is one that is not positive.
We leave it as an exercise to prove the following theorem: .

Theorem 9.1: Consider an undirected signed graph G. For any trail T of G and
ee E( ), sign(T) = sign(e) - sign(T — e). -

Wlth these definitions at hand, we can now consider when sociograms that\
/are represented as signed graphs are balanced: *‘
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Definition 9.6: An undirected signed graph is balanced when all its cycles are,/"/
"xposztwe

" An important characterization of a balanced graph is that its vertex set
can'be partitioned into two subsets such that all edges between the two
subsets have negative sign, and no other edges. In other words, a group of
people is balanced if it can be split into two subgroups such that meinbers of
the same subgroup like each other, yet members of different groups dislike
each other (or don’t care). This characterization was formally proven by
Harary [1953} and is formalized by the following theorems

Theorem 9.2: An wundirected signed complete graph G is balanced if and only
if V(G) can be partztzoned into two disjoint subsets Vi and Vy such that each
negative-signed edge is-incident with a vertex from Vj and one from Vi, and each
positive-signed edge is mczdent with vertices from the stlme set. In other words:

E~(G) {{x, y>|x6Vo,er1}
ENG) = {xylnye Voorx,y € Vi}

e

Proof. Assume that G is balaﬁé@d. Let u e V(G) and let N (u) consist of
all vertices adjacent to u through‘a positiVe—signed edge. Set

Vo — {u} UN*(u )and Vi < V(G)\Vo.

Consider two vertices vy, wg € Voi other than u. Because the edges (u,vp)
and (u,wp) have positive signs,. ‘and because G is balanced, we must also
have that (vp, wo) has a positivé sign (note that edge (v, w) exists because
G is a complete graph). L1kew1se, consider" any two vertices v, w; € V1.
Again, because G is balanced, we know that the triad with vertices u, vy, wy
must be positive, and because edges (1, v1) and (u, w1) have negative signs,
edge (v1, w) must haveé a positive sign. Finally, c0n31der the edge (vo, vo),
which is part of the trlad with vertices u, vy and v;. Wlth the sign of (u, vg)
being positive and-that of (u,v;) negative, and G bemg balanced, edge
(vo,v1) must have a negative sign. We conclude that VO and V; partition
V(G) as requlred «
Conversely, assume that E~ (G) and E™ (G) satisfy the conditions as stated.

Every Cycle;*ih G contains an even number of edges from E ’(G), implying
that the sign of every cycle is positive. By definition, G is balanced. O

Note 9.5 (Study tip)
The proof of Theorem [0.2]is much easier to understand when using a drawmg
,,/’As mentioned before, studying graph theory generally requires you to V1suahze
* situations by sketching graphs. Do the same for this proof. k
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We leave it as an exercise to show that every subgraph of a balanced signed
‘graph is again balanced. We will need this property for the following theo-"
rem:

Theorem 9.3: Consider an undirected signed graph G and two distinct vertzces
u,v € V(G G is balanced if and only if all (u, v)-paths have the same sign.

Proof. First assume that G is balanced. Let P and Q be two distihct (u,v)-
paths. Consmler the set of edges E’ obtained from P and Q after removing
the ones they have in common, that is /

E = (E(P)UE(Q)\(E(P)N E(Q)).__f’/

What can we say aBout the subgraph H induced by"/E’ ? First note that
there can be no cycles having edges in common. /If that were the case,
those common edges would have been part of both P and Q, which by
construction cannot happen\ In other words, any two cycles in H have no
edges in common. Because H is a subgraph of G, it must also be balanced.
As a consequence, all cycles in H are positive. Furthermore, each cycle C
in H consists of exactly two subpaths p /,ﬁ"om P and Q from Q. That is,
E(C) = E(P) UE(Q). Because P and Q have no edges in common, and be-
cause sign(C) = sign(P) - sign(Q) is positive, we conclude that the signs of
P and Q must be the same. Taking all cycles of H into account, along with
the edges common to both P and Q we' conclude that P and Q must have
the same sign. : \

Conversely, assume that (u U) -paths have the same sign. Because # and
v have been chosen arbitrarily; and because every cycle C can be constructed
as the union of two edge-disjoint paths P and Q, we necessarily have that
sign(C) = sign(P) - szgn(Q) must be positive. Heri‘ce G is balanced. O

Combining theorems now allows us to prove the followmg general char-
acterization of balahced signed graphs, again due to Harary|[1953].

Theorem 9.4: An: undirected signed graph G is balanced if and- only if V(G) can
be partztloned mto two disjoint subsets Viy and V such that the followmg two con-
ditions hold :

(1) ET(G) = {{xy)lxeVoyeVr}
o y)|x,y € Voorx,y € Vi}.

3

t
+

o
|

Proof. F1rst let us assume that G is balanced. Without loss of generahty, we
also assume that G is connected. The theorem is proven to hold by induc-
tion on the number m of edges of G. Clearly, the theorem is seen to hold.
’,,f"for the case that m = 1, so assume it holds for m > 1. Consider any two .
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nonadjacent vertices # and v of G. From the previous theorem, we know

“that all (1, v)-paths have the same sign. Therefore, extend G by adding the
edge e = (u,v) with the same sign as any (u,v)-path in G, leading to the
new graph G* = G + e. Any newly introduced cycle C in G* will consist
of e and a (u,v)-path P from G. Because sign(C) = sign(e) - sign(P), and
sign(e) = sign(P), C must be positive, and thus the extended graph is also
balanced. Continue in this way with adding edges between ngnadjacent
vertices until we have a signed complete graph G**, which we know is bal-
anced. From Theorem[9.2] 9.2} it follows that we can partition the vertex set of
G**, and thus also G into the two required subsets. ’

Conversely, assume we can partition G into two subsets W and V; as
described. Extend G by adding an edge e = (u, v) between two nonadjacent
vertices, leading to G* = G +e. If u and v lie in the same subset, sign(e)
becomes positive, 0tHerw1se negative. Continue in 'this way adding edges
until we have a signed complete graph G**. Agam from Theorem [9.2] we
know that this graph is balanced and because G is a subgraph of G**, w
know G is also balanced. . D

With this characterization,\"it. is now rel’étively easy to check whether a
signed graph is balanced. The following algorithm will do the trick.

Algorithm 9.1 (Balanced graphs): Consider an undirected, connected signed graph
G. For any vertex v € V(G), denote’by N+ (v) the set of vertices adjacent to v
through a positive-signed edge, and.by N~ (u) the set of vertices adjacent through
a negative-signed edge. Let I be thté' set of inspected vertices so far.

1. Select an arbitrary vertex u € V(G) and sét‘ Vo — {u}and Vi — @. Set
I —@. s \
2. Select an arbztmry vertex v € (Vo U )\ L. Assume veV.
0Forallw€N+( )V, — ViU {w}. ‘
* Forallw € N™(0) : Viij1y mod2 < Viit1) moci.\Z\_‘LJ {w}.
OAlso I<—IU{v} >

3. IfVpn V1 # O stop: G is not balanced. Otherwise, sz = ( ) stop: G is
balunged Otherwise, repeat the previous step.

Note- 9 6 (Mathematical language) .
For’ the previous algorithm we have used a concise notation that may requlre
some effort to understand: g

V(i+1) mod 2 V(i+1) mod 2 U {w}
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.‘ .. Note that we have assumed that the arbitrarily selected vertex v is in set V;. As
“a consequence, when v € Vo, V(j 1) mod 2 is equal to V;, whereas for v € V1, we
see that V(i+1) mod 2 18 equal to V3 mod 2 = Vo. In other words, V(i1 1) mod 2 refers

to the other set than the one containing v. :

To see wliy this algorithm is correct, first note that if may be possible for
a vertex to be added to Vj and later also to V; (or vice versa) "Whenever
this happens, we will not be able to partition the vertex set anymore as is
required for a s1gned graph to be balanced. In step 3, we w1ll decide to stop
inspecting (uninspected) vertices from Vo U V; if the two sets are not disjoint
anymore, or until eaeh vertex has been placed in either Vo or Vi, at which
point it must be the cése that Vo NV = @, so that G is*i’ndeed balanced.

9.2.3 Cohesive subgrOups

Given a social network, researchers have always been keen on identifying
groups of closely bound people or better known as cohesive subgroups.
Typical examples of such groups in practlce are formed by families and
friends. More recent, interest has' grown in identifying groups of, for ex-
ample, terrorists. And although it seems naturally evident what a cohesive
subgroup actually entails, formahzmg the concept in graph theory such that
it matches what one expects in real life is less obvious. Let us take a look at
a few proposals (see also [Mokken, [1979]).

One of the earliest proposals for modehng cohesive subgroups was to
consider (maximal) cliques:

Definition 9.7: Consider an undzrected simple gmph G. A (maximal) clique of G
is a complete subgraph H of at least three vertices such that H is not contained in a
larger complete subgmph of G. A clique with k vertices is ‘called a k-clique.

Note that a graph can have several cliques. Consider, for example, the graph
in Figure[9.10] In this case, we see that there are two cl1ques the 3-clique in-
duced by the set'of vertices {2,4,5} and the 4-clique induced by {1,2,3,5}.
This example also shows that a vertex may be contained in- two different
cliques.

The problem with using cliques as a means for modeling Coheswe sub-
groups is that they are generally too restrictive. In the first place, many
subgroups exist in reality in which not all members relate to each other.
In terms of graphs, this means that that a subgroup cannot always be ad-
equately represented by a complete subgraph. Related to this strictness. is
that by considering only cliques, it turns out that only small subgroups can_
“beidentified. Considering that in many cases sociograms are based on ques- .
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1

Figure 9.10: A graph with two maximal cliques.

tionnaires in whlch people are asked to identify their, k best relations, we
also see that the degree of a vertex can never be more, than k, and thus that a
maximal clique can have only k + 1 members. W1th such restrictions, it may
even be impossible to 1dent1fy any clique.

For these reasons, researchers have been lookmg for other metrics for
defining subgroups. One approach is to relax how strong the bonds be-
tween members of a subgroup should be. ‘In particular, one can also de-
fine a subgroup as the maximal subgraph i in which the distance between its
members is less or equal to a constant k. This leads to what are known as
k-distance-cliques: R

Definition 9.8: Let G be an undirected’ szmple graph. A k-distance-clique of G
is a maximal subgraph H of G such that for all vertices u,v € V(H), the distance
dg(u,v) <k. : .

(We have introduced this terrn to avoid cohfusion with k-cliques. Note,
however, that k-distance-cliques are often also referred to as k-cliques [Scott,
2000; Wasserman and Faust, [1994]).) It is importd‘nt to note that the distance
between two vertices in a k-distance-clique is measured relative to the orig-
inal graph G, as is 1nd1cated by the notation dg (1, v). This means that two
vertices u and v in a k-distance- -clique H may be connected through a short-
est path in H thatis longer than a shortest (1, v)-path in G. This implies that
the diameter of-a k-distance-clique may be larger than k, whlch is somewhat
counter—1ntu1t1ve Another problem with k-distance- chques is also caused
by the fact that distance is measured with respect to the orlglnal graph: it
is possible to construct a graph in which a k-distance-clique may-be discon-
nected (see exercises). To ensure that the diameter of a subgraph matches
one’s, intuition, Mokken! [1979] proposed k-clans:

Definltlon 9.9: Let G be an undirected simple graph. A k-clan of G is a k- dzstance—
glzque H of G such that for all vertices u,v € V(H), the distance dg(u,v) < k=

/' The only, yet important, difference with k-distance-cliques is that distance\.
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is measured relative to H instead of G. By definition, every k-clan is also
‘a k-distance-clique. If we take the diameter as the sole criterion, we obtain
what are known as k-clubs: :

Deflmtlon 9.10: Let G be an undirected simple graph. A k-club of G isa mammal
subgmph H of G such that diam(H) < k. In other words, max{dy(u, U),|u v e

V(H)} <k

We will show that every k-clan of a graph G is also a k-club of G However
not every k-dub is also a k-clan, as can be seen from Figure .11 - In this
example, we have two 2-distance-cliques: H; = G[{1,2,3,5,6}] and H, =
G[{2,3,4,5,6}]. H, is also a 2-club, as well as a 2-clan. In addition, both
Hs = G[{1,2,5,6}] and Hy = G[{1,2,3,6}] are 2- clubs, but neither are 2-
distance-cliques, and thus are not 2-clans.

Figure 9.11: Graph ﬂluéﬁatingﬂiques, clans, and clubs.

Now consider a k-club H of a graph G. Because for all vertices u,v €
V(H), we know that dg(u,v) < dy(u,v) < k, H must be contained in a
k-distance-clique of G. We use this property\to prove the following:

Theorem 9.5: Every k-clan of @ gmph Gisalsoa k club

Proof. From the deflnltlons of k-clan and k- club one can easily see that for
a k-clan H we certainly: have that for all vertices u, 0. € V(H),dy(u,v) <k
Therefore, we merely need to show that H is also max1mal with respect
to the definition of-a k-club. To this end, assume that- H is not maximal.
This means that t,here is a set of vertices S € V(G)\V(H ). such that for all
u € V(H)and s;t € S, we have:

Aoty <d-(ut) <k and  dg(st) < du(sit) <k

where H*'= G[V(H) U S]. However, because H is also a k- distafice -clique,
this would violate the maximality of H as a k-distance-clique, contrad1ct1ng
our assumptlon of the existence of S. Hence, H is also maximal as a k- Club
completmg the proof. ~. O

. " The real problem with these definitions is that all of them are still Vefy\
’,,f"strict when it comes to selecting whether a vertex belongs to a group or not. .

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

9.2. SOME BASIC CONCEPTS 9-27

" In reality, cohesiveness of a group is much more fuzzy: if Alice considers

" Bob to be her best friend, it may very well be the case that Bob’s best friend
Chuck is considered by Alice to be just an acquaintance of her. In other
words, we would normally present a link between Alice and Chuck, but the
meahing is different than the one between Alice and Bob. Such relatioriships
can be captured through weighted graphs, but the definitions of cohesive
groups do not cater for such situations.

In the same light, we could consider an alternative formulatlon of k-
cliques by defining a group based on the minimal degree of each vertex:

Definition 9.11 :\Let G be an undirected simple graph. A k-corje*éf G is a maximal
subgraph H of G such that for all vertices u € V(H), the degree 6(u) > k.

In other words, eac\hxvertex in a k-core is joined with-at least k other mem-
ber of that group. Again, it turns out that such a“definition is often just
too strict: it draws boundaries around groups that cannot account for the
natural “exceptions to the rule.” .

A much better approach is to follow data- clustermg techniques for iden-
tifying communities. As repor_ted by Porter et al.| [2009], a large variety of
older and newer techniques have been proposed leading to much better re-
sults. Let us discuss one such method known as clique percolation [Palla
et al., )2005]. NS

Clique percolation is based on 1dent1fy1ng groups based on maximal
cliques, yet with the important difference that groups may overlap. In other
words, vertices may belong to different cliques without the necessity of hav-
ing a maximal degree (as deﬁnéd by the size of the clique it is member of).
We can then define a k—chque community:

Definition 9.12: Let G be an ‘undirected simple gmph Two k-cliqgues Cy and C
are said to be adjacent if: they have at least k — 1 vertices in common: |V (Cy) N

V(Cy)| = k—1. A k-clique community of G is a-union of k-cliques C =
{C1,...,Cy} such thatfor every two k-cliques Cy, Cy € C, there is a series [Cy, =
Cuy, Cu1, o, Cy /5 Co| in which C,, and C, i are ad]acent k-cliques of C.

This def1n1t10n is best understood by takmg a look at an example. Let’s
consider our $ocial network of Figure which we show\ again in Fig-
ure along with the various 3—cliques and single 4-clique." Note that in
this example there are no k-cliques for k > 5. What can we say about the
adjacency of cliques? First, it is not difficult to see that our single 4-clique,
denoted Cj, is not adjacent to any other clique for the simple reason that it
does not have a single vertex in common with any one of them. Likewise, if
we consider 3-cliques C; and Cg, we see that Sam is member of both of them.
However, because Sam is the only member that is shared between the two
/" cliques, they are not considered to be adjacent: two 3-cliques are adjacent".
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only if they share two vertices. For the same reason, we see that 3-cliques
Cs, Cy, and C; are not adjacent to any other clique. g

Ted
Russ

Xavier

Wendle Vern Cc9 0 Quint
Q

Dof*ni\_ngo

" Eduardo s ! R
Gill ~
lke

Frank

Figure 9.12: The social netwofk\from Figure "/showing the various k-cliques.

The story is different for cliques C3 and Cy: because V(C3) UV (Cy) =
{Hal, John}, the two are adjacent. In faét Cs, C4, C5, and Cg form a 3-clique
community, as shown in Flgure“ We see that besides C3 and Cy that also
C4 and Cs, as well as Cs5 and Cg are palrs of adjacent 3-cliques. The result
is that using this method of 1dent1fy1ng cohesive groups, we find ourselves
dealing with six communities: {Cl} {GC}, {C3, C4,C5,Ce}, {Cr}, {Cg}, and

{Go}.

Cs Cy Cs Co

Cs — {Hal, ]Ohl‘l} C3—C4—C5\ C3—C4—C5—Cq
Cy {Hal, John}- — {Bob, John} Cy4—C5—Cgq
Cs C3—Cy4—Cs5 {Bob, John} — | {Lanny, John}
Cq C3—C4—C5—C6 Cy4—C5—Cq {Lanny, ]ohn} —

Figure 9.13: A 3 Chque community. Every entry shows either the intersection be-
tween two ad]acent 3-cliques, or the path of 3-cliques between two, nonad]acent
cliques.

Note 9.7 (More information)
Palla et al|[2007] have extended clique percolation to directed graphs. In the
~undirected case, a clique represents a maximal group in which all vertices are |
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considered equally important. In a directed graph, we need to account for the - ’

* fact that relations are no longer symmetric, but that they reflect some ordering”/
between vertices. For this reason [Palla et al| have been looking for an orderlng
of the vertices in their definition of a directed k-clique. In the following, we‘use
the notatlon u < v to indicate that vertex u precedes vertex v in an orderlng of
vertlces

Deflnltlon 9.13: Consider a directed graph D. A directed k-clique zs a directed
subgraph H with k vertices such that (1) the underlying graph of H is. Complete and
(2) there is an“‘o\rdering of the vertices of H, such that if u < v then <1f?)) € A(H).

To illustrate, cohsider directed acyclic graphs, which we encoﬁntered in Chap-
ter 3| In this case\,‘*f\or a directed clique H, a natural orderin’g of vertices can be
found by considering the outdegree of each vertex. In pe’irticular u < vifu’s
outdegree (in H) is larger than v’s. It can be shown that in this case such an
ordering always exists." To illustrate, Figure 9. shows how we can come to
such an ordering a dlrected acychc graph. ‘

Position | Vertex | (i,0) € A?

W k= N O

1rre1evant

T = W DN

(b)

Figure 9.14: (a) A (compléfe) directed acyclic grgph. The outdegree of each
vertex is shown as well. An ordering of the vertices'is shown in (b).

To examine direct,e’d subgraphs in which two vertié‘eg u and v are mutually
joined (i.e., both (u_ﬁ> (v,11) € A(H)), we merely need to, remove one the arcs
from either u to vor from v to u. In many cases, the remalnlng subgraph will
be acyclic, in Wthh case we can use the ordering based on a vertex’s outdegree.
There may also be cases in which an ordering cannot be found meanlng that
we are not deahng with a directed k-clique. N

Again; two directed k-cliques are considered adjacent if they share k—1ver-
tices. Then using these definitions, it turns out that for our classroom _example
shown'in Figure.7(a), the directed critical percolation method will find exactly
two directed 3-communities: one consisting of all the girls, and one conslstlng
of all the boys. None of the methods we have discussed so far would have been
capable of coming to such an identification of subgroups. Further information

" on critical percolation for directed graphs can be found in [Palla et al., 2007].
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9.2.4 Affiliation networks

As a last example of important concepts in social networks, we consider
what: are known as affiliation networks [Wasserman and Faust,1994; Knoke
and Yang 2008]. In such a network, people are tied to each other through
a membership relation. For example, Alice and Bob may be member of the
same sportsclub, or are both member of the same management team. In
general, affiliation networks are constructed from a set of aetérs and a set
of social events, where each actor is said to participate in-one or several
events. An aff111at10n network can be naturally represented as a bipartite
graph, with each vertex representing either an actor or an event. An edge
represents the part1c1pat10n of an actor in a specific event.

Affiliation nehNorks\have been studied for a variefy of reasons, but two
are particularly important for our discussion [Wasserman and Faust, [1994].
First, it is argued that there is a lot of information to discover between indi-
viduals by considering the events that they share, and likewise, correlation
between events can be discovered by considering the shared participation
by actors. In other words, the indirect relationship between individuals that
is caused by the events they share is an important object of study, and the
same holds for the indirect relationship between two events caused by indi-
viduals participating in both events. .

The second reason is that sociologists believe that participation in com-
mon events helps to explain the existence of ties between two individuals.
For example, it is believed that influence patterns are established by the fact
that people participate in shared events. As a-consequence, understanding
how information is diffused, or how innovations are adopted, may require
an understanding of shared events between people.

Because affiliation networks consist of two different sets, they are also
referred to as two-mode networks. However, when considering the two
main reasons for sttidying them, we see that they are. effectively used to
study the (indirect) relationships between individuals or events. This brings
us back to our orrgmal conception of social networks, now referred to as
one-mode networks.

Let us flrst consider the adjacency matrix representing an afflhatlon net-
work. Let’ V4 denote the set of vertices representing the actors, and Vg
the set representmg events. We consider only the (actor, event) submatrix
AE consisting of ny = |V4| rows and ng = [Vg| columns. Clearly, we
havethat AE[i, j] = 1 if and only if actor i participates in event j. Further-
more, };cy, AE[i, j] tells us how many actors participate in event j, whereas
Z]eVE AE][i, j] tells us in how many events actor i participates. ™
- Letus consider the simple affiliation network shown in Figure[9.15 along
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el e2 e3
al | 1 1 0
a2 | 1 0 0
a3 | 0 1 0
a4 | 0 1 1
ab| 0 1 1.

al a2 a3 ad a5

Figure\\g.‘ 15: An example affiliation network with adjacency sﬁbmatrix.

with its adjacenC};“submatriX. Now consider the followiﬁg sum:

"‘NE i,jl =) AE[i k] -AE[j,,k’]
x k=1

Note that AE[i, k] - AE[j, k] = 1if and only if both actors i and j participated
in event k. In other words, ‘NE[i, j] counts the number of events in which
both actor i and j participated. Likewise, we can compute:

NA[,j] = :ZA;AEUC i] - AE[k, j]

in which case we are counting the number of actors participating in both
event i and j. Note that AE[k,i] “AE[k, jl. = 1 if and only if actor k partici-
pated in both events i and j. The values for these two tables are shown in
Figure Of course, for both tables we haVe-

['j]—NI’éU i and NA[z]] NA[j, ]

Furthermore, it is not dlfflcult to see that NE[i, z} 6(a;) and NAJi, 1] =
5(ep). g .

17 a2 a3 a4 a5 NA |el e e3

NE | al

al [2 1 1 1 1 el |21 0
a2 'l 1 0 0 0 e2 |1 4 2
a3’l1 0 1 1 1 e3 |0 20 2
ad |1 0 1 2 2

a5 1 0 1 2 2

Figure 9.16: The matrices NE and NA from Figure

 How does this work in practice? In 2006 a major Dutch newspaper coh;
/" ducted an investigation to identify the most influential people within the"
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" Netherlands [Dekker and van Raaij, 2006]. The research was inspired by
‘a_statement in 1968 by Jan Mertens, at the time a union leader, that the”
Netherlands was effectively governed by approximately 200 people. Since
2006, identifying the top-200 most influential people has become a yearly re-
turning event, with the not perhaps so surprising result that the top hasn't
changed a lot. The core of the work is centered around a two-mode net-
work, for which the technical setup and analysis is described inde Nooy|
[2006]. Actually determining which people are the most influential cannot
be done by interpretation of raw network data. Instead, several metrics that
have been described so far have been adjusted to more realistically reflect
relationships. For example, rather than taking the distance as the length d
of a shortest path, it was taken proportional to 27. 7

For our purposes; we take a simple approach and ‘merely consider the
largest connected component of the two-mode network of approximately

200 people. This leads to'an affiliation network repfesenting 197 actors and
391 events. An event is typically a board of directors, a supervisory board,
etc. The graph is shown irf‘xlfigure whe’r,e"/ people are represented by
boxes and events by circles. .

Of course, by merely looking\gt this gl;aph it is already very difficult to

1

;7 I
‘4

%

I

IVF/i/gure 9.17: The graph of 2006 top-200 most influential people in The Netherland‘s\}\\
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draw any conclusions. However, when we consider the matrices NE and

“NA, we see that more than 1250 pairs of actors share at least one event
that both participate in. In particular, there is not a single actor who does
not participate in at least one event with another actor. In fact, there are
a number of actors who participate in at least three same events. -When
we take a look at the matrix NA we see that there is hardly any ¢ event for
which its participants do not participate in another event. Apparently, it is
common for the top to participate in at least two events. There 1s even a
pair of events with as much as nine actors in common. One could argue
that in such caSes, participating in one event implicitly means that you'll be
participating in the other as well.

9.3 Equlvalence

So far, we have essentlally been concentrating on- 1dent1fy1ng the properties
of a specific person, or a group of persons, in a ‘social network. An i impor-
tant, yet sometimes difficult question is 1dent1fy1ng the position or role that
someone has. For social networks, answering such a question is related to
identifying similarity between (groups of) people based on the structure of
the network or structure of subnetworks. In this section, we will take a
closer look at three related concepts that have been used for this purpose.

9.3.1 Structural equlvalence

Consider the situation that in a social network two people, or actors A and
B, have exactly the same relatlonshlps to the other actors in the network. In
other words, if A is linked to C, then so is B, and if there is no link between
A and D, then there is also no link between B and D. From the perspective
of the network, you can argue that A and B are essentlally indistinguish-
able: they apparently’ play the same role. This notion of similarity has called
structural equlvalence first formally defined by Lorram and White| [1971]:

Definition 9.14: Let D be a directed graph. Two vertices u and v are structurally
equivalent if t thieir respective sets of in-neighbors and out- nezghbors are the same:
Nin(u) = N i(0) and Nout (1) = Nout (0).

In other _WOrds, two vertices u and v are structurally equivalent if u has
arcs to exactly the same vertices as v, but also all vertices that are linked
tou afe linked to v. Indeed, from the perspective of a network, vertices u
and-v are indistinguishable. Structural equivalence can easily be defined
for undirected graphs as well, in which case we require that N (u) = N(v)
I,Flgure shows a simple social network with two structurally equwalent

/" vertices u and v.
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Uy ow\A

| ]
Uz ./

Figure 9.\"1\.\8: A simple social network with structural equivalent vertices u1 and up.

The formal definition of structural equivalence is rather strict. For exam-
ple, if u and v are each other’s neighbor, then by definition they can never
be structurally equlvalent For this specific situation, equlvalence between
two vertices u and v may exclude these two vertices from the respectlve sets
of neighbors. In that“case, vertices v1 and v, from Figure would also
be structurally equlvalent But even then it is highly unlikely to see any
two actors in practical situations to have exactly the same neighbors. For
this reason it makes sense to not look for strict- equivalence but to seek for
a weaker form in which two vertices are alrnost equivalent. To this end
we can define the following dlstance rnetrlc to express the extent that two
vertices are the same. " g

Definition 9.15: Consider a (strict) dﬁ’egtéd graph D with vertex set V(D) =
{v1,..., 04} and adjacency matrix A. The Euclidean distance d(v;,v;) between
two vertices v; and vj is defined as: .~

d(0;,0;) % ¢ y ((A,[z';"ﬂ — ALK+ (Alk ] - AlK, J’D2>
=1\

Recall that for a strict direcfed graph, A[i,j] = 1ifand only if there is an arc
from v; to v;. Asa consequence, d(v;,vj) = 0if and\only if vertices v; and v;
are structurally equ1valent for each k, A[i, k] = A[j, k}. and Alk, i] = Ak, j].
The Euclidean distance between two vertices now" gives us a measure
to see to what extent two vertices are structurally equlvalent Consider the
graph shown in Figure 0.19(a). It is not difficult to see that v; and v, are
structurally eqmvalent but it would also appear that v3 and v4 are struc-
turally very similar. If we compute the Euclidean distances, shown in Fig-
ure u‘b) we see that indeed v3 and v4 are relatively close to ‘each other
in comparlson to other pairs of nonequivalent vertices. We leave. it as an
exerc1s,e to the reader to actually compute the various Euclidean dlstances.

Note 9.8 \
/To get an impression of what the chances are of being structurally eqmvalent R
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01 (%) U3 V4 U5 Ve

v1 |0.000(0.000|2.236|2.646|2.236 |2.236
v |0.000(0.000|2.236|2.646|2.236(2.236 | -
v3 |2.236(2.236|0.000|1.414 |2.828 2.449/;"1
vy [2.646(2.646|1.414]0.000 |2.449|2.000
U5 |2.236(2.236|2.828|2.449|0.000|1.414
vg |2.236(2.236|2.449(2.000 | 1.414|0.000

“‘@ (b)

Figure 9.19: (a) A dlrected graph and (b) the Euclidean dlstances between its ver-
tices. |

let’s consider a directed ER(n p) random graph for Wthh p indicates the prob-
ability that there is an arc (i£,0 v) for an arbltrarlly chosen pair of vertices u and
v. The probability that two vertices u and v have an arc to the same vertex w,

is obviously pz If both have outdegree kout,, then the probablhty that they have
exactly the same set of out—nelghbors is equal to (” 2)( p2)kout (1 — p2)n=2—kou,

Likewise, if they both have 1ndegree ki, the probablhty of having exactly the
same set of in-neighbors is equal to (”"2)(;7 ykin (1 — p?)"—2=kin Given the fact
that even having the same vertex degree can be rather low, it is not hard to see
that finding two structurally equivalent Vert1ces in a directed graph is indeed
very low. Therefore, the 1mphcat10n of fmdmg such nodes in real networks
means that something 1nterestmg may be gomg on.

3000 |
2500 |
2000 |
1500 f///
1090/S

/500 |

18 18.5 19 19.5 20 20.5 21

Figure 9.20: The distribution of distances in a directed ER(500,0.25) ‘
random graph.
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‘ As a further illustration, Figure shows the distribution of Euclidean |
“distances between pairs of vertices in a directed ER(500,0.25) random graph. .
We conclude that only very few vertices lie close to each other when takir}g
the Euclidean distance as metric. Again, this means that if we do find vertices
close“to each other, then this should be treated as quite exceptional, which is
exactly' what we hope to find when looking for what could be called structural

sumlarlty /

9.3.2 Automorphlc equivalence

As mentioned, structural equivalence is rather strict as it demands that the
neighbor sets of two Vertrces are exactly the same. In effect, two structurally
equivalent vertices are considered to be 1nterchangeable and have the same
position in a network. However we are often looking for nodes in a social
network that have similar roles (see also [Wasserman and Faust|[1994]). For
example, we may want to 1dent1fy who are teachers in a school. The basic
assumption underlying such an 1dent1f1cat10n is that we should look at the
structure of the subgraph surroundmg spec1f1c vertices. Indeed, this brings
us to considering graph 1somorphrsms ‘again, which we discussed in Sec-
tion2.2.2] S

In particular, we are looking for a Way to exchange two vertices, along
with the1r respective neighbors, such that the resulting graph remains “the
same.” To make this more prec1se ‘recall f1rst the definition of graph isomor-
phism:

Definition 9.16: Consider two, gmphs G = (V, E) and G* = (V*,E*). G and
G* are isomorphic if there exists a one-to-one mappmg ¢+ V. — V* such that
for every edge e € E with. ¢ = (u,v), there is a umque\edge e* € E* with e* =

(@), 9(0)).

Keeping a graph ”the same” is essentially asking whether a graph is iso-
morphic with 1tself but using a nontrivial remapping of vertices. Nontrivial
means that at least some vertices are not mapped onto themselves Formally,
we speak of an automorphlsm, which is defined as follows:

Definition 9. 17: Consider an undirected graph G = (V,E). An uutomorphzsm is
a one-to- one mapping ¢ : V. — V such that for every edge e € Ewithe= (u,v),
there is a unique edge e* € E with e* = (¢p(u),$(v)). An automorphzsm ¢ is
called fontrivial if at least for one vertex v € V we have that ¢p(v) # v.

Note that the definition of automorphism can be easily extended to dlrected
graphs. We can now define when two nodes in a social network play the\
“same role by considering the associated (directed or undirected) graph:
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" Definition 9.18: Consider a graph G. Two distinct vertices u and v are auto-
“morphically equivalent if and only if there is an automorphism ¢ for G wzth
p(u) = o S
To illustrate the idea of automorphical equivalence, consider the social
network shown in Figure[9.21] In this example, it is not difficult to see that
the two- subgraphs H; and H; are not only isomorphic, but that they can
also be “swapped” to obtain essentially the same graph. In partlcular the
mapping 4)( i) = v; will do the job. This also means that each pair of ver-
tices (u;,v;) are automorphically equivalent. Finally, note that just as in the
case of graph 1somorph1sm finding a (non trivial) automorphlsm may be a
difficult task to accomphsh /

Figure 9.21: An example of a dlrected graph w1th automorphically equivalent ver-
tices.

9.3.3 Regular equlvalence

Both structural and autOmorphlcal equivalence haVe relatively simple graph-
theoretical formulations, yet may be rather difficult to use in practice. As
it turns out, for sociological research, another type of equivalence is often
more important as it more naturally reflects the notion of a role [Hanneman
and Riddle| 2005]: regular equivalence. Informally, two nodes in a social
network are regularly equivalent if they fulfill the same role. The latter is
decided by taking a look at the nodes to which the two nodes are linked:
if the respective destinations are also regularly equivalent, then so are the
sources. For example, two people may be identified as regularly equwalent
because both have a link to two nurses, which had already been identified
as bemg regularly equivalent. In this case, the two sources may turn out to
be’doctors. k
 Anissue with this definition is that it is recursive: being regularly equlv—
/ alent depends on the equivalence of the targets. Formally, we have: k

Copyrighted material - January 2010 - Draft




Copyrighted material - January 2010 - Draft

9-38 CHAPTER 9. SOCIAL NETWORKS

Definition 9.19: Let G be an undirected graph. Two vertices uy and uy are said to be
‘regularly equivalent if for all edges (u1,v1) € E(G) there is an edge (up,vp) €
E(G) such that vy and vy are also regularly equivalent.

Another way of looking at regular equivalence is coloring the vertices’ of a
graph such that if two vertices u and v have the same color, then for each
neighbor of u there will be a neighbor of v with the same color. Consider
the graph shown in Figure ua) taken from [Borgatti and Everett [1992].
Clearly, each black-colored vertex is adjacent to either another black-colored
vertex or a whlte colored vertex. An interesting case is formed by the white-
colored vertices: Clearly, each such vertex may be joined with a vertex of
any color. However, what’s important is that for every white-colored ver-
tex joined with any vertex of color ¢, another white- colored vertex will be
joined with a vertex of. Color c as well. This is the essence of being regularly
equivalent. g

[ 4&4

@ ®)

Figure 9.22: (a) Coloring the vertices Gf a _graph to identify regular equivalence.
(b) An alternative coloring that also reﬂects structural equivalence.

Figure[0.22b) shows an alternatlve colormg that also reflects structurally
equivalent vertices. In general if two vertices" are structurally equivalent,
they will also be regularly equivalent. .
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" MATHEMATICAL NOTATIONS

Basic set notations

N ‘The set of natural numbers.

R The set of real numbers.

S| The size of a (finite) set S.

min S The smallest value found i m set S.

max S The largest value found in set S.

v The umversal quantlﬁer used in statements such as
“for all .. /

3 The ex1stent1al quantlfler, used in statements such as

“there exists ...".

x€S Element x is a niember of set S.

VAW The set V excludlng elements that are also member
of W. '

VW Denotes that the set V is a subset of W, and possibly
equal to w.

Vcw Denotes that V is a proper subset of W,ie, VCW
and v = W.

VNnw The intersection of the two sets Vand W.

VUWw _,The union of the two sets V and’ Ww.

General mathematical notations

[x] The smallest natural number greater or equal to x.

[x] The largest natural number smaller or epal to x.

n! To be pronounced as n factorial: n!%fn. (n —1) -

(n—2)---1.

n>k The fact that n is much larger than k.

Y. Summation, such as } ;! ; x;, meaning x; + x + +

/ Xn-
H Multlphcatlon, such as IT!_;x;, meaning x; X x ><\
, X X t

N-1
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N-2

[a1, a2, ... a,) The (ordered) sequence of elements ay, ay, . .., ay. ,

xS x takes the value resulting from the expression S,
pronounced as “x becomes S”.

flx) ~O(g(x)) f(x) is bounded by g(x): IMVx > xp : |[f(x)] <

f(x) ~Q(g(x)  f(x)is bounded from below by g(x): IM Vx > xq :

|f(x)] > M-|g(x)|. This also means that g(x) ~
o O(f()).

f(x) ~O(g(x)) f(x) follows the same form as g(x): IM, M' Vx >

xo: M'lg(x)]| < |f(x)] < Mg(x)].
" General graph-theory notations

G=(V,E) The undirected graph G with vertex set V and edge
set E. /

(u,v) The' fact that vertex u and v, are ]omed by an edge,
that is; they are adjacent. !

—(u,v) The fact that vertex u and ¢ are not adjacent.

D= (V,A) The directed graph D with vertex set V and arc set A.

(u,0) The fact that vertex u and v are joined by an arc from
utow.

G[V*] The graph mduced by the set of vertices V* C V(G).

G[E*] The graph induced | by the set of edges E* C E(G).

HCG Hisa subgraph of G.

G-v The graph induced by. V(G)\{v}.

G—e The graph. induced by E( N\ {e}.

Ky The complete graph on n> 0 vertices.

Kin,n The complete bipartite graph with with two vertex
sets of size m and n, respectively.

Hy , A k-connected graph with n vertices and a minimal
number of edges: a Harary graph

N(v) //The set of neighbors of vertex v. .

Ni, (v) " The set of in-neighbors of vertex v.

Nout (v) The set of out-neighbors of vertex v.

4(v) The degree of vertex v, i.e., the number- of incident
edges.

Oin(v) The indegree of vertex v, i.e., the number of 1ncom1ng
) arcs at v. ~
§out(b) The outdegree of vertex v, i.e., the number of outgo-

ing arcs from v.
A(G) The maximal degree of any vertex in graph G

MaXyey (G 5(0)
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Metrics on graphs
d(u,v) The geodesic distance between vertex u and v. This
is either a minimal-length (u,v)-path or a mmlmal—
weight (1, v)-path.. r

e(u)". The eccentricity of vertex u: the maximum dlstance
of u to any other vertex. '

7(G) The network transitivity of graph G: the ratio be-
tween the number of triangles and triples in G.

cc(u) The closeness of vertex u (in a graph G)’/ measured as

 the reciproke of the total dlstance U has to the other
" vertices of G. :

cp(u) “The betweenness centrality of Vertex u: the ratio of
shortest paths between two Vertlces that go through
u.

ce(u) The vertex centrality of u: the reciproke of its eccen-
tricity. -

diam(G) The dlameter of graph’ G the length of the longest
shortest path between any two vertices.

rad(G) The radius of graph G: the maximal eccentricity
among its Vertlces

C(G) The center of graph G: the set of vertices for which
the eccentricity is the same as the radius of G.

ce(v) The Clustermg coefflclent of vertex v.

CC(G) The average clustermg coefficient measured over all
vertices of graph G.

w(G) The number of components of graph G.

k(G) The size of a minimal vertexcut of graph G.

A(G) The size of a minimal edge cut. of graph G.

X' (G) _The edge chromatic number of ‘G: the minimal k for

~ which graph G is k-edge colorable.

x(G) The chromatic number of G: the mlmmal k for which

graph G is k-vertex colorable.
Probabilities

P[6 = K] The probability that the degree (of an arbltrarlly cho-
sen vertex) is equal to k.

Plk} An abbreviation for P[5 = k]. :

IE[X] The expected value of the random variable X (often

corresponding to the mean).
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N-4
Special classes of graphs
R(n,p) The collection of Erdés-Rényi random graphs with
vertices and probability p that two distinct Vertlces”’/
are joined. it
WS(n,k, p) The collection of Watts-Strogatz random graphs Wlth
n vertices, initial vertex degree k and rew1r1ng prob-
ability p.
BA(n,ng ,m) The collection of Barabasi-Albert random graphs

with n vertices, ng initial vertices and a growth of m
edges at each step. g
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INDEX

k-regular grapfi‘«,

access network, _\
acyclic graph,
address, [8-4

MAC, |
address, host identifier,
address,IP, |8-5!
address,network identifier, [8-6].
adjacency matrix, 2-14} \

symmetric, 2-14]
adjacent vertices, 2-3|
ADSL connection, 4-25
algorithm

breadth first,
arc,[3-3|

head,

tail,
AS, see autonomous systém
AS number, l
AS topology,

assortative mixing;[6-7]

automorphic equivalence, see equiv-

alence, automorphic
automorphism,
autonomous system,

average p’éth length,

BA g;;eii)h, see random graph, Barabaési-

Albert

Bafabési—Albert graph, see random

graph, Barabasi-Albert
/" Bellman-Ford algorithm,

betweenness cen’ffality,
O-11,B-12

BGP, see Border Gateway Protocol
big O notation,
binomialdistribution,
bipartite graph, 2-30]

complete,
block modeling,

border gateway, see gateway, bor-

der

" Border Gateway Protocol,

bowtie, see Web graph, bowtie

x‘x\genter of a graph,

characteristic path length, [-11]
Chinese postman problem,
Chord,
finger table, [8-15]
successor, [8-14]
chromatic number,
circular embedding,
client, AN
client-server architecture, [8-11]
clique
adjacent k-cliques, [9-27]
community, N
directed k-clique,
k-clan,
k-clique,
k-club,
k-distance-clique, 9-25]
maximal,
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I-2

“_clique percolation,
‘closed walk,
closed walk,
closeness,
clustering
global view,
local view, [6-14
clustering cbgfficient
of a Vertéx,
of a directed. graph
of a graph, [6-14
of a Vertex,m

of a vertex in a weighted graph,

&T5
cohesive subgroup,[9-24]
communication

heliographic,

telegraphic,
communication protocol,
complete bipartite graph, 2-37]
complete graph, 2-3]
complex network, [I-3]
component, 2-21]
computationally efficient, [5-25| ﬂ
computationally inefficient, [5-25]
connected world, [T-4] /
connected graph, ,
connected vertices,
connectivity

k-connected, 2-23] ﬂ

k-edge-connected, 2-23]
connector problem, [5-3|
correlation coefficient, [6-7]
count-to- 1nf1r11ty problem, [5-23]

cubic graph, 2-7, 2-13]
curve fitting, [6-6]

cut edge, 2-22]
cut'vertex, 222} [6-22]
cycle,

© directed,[3-7]

INDEX

cycle time, see epidemic protocol,
cycle time g

DAG, see directed acyclic graph
decentralized algorithm, [5-22) m
degree correlation, [6-§]
degree correlation, -
degree distribution .
power law, [7-18"
degree prestige, ’
degree sequence;|2-7|
ordered,
DHCP, see Dynamic Host Config-
uration Protocol
DHCP setver,
diameter, [6-11
digr@}’ﬁh,
strongly connected, 3-7]
* weakly connected, [3-7]

,,,D1]kstra s algorithm, [5-16]
* direct proof,[3-19

directed cycle, [3-7]

directed walk, [3-7]
directed acyclic graph, [3-7]

directed graph, 3-3]

“acyclic, -7
arc, [3-3]
orientation, 3-4]
strict;3-4]
directed k-clique, see clique, directed
k-clique

directed path,

directed trail,[3-7]".

DISCONNECTED,*‘S‘&ee Web graph,
DISCONNECTED

disconnected graph, 2-22) -

distance

between Vertlces ﬂ-
Euclidean, [0

geodesic, [3-12) - [e-10]

DNS, see Domain Name System
Domain Name System, [8-29]
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domain name, [8-28

"‘nynamlc Host Configuration Pro-

tocol, [8-5]

eccentricity, [6-21} p-17]
edge, O]
duplicating,
end point, -
incident;]
loop,
multiple, 2-3] .-
weight, B-11]
edge list,2-16]
edge chromatic nurnber
edge coloring, [3- ‘
minimal, [3-16 m
edge cut,[2-22)
edge-independent paths,
eigenvalue, 0
eigenvector,
end point, see edge,end point
epidemic dissemination, [6-13]
epidemic protocol, see peer-to-peer,
epidemics
cycle time, - -
round, [8-24} [3-25
epidemic-based network -
equivalence

automorphic,[9
regular,

equivalence, strqc‘tural,

ER random graph, see random graph

Euclidean distance, see distance, Eu-

clidean
Euler constant,
Euler tour, [4-5
Euler trail,

existential quantifier, 2-4]

existential proof, [3-22} [-18
expected value, see random vari-
! able

I-3

finger table, see Chord, finger ta-
ble
flow of control, [3-9] 3-14]

gateway, border, [8-7]
geodesic,

geodesic distance, see dlstance
giant component, [7-T1]
gossiping, see epidemic-based net-
works

gossiping modefs,
graph, [1-10] -

k—regular

acycli¢, 2

autﬂinorphism,

center, [6-21]

l,c‘iomponent, @

/" connected,
definition, 2-2]
directed, 3-3]
disconnected,
edge,[2-2
empty 3

_ Hamiltonian,
" induced,

* isomorphism,
join vertices, [2-2]
orientation, 3-4]
planar, -33]
plane,
regular, [2-7]
simple, 2-3| 2-15|[3-4]
subgraph, ﬂ
tree, see tree .
vertex, 22,33 .
weighted,

graph embedding
circular,
ranked,
spring, [2-31]

graph closure, [4-19]

graph embedding, [2-28
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I-4

graph theory,
graphic, 2-7]
grld graph 5-23

Hamllton cycle, [4-3, [¢-14]

Hamilton path, [4-T4]

Hamiltonian graph, [

Harary gréh,

head, see arc, head

home network}

homophily, :

host, \

host identifier, see address, hostiden-
tifier ™

HTML, see HyperText Markup Lan-
guage

HTTP, see HyperText Transfer Pro—
tocol 3

HTTP request, [8-29

hub,
hyperlink,

HyperText Markup Language, //,,::'::\

HyperText Transfer Protocol, [8-29]

iff,
IN, see Web graph, IN
in-neighbor set, -4 /
incidence matrix, [2-15
indegree, [3-4] ’
indirect proof, n
induced graph, 2-13|
infix notation,
influence domain,
interface,
communication, [5-15]
Internet Protocol,
Internet Service Provider,
Inte;r{et, edge,[8-7]
IP, see Internet Protocol
IP address, see address,IP

’l,x'lisomorphic graphs,

INDEX

ISP, see Internet Service Provider

k-clan, see clique k-clan

k-clique community, see chque, com-
munity g

k-club, see clique k-club

k-connected graph, ﬂ

k-core,[9-27] ;

k-distance-clique, see chque k-distance-

clique .
k-edge coloring, [3-17]
k-edge-connected graph,
k-vertex coloring, B-17]

LAN, see ,l(")'cal-area network
local-area network, [8-4]
loop, see edge, loop

lower bound,

MAC address, see address, MAC

“markup language,

matching,
perfect,

x\MBone, B3

fnean (of a random variable), see
N random variable

medi~an,

Menger, Karl,

message routing, [5-15]

multiple érp,@

multiple edge, see edge, multiple

neighbor set, -

network ‘
transportatlon,

network transitivity,

network science, E

network density, - -
sparse, [7-13]

network identifier, see address, net-
work identifier
network science, [1-11

network transitivity,
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" network, access, [8-7]
“network, home, [8-6
network, tier 1,[8-§|
network, tier 2,
network, tier 3,
nonconstructive proof,

one-mode network,
orientation, [3-4]

OUT, see Web graph, OUT
out-neighbor se’c»-
outdegree, [3-4]

overlay network, . -

packet, [8-3]

PageRank, [8-33]

partial view, 8-12

path, 2-21]
directed, [3-7]
edge-independent,
length, [5-22]
vertex-independent,

peer,@

peer-to-peer
epldemlcs,

peer-to-peer network, [8 -
unstructured, [8 /

peering relationship, -7

perfect matching, [4-14] -

Petersen graph,[2-28]
pigeonhole principle,
planar graph,

planar graph ./

exterior region, 2-34
face,[2-33]
interior region, [2-34]
region, 2-3]

plane. graph, 2-33]

poyyer law distribution, see degree

. distribution
_preferential attachment,
/" prefix notation,

proof technique
extremality, [4-6
proof techniques
existential,[4-1§]
proof by contradiction,
proof by induction,
proof by construction, B
proof techniques
by COIIStI'UCtIOII';
by contradiction, E
by induction, 2-35]

direct, B-T9]
existential, [3-22 ﬂ

extremahty,
indirect, B-19
proximity prestige, [0-13]
pseudo-code,
* control flow, 3-9]

radius,

random variable,

‘::':; random graph, 2-30|

Barabési-Albert,
ER random graph, [7-4]
~ Erdos-Rényi graph, [7-4
. Watts-Strogatz, [7-14]
random network
seerandom graph, [7-4]
random variable,
discrete,
expected value,
mean, [7-6".
ranked embedding,
ranked prestige, [0-14]
reachability analysis;[3-§]
regular graph,2-7 -
regular equivalence, see equlvalence,
regular
rooted tree, [5-5}[5-15] ‘
rotational transformation, 4
round, see epidemic protocol round

router, [8-4} 85
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I-6

. routing, [5-15} B-3]
‘routing algorithm,
routing cost, 5-20)
routing protocol,

distance vector,
link_\state,
routing table,

scale-free network, [7-1§|
scale-freeness,

normalized, [6-10]
scaling exponent,
SCC, see Web graph, Strongly Con-
nected Component
server, [8-11]
shortest path, @L -12
shutter telegraph, [1-5

sign,
product of, 0-20]
signed graph, [0-1§]
balanced, [9-21]
sink tree,

small-world network,

social balance, see structural baly,—w'l

ance
social network, [7-13} 0-3]
scegam [T 09

sociometry, 9

spanning tree, El

spanning walk, ,

sparse network, see network den-
sity

spider trap,[8-32

spring embedding, 2-31]

standard deviation, [6-8]

strict, see difected graph, strict

strongly. connected digraph, @

structural equivalence, see equiv-
alence,structural

struictural balance, [©-6,p-1§

subgraph,
/super small world,

INDEX

surface Web, [8-32]
switch,

tail, see arc, tail
telegraphic communication,|
TENDRIL, see Web graph TEN-
DRIL
topology,
tour, =3} E]
trail, 2-21] .
directed, B-7
transportation network,
traveling salesman problem, -15]
tree, (I8, 33 F13 53
binary, [5-7]
descendant, 5-7]
intermediate node, [5-5]
leaf node,
parent, [5-7]
rooted,
sink,
spanning, [5-5|

. triad, B8 EaETY

triangle, [6
~ ata Vertex [6-16]
transﬁwe, [6-20]
weight,[6-19
triple
at a vertex, [6-16]
nonvacuous, [6-20]
weight, [6T9)
TSP, see traveling salesman prob-
lem -
TUBE, see Web graph, TUBE
two-mode network,

underlying graph, \

Uniform Resource Locator, [8-29

URL, see Uniform Resource L:oca-
tor K

vertex, [I-10) 2-2} B-3
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adjacent, 2-3]
degree, 2-4]
" degree correlation,
“.indegree,
outdegree,
type,[6-7]
vertex centrality,
vertex degree
distribution,
vertex centrality,
vertex coloring, 3-17]
vertex cut,[2-22] .
vertex degree, @-
distribution, 2-6] .
vertex degree dlstrlbutlon,
vertex reachability, 3-8
vertex strength, [6-15] ‘
vertex-independent paths, [2-
virtual network, 2-26]

walk,
closed,
directed, 3-7]

spanning, 3]
Watts-Strogatz random graph .

04
weak link, [7-14]
weak tie, *
weakly connected dlgraph B-7
Web subgraph '
bowtie, [8-33] |
Web client,
Web crawling
breadth first,
PageRank, [8-33 836
random selection, |8-33
Web graph, [8-30]
DISCONNECTED, [8-34
/N, B33
© OUT,B-34
TENDRIL, B34
TUBE, 834

Web server, |8-29

Web site, |3-28

Web subgraph, [8-33|

weight,

weighted average,[7-6]

weighted clustering coefficient,
15

weighted graph,

WS random graph, see random graph,

Watts-Strogatz
WWW, see World Wide WebWorld
Wide Web8-28
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