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Abstract

Most efficient peer-to-peer protocols deploy structured overlay networks based
on Distributed Hash Tables (DHTs). These have been extensively studied
through theoretical simulations and analysis over the last few years. Recently,
the popular eMule and aMule file-sharing applications incorporate a widely-
deployed Kademlia-based DHT, called Kad. The Kad-network with over a
million simultaneous users enables the observation of its behaviour in practise.
This Master Thesis consists of two main parts. Firstly, it describes and ob-
serves the structure and processes of the Kad-protocol in detail. Secondly, it
empirically evaluates the performance of Kad with the focus on the data item
distribution process.
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1. Introduction

Peer-to-peer (P2P) applications continue by many measures to be one of the
most important applications in the internet. The most representative P2P-
based applications are file sharing systems, besides storage and communication
systems. P2P accounts for more than 60% of the internet traffic at the end of
2004 [5]. Moreover there are actually millions of simultaneous connected users
spread out on different continents and states.

This success has motivated the research of new P2P protocol designs. Espe-
cially the Distributed Hash Table (DHT)-based are the most promising stan-
dard for overlay networks. They provide an elegant distributed solution for an
efficient mapping of data to locations. Unfortunately these achievements were
not widely-deployed and the research was limited to simulations, theoretical
analysis and limited-scale experiments.

Now, decentralised file sharing application gained in popularity and the Kademlia-
based protocol Kad connects over a million of simultaneous users. Kad is incor-
porated by the two filesharing clients eMule and aMule. These make it possible
to observe the behaviour of a widely deployed DHT in practise. Often, these
results disprove significantly the theoretical tests.

In practise, churn the changing availability of the peers [56], can affect the per-
formance of all DHT-based overlay networks. This concerns the routing table,
which has to cope with peers, which might be stale or have new contact infor-
mation. But also the publishing process is affected, when peers with published
data are no longer available. The churn is opposed by replication of content
or by the frequency of updating the routing table to assure a better quality.
However, this is done at the cost of a higher network overload.

In a file sharing application the data distribution process is the one with the
most messages and operative traffic. So there is a high potential for performance
improvements. For example, a load protection system was developed to avoid
an overload on popular data items. But as well there are faintness of changing
the published data by fraud peers. So, this Master Thesis has its main focus on
the distribution performance and the propability of finding distributed data.

First, the background of Kademlia is illustrated in chapter 2. Thereafter struc-
tured and unstructured overlay networks are briefly described. The related
work to this paper is presented at the end of the section .

Actually there are no or only brief documentations of a real-world Kademlia-
based application. Either the protocols are commercial where the source is
closed and not accessable or it is an open source project with scanty documen-
tations. In chapter 3 the main architecture and structure of the Kademlia-based
Kad protocol will be examined. In the following chapter 4, the iteration and
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lookup process will be explained. Chapter 5 details the publishing process,
which will be the main intention of the measurement and analysis.

For the comprehension, testing, measurement and analysis of the Kad protocol,
an aMule client was modified for special behaviours. This analytical framework
is deployed in chapter 6. Furthermore the structure of the database integration
is employed, which builds with its billions of entries the base for the profound
analysis of the Kad peers and its behaviours.

Chapter 7 illustrates the measurements of the Kad protocol and of the data
publishing process. Then the benefits of different ways to improve the publish-
ing performance are analysed. So the scheme of data distribution to different
peers has an important role.



2. Background P2P - Related Work

Peer-to-peer (P2P) Internet applications became more and more popular over
the last few years. This was also a consequence of the Recording Industry Asso-
ciation of America (RIAA), which forced server based file sharing systems like
Napster to shut down [32]. So especially the peer-to-peer file sharing applica-
tions are now one of the main sources of Internet traffic [19, 52]. Moreover, a
variety of applications took advantage of this peer-to-peer approach. Among
these are storage and backup systems, cooperative content distribution systems
to Web caching system and also communication applications like Skype [31].

The P2P overlay networks are naturally distributed systems, without any cen-
tral control or hierarchical structure. Their characteristic is the symmetric role
of each peer, which can be a server and also a client. This is the opposite to
actual server based structures on the Internet. This can be confirmed by the
upcoming and the success of asynchronous-DSL connections, that advance the
download and neglect the upload [43].

P2P is characterised by peers in self-organised overlay networks, which overlay
the Internet Protocol (IP). They offer different features like a robust wide-area
routing architecture, efficient lookup for data or references, selection of other
nearby peers, content replication, permanence, hierarchical naming, trust and
authenticity, anonymity, massive scalability and fault tolerance [32]. The main
characteristics can be summarised to the following:

• Decentralisation - many autonomous clients without a central control

• Scalability - the system has to adapt large extentions of peers

• Fault tolerance - the network must be resilient, especially in regard to
stale peers

• Load balance - routing messages have to be balanced to reduce the network
overhead

Another important characteristic is the security. However, until now it is not
covered in the protocols themselves but it is covered by the application level.
Finally there is a low level on security. Especially the DHT-based overlay
protocols suffer from man-in-middle and Trojan attacks [32].

All peer-to-peer systems are based on overlay network protocols. These are
responsible for the storing and retrieval of references or objects. Therefore it
uses a message routing and a list containing other peers of the network. Gen-
erally, there are two different types of overlay protocols classified depending on
a structured or unstructured organisation of peers and stored references. The

3
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pros and cons of these two approaches are still debated by the research commu-
nity [6]. Another study clarifies the differences of these two overlay structures
by focusing on their characteristics [46]. The most significant differences are in
terms of resilience, message overhead, query performance and load balancing.

2.1. Unstructured overlay network

An unstructured overlay network is formed by peers joining and leaving the
network. Thus they have to follow only a few loose rules. The whole network
operations are totally decentralised and follow no specific requirements for the
network topology or for the data placement. Especially the data placement has
no certain properties in contrary to structured overlay networks. To retrieve a
data item, a peer will query all its neighbours in a certain radius, also called
flooding. This design is high resilient and fault tolerant because the whole net-
work will not be interrupted when peers go offline. But in contrary to structured
overlay protocols, the ”blind” searches cause a large network overload and is
not scalable [32].

One of the most popular and investigated application based on unstructured
overlay protocol is Gnutella [20]. Early versions of Gnutella implements simple
flooding strategies. But newer versions improved query efficiency and reduced
the overhead for control traffic by introducing superpeers/ultrapeers [37]. An
advantage of the Gnutella protocol is that popular data is found easily and
quickly. But a lot more hops are needed to find rare data.

2.2. Structured overlay network

Structured overlay networks topologies are tightly controlled and the data is
not placed randomly on peers anymore. Peers will be chosen at a specific
position, which makes queries more efficient. Most structured P2P systems use
Distributed Hash Table (DHT), which organise the peers and content locations
in a certain order [32].

Each peer in network will be assigned a random NodeID, which gives a fixed
location to the peer in a large P2P space. Data objects are identified by a
unique key from the same P2P space. This allows the overlay network a scalable
storage and the retrieval of the data by the key location. It is important that
the location of a peer in the overnet network is abstract and not geographically
determined.

The peers in a structured overlay network maintain a routing table with a small
subset of peers. Generally, these are neighbouring peers identified by their
NodeID, IP address and message port. So a query can progressively approach
a key by routing through peers with a closer NodeID. There are differnet DHT-
based systems, which are differentiated by their data and peer organisation and
their routing algorithm. All of these systems have in common that a data object
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can be retrieved in O(log(n)) hops on average, where n is the total of peers in
the network [32].

The main structured P2P overlay networks are: Content Addressable Network
(CAN) [47], Tapestry [61], Chord [54] Pastry [51] and Viceroy [34]. The DHT-
based Kademlia’s [35] XOR topology-based routing is like the first phase of the
routing algorithm of Pastry and Tapestry. It will be described, measured and
analysed in detail in the following chapters.

After the proposal for new overlay network protocols were published, several
studies started to measure the DHT performance under churn: [26, 33, 25, 30,
21, 49]. But in the meantime, also other studies examined that session times
differ significantly from the theoretical approach [53, 15, 45, 18, 60]. Especially
the introduction of a new parameter tolerance zone in the real implementations,
opens a new basis for further investigation.

Recently, with the raising popularity of real DHT-based filesharing applications,
new studies came up measuring real DHT-based P2P networks [55, 57, 23, 46].
Generally these investigated either the Kademlia based Kad or Overnet [44]
network, which had millions of users at that time. These studies are primarily
concentrated on the behaviour of the peers, the query performance, as the struc-
ture of the routing table. This thesis proceeds with the empirical investigation
of the publishing process optimisation.

Another approach is the identifying of different attacks on DHT-based networks
[41, 28, 29]. These studies show the dangers, which are not covered in the
theoretical approach. This thesis will also highlight a possible entrapment,
when fraud peers intercept published data.



3. Kad architecture and structure

This chapter describes the main functions and algorithms of the Kademlia-
based DHT network Kad. It mostly applies to P2P open source project and it
is supported by the eMule [11] and the aMule [1] client. Despite its most recent
appearance, it already has over one millions simultaneous users, and is thought
to be the widest deployed DHT-based protocol.

In the following sections the terms client, peer, node and contact will be
introduced. The client presents the running application of the peer. A peer is
an active connecting point in the Kademlia network, which is applied by the
client. A node is another peer with a fixed hash ID in the Kademlia network.
The contacts are known peers or nodes, which are guarded by the routing table.
Furthermore a contact which is already known by the client, but it cannot be
ascertained wheather he is alive or not, will be called a possible contact.

3.1. Kad background

During the last years, different file sharing applications came up with new
or modified Kademlia-based overlay networks. Often the networks of these
applications are not compatible amongst each other, because they use different
operation codes or opcodes. However, the main functions and the principal
algorithms are the same, as their implementations are based on the same overlay
protocol.

3.1.1. Kad networks

Besides the Kad protocol, also other similar Kademlia-based overlay networks
exist. Overnet [44] was the first applied among these. Unfortunately it is imple-
mented commercially by the eDonkey2000 client [10], which has a closed source
code. But other open source applications like aMule/eMule, MLdonkey [38]
and KadC [36] reverse-engineered partially the Overnet protocol. RevConnect-
KAD [48], part of the opensource filesharing application RevConnect, is based
on the open source protocol eMule-Kad. Finally there exists two main families
of Kademlia protocols, the Overnet-based and the Kad-based. Recently Bit-
Torrent [4] also started to implement a Kademlia-based protocol for its search
algorithm.

Most of these described Kademlia-based clients are Hybrids, which means that
they support the server based eDonkey protocol [16] besides Kademlia. After-
wards, as the Kademlia support was added to eDonkey, both protocols have
the same standard functions. These are for example the socket implementa-
tion, the downloading process or the user interface. Often these are mingled

6
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together in the aMule source code, without any clear separation. But as well as
the implementations of the Kad protocol was strongly inspired by the eDonkey
specification [22].

The difference between the two clients aMule and eMule is that aMule runs
on nearly all system environments in contrary to eMule which is only designed
for Windows. This report describes the Kad protocol of the aMule client,
because applying the tests and analysis on Unix has several advantages. At the
beginning eMule and aMule started with an identical Kad implementation, but
as these continue their development, similar behaviours may vary.

3.1.2. Network protocol

Kad uses UDP as message protocol, which allows one peer to send messages
very quickly and uncomplicated to another peer. This design advances the
Kad protocol because the operation and iteration process consecutively induces
a peer to send many messages. Furthermore, there is no need to establish
a session, because generally a peer sends only one request to another peer.
When it obtains a response, it will iterate to the next peer. Also the client has
to handle with churn, so stale peers would slow the establishment of a TCP
connection. In contrary UDP sends messages to other peers and it lets the
application level handle with the stale peers.

As the peers join and leave the Kad network like they want, it is impossible to
make longer sessions or relations with other peers. So a client has to always
be aware that his contacts have left. The solution is a timer, which takes all
control of the messages. It terminates the operations like a iteration, search
or publishing process after a defined timeout. But the timer also periodically
induces different processes like the republishing of files or the checking for a
firewall. Appendix A lists all parameters for the timer.

Each UDP packet starts with one byte called ID, which identifies the Kademlia
protocol. aMule-Kad and eMule-Kad use 0xE4 for standard packets and 0xE5

for zlib-compressed packets. The following byte is called opcode and represents
the operation code for the Kad protocol. Generally the opcode defines the
different types of requests or responses. A list with all possible opcodes can
be found in the appendix B. Overnet uses, contrary to the Kad protocol, the
packet identifier 0xE3 only and does not support compressed messages.

An overlay client has typically two port numbers, each for a different message
type. One port is used to send and receive messages of the standard and service
operations. aMule and eMule therefore use the UDP port 4672 as a standard
port for the Kad protocol. The other standard port is 4662 and it uses the
TCP for uploading and downloading files. Furthermore, this port functions like
the firewall check for other services. These two ports are referred respectively
to as messaging port (UDP) and service port (TCP). Optionally, the two
standard port numbers can be changed by the users.
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0101
1100
1001 distance is 1 + 8 = 9

Table 3.1.: XOR Example

3.1.3. Kademlia 128-bit space

The Kademlia protocol has a space of 128 bit, this means that there is the
possibility to place 2128 different objects. The most important objects to place
are the individual peers. Therefore the peers have a corresponding client Id (see
section 4.1.3), which determines the position in the Kad-space. As the space
is virtual, geographically close peers can be far away in the Kademlia space.
The passive objects like files and keywords also obtain an ID to place them
in the virtual space. But they need a host peer near to them, which takes
responsibility for them.

The XOR metric is applied [35] to find out the distance between the individual
objects. Within this method, differences in higher bit positions will represent
a larger distance than differences in smaller bit positions.

Figure 3.1 illustrates in detail the XOR calculation to find out the distance
between two objects. Peer S calculates the distances to four other peers in the
4 bit number space. The result shows clearly that objects in the same subtree
are closer to each other than they are to other objects in other subtrees.

Figure 3.1.: The binary tree is a simplified representation of a theoretical rout-
ing table with the XOR-metric. In this example the starting peer
S calculates his distance with the XOR-metric to the peers 1, 2, 3
and four. As a result peer 3 is the closest with a XOR of 1 to the
peer S. So positions in the same subtree are much closer together
than they are to positions in other subtrees
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Name Type Description

contact-ID 128-bit number A unique hash identifier randomly chosen
distance 128-bit number The XOR distance to that peer
IP number The IP address of the peer
UDP number The UDP port (standart 4672)
TCP number The TCP port (standart 4662)
type number Quality of the peer
last type set date Last type check
inUse number Count current actions to that contact
creation date Time of the contact creation
expiration date Lifetime of the peer

Table 3.2.: List of attributes for an individual contact in the routing table

3.2. Routing table

The routing table organises the contacts of a peer into several K -buckets

which are the leaves of the routing tree. Again these K -buckets are organised
by the routing zones which are all nodes of the routing tree. Each K -bucket
represents one subtree and has K representative contacts. So if the client
wants to locate a node in another subtree, it will hop to an acquainted node
from that bucket.

3.2.1. Contacts

Each peer has a list of known peers, called contacts, which are structured by
the routing table. The maximum contacts of a peer is limited by a variable to
5000. All attributes of an individual contact are listed in table 3.2.

Each peer has a creation and expiration date, which helps to eliminate
non-responding or disconnected peers. Furthermore, it has a type and a last

type set variable, which are responsible for the degree of availability over the
time. Besides the contact-ID, the XOR-distance of the client-ID and the
contact-ID is calculated at the beginning. This avoids the CPU to calculate
the distance within each utilisation. The inUse variable indicates how many
current actions are running with that contact. This prevents the cancelling of
a contact, when it is included in a lookup process.

Type has a scale from 0 to 4, where 0 is the best and means that this client
has a very good availability over the time. On the contrary 4 means that this
client is rarely connected and will propably be eliminated at the next occasion.
So the contacts pass through different states described in table 3.3. Their type
will within its creation be initialised to 3. Afterwards, when the client receives
an alive sign from the contact it will improve the type to 2 otherwise type 4
will be assigned. For example when a client receives a message from a contact
which it already has for longer than two hours in its routing table, the contact
will obtain type 0.
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Type Preview lifetime (hours) Description

0 2 longer than 2 hours active
1 1.5 active since 1 -2 hours
2 1 less then 1 hour active
3 0 Just created
4 - Preview for its deletion

Table 3.3.: Shows the different types of the contacts with their lifetimes

The clients are saved in the file nodes.dat, which can be read by most Kademlia
clients like eDonkey, eMule and aMule. It serialises the ID, IP, UDP port, TCP
port and the type of the contacts. This file can contain maximal 232 contacts
[1]. But, as mentioned above the contacts are limited in the source code to 5000.
Normally there should not be a client with the type 4 in the file, because then
it is considered for elimination. But anyway if there is one, it will be ignored
by the reading of the contact list. There is a regularly updated nodes.dat file
with about 114 nodes in the internet to download [42]. That can be used to
accelerate bootstrapping, which is faster with several clients, than with only
one.

3.2.2. Structure

The Kademlia routing table is a proper binary tree, which means that it has
either zero or two children. But it is not a perfect binary tree, where all leaves
have the same depth. Due to this incompleteness, the routing table needs to
know only a small subset of peers in the network like figure 3.2 shows.

Figure 3.2.: Presents a pseudo routing table for a simplified 4-bit number space.
The K -buckets represent subtrees with a group of K contacts.

In reality the Kad routing table differs from the original Kademlia routing table.
In principal, the Kad calculates the XOR distance to the own client ID. As a
result the distance of the peer to itself is 0 and to the other peers a 128 bit
number. This simplifies the illustration of the routing table (see figure 3.3) and
above all, the structure and implementation of source code. The remaining
methods have the same layouts like the methods in the original Kademlia [35].
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Figure 3.3.: Contrary to the previous routing table, the XOR-distances to the
peer, owning the routing table are illustrated here. It has the ad-
dress 0000, because the XOR-distance to itself is obviously zero.

The real routing table of the Kad protocol will look like in figure 3.4 when it is
complete. That means that it contains nearly 6360 contacts. But in reality it
is impossible to reach that number, because this would mean that there were
2128 peers with a unique hash ID.

Figure 3.4.: Shows the shape of the Kad routing table. Subshape A is presented
in detail in figure 3.5 and subshape B is described in figure 3.6

Kad divides the table structure in levels and positions. The levels indicate the
layer beginning from the root, which has level zero. For example the highest
level of a 4-bit number space like figure 3.5 would also be 4. Accordingly, a
128-bit number Kad-space has maximal 128 levels. The position indicates the
n-th node in a level starting from the table holding node zero. So level four has
nodes with the postions from 0 until 15. The higher levels are limited from 0
until 9.

The complete routing table spans 128 levels. Beginning with level 5 the posi-
tions of each of the following levels are limited to maximum 10. This weighs
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Figure 3.5.: This is an extract of the whole routing table beginning from the root
until level four. The positions of the routing zones are spread out
horizontally. Level 4 has for example routing zones from position
0 until position 15. Where position 5 until 15 has K-buckets and
the zones from 0 until 4 have more subtrees.

Figure 3.6.: This extract of the routing table shows the closest peers for the
peer holding the contacts. These are guarded in the higher levels.

the tree more to the side of the owner peer, which has the XOR-distance 0 to
itself. It also enables the structure to keep disproportionate to closer contacts.
The maximum possible contacts organised by the routing table are calculated
in the following way:

• Total contacts = (Total of buckets) * K

• Total contacts = (leafs of level 4 + leaves on level 5 until 127 + leaves at
level 128 )* K

• Total contacts = (11 + 123 ∗ 5 + 10) ∗ 10 = 6360

Therefore the maximum number of levels is 127 and the maximum number of
zones per level are 9. However, by the fourth level more buckets are added
than the official Kademlia proposes. This improves the number of lookup hops
and is described by Stutzbach as discrete symbols and split symbols [55]. The
maximum K-buckets in the routing table are 636, which are multiplied by K=10
to 6360.
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3.2.3. Insert node

Each time a known node is seen by a client, it will be set alive by updating the
expiration date with the lifetime described in table 3.3. Otherwise, if the node
is an already known contact, it will be inserted into the routing table. New
contacts are obtained either through a bootstrap request, where 20 random
contacts of another client are returned or left within the standard iteration
process. The iteration process motivates the client to send requests to peers,
which will reply with several closer nodes to a determined target. The client
inserts these immediately and without verification into its routing table. Of
course there is also a third possibility, that the client is passively contacted by
an unknown contact.

A client will only insert a new contact into its routing table, when the contact-
ID is non existant. Otherwise the old contact will be overridden by the new
information. Even when the random initialisation of the client-IDs makes it ex-
tremely rare, the possibility remains that the peers will have the same hash ID.
But principally what happens is that peers changing their internet connection
will reappear with new contact information < IPaddress : messageport >.

Algorithm 1: Insert node

Data: Contact
root.addContact(0);
addContact(level);
if is leaf then

if contact exists then
update contact information expiration time, IP address, ...);

else

if bucket not full then
add Contact to bucket;

else
can split split;
subtree[bitnumber(level)].addContact(level + 1);

endif

endif

else
subtree ← subtree corresponding the bitnumber at position=level of
the contact;
Increment level;
subtree addContact(level);

endif

To insert a new contact, the client runs along the routing table according to
the contact’s distance. Therefore it checks the n-th position of the 128 bit
number, where n is the current level of the routing zone. If the value is zero it
will continue in the right child, which contains the closer contacts. When the
distance to a leaf is covered, there are two possibilities; either the leaf, which is
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a k -bucket, contains less than k contacts and the new node is inserted in this
bucket. Otherwise, when the bucket is full with k contacts, the leaf is split.
However, at level 5 of the routing table, only the first 5 position are allowed to
split.

Figure 3.7.: In this example, a 2-bucket obtains a third contact. Then the con-
tact table will split the leaf in two new leaves. The three contacts
are divided to the new leaves.

The splitting of a leaf on level n will add two new leaves on a higher level n +
1. All contacts which have bit = 1 on position n+1 will be added to the left
leaf and the others with a bit = 0 will be added to the right leaf with nearer
contacts.

3.2.4. Routing table maintenance

The Kademlia protocol is intended to remove stale contacts from the routing
table to improve the performance, which is disturbed by the churn. It is proven
that with the increase of the available time, the propability becomes greater
such that a peer stays connected. So the routing table prefers peers which are
connected for a longer time. However when a new peer is found it replaces
the peer of a bucket, which was seen for the shortest time. This improves the
whole quality of the contacts in a bucket [35]. But the Kad protocol does not
implement this feature. It follows other strategies in that each client is checked
periodically in regard to its lifetime. Therefore the client sends a hello request
to the contact, which has 2 minutes to respond. Otherwise the routing table
removes this contact. When the tree is no longer equal after an elimination, it
executes a merge of leaves.

Finally, the maintenance has two main objectives, to sort out stale contacts
and to prevent attacks. Without the actualisation of the routing table, bogus
contacts could nest among the contacts and distribute faulty information.

The routing table continually improves it’s structure by looking for more con-
tacts. Therefore two different strategies exist: a random lookup and a self

lookup. The random lookup is started in order to find new contacts, which
correspond to a certain bucket. So a search is created with an artificial target,
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which has the same first bits like that bucket. This lookup is only executed
for buckets having less than five identical bits. A self lookup is started to find
newer contacts with five or more identical bits. The target in this case will be
the clientID of the peer itself. The executed search is described in detail in
section 4.2.

3.2.5. Number of users and files

aMule has its own algorithm to calculate all the nodes in the Kad network.
However, it is vague because it depends on the constellation of the routing
table and their contacts. That is why it may happen that a client with about
270 contacts indicates once that there are 1.4 million peers and another time
that there are 20 million peers.

The number of Kad users is calculated for each leaf of the routing table. Then
the official published result will be the maximum of the results. Two methods
will define the total peers, each begins the calculation at a leaf. When the leaf
is in a smaller level than five, which is generally only the case after the starting
of the client, it will take the maximum possible users. This would be 24 ∗ k
for a leaf of level four, which corresponds to a maximum of 16 leaf with each
k contacts. Otherwise, when the leaf has a higher level it calculates the total
amount of a subtree, which includes that leaf and extrapolates the result:

• Totalusers = 2(subtree level) ∗ k ∗
contacts of subtree

10 ∗ 10

As the clients calculate the hash IDs randomly, they are proportionally dis-
persed in the Kad-space. So the total of the peers will lead to a nearly balanced
binary tree. Again this signifies that the level of the tree must be nearly the
same for each leaf. Therefore the quantity of root nodes on the same level is
calculated. This is multiplied by the size of the buckets. Then this is multiplied
by the representative contacts for that subtree.

There is no real way to find out how many files exist in the Kad network.
The difficulty is to get the average files per peer. However, the client counts his
indexed keywords, references to sources, to have an approximate average of files
per peer. If the client rests while connected, this value can get approximately
representative, but it will never be exact. Finally, the total number of existing
files in the network is the average per file multiplied by the total amount of
users.

3.3. Initialisation processes

The connecting of a peer to the network requires the setup of the state of the
peer. So the initialisation process is to establish a peer in the network. After
that, the setup processes help to maintain the connection.
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3.3.1. Bootstrapping

To join the Kad network a peer must first go through a bootstrap process.
Therefore a Kademlia client needs at least one active node in the Kad network
with its < IPaddress : messageport >. As a response to a bootstrap request
the demanded peer will reply with a list of further nodes from the network.
There are also some internet pages like overnet [44] which keep the nodes.dat

(see section 3.2.1) with about hundred actual notes ready for download. Due
to this file the initialisation process will be accelerated and facilitated. After
containing one or several nodes an aMule client works autonomous and finds
the nodes, which are of interest for its routing table.

In particular the bootstrapping process works like it is shown in figure 3.8. The
peer which wants to bootstrap from another peer sends his data within the
KADEMLIA BOOTSTRAP REQ in the format: < ClientID : senderIP :
messageport : serviceport : type > to the node < targetIP : targetmessageport >.
The type of the peer is set to zero because the receiving peer will calculate the
type value when the sender peer is added to its routing table. After receiving
the request the peer will reply with the KADEMLIA BOOTSTRAP RES message in
the format: < n∗ < ClientID : senderIP : messageport : serviceport >>.
Here n is fixed to 20 and defines the quantity of nodes which the routing table
will randomly return. The already obtained type information will be handed
over and the demanding client overtakes them. Evidently, this list contains only
n of his own contacts without itself.

Figure 3.8.: The bootstrap process

After completing a successfull transaction, the demanding peer adds the new
contacts to his routing table (see figure 3.2.3). Then the bootstrapping client
will check the obtained nodes for a valid IP address and port number but not
if they are still connected. This will be assigned to the maintenance process of
the routing table, which will assume the transferred type.



3.3. Initialisation processes 17

3.3.2. Initial handshake

When a client obtains new contact data, e.g. after a bootstrapping, he will per-
form an initial hand shaking process. This is a typical procedure for clients or
peers to come into contact and to assure that the other is still alive. Therefore
a peer sends a KADEMLIA REQ < TY PE : targetID : receiversclientID >
to the new contact. In return, when this one is still online, it will reply with
a KADEMLIA RES message: < TY PE∗ < targetID : TY PE : PEER >>.
If the handshake is executed after the starting of the client, then it will send
a firewall check message and start the process described in section 3.3.3. Oth-
erwise, when the firewall check is already terminated the client will send a
KADEMLIA HELLO REQ < senderPEER > message to the opposite peer.
In turn this one will return the KADEMLIA HELLO RES < receiverPEER >.

Sending Peer Receiving Peer

KADEMLIA_REQ

KADEMLIA_RES
  

KADEMLIA_FIREWALLED_REQ

KADEMLIA_HELLO_REQ

KADEMLIA_HELLO_RES

Figure 3.9.: The process of the initial handshake

Moreover, the aMule client checks, if its contacts are still alive every minute.
Therefore it sends a KADEMLIA HELLO REQ to one contact of each routing
table leaf. In detail, it removes first all contacts, which have passed their
expiration date. Then it takes the contact with the closest expiration date
and sends an hello request to him.

3.3.3. Firewall check

The ”firewalled” status indicates the accessability of the ports and corre-
sponds to the eDonkey status ”low id”. There are two reasons that a client
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can be firewalled; a firewall or a Network Address Translation (NAT). The fire-
wall blocks all incoming messages of peers, which were not connected before
by default. When a host is behind a private network and has its IP-address
masqueraded, unknown incoming messages can not reach the destination peer
[1]. A solution is to forward the concerning ports of the router to the client or to
open the corresponding ports in the firewall. Actually there are many articles
in the internet, which describe the firewalled state and the solution for an
open connection. However, Kad has a difference to the eDonkey, which isn’t so
obvious. Even though the Kad client runs behind a router with a NAT it can
obtain the status firewalled when the router redirects packets for the outgoing
UDP port (default 4672).

The Kad protocol has its own process to find out, whether the clients ports can
be accessed directly. This firewall checking process is executed immediately
after establishing the connection to the Kad network. After the initial checkup
the timer will periodically repeat this process every hour. Therefore the timer
sets a variable to notify the client that the firewall checking process is activated.
Then there are three possibilities to trigger the process, which are shown in
figure 3.10. A request is sent directly after an incoming message and it is
included in the normal communication between two peers. This assures that
the contacted peer is very likely to still be alive.

Figure 3.10.: The three triggers for the firewall check

When the firewall checking process is triggered by the sender peer, it sends
the KADEMLIA FIREWALLED REQ including its TCP port (see figure 3.11).
Then the receiving peer puts the incoming IP address into the response package
KADEMLIA FIREWALLED RES and returns the package. When the checking
peer gets the response he verifies his IP address with the one seen by the
responding client. It knows by a unequal IP address, that it is behind a NAT.
Each incoming response increase also the response counter to inssure that the
firewalled request does not use too much bandwidth. So the check will be
stopped after four incoming responses. Furthermore the responding client will
try to make a connection to the checking client. Obviously, only peers that are
not firewalled can establish a test connection. If the connection is successful,
it will send a KADEMLIA FIREWALLED ACK. The checking client indicates
not firewalled, when it has received more than two positive responses.
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Checking Peer Responding Peer

KADEMLIA_FIREWALLED_REQ

@IP -> package

KADEMLIA_FIREWALLED_RES

  

(TryConnecting)?
KADEMLIA_FIREWALLED_ACK

checked+1

open+1

Figure 3.11.: The firewall checking process

3.3.4. Find Buddy

A firewalled aMule client has to find a non-firewalled client, called a buddy.
A buddy can receive incoming messages for its firewalled buddy though it will
manage his communications. Only one buddy is allowed for each firewalled
or non-firewalled client. The search for a buddy starts five minutes after the
firewalled check and only if the client is still firewalled. The earliest time for
a buddy search is five minutes after the connection. This gives time for the
client to obtain enough responses for the firewalled check. To start a buddy
search, a client sends a ”KADEMLIA FINDBUDDY REQ” < serviceport >
to the three nearest peers. If the receiving peer is not firewalled, he will answer
with a ”KADEMLIA FINDBUDDY RES” < serviceport > message.

Search Buddy Peer Buddy Peer

KADEMLIA_FINDBUDDY_REQ

TCP port -> package
KADEMLIA_FINDBUDDY_RES

  

Figure 3.12.: The find buddy process



4. Lookup process

The Kademlia-based protocol Kad has the same lookup processes like the other
prefix-matching DHTs: Pastry [51], Tapestry [61] or Toplus [13]. Without
knowing all nodes in the network, a peer in the Kad network can find any other
active peer. Normally, a peer in a Kad network with 2 million peers, knows only
a subset of about 1000 peers. A client chooses these contacts according to a
specific position and keeps them in an structured hash table, also called routing
table. Studies showed that the structured distributed hash tables (DHTs) show
a higher performance in locating specific nodes or rare objects than networks
with unstructured DHTs.

4.1. The Lookup

The lookup describes the methods and algorithms to find peers, which are close
to a certain target in the Kad space. Therefore exists different strategies, which
are described in this section.

4.1.1. Object locating

An object in an overlay network can be located with an iterative or a recur-

sive. These two methods are illustrated in figure 4.1. Each method has its
advantages and disadvantages:

1. Recursive routing has the risk, that an intermediate peer with the lookup
message is departing the network [7].

2. The recursive lookup has a lower latency than the iterative lookup[58].

3. The iterative routing is easier to implement, because it allows a better
debugging and maintenance [55].

In the end the advantages of the iterative methods prevails the disadvantages
in the Kademlia protocol. Especially the iteration copes more efficient with the
high fluctuations and dynamics of the peers.

Figure 4.2 shows an example of a node location in a simplified 4-bit number
space. The point S starts looking for the the node T, which is in another subtree.
So he asks an acquainted node from the other subtree for a closer node to the
target. Again he demands the recently obtained node for a closer one. Finally,
after the iteration through several nodes, the target node will be found by at
least log(n) hops, where n are all peers in the network. Each iteration step
reduces the metric distance to the target by at least 1

2 [35]. This corresponds
to the limitation of the possible target peers to 1

2 or even less.

20
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Figure 4.1.: Two different node lookup methods are distinguished: iteration
and recursion. Within the iteration, the initial peer takes the con-
trol of the lookup. The other peer in the lookup chain responds
only simple requests with some of its closer contacts. In contrary
the recursive method sends the address of the initial peer to an-
other. This one redirects independently the message to a closer
peer. When the target peer receives the message it will notify the
initial peer.

4.1.2. Concurrent lookup

In theory there is one iterative lookup process to find a peer, which is described
in the previous section. But this has the risk that a single stale client would
increase the latency of the whole process. The delay would be the sum of each
stale contact in the iteration process. To avoid this, the solution in Kademlia is
a concurrent node lookup, also called parallel lookup. That means that a lookup
request is sent to α peers at the same time, instead of sending the lookup to
only one peer. Now, when one peer in the iteration process is overloaded, there
are still other peers which will respond. The same technique is already applied
by EpiChord [24] and Accordion [27].

It is important to find an adequate α, because a high number of parallel lookups
could accelerate the iteration to the target. But the network overload would
increase by the same manner. The Kademlia protocol defines an α = 3, which
means that there are 3 parallel lookups. Also Stutzbach found out in his study,
that the advantage of a faster iteration in relation to the network overload is
an α of 3 [55]. Finally, two different lookup methods can be differentiated; a
strict concurrent lookup and a loose concurrent lookup.

Strict concurrent lookup is the original approach of Kademlia [35], which is
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Figure 4.2.: Locating a node in the Kademlia space. The searching peer S with
the ID 0011 searches for a target object T with the ID 1110. So
the search iterates to nodes which are in a closer subtree.

shown in figure 4.3. There are α parallel lookups, where each process
acts like an individual and independent lookup. Without consulting the
neighbour processes, each lookup process follows its closest way to the tar-
get. This is even the case if another lookup process found closer contacts.
When one process finds a stale contact, it must wait until the timeout.
Within this method the resulting maximum network overhead is linear to
the factor α.

Algorithm 2: Strict concurrent node lookup for one α thread

if Incoming response OR last request time out then

if has a closer node to the target then
send request for a closer node;

endif

endif

Loose concurrent lookup The Kad algorithm of aMule and eMule implements
a from the Kademlia modified and though a looser concurrent lookup ex-
plained in figure 4.4. It starts like the strict lookup with α = 3 initial
requests to the closest possible contacts. Possible contacts are known
nodes, which are the closest to a target. However, they are only imagin-
able nodes, because the peer does not know if they are still alive. When
a response with several closer contacts arrives, the Kad protocol will se-
quentially compare these with the already closest ones. By each incoming
of a closer contact, the client will immediately send a new request to it.
The α assures that there is a maximum of 3 simultaneous request. At
the first view, this seems to result in more expensive network traffic. But
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Figure 4.3.: The strict concurrent lookup follows α = 3 parallel lookups. This
figure shows that thread 2 makes a lookup to node 2. But this one
is stale and returns no new contacts. After the timeout the search
restarts with the second closest node. If this were only this process
it would significantly increase the total lookup latency. Thread 3
is the fastest to reach a node which is in the tolerance zone. After
rechecking node 3.1.1 the lookup process is complete and the other
threads are abandoned.

when a first response arrives it has already several closer contacts, so that
the responses of the other two are no longer relevant.

Algorithm 3: Loose concurrent node lookup

possibles ← get 50 contacts from the routing table with minimum distance
to the target;
send to α contacts a request for β closer nodes;
while Incoming response do

reset timeout;
for received node < β do

if Not already tried OR already known then

if Node is in the α closest contacts to the target then
send a request for β closer nodes;

else
possibles ← node;

endif

endif

endfor

endw
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Figure 4.4.: The loose concurrent lookup begins like the strict lookup with α = 3
parallel lookups. But within this lookup the contacts try to re-
sponds with β = 2 closer contacts. If the obtained new contacts
are among the α closest contacts at that moment, a request will be
sent to them.

Generally, if there is a high percentage of stale nodes in the network, the latency
of the loose lookup will be significantly smaller. Otherwise there is no notable
latency difference between the two concurrent lookup methods [55]. For both
methods an α = 3 is optimal, which means an efficient and short lookup to find
the target without increasing unnecessarily the network overload.

Furthermore an implemented stale protection assures that a search does not
block, when it meets only stale contacts. At the beginning of a search, a client
puts the 50 closest contacts to the possible list. During the search process, it
still adds new obtained and not already requested contacts to that list. After a
timeout of 3 seconds, the peer sends concurrent requests to all contacts in the
possible possible.

4.1.3. Object ID

The Kademlia space consits of peers and data objects. In accordance the Kad
network has the following objects; clientIDs of peers and the hash values of
sources, keywords and notes.

ClientID Each peer calculates randomly its own unique hash ID. This is neither
influenced by its IP address nor by its port number, because the unique-
ness of the IP address and port number can not be assured. For example
two clients behind a router could have the same IP address and the same
port number. After the initialisation the client serialised its clientID. This
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is loaded by each starting of the client. So all clients will keep its ID even
when they change their IP address.

Source Each file has location information, which is published instead of itself.
Therefore the first bytes of a file calculates their corresponding hash value.
So even after changing the file name, the hash value will remain the same.
A popular file, which exists several times on different peers will have the
same sourceID.

Keyword is to allow a ”human” search for words and to profit of other advan-
tages (compare 5). Each filename is split to several keywords. For exam-
ple a file named ”Kademlia Project” will be split into two case insensitive
keywords ”kademlia” and ”project”. Then these will be published in the
Kad-space.

Note is a comment and a rating for a file. So it will also be identified with
the sourceID like the source. To avoid interferences with sources, another
opcode guarantees the strict separation of these two references.

The hash IDs are created by the cryptographic hash function MD4 [50]. The re-
sult is a 128-bit hash, which has the same bit size like all Kad-IDs. This method
avoids a collision between some encrypted letter sequences. That means if there
are more different words, their hash values will consequently be also different.
Moreover, it assures that it is impossible to find the real word, knowing only
the hash value. Only a single twist in the letter generates a totally different
hash value. An Kad-ID, presented in the hexadecimal format, could look like
these:

Kademlia C90A12567F3F56870C79889EAF6CA47F

Kadmelia 13941B5DAC38B4966aB8200B1C409CC5

4.2. The Search object

The search is responsible for finding the different objects in the Kad space. This
is for example, the classic search for a Keyword after a user’s input. But the
client also executes internal searches for sources from the partfiles or for other
peers to maintain the routing table. Furthermore the search object manages
the converging to a node, which should at least be situated in the minimum
distance of the target. So the Kademlia iteration process is defined in the search
object. This process is driven by a timer, which determines the lifetime and
controlls the state of the search periodically. The other controlling instances
are the responses from other peers who are answering to the searches.
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Search Type Timeout (seconds) Maximal Responses

FILE 45 300
KEYWORD 45 300
NOTES 45 50
NODE 45 -
NODECOMP 10 10
STOREFILE 140 10
STOREKEYWORD 140 10
STORENOTES 100 10
FINDBUDDY 100 10
FINDSOURCE 45 20

Table 4.1.: The different search type with parameters

4.2.1. Search types

There can be searches with 10 different target types, which are shown in figure
4.1. First of all these are the standart searches for a ”file”, ”keyword” or a
”note”. But there are also implementations for an internal behaviour like the
search for a ”node”, which is used by the routing table to find a random node. A
”nodecomplete” is needed to execute a selflook-up, which reapeats periodically
every four hours. This is also a part of the bootstrap mechanism described by
[35], because it searches close nodes around the peer itself. The three ”store”
types have the objective to publish a file, a keyword or a note. For the buddy
support the ”findbuddy” is responsible as well as the ”findsource” is responsible
for a callback request.

4.2.2. Search states

Figure 4.5 describes the different states in which a search passes through during
its lifetime. At the beginning, an empty search object is created. After that
the hash value for the destination target is assigned to the search with one of
the ten search types. Though the object obtains the state ”started”. Then the
routing table selects 50 of its, to the target closest contacts. These are called
possible contacts, because it is not known at this stage if they are still active.
Maybe it is a lot to start with 50 possible contacts, but this should avoid the
search from being stuck as a result of stale contacts. Anyway the maximum of
concurrently sent requests is limited to α = 3.

By entering the ”tried” state a KADEMLIA REQ message is send to α closest
possible contacts. The search will rest at this state until at least one response
(KADEMLIA RES) arrives and changes the object to the state ”responded”.
When a response package contains new contacts, which are neither among the
list of possible contacts nor are they already tried, they will be added to the
list of possible contacts. If a new contact has a smaller distance than one of the
contacts from the ”best list”, it will take the peer with the longest distance.
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Figure 4.5.: The UML state machine diagram shows the different states of a
search object.

The size of the ”best list” is defined by ALPHA QUERY and is three. A request
will be send directly to a contact when he belongs to the best list. Otherwise it
will be added to the possible list. If it is the closest contact in this list, it will
be send a request within the next trigger of the timer.

A timer checks periodically all responded clients in regard to the XOR-distance
between them and the target. If the distance is smaller than the predefined
search tolerance, the search will pass to the state ”stored”. This will activate a
specific action corresponding the search type listed in table 4.1. This is either
sending a demand to store a data item or a request for an object. After lancing
such an action and if the maximum of 10 allowed answers is not already reached,
the search will return to the state ”responded”.

The ”stopped” state can be reached from the ”tried”, ”responded” or ”stored”
state. This occurs after one of the following cases. The first is that the lifetime,
which is calculated by the creation time plus the search lifetime from table
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4.1, minus 20 seconds has passed. Another possibility to change the state to
”stopped” is that the maximum answers (compare table 4.1) are exceeded.
The answers are the responses to the specific search type executed within the
”stored” state and not the normal responses. At least the stop will also be
prepared when there are no more possible contacts. To assure that a lot of
delayed returning packets are not missed, an action increases the lifetime by
15 seconds. It also activates the stopping variable, which ensures that no more
KADEMLIA REQ message are sent. Then the search will return to the state
”responded”, where it can continue with the store process. Finally, the search
will be erased when the stopping is activated and the lifetime is over.

4.2.3. The iteration process

The Kademlia DHT follows its own algorithm to find an object like it is ex-
plained in the sections 4.1.1 and 4.1.2. This section proceeds with the detailed
description of the approaching to a target object. Therefore the following figures
4.6, 4.7 and 4.8 illustrate the iteration process with a particular example.

Figure 4.6 illustrates a 128-bit number space. In the example the searching
peer is market with its possible contacts. These are the three closest possible
contacts from the routing table. They have a different XOR-distance and are
still not close enough to the target. The tolerance zone around the target
indicates when a contact is close enough to host a reference.

Figure 4.6.: Extraction of a Kademlia space with 128-bit numbers. It shows the
searching peer with three of its closest possible contacts. Around
the target object, the tolerance zone marks when a contact is close
enough.

When a peer wants to approach a target, it sends a request to 3 contacts
out of a selection with 50 possible contacts. For an easier comprehension,
figure 4.7 displays only three possible contacts. If they are still available, they
will respond with a certain quantity of new possible contacts. The quantity
of replied contacts depends on the search type, which is listed in table 4.2.
Here the request have the type 2. These possible contacts are known by the
responding node and have the smallest distance to the target. As each peer
looks extensively for its neighbour peers, a demanded contact knows closer
contacts. In case that a peer is the closest node to the target, it will reply with
the closest peer of its routing table. These will be further than itself.

The second step in figure 4.7 shows, that the first requests responded with
four new possible contacts. Two of them are already situated in the tolerance
zone of the target. These nodes will stay in the list with the possible contacts,
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Figure 4.7.: Shows three steps of the approach to the target object. First, the
searching peer sends three messages to the closest possibles con-
tacts. As response the searching peer obtains four closer contacts.
In this example two contacts are in the tolerance zone of the tar-
get. In the last step the searching peer sends a request for closer
contacts to the three closest contacts again. But only two peers are
available and reply with more closer contacts.

because the client doesn’t know yet, if these nodes are still connected. So in the
next step it will execute another request to all new obtained possible contacts.
Again, they will respond with a list of possible contacts.

Finally, when a contact has found some connected contacts, which are in the
tolerance zone of the target, it will send them the action request. An action is
executing the real search or publish request depending on the search type listed
in figure 4.1. They will reply with the type specific response. The counter of
the answers will increase by one for each response of an action request. So if
the counter reaches the maximum, the search for new nodes will be stopped.
Otherwise the search will continue like it is shown in figure 4.8.

4.2.4. Kademlia request

The Kademlia request KADEMLIA REQ < TY PE : targetID : receiversclientID >
is strictly for the iteration process and its only purpose is to find closer contacts.
It is important to not confuse it with the Kademlia search request, which asks
a peer in the tolerance zone for a certain object.

Each Kademlia request message contains a parameter specifying the category
of the search, which are shown in table 4.2. There are three different categories
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Figure 4.8.: The real request for an search type. This happens when a active
contact is found, which is in the tolerance zone of the target.

Protocol Parameter Responses Search type

KADEMLIA REQ FIND NODE 11 NODE
[0x20] [0x0B] NODECOMPLETE

FIND VALUE 2 FILE
[0x02] KEYWORD

FINDSOURCE
NOTES

STORE 4 FINDBUDDY
[0x04] STOREFILE

STOREKEYWORD
STORENOTES

Table 4.2.: The Kademlia request possibilities

representing the quantity of responded contacts. For example a response of
the category FIND NODE replies 11 closer contacts from the routing table of the
responding peer. If the category identifier is higher than 7, the message will be
sent within a compressed packet.

In detail this process looks like it is shown in figure 4.9. A peer wants to find
another peer which is closer to the target than to itself. So it will send the
hash value of the target and the request type to the possible closest peers. The
possible peers are at the beginning 50 peers from the routing table, which have
the smallest XOR-distance to the target and have a contact type smaller than
four. There are a lot of possible contacts, but this should be a fallback in case
that the search stales due to dead contacts. The requested new peers, which
have to be even closer to the target will be added. If one of the three nearest
peers receives the message, it will look for its closest nodes to the target of
the type smaller than three. The quantity of the nodes which are returned is
defined by the parameter of the request. With the response, the client will
add the received unknown nodes to his routing table. If the request was of
the parameter FIND NODE the search response wont be processed any further
after adding them to the routing table. If it was of another parameter it will
add the unknown obtained nodes to the possible peer list for this search. In the
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Sending Peer Nearest Peer

KADEMLIA_REQ

KADEMLIA_RES
  

search target with type

get x nearest nodes

add list to routing zone

IF nearer node

Figure 4.9.: The Kademlia request

next step the client executes the same process to the new possible contacts.



5. File sharing

To assure the filesharing of the P2P applications, the Kad protocol needs a
process to publish the identifier of files in the 128-bit number space. This
allows a relative rapid lookup for files starting at any peer in the Kademlia
network. Only a subset of peers in the network will be responsible for a certain
reference. When a peer is in the tolerance zone of the metadata, it is allowed to
take the responsibility of the reference. Then the peer is called host peer. This
means that it returns the metadata to other peers, which are searching for that
keyword. The host peer is only responsible for the reference for a certain time.
This should avoid unnecessary reference at a non-existing file in the network.
Furthermore the host peers of the references handle the overload protection

for popular keywords.

As the publishing of entire files or chunks would cause too much network traf-
fic, the Kad protocol publishes only references. Files are efficiently shared by
publishing two different references, which has dependencies on each other. The
next section describes this system, which is called 2-levels publishing.

5.1. 2-level publishing scheme

A file in a filesharing application is static and stays at the publishing peer until
a download process starts. Each peer takes charge of the publishing of its own
released files. The 2-levels publishing scheme divides the files into two reference
types: metadata and location information. While keeping the real files by
the releasing peer, only file location information will be sent to other peers.
These are on the 1st level and points to the peer with the real file. A metadata
contains information like ID3 tags for MP3 files and is identified by a MD4 hash
of a keyword. Files have the same number of metadata pointing to their location
information, as its filename has valid keywords. The metadata is distributed on
the 2nd level.

Figure 5.1 shows a simplified example for the publishing process of the Kademlia
protocol. A peer wants to publish the file with the name ”Kademlia Project”.
All relevant reference to the real file are generated in the first step. This contains
a unique hash for the location information source. The sourceID is computed
of the file’s bits. Thus the same files can have different metadata tags like for
example two different titles. This results in different ripping of parameters of
individual users [28]. Thereafter the keyword is extracted from each word of the
filename and the corresponding hash value is calculated. Now each reference
has a unique hash value to distribute it to the Kad-network. The following
distribution of the keywords and sources are exemplified in detail in the sections

32
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5.2.1 and 5.2.2. The main intention of this figure is to illustrate the different
distribution of pointers and references.

Figure 5.1.: Presents an example for the publishing of a file with simplified hash

values. The figure shows a peer generating the references for the file

”Kademlia project” in the first step. Then it begins to distribute

the keyword reference ”kademlia” to a peer with a small XOR dis-

tance. After that the location information, is published with a

pointer to the peer containing the file. Step four distributes the

other keyword ”project” to one of its closest peers. Both keyword

references contains a pointer to the same source reference.

The 2-level scheme in figure 5.2 has advantages against the 1-level publishing
scheme in figure 5.3. Especially in networks with a high rate of file duplication
needs the 2-level scheme less references. Also benefits the average keywords per
file of 7 the 2-level publishing scheme. But also the separation of the keyword
and source balances the network overload on different peers.

A further step would be the transferring of the keyword responsibility to the
1st level. Therefore it is necessary to introduce a ping so that the peer on the
1st level knows if the file is still available. This is described in another study
[12].
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Figure 5.2.: This example of a 2-level publishing scheme shows three peers,

which have all the same two files f1 and f2. This scheme needs

10 references for this scenario: distinctfiles ∗ replicationperfile+

distinctfiles ∗ keywordsperfile = 2 ∗ 3 + 2 ∗ 2 = 10.

Figure 5.3.: This example of a 1-level publishing scheme shows three peers,

which have all the same two files f1 and f2. This scheme needs

12 references for this scenario: distinctfiles ∗ replicationperfile ∗

keywordsperfile = 3 ∗ 2 ∗ 2 = 12.

5.2. Object publishing

As already previous sections described, the Kad-protocol differentiate between
three object types, which can be published; a metadata, a location information
and a note. These objects must be situated in a tolerance zone like previous
sections also described. Now, this section explains the publishing process in
detail.

All references are distributed several times, which is called content replica-

tion. This is necessary, because of the churn of the peers. Publishing a reference
to a single peer has a high risk. The reference would be lost, when afterwards
the peer disappears or is stale. So the Kad-protocol sends the same reference
to at least 10 different peers. An optimal value for the content replication will
be analysed in the chapter measurements.
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5.2.1. Metadata publishing

The metadata publishing is on the 2nd level of the publishing scheme. So it
references to the 1st level with the location information. But it already contains
the information about the real file like table 5.1 shows. These details make the
source selection for a user easier. The publishing process starts right after
the Kad-status ”firewalled” transferred to ”connected”. Otherwise the process
starts, when the client has found a buddy to handle incoming messages. Of
course, the client must have a file to release to start the publishing process.

Name Type Description

File ID 128-bit number A Hash ID of the file

Client ID 128-bit number Hash ID of the publishing client

FILENAME text The whole name of the file

FILESIZE number The byte size of the file

FILETYPE number The type of the file (audio, video, ...)

FILEFORMAT text Format of the file (mp3, avi, ...)

MEDIA ARTIST text Artist of a media file

MEDIA ALBUM number Album name of a media file

MEDIA TITLE text Title of a media file

MEDIA LENGTH text Length of a media file

MEDIA BITRATE number Bitrate of a media file

MEDIA CODEC number Codec to read the media file

SOURCES number Indicates the availability

Table 5.1.: List of the tags for the metadata

If one of the keys has never been published or the republishing time of 24
hours has passed by since the last publishing, a new publishing process will
be started. The started publishing process blocks the distribution of the other
references because the KADEMLIATOTALSTOREKEY allows only one simultaneous
metadata publishing. When the metadata is sufficiently published according to
the content replication, it will also block the next publishing for 2 seconds.

The keywords are distributed metadata, which reference sources. So pointers to
sources are packed into the keyword publishing message. A client will publish
maximal 150 sourceIDs for a keyword. If a keyword references more sources,
the client will rotate the list to publish different source IDs the next time. To
avoid large messages, the publish request for a keyword is divided in parts
with maximal 50 sourceIDs. Figure 5.4 shows the maximum of three possible
KADEMLIA PUBLISH REQ messages in the format < Keyword hash : n∗ <
source hash : m∗ < metatag >>>. All messages are sent autonomously to a
peer in the tolerance zone, found with the iteration process.

Each incoming message to the receiving peer will be treated separately. First
it will check if the maximum of 60000 keywords is already exceeded. If this is the
case, it will respond with a KADEMLIA PUBLISH RES < Keyword hash:load >
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Figure 5.4.: The Kademlia publish process for a keyword

including the published keyword ID hash and a load of 100. It is important to
mention that a positive response is sent anyway. In order to avoid a ”hot node”
from indexing only popular files, when a new source for a keyword is added,
the response message will include a load, which is described in detail in section
5.3.

5.2.2. Source publishing

Sources are the location information pointing directly to the peer, which holds
the real file. For each file, exactly one location information is published. How-
ever, the content replication induces the publishing on several different peers.
The publishing process is similar to the metadata distribution. But the maxi-
mum number of synchronous source publishing processes is two. Again, the first
publishing of a source starts when the client obtains the status ”connected” or
when a buddy is found. The republishing starts periodically when the standard
republishing delay of 5 hours has passed by.

A source entry has the attributes listed in table 5.2. These are all included
in the publishing message. This is of course the sourceID of the file and the
contact information about the peer releasing that file. Wheather the buddy
information is published or not, is defined by the SOURCETYPE described in
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table 5.3. HighID sources are non-firewalled peers and they send nothing for
the buddy information. Sources of type 3 are published from firewalled peers
and though they contain the information about the buddy. So a peer, that
wants to download a file of type 3 must first contact the buddy. This one will
inform the peer releasing the file. Now, the peer with the file contacts the peer
which wants to download and its firewall is passed.

Name Type Description

SOURCE ID 128-bit number A Hash ID of the file

CLIENT ID 128-bit number Hash ID of the publishing client

SOURCETYPE number Type of the source (firewalled, ...)

SOURCEIP number IP address of the publishing peer

SOURCEPORT number Service port number of the publishing peer

SOURCEUPORT text Message port number of the publishing peer

SERVERIP text The IP address of the buddy

SERVERPORT number The port number of the buddy

CLIENTLOWID number Clients Hash ID when it is firewalled

BUDDYHASH number Hash ID of the buddy

Table 5.2.: Properties list for sources

Source type Description

1 highID sources

2 used by older clients [depreciated]

3 firewalled Kad source

Table 5.3.: A source can have three different types, which influence the distri-

bution

When a source is supposed to be published, the peer will start a Kademlia re-
quest lookup (see section 4.2.4). This will find a peer in the tolerance zone of the
sourceID. Then the publishing peer will send the KADEMLIA PUBLISH REQ
message < sourceID : n∗ < clientID : m∗ < sourcetag >>>. If the client is
firewalled accordingly it will also send the data of his buddy.

As a peer receives a publish request for a source, it will also record its in-
formation like the incoming IP address. When a peer receives a new source
it will add the location information to its sources list and responds with a
KADEMLIA PUBLISH RES message < sourceID:load > including a load of
1. Otherwise it will add the source of the file (Client ID, client IP address, port
number, etc.) to the existing source. In this case it will respond with a load,
which is described and calculated in detail in section 5.3.
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Figure 5.5.: The Kademlia publish process for a source

5.2.3. Publish note

The study of [28] shows, that in 2004 50% to 80% of copies of popular files
have been found to be polluted. When somebody wants to prevent the sharing
of a certain file, he will start a pollution attack. Therefore he corrupts a file
to make it unusable or to change its content [9, 41]. The other users continue
to download the file in belief that the file is correct [29]. When the download
is finished they will note the bogus. But in the meantime they have already
offered chunks of that file to other users, who will offer it again to other users.
So the note with a comment and a rating for a file informs the users about
the content at the beginning of the download. So he can stop publishing the
corrupted file.

But the note can also be used for all other kinds of information storing. The
noteID is in the Kad-protocol the ID of the file to which the note belongs. But
the noteID can be the MD4 hash value of any other identifier or key. Then
information can be stored on peers in the Kad-network and later on they can
be retrieved with the key. This allows an other frame to use the infrastructure
of the already existing Kad-network.

As the principal objective of the note is to evaluate the contents in the network,
the FILERATING is evaluate a file with a rating between 1 and 5. The rating
5 is the best and 1 is the worst. The rating should only notify when a file is
corrupt or evaluate the technical quality like sound or video. But sometimes
the user also validates the content of the file and not the file itself. No rating
is done when it is 0, then the file is only commented. The DESCRIPTION is
an optional comment for a file. Here a user can indicate that a file does not
have the indicated content, when the file is a victim of the pollution attack.It
is important to indicate the FILENAME to which a note corresponds, because a
file can have different filenames in the Kad-network.
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Name Type Description

File ID 128-bit number A Hash ID of the file

Client ID 128-bit number Hash ID of the publishing client

SOURCEIP number The IP address of the publishing peer

SOURCEPORT number The port number of the publishing peer

FILENAME text The name of the commented file

DESCRIPTION text is a comment about the content quality

FILERATING number signifies the quality of a file

in a scale between 1 and 5

Table 5.4.: Properties list for file notes

It has to be assumed that a user has created a note for a file. A user can only
create a note for his partfiles or files which are released. Then when the client is
either connected or has a buddy, the note will be published to other peers with
the same content replication as the keyword and source. The publishing process
is similar to the source publishing, but it uses a separated opcode shown in
figure 5.6. First the publishing client sends a KADEMLIA PUB NOTES REQ
message < noteID : n∗ < clientID : m∗ < metatag >>>. The nodeID is the
fileID of the corresponding file and the clientID is from the sending client. The
other attributes like the comment or the rating are in a metatag list.

Figure 5.6.: The Kademlia publish process for a note

The receiving client adds the note to a sourceID when the maximum of 50
notes per file is not exceeded. Then it calculates the load, explained in section
5.3. In any case it respond with a KADEMLIA PUB NOTES RES message
< noteID:load >.
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5.3. Overload protection

The closest peers to a popular keyword receive more keyword or source refer-
ences like peers with a higher XOR-distance. This is prooven in the chapter
measurement. Consequently, when they are the closest node to popular refer-
ences, they will receive nearly all references. This causes a high network over-
load for these peers. Furthermore popular keywords displace unknown keywords
without a protection. So the overload protection controls the equal distribution
of very common references.

5.3.1. Reference limitation

Each client has a certain limit of network traffic. As the access to the Kad-
network is not constrained, it has to be assumed that some clients have slow
internet connections or a less performance computer. To assure that slow clients
do not disturb the processes, a client can only be responsible for maximal 60000
metadata references. Actually, the keyword variety of files is not proportion-
ally distributed. Mostly a few popular keywords like ”mp3” represents the
most files in P2P networks [12]. When a client is a hot spot for a popular
keyword, the 60000 references are nearly used only for that popular keyword.
So rare and unknown metadata would be lost.

Algorithm 4: Adding incoming keywords

Input: Metadata identified by a keyword
if total indexed keywords ≤ 60000 then

if Keyword has already sources then

if Keyword has already more than 50000 sources then
return a load of 100;

else
if SourceID does not exist OR total sources for this keyword ≤
45000 then

add source to Keyword;
total of indexed keywords + 1;
return load = (sources per Keyword*100)/50000;

else
return a load of 100;

endif

endif

else
add source to Keyword;
total of indexed keywords + 1;
return a load of 1;

endif

else
return a load of 100;

endif
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To avoid this loss, algorithm 4 shows the overload protection implemented by
the Kad-protocol. Each client can hold a maximum of 50000 references to
sources for an individual keyword. Furthermore, if a client already has a key-
word with 45000 sources, it will stop to publish popular sources. By reaching
that limit, only references to totally unknown sources are published. However,
when a client has 60000 keyword entries, even unknown references are drawn.

An important protection to prevent the mass distribution of popular keyword
is carried out by the publishing response. For example when a very busy node
receives a publishing request, but it is already responsible for the maximum
of keywords. The peer responds that it published the keyword successfully,
even if he had reached his maximum and rejected the request. This avoids the
publishing peer spreading the popular keyword to all sourrounding peers. This
would unbalance the published keyword, when it is stored on too many peers.
Periodically, a peer cleans its references, than it will store incoming references
again.

The overload protection for the sources follows a different objective. Here it is
important to provide as many download clients as possible, because they are
the bottleneck of a filesharing application. The algorithm 5 shows that the
inserting of source references is also constrained to a maximum of 300 sources
per file. But in contrast to the keyword reference the source inserting follows
a rotation principle. When an incoming source has exceeded the maximum
sources per sourceID, it will replace the oldest source references.

Algorithm 5: Adding incoming location information

Input: Incoming sources publish request identified by the sourceID
if Peer has already some sources then

if a source with the same sourceID exists already from same peer then
overwrite existing source;
return load = (sources per sourceID*100)/300;

else

if Source has already 300 location information then
remove oldest location information;
add new source;
return a load of 100;

else
add source;
total of indexed sources + 1;
return load = (sources per sourceID*100)/300;

endif

endif

else
add sources;
total of indexed sources +1;
return a load of 1;

endif
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The insert of a note reference and the calculation of it’s load, described in
algorithm 5, is similar to a source inserting. However, notes are less commonly
published than sources. The noteID is the identifier for a node. The Kad-
protocol concepts a note as a valuation for the shared files. So a note has the
same identifier like the valuated file. If a user wants to change its valuation for
a certain file, the old note will be overwritten. Even if the total load is already
reached the note actualisation is assured.

Algorithm 6: Adding a note reference with the load calculation

Input: incoming note publish request identified by the noteID
if peer has already existing note references then

if note with a identical noteID and < IPaddress : port > then
overwrite the existing note with the new note;
return load = (notes per noteID*100)/50;

else

if NoteID has already 50 notes then
remove oldest note;
add the new note;
return a load of 100;

else
add the note;
total notes + 1;
return load = (notes per noteID*100)/50;

endif

endif

else
add note;
total notes +1;
return a load of 1;

endif

5.3.2. Republishing delay

The Kad-protocol implements another method to reduce the network traffic.
This is also based on the load, calculated by the host peer of the reference.
As the previous algorithms showed, a load exist between 1 and 100 for the
metadata, location information and note reference. A peer publishing a refer-
ence always receives a load value from the host peer. According to this value,
the client calculates a delay or waiting time, before it starts the republishing
for this reference. At the moment aMule has only developed this process for
the publishing of a keyword. Transferring this method to the source and note
publishing would reduce even more the network traffic. But this influences the
availability of the sources, which are still a bottleneck.

After each termination of a publish process, a clients computes the delay before
the next publishing of the same reference. Therefore it calculates an average
load of all loads returned by the host peers. The quantity of the responding
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host peer depends on the content replication. When the average load is under
20, the delay keeps the standard value of 24 hours. Otherwise it continues with
the following calculation:

republishing delay = 7days ∗
average load

100

For example when a peer receives an average load of 30 for a published keyword,
the responding clients have on average 15000 sources per keyword. The pub-
lished keyword is common and the peer reduces the network traffic by delaying
the next publishing. In this case an average load of 30, results in a delay of 50
hours.

Instead of only increasing the republishing delay it is also possible to reduce the
content replication. This could reduce the network overflow in the same manner,
but it keeps the availability more efficient. This avoids the not-available effect
of the republishing delay, which is; calculated delay − standard delay. In
extreme cases, a file is not referenced by a keyword for 6 days.

5.4. Object retrieving

All published objects contain data, which has to be retrieved. This can be
induced by the user, searching for a keyword or by the application, searching
for sources or notes.

5.4.1. Keyword search

To start a search for a file in the Kad-network, a user needs at least one keyword
of the filename for which he is looking for. A keyword must consist of at least
three letters. A client searches only for the first keyword in the Kad network.
However, more keywords are packed in form of a search tree into the request
message. So the requested peer can filter its keyword entries by these keywords.

To start a search, the client will first calculate a 128-bit hash value for the
searching keyword. Then the peer will continue to search nodes which have
a hash ID close to the hash of the keyword. Therefore the client utilises the
search iteration approach described in section 4. When it knows a node in
the tolerance zone, it will send a KADEMLIA REQ shown in figure 5.7. This
checks if the node is still online, but it will also return further close nodes, they
can even be closer to the target. When a node responds with a list of contacts,
the client will send him the real search request KADEMLIA SEARCH REQ
in the format; < keywordID : extention∗ < SEARCH TREE >>. The
extention indicates with the values 1 or 0 if there are more keywords, packed
in a search tree. But furthermore the whole search parameters such as type,
extension, minimum, maximum and availability are packed in the search tree.

If the client has some entries, he will send them back with the KADEMLIA SEARCH RES
< keywordID : n∗ < sourceID : m∗ < METATAGS >>>. Here, n defines
the quantity of send sources and m counts the information tags per source. As
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Figure 5.7.: Shows a search for a keyword or a source. The searching

peer checks first if the possible peer is connected. Then the

real search request is sent with optionally search parameters.

The KADEMLIA SEARCH RES includes at most 50 entries and

though can be split up to a maximum of six messages.

the limit of keyword entries for one message is 50, the entries can be divided
to several massages. However, the total maximum of 300 entries will limit the
massage to maximal six responses. Also the search options and parameters will
be filtered before sending the results. Finally, all the received keyword entries
from the various nodes, are presented with all details to the user.

5.4.2. Source search

After searching for a keyword of an existing file, a client receives a list of sources
containing this keyword. Then the user selects one or more sources, which are
added to the download list. Then the client searches constantly for sources of
this list, where the download process is incomplete. As a downloading process
includes only a part of a file. Many searches for sources must be executed per
file.

The method for the source search is the same as for the keyword search so
figure 5.7 is also valid for the source request. The only difference is that there
are no search constrains, though the client searches only for the hash ID of the
target source. It sends the KADEMLIA SEARCH REQ message < sourceID :
extention >, where the extension is 0. Again, the packages contain maximal
50 source entries and there are maximal 300 source entries returned. If there
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are any source entries found a KADEMLIA SEARCH RES < sourceID : n∗ <
clientID : m∗ < METATAGS >>> message is replied. Here, n defines
the quantity of returned peers having that file and m defines the quantity of
information tags. The new obtained sources are added to the download queue
of the file with that sourceID.

5.4.3. Note search

For each released file or file in the download list a search for a note is exe-
cuted. This also includes the partfiles and files preview for download. Con-
stantly, the client sends search requests for note of these files. That process
is similar to the keyword and source search process. However, the request
has another opcode to separated the notes and sources. The client sends
the KADEMLIA SRC NOTES REQ < noteID > to peers in the tolerance
zone of the nodeID. These respond with a KADEMLIA SRC NOTES RES
< noteID : n∗ < clientID : m∗ < METATAGS >>> containing all its
notes for that source. These are identified by the peer, which created the note
and contains in the metatags the comment, rating and further information. In
contrary to the search response of the keyword or source, there is only one note
response because the maximum notes per file is 50.

5.5. The file transfer

This section gives an overview of a transaction for a file transfer. This consist
of several subprocesses, where most are allready described. First, a keyword
search returns a choice of different files. When the user selects one, the client
will start a search for sources and notes for that file. If the clients has received
some sources, it will start the real download process.

5.5.1. Download process

The download process starts when the downloading peer obtains a slot from the
peer, which releases the demanded file. To get a slot, a peer demands all peers
or their buddies of the obtained location information. Then the peer is added to
a waiting queue. The position depends on the rating, which is described in the
next section. When it is the turn of the peer it will start to download a part of a
file also called chunk. These chunks allows that peers can allready download file
from peers, which has still not the complete file. As the downloading is longer
process it will be transacted over the TCP port and so it is not integrated into
the Kad-protocol.

5.5.2. Credit system

This section describes briefly the credit system applied by the clients aMule and
eMule. The reason for this system is to incite users, especially free riders to



5.5. The file transfer 46

upload more files. The obtained credits from a upload will determine the waiting
time of user A in the download queue of user B. To avoid manipulations of the
credits, they are saved locally at the client of user B, which owes the credits. So
there is neither a global credit transfer among the clients nor can own credits
be displayed.

The credit of client A is calculated with a ratio at client B. The ratio is the
minimum of two different results, which are calculated the following way:

1. Ratio =
Totalupload[MB] ∗ 2

Totaldownload[MB]

2. Ratio =
√

Totalupload[MB] + 2

However these two equations have some constraints. If the total upload does
not exceed 1MB, it will be set to 1. Also the total download will be set to 10,
when it is 0. Furthermore the ratio is limited between 1 and 0. The minimum
of the two ratios is included into the calculation of the final rating:

• Rating =
Ratio ∗ waitingtime[s]

100

Finally, the client with the highest rating will get the download slot. However,
there are also some specialties that the rating of peers with an older application
version is divided by two. Moreover banned clients are rated with 0.



6. Analysis framework

This chapter describes the setup and methodologies of the development infras-
tructure. This is above all the code modification of the open source application
aMule. But a big part of the development was also the integration of the
MySQL [39] interface and the creation of the database. This infrastructure
builds a framework for a wide spread analysis and measurement. The final
measuring of the obtained data is done with the aid of Perl scripts.

6.1. Development

The main part of the development is the modifying of the aMule client, the
creation of the database and its interface and the evaluation of the results
with scripts. Besides the functional development also maintenance and general
improvements are implemented.

6.1.1. aMule

aMule is like eMule an open source software with the GNU licences [14], written
in C++. At the beginning these two clients were strictly designed for the
eDonkey protocol. Later on, the Kad protocol was added to the official source
code. Even when the Kad protocol is separated from other functions, some
important code is mingled with the original eDonkey code. Moreover the Kad
uses implementations, which are designed for eDonkey, like the real downloading
process or the socket implementation. This complicates the understanding and
modifying of the Kad-protocol.

The wxWidgets [59] have an important role in the source code. They assure
for example the support for Unicode, which guarantees the utilisation in differ-
ent languages and special characters. Besides the handling of the strings, the
wxWidgets library is also responsible for the socket, thread, IO file or timer
functionality.

The principal changes for the understanding and measurement of the Kad pro-
tocol have been made in the exclusive files for the Kad protocol. Four sections
for the main functionality are differentiated: main file, routing table, net-

work interface and search object and index.

Main file

All the main tasks are managed and hold in the class Kademlia. Here all
the other Kad classes are managed. A timer executes periodically the different
processes.

47
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Routing table

The routing table is represented by the RountingZone. These build a tree
structure, where each RoutingZone is a node. The tree will be iteratively parsed
through starting with the root RoutingZone. It handles the inserting, removing,
splitting and merging of the nodes and leafs. Each leaf of the RoutingZone has
a RoutingBin. The RoutingBin is a bucket, which holds a maximum of K
Contacts.

Network interface

All outgoing and incoming messages have to pass the KademliaUDPLis-

tener. This network interface reads the incoming packets and redirects them
to the target object. Also the outgoing messages are here created and trans-
ferred to the socket, which sends them to the target peer.

Search object

The two files SearchManager and Search are handling the search object.
The manager is responsible for the whole lifecycle of the search, which includes;
create, start, update, stop and delete. Furthermore, it allocates a search object
to an incoming response. The search object described in figure 4.5 is responsible
for the whole lookup and iteration process.

Index

The references are managed in the file Indexed. There the incoming metadata,
location information and notes are managed. That consists of calculation of the
load, the serialisation and the finding of reference for an incoming search.

It is important to mention that many other functionality or dependencies are
implemented in the standard aMule files. For example all objects are managed
central with the amule object. So the publishing of them is done in one file,
where the Kad and the eDonkey protocol are implemented together. For the
creation of a search, preliminary formats are done in standart aMule files, which
were designed for eMule.

6.1.2. The database

The aMule client uses a MySQL database to make the obtained data persistent.
Also has it the advantage that the obtained data of the parallel clients can be
easily centralised. However, the most important aspect is that the analysis of
the results is easier and faster with a optimised database.

For the optimisation, the tables in the database use the engine InnoDB [17]. This
allows a faster writing into the tables, because several parallel aMule instances
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cause a bottleneck by their simultaneous writing to the database. Another
improvement is to put indexes on the attributes of the tables after the crawling
is terminated. These speed up the SQL queries for the analysis.

As the aMule client is written in C++, it needs an interface to access the
MySQL database. Therefore mysql++ [40] is used, which supports the major
SQL queries. Finally each instance initiates one connection to the database
over which it executes all the queries.

The whole structure of the tables in the database are illustrated in the appendix
D. But each table and their main attributes will be described in this section.
The tables Words and Instances are helper tables until now, which takes no
direct influence into the measurements. However, the table Words is very useful
to find a word, only having its hash value.

The tables Routing table and Messages describes the contacts and the in-
teracting peers. It can be said how long a peer will stay in a relation with an
instance and which types it passes through the time.

Routing table This table represents the routing table of an aMule client with
all the contacts and their attributes (see table 3.2). By each change of an
attribute, the actualised contact will be written into the database. So it
can be followed the lifecycle of every contact in the routing table. For
example the table contains the information about the creation, the differ-
net types during lifetime and when the contact is deleted. Furthermore,
the actual time as the expiration time is notated by every change.

Messages is the table, which saves all incoming messages to the database. This
allows to analyse not only the contacts in the routing table, but also to
see all other peers, which are sending messages to the instances.

The passive listening is done with the tables keywords, sources, notes and
incoming searches. These filter all incoming messages which another peer has
initiated and sent to one of the instance, which is connected to the database.

Keywords holds the information about the metadata and their attributes (see
table 5.1). Especially the FILENAME allows to analyse the file contents in
the Kad network. For example it can be calculated the average keyword
per file in the Kad network. But it can also be analysed the FORMAT,
TYPE and so on. Anyway, to analyse all these attributes it is necessary
to run a large number of instances to cover the Kad space. Otherwise
a concentration on very popular keywords could distort the results. The
LOAD shows the capacity of the instances for a certain metadata.

Sources is the table with the incoming publish requests for the location in-
formation and all its attributes shown in table 5.2. The possibility to
distinguish between sources from a firewalled and a not firewalled peer
is probably the most important. For example the sources, which have a
SERVERIP and a SERVERPORT are ”firewalled”. Again, the LOAD gives new
insights to the quantity of saved sources for each instance.
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Notes holds all the incoming notes related to a certain source with a COMMENT

and a RATING (see table 5.4). A note message contains also the FILENAME,
but for the analysis it is less interesting than the FILENAME of the Keywords
because the notes are sent only rarely.

Incoming searches are requests of other peers for references. When the at-
tribute isSource is 0 the request is for a metadata. Therefore a keywordID
and optionally a list with further keywords in Unicode is send. Otherwise
a source ID is send to search for a location information.

The publish responses, search responses and hello responses are tables
containing all responses for a request to a selected peer. These are especially
for the analysis of the publishing and lookup process.

Publish responses are the responses from a peer after sending a publish re-
quest. This messages indicates the peers on which a reference was suc-
cessfully published. However, when the LOAD is 100 the overload pro-
tection prevent the indexing of the reference on the host peer. As the
KADEMLIA PUBLISH RES does not contain the clientID, it will be
search in a list with all peers on which it was published. Seeing that the
corresponding clientID is searched with < IPaddress : messageport >,
peers reappearing with a new IP address will be assigned a CONTACT ID

of 0.

Search responses is the table, were the search object is saved after an incom-
ing search response. A search consists of r search responses, which are
numbered by the LAST RESPONSE attribute.

Hello responses contains all the hello ping responses: KADEMLIA HELLO REQ.
A list with < IPaddress : messageport > is created of all peers, which
replied with a positive publish response. A hello request is sent after every
15 minutes to see the minimum of still connected peers.

The tables request search and request result describes the iteration process.
The hops needed to find a close target can be deducted with these two tables.
Also the jumped bits by each hop can be calculated.

Request search contains the outgoing messages for the iteration process. The
attribute FROM CONTACT is the peer which sent the CONTACT ID of the
peer to which the new request is send.

Request result are the incoming messages concerning the iteration process.
The main attributes of this table is the TARGET object, the CONTACT ID

and the XOR-DISTANCE between these two peers.
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6.1.3. Word list

Actually there are millions of keywords in the Kad network. All distinct shared
files and partfiles of the users, has to be multiplied by 7, the average keywords
per filename. Most of these keywords were written in a official language like
English or Chinese. But there are also some keywords which consist of just a
sequence of numbers or letters. These words have to be searched, to get an
overview of them and to analyse them. There are three principal ways to find
the keywords in the Kad-network.

Movie list A search for words obtained from the internet movie database [8]
and the music chart list. These are popular lists with nearly all existing
film and music titles. These cover a large range of the existing keywords
in the Kad network. But the disadvantage is the numerous of repeating
words in the title like for example ”the”.

Dictionary A normal dictionary in the same major languages would also cover
the most of the keywords in the Kad network. The advantage is that
there are only rarely duplicated words. But it neither contains many
pseudonyms nor proper nouns.

Iteration Another method is to lance a search for keyword, which is in the Kad
network. The responses for that request will return the total filename
containing the keyword. So the whole filename can be parsed and a new
request can be send to the new obtained keywords.

Passive listening means that some spy clients are positioned as the nearest
peer to a keyword. So this client will propably receive the most popular
filenames containing that keyword. This effect can even be increased by
choosing a popular keyword like ”the”, ”www”, ”avi” or ”mp3”.

The implementation is a combination of the mentioned methods. The words
out of the dictionary execute rapidly a vast search to the basic words. The
passive listening will also gives the possibility to get rare keywords, which can
be the starting point of the iteration in another language. Theoretically with
this method nearly all possible keywords of the Kad network can be crawled.
However, this is very time and resource intensive, so a realistic snapshot of some
minutes is impossible.

6.1.4. General improvements

As the standard client is developed for the customary use, it has to be made
some improvements of the aMule client. As it was necessary to install a client
without a GUI. But the command client was only basic and it had to be ex-
panded by other functionality. Some of these new implementations like the
download via the command line were integrated in the official aMule version
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[2]. The others like printing the actual routing table (compare appendix D),
was only for the investigation of the Kad behaviours.

The firewalled state is disabled for the investigations, after testing that the
clients were not behind a firewall or proxy server. Otherwise a client needs
about 15 minutes to find out that it is not firewalled. This could distort the
results of the first minutes. Especially the incoming requests would be blocked.

Another change is the disabling of saving the contacts at each shut down of the
client, because a client saves only contacts with a type better than 4. So when a
client is only after a few minutes restarted, it would be too short to validate the
contacts and good contacts would be lost. Now, the client bootstraps each time
from a self created list with about 200 contacts. This list has to be actualised
continuously.

6.2. System infrastructure

The investigations followed the two main methods: active and passive. The
active investigation was to send specific and well-directed messages to peers.
This allows to find out specific behaviour of the Kad-network and its peers. The
passive investigation is done by spy clients, which filter all incoming messages
and write them into the database. These spy clients are well-positioned in the
Kad space to span a satelite system.

6.2.1. Active investigation

The infrastructure of the active investigation exists of two components; the
publisher and the retriever. Generally the publisher distributes references
to selected peers. Afterwards the retriever starts a search for exact these refer-
ences. These active components are controlled by a timer. This means that the
publisher is executed every hour or every 24 hours and the retriever is executed
for example every 15 minutes.

Publisher

The publisher is primarily for the distribution of references into the Kad-
network. In this case it is used to publish unknown or very popular keywords
to other peers close to the keywordID. Therefore it follows the standart aMule
iteration process. This component is purposed for the following two measure-
ments:

Publishing analysis To analyse the publishing 1000 references are published.
This allows to messure the average publishing and iteration time and
total messages. Furthermore with the help of this implementation, the
republishing to same clients is measured.
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Reference distribution Another purpose is the distribution of absolutely un-
known keywords. Therefore the keywords are composed by three words.
Between these words were the number keyword which increases from 1
until 50.

• word1word1word1instanceI

• word2word2word2instanceII

• word3word3word3instanceIII

Distributed load was investigated by sending publish requests to very pop-
ular keywords. So peers will respond with their load for the target:
KADEMLIA PUBLISH RES < target : load >.

Some in the source code implemented constants had to be transferred to vari-
ables, which are given within the starting parameters. So it was possible to
vary without recompilation, the tolerance zone and content replication for the
publishing.

Retriever

The retriever has to locate the previously published references. Therefore it
starts every 15 minutes an iteration process to find the published keywords.
The timeout of the search is increased from 45 seconds to 5 minutes. Otherwise
some results which takes longer than 45 seconds would be lost.

Furthermore the retriever pings periodically the clients on which a reference was
published. This is done by a KADEMLIA HELLO REQ < IP : messageport >.
As the availability is checked with the IP and not with a Kad-lookup process,
the aliasing effects described by [3] is not considered. So the results depicts the
minimum of available peers. The advantage of this method without an iteration
is that it is more reliable and faster.

6.2.2. Passive investigation

The passive investigation consists of a spy client which is positioned in a satelite
system. Generally the passive peers have only to listen to incoming messages.
However, they will make all the behaviours like a standart client. This is for
example the selflookup every four hours or the responding of incoming messages.

Spy client

A spy client is a peer, which listen to the incoming messages. It will filter them
and write them to the database. Of course, it responds with a corresponding
message, which assures that the peer shows the same behaviour like the other
peers. This guaranties that the results are not distorted and that the spy client
remains in secret.
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The most import messages for spying are the metadata publishing requests.
This information gives an overview of the file contents in the Kad network and
of the host peers. But also the incoming location information, notes or searches
are of great interest. So it can be seen that the incoming publishing requests
for keywords are a multiple of the incoming searches for keywords. Finally, an
optimisation of the performance is better done on the publishing of metadata.

Another possibility of the spy clients would be to manipulate the received data
an respond with bogus data. It could also respond to specific data to make a
DDOS attack.

Satellite system

The satelite system positionates the spy clients in the Kad-space. For the mea-
surements, explained in the following chapter, three different satelite scenarios
are used; whole space, tolerance zone and picked target. Each of them will be
used for specific results.

Figure 6.1.: The three satelite scenarios: whole space, tolerance zone and picked

target

Whole space This structure positionate the client all over the Kad space in
the same distance. The best way is to keep the same distance between
the individual clients. For example, the clients can be dispersed that in
every tolerance zone is one spy client. This scenario needs 256 peers and
is for an overview of the whole network.

Tolerance zone is the satelite system, which has several clients in one tolerance
zone. This carries out the investigation for any or a special keyword or
source. This scenario allows us to analyse the distribution or searches for
references.

Picked target The purpose is to place several clients so that they are the closest
peers to the keyword. The measurements of the results indicated that the
closest peers has about 20 first identical bits to a keyword. So here the
clients were placed with at least 30 identical bits. Then it is possible to
get all or the most messages concerning a certain target.



7. Measurements and Analysis

The setup and the implementations described in the previous section permit
the analysis and measurements of the Kad processes. Particularly, the analysis
of the keywords, iteration process, contact availability, publishing process and
metadata distribution was measured as well active as passive.

7.1. Analysis of the Keywords

Mainly, the passive investigation of the Kad network made the analysis of the
metadata’s keywords possible. The spy clients were placed allover the 128-bit
Kad-space. Finally, they received about 100000 incoming metadata publishing
requests. These metadata had sometimes the same targets but they referenced
to different locations. Moreover the evaluated filenames were written in divers
languages.

The number of keywords per filename in the Kad-network is shown in figure
7.1. Here a keyword is interpreted as a sequence of at least three number
or letter characters. So the keywords are separated by special characters like
white spaces, hyphens, points, etc. The absolute values show that about 15%
of the filenames contain five keywords. Only 3% of filenames have more than
20 keywords. Generally, the CCDF of the keyword distribution shows the same
characteristics like the CDF of eDonkey files analysed by [12]. However, now
in the Kad network the filenames exists on average of 2 more keywords.
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Figure 7.1.: Shows the distribution of keywords per filename.
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7.2. Analysis of iteration process

In this section the iteration process is analysed and measured. It is difficult to
make an exact measurement, which are statistically significant. This is because
the RTTs of a request vary between the large scale from 5 until 30 seconds.
When an iteration process has to execute more requests sequentially, the differ-
ence between each iteration process will be even more significant. However, the
following diagrams will give a first impression of the needed time and messages
for a lookup.

7.2.1. Iteration time

To analyse the time for one iteration process, 1000 different metadata have been
published. Then it was measured the total time to publish one keyword. In
this experiment unknown or popular keywords make no difference. Figure 7.2
shows that after about 20 seconds, a peer in the tolerance zone with 8 until 14
bits is found. From then on it needs 200 seconds to find 10 other peers in the
tolerance zone. So, the most time of a publishing process is used to fullfill the
content replication. The high iteration time of the tolerance zone with 16 bits
is caused by the fact that there exist only a few peers. In a tolerance zone of
17 bits are even less peers, so after a shorter time all of them will be found.
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Figure 7.2.: The publishing times are illustrated for different tolerance zones.

It shows the iteration time until the first positive publish response

and also the total time for reference publishing with a content repli-

cation of content replication factor r=11.

7.2.2. Iteration messages

For the analysis of the iteration messages, it was used the same basis like from
the iteration time. Again figure 7.3 illustrates a same result, that there is
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no significant difference of a tolerance with 8 or 14 bits. About 22 iteration
requests are needed to place 11 references in the tolerance zone. By subtracting
the request to find the responding target peer, 1 effective publishing request
needs 1 iteration request. From a tolerance zone with 16 bits, the needed
messages increase rapidly.
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Figure 7.3.: Shows the average quantity of iteration messages which are required

for 11 content replications.

7.3. Analysis of peers

The analysis of the contacts investigates mainly the availability of the peers.
This information will determine the publishing and lookup performance in a
real DHT network, where the peers have a considerable fluctuation, also called
churn.

7.3.1. Firewalled peers

Probably the only way to find out the proportion of firewalled peers in the
Kad-network is with passive results. Each incoming publish request for a source
indicates if the peer, holding the files has an buddy. So the distinct peers having
a buddy indicates the proportion of firewalled peers. The analysis of 100000
incoming sources over the analysing time shows that only 56.2% of the peers
have the status ”connected”. 44% of the peers are either within a NAT or
blocked by a firewall. The other 0.4% are peers which changed their state, for
example by deblocking their firewall.

7.3.2. Peers with the aliasing effect

The aliasing effects described by [3] is responsible that peers disappear and
afterwards reappear with a new location < IP : messageport >. Figure 7.4
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gives an extract of the influence of this effect to the availability of the peers. For
this experiment, 50 unknown keywords were published on 550 peers. Afterwards
they have been searched by the publishing peer. The percentage of peers with
a new location among the found peers is nearly negligible for the first 10 hours.
But after 24 hours it increases constantly up to 20%.
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Figure 7.4.: The curve represents the percentage of found peers with our

published reference, which have changed their location < IP :

messageport >.

However, it is important to mention that this effect has no influence to the
publishing process. When a client is disconnecting, it will save all his obtained
references, not older than 24 hours. By rejoining the Kad network with the
same ID, it will provide all his references as before. The fact of a different
location only increase the latency and not the availability.

7.3.3. Host availability

This section analyses the availability of the host, a peer containing the pub-
lished metadata. This experiment publishes 50 random and unknown metadata
to 11 peers each. Every 15 minutes a Kademlia Hello Request was sent to the
initial location < IP : messageport > of these 550 peers. So obviously within
this ping, the aliasing effect was not considered. Anyway the results specify
the minimum of available peers. The total availability can be estimated in
comparison with the results of section 7.3.2.

Figure 7.5 describes that for the first 12 hours 2 peers stay for nearly 100 %
connected to the Kad network. Furthermore it can be said that at least six
clients will be available after 12 hours with the propability of 50 %.

A smaller tolerance zone has no significant influence to the availability of peers,
as the map on figure 7.6 depicts. So the quality, time to stay alive, of the peers
selected from a small tolerance zone is the same as peers from a large tolerance
zone.
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Figure 7.5.: Shows the availability of peers depending on the time. The peers

are a selection of 550 peers which participated in a publishing pro-

cess in a tolerance zone of 8 bits
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Figure 7.6.: Shows the availability of peers depending on the time. The peers

are a selection of 550 peers which participated in a publishing pro-

cess in a tolerance zone of 14 bits

7.4. Publishing

In this section, the publishing performance is measured. Therefore metadata is
published under different constraints, principally biased on the tolerance zone
and on the content replication. But it is also analyses with different contacts
in the routing table. Afterwards the published metadata is retrieved with the
standard search algorithm of Kad-protocol.
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7.4.1. Standard Publishing Performance

First, standard publishing process, implemented by aMule and eMule is anal-
ysed. Therefore a client publishes 50 random and unknown keywords. It will
be assured that each metadata is sent to exact 11 other peers. After the pub-
lishing process is finished, a client sends periodically every 15 minutes a Kad
search for the previously published metadata. As the lookup process depends
on the contacts in the routing table, it will be differentiated three different
states: consecutive contacts, identical contacts and random contacts.

consecutive contacts is a routing table, which keeps its initial contacts and
adds new incoming peers to the table. Primarily, these are obtained within
the publishing or the lookup process. Obviously, the contact list contains
new obtained close peers to the target, after the publishing process. So
the second iteration will generally find close neighbour peers of the target.
Figure 7.7 illustrates the lookup performance with consecutive contacts.
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Figure 7.7.: The propabilities to relocate a least 50 ∗ 11 published metadata.

The keywords are searched with the standard Kad process and

with consecutive contacts. (Tolerance zone of 8 first bits and

r=11)

identical contacts means, that the publishing and the lookup process are started
with the same contacts. Therefore the same list with 160 contacts is
loaded before each iteration process. Figure 7.8 shows the search perfor-
mance when the contacts are initialised before each search.

random contacts are 20 randomly chosen contacts. These peers are obtained
within a bootstrap request to a peer connected to the Kad network. This
guarantees totally independent searches with different starting peers.

Most remarkably it can be seen that a lookup process with identical contacts
or random contacts is better than a lookup with consecutive contacts. This is
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Figure 7.8.: The propabilities to relocate a least 50∗11 published metadata. The

standard Kad lookup process used a list of 160 identical contacts

for each iteration. (Tolerance zone of 8 first bits and r = 11)
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Figure 7.9.: The propabilities to relocate a least 50 ∗ 11 published metadata.

The standard Kad lookup process used a list of random contacts

for each iteration. (Tolerance zone of 8 first bits and r = 11)

caused by the fact that the consecutive contacts are too close to the target and
though it is impossible to find published metadata, which is published on peers
with a higher XOR distance. This highlights that a search to once published

keywords is more successful with less contacts. Also shows this, that executing
a second lookup would decrease the propability to found a published metadata.
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7.4.2. Variation of the size of the tolerance zone

The next figure 7.10 has the same setup then the previous figure 7.9. But now
the tolerance zone is reduced from 8 to 14 first bits. So, it can be seen that the
probability to find peer is only a slightly higher.
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Figure 7.10.: The propabilities to relocate a keyword within the Kad search.

The tolerance zone is defined to the 14 first bits and r = 11.

The results are even better when the tolerance zone is reduced further on to 16
bits. But they are no more representative because it is difficult to find sufficient
peers. With a tolerance zone of 17 bits, it was even absolutely impossible to
find exact 11 peers.

7.4.3. Variation of the content replication factor

This section shows the influence of the content replication factor to the location
of published keywords. Therefore 50 random and unknown keywords have been
published for 3, 5, 8, 11 and 16 times. Figure 7.11 illustrates the probability to
retrieve at least one of these keywords with a tolerance zone of 8 bits. After 18
hours it can be said that r = 8 finds a published metadata with a propability
over 0.9. In figure 7.12 the tolerance zone is is narrowed to 12 bits. It illustrates
that for the first 12 hours the content replication can be divided in half to 5.
A metadata is nearly always retrieved. But after 12 hours the retrieving of
published metadata with a content replication lower than 11 cannot be insured.

7.5. Search time

This section analyses the time to retrieve a published metadata. Figure 7.13
shows the necessary time to retrieve a metadata with the aMule standard tol-
erance zone of 8 and r = 11. A metadata is retrieved with the probability
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Figure 7.11.: The probability to find at least one keyword in a tolerance zone

of 8 bits.
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Figure 7.12.: The probability to find at least one keyword in a tolerance zone

of 12 bits.

of 60% before 15 seconds. It is insured that a metadata is found before 45
seconds. The retrieving time of one published metadata decreases slightly over
the time. So 24 hours after the publishing, a client needs more time to retrieve
that metadata.

7.6. Metadata distributions

For the measurement of the metadata distribution several clients have been
started with different parameters like the size of the tolerance zone and the
content replication. Each of them published 1000 different and unknown key-
words. The amount of contacts in the routing table has been constantly between
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Figure 7.13.: The probability to find the first peer containing a published key-

word within x seconds.

230 and 270 during the publishing process. As the metadata were published
sequentially with one second delay, the whole publishing took about 30 minutes.
The tolerance zone has 8 first identical bits and r = 11, if there is nothing else
specified.

7.6.1. Distribution in different tolerance zones

The publishing process iterates until a peer close to the target and then searches
its neighbours. Though it can be assured that the keywords will be published
on peers with a small XOR distance even in a large tolerance zone. In figure
7.14 the tolerance zone of 8 bits starts the publishing on peers which only have
the first 8 bit identical. But the most keywords are published at peers, which
have at least 15 identical bits.

Algorithm 7 defines the position of the host peer. If the distance is negative,
the host peer is between the target and the publishing peer. Otherwise it is
behind the target. The following figures depict that the distance on the left
and on the right side is, apart of small differences, symmetric.

7.6.2. Distribution with different content replications

Figure 7.15 presents the distribution of metadata based on different content
replication. The effect can be seen that a smaller amount of content replication
can be published on the few closest peers. But when the metadata is published
more often, the client must also publish the metadata also at same peers with
a larger XOR distance to the target.
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Figure 7.14.: Shows the percentage of metadata, which is published on a peer

with x identical bits. The different curves illustrates the varying

tolerance zone from 8 until 17.

Algorithm 7: Algorithm to assign a positive or a negative distance to the

contact.

if publishing peer > target then

if contact > target then
distance = distance ∗ 1;

endif

else

if contact < target then
distance = distance ∗ −1;

endif

endif

The main conclusion is that peers publish most references at the closest peers to
its hash ID. This is an important effect, which allows to relocate the references
within a lookup process.

7.6.3. Distribution of republished metadata

This section describes the republishing of data item. The aMule client publishes
a metadata every 24 hours and a source every 5 hours. The next tests republish
1000 data items every hour. Afterwards, 20 publishing for the same 1000 data
items are compared to each other.

For the analysis of the republished metadata distribution, the same keywords
were periodically published. After each publishing, the XOR distance was cal-
culated of the published keywords and their host peers. Astonishingly, the
results in figure 7.16 illustrates that there is nearly the same metadata distri-
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Figure 7.15.: Shows the percentage of metadata, which is published on a peer

with x identical bits. Each curve represents a different value for

r.

bution after each republishing. So at each republishing the iteration process
has the same shape in regard to the XOR distances.
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Figure 7.16.: Shows the percentage of metadata, which is published on a peer

with x identical bits. Each curve represents a n-th republishing,

whereas a publishing is executed every hour. In this case the

tolerance zone has 8 bits and r = 11.

The next step is to examine the propability that a republishing will find the same
peers on which they published the first time. Figure 7.17 shows the republishing
for different content replications. The content replication of 3 republishes the
most on same peers. This indicates in comparison with figure 7.15 that most
of these three peers are in a small subset with the closest peers.
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Figure 7.17.: Illustrates the percentage of republishing on same peers like the

first publishing. The republishing is executed every hour to the

same targets with a varying content replication from 3 until 16

and a tolerance zone of 8 bits.

Figure 7.18 shows that the second publishing after an hour finds barely 40% of
the peers from the first publishing then it will decrease continuously under 20
%. However in small tolerance zone when there are not enough alternatives,
the republishing serves more often of the same peers. The curves of smaller
tolerance zones shows a zigzag because there are only a few peer and though it
is more sensible to the churn.
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Figure 7.18.: Depicts the percentage of republishing on same peers like the first

publishing. The republishing is executed every hour to the same

targets with a varying tolerance zone from 8 bits until 17 bits and

r = 11.

Especially peers with a smaller XOR-distance to the target have a higher propa-
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bility to receive a second publishing request (Figure 7.19). This is caused by
the iteration process, which does not start at the closest peers to the target. So
there are many possible clients to publish on. Also will each iteration takes a
different sequence on peers to approach the target. But the closer the iteration
comes to the target, the higher is the density of clients. When there exits only
5 or less clients, the propability of publishing at a same client will increase.
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Figure 7.19.: distance

7.6.4. Cumulative publish distribution

The publish distribution CDF in figure 7.20 describes the distances of the tar-
gets to their host peers. The targets have been published in the Kad network
with over 1 million peers. So 60% of the metadata is published on peers which
have at least the first 15 bits identical. Furthermore it can be seen that some
metadata is published on peers with more than 20 identical bits. As the fol-
lowing calculation describes exists approximately 1.43 peers on average with
20 first identical bits. So it can be seen that the iteration process find direct
neighbours of the metadata.

Peers with same 20 first bits:
1500000

220
= 1.43

7.6.5. Popular keyword distribution

Figure 7.21 shows the distribution of metadata with the popular keywords ”lu-
cas”, ”movie” and ”lucky”. The data was obtained within a satelite system
spanned over its tolerance zones. The results confirm the insights of the active
analysis of the distribution, that the publishing of the keywords is mostly done
on peers close to the target.
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Figure 7.21.: Shows the quantity of incoming metadata for a peer. The ID of

the closest peers has 80 identical first bits to the keyword hash.

7.7. Peer distribution

This section analyses the distribution sequence and distance of the target peers.
Therefore aMule instances with varied parameters publishe each 1000 metadata.
A tolerance zone of 8 bits limits the publishing of data item to peers with at
least 8 identical bits. But the distribution of the peers with their distance is
not indicated in detail. So figure 7.22 shows the average identical bits of the
host peers to the target. The furthest host peer has on average 12.2 identical
bits in a tolerance zone of 8 bits. This is a lot further than the permitted 8
bits.

By each iteration hop to peers in the tolerance zone an action is executed. When
this action is a content publishing, peers with a larger distance will host the
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Figure 7.22.: The peers are sorted by their XOR-distance to the target. So it

can be seen the average distance of the peers.
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Figure 7.23.: It shows the average distance of the peers, which are sorted by the

time when they were published.

data item. So figures 7.24 and 7.25 show the propability of retrieving data items
in dependence to the host peer distance. They clarify that the metadata on the
furthest peer is only found with the propability of 10 %. After some time it will
even worsen. One of the 4 furthest bits is found with the propability of under
80 %. So the keywords are primarily managed by the first few close peers. In
figure 7.22 it is already shown that the 4 furthest peers have on average between
12 and 14 identical bits.
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Figure 7.24.: It is shown the propability to find the closest peer with the XOR
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and r is 11.
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Figure 7.25.: It is shown the propability to find the closest peer with the XOR

distance, the second closest peer and so on. The furthest peer on

which a metadata was published is the 11th. The tolerance zone

is 14 bits and r is 11.

7.8. Publish load

The analysis of the load permits to know more details about popular files. Pri-
marily, the most popular file was searched, therefore a list of top 50 keywords
was created. This was generated with the help of incoming messages and with
test searches on a normal aMule client. Afterwards several aMule instances pub-
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lished metadata with this keywords. Each response to these requests includes
the load for the keyword on the individual peers.

Figure 7.26 shows the keywords ”the”, ”www”, ”com”, ”mp3” and ”net” as the
top 5 Keywords in the Kad network. The keyword ”the” is clearly recognised
as the most popular identifier for a metadata. The average load is calculated
for peers with the same XOR-distance:

• average load =

distinct peers
∑

k=1

(load)
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Figure 7.26.: The average load around the different keywords shows that the

keyword ”the” is the most published.

The next figure 7.27 presents the occurrence of peers with their load. There are
many peers with a distance less than 13 bits and a load smaller than 20. This
cluster is caused by the first iteration hop into a subset with over 100 peers. In
contrary peers with at least 15 identical bits have mostly a load of 100, because
there is only a small subset of peers. For example there are 3 peers with 18
identical bits and a load of 100. The peers in this cluster are found by many
publishing peers.

The load depends besides the distance on the target also on the up-time of a
peer. A recently connected peer needs some time to accumulate the incoming
metadata. In figure 7.28 the difference between the maximum and the minimum
load of peers is significant.

7.9. Controlling a data item

This section evaluates the possibility to control a data item by placing fraud
peers as close as possible to the data item. The iteration process finds these
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Figure 7.28.: Shows the minimum, average and maximum load of peers that

have the first x bits identical with ”www”.

peers because they are the closest peers to the target. A fraud peer can manip-
ulate a data item or let it disappear once it is the host peer. If a subset of fraud
peers receives all published content of a data item ID, they would have total
control over them. Figure 7.24 shows that the furthest 5 peers are rarely found.
This leads to the fact that controlling the 6 closest peers could be sufficient to
manipulate data in the Kad-network. Some film or music institutions have a
large interest in this attack, as they have already started the pollution attacks.

In this experiment 18 aMule instances are started with at least 30 identical bit
to the target ”the”. Choosing a popular target insures that there are enough
incoming publishing messages. A load of 100 was reached on the closest peers
during the measurements in less than one hour. Table 7.1 shows information
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running time (hours) time GMT messages

28 17:20:00 808589

31 20:20:00 743446

37 02:20:00 231868

43 08:20:00 461607

Table 7.1.: Shows the details about the representant closest instance

about the running time and about the number of incoming publish requests. It
can be seen that the instances receives most messages in the evening, because
”the” is represented mostly within Europe.

Figure 7.29 indicates the possibility to take partial control of the metadata for
the keyword ”the”. It is supposed that an iteration process reaches one of the
18 closest peers and executes a publish request. Four identical metadata items
from the same publisher peer can be controlled with the probability of 80%.
These are the crucial peers, which are found by the retrieving process during
the first 12 hours (figure 7.24). However, some modifications can even improve
these results:
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Figure 7.29.: Probability that a same metadata from the same peer is published

on x peers.

• Some of the competitor peers on which it was published will leave the
network, as a consequence of the churn. (see figure 7.5)

• The longer the instances are connected the better they will be known and
the more they will attract messages.

• A structured architecture and the interconnection among the instances
can also increase the control to a certain data.
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Figure 7.23 shows the first five contents are published on peers with not more
than 15 identical bits. To control this subset of peer a lot of more instances are
necessary. The tolerance zone has the advantage that it is easier to implement,
than the finding of the exact r closest peers. But it is also necessary to protect
the data item against attacks.



8. Conclusion

Until now there have been papers describing a theoretical approach to DHT-
based overlay networks only. But the Kademlia-based file sharing applications
which recently appeared with about 1.5 millions users enabled new possibilities.
So this research report is the first to describe the structure and processes of the
Kad protocol in detail. Furthermore, this Master Thesis studied empirically
the behaviours of the Kad-protocol implemented by the aMule and eMule file
sharing application.

The description of the Kad protocol is based on the examination of the aMule
client. Therefore the client was indispensably modified to obtain exact infor-
mation about the structure and behaviour of the routing tree, the contacts, the
lookup algorithm and the publishing and retrieving process. Some of the modi-
fications are now integrated in the official version of the aMule client. Moreover
the description of the behaviours was experimentally prooven by running several
tests.

A more extensive framework with spy clients, a satellite system and an inte-
grated database, enabled the analysis and measurement of the Kad-protocol.
The main objective was the exploration of the publishing process. This included
the examination of the tolerance zone and the content replication, as well as
the analysis of the content distribution. But also the possibility to control a
keyword is tested.

8.1. Discussion

The current parameters and processes of the Kad-protocol assure the successful
publishing and retrieving of data items. However, after 12 hours the churn of
the peers is responsible for one half of the peers leaving the network. This has a
high impact on the search results, because the retrieving of published metadata
is not anymore insured. So a reduction of the publishing frequency by a half to
12 hours would improve the data retrieving in the network.

As the measurements illustrates, a tolerance zone of 8 identical bits is to large
for a network with over 1 million peers. A data item has to be searched in a
subset of over 4000 peers, whereby only the closest peers are retrieved. Reducing
the tolerance zone to at least 14 bits, increases the probability to retrieve more
data items.

After reducing the republishing time to 12 hours and the tolerance zone to
14 bits, the content replication can also be adapted. A dividing of the content
replication by half counterbalances the increased network traffic caused by more
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republishing. By doing so a retrieval of at least one data item is more probable
than with the standard parameters after 12 hours.

However, the optimisation of the Kad-protocol parameters also causes a danger
of attack. With the reduction of the tolerance zone, less peers are responsible
for a data item. This makes it easier for fraud peers to take control of a certain
metadata.

8.2. Future work

The Kad-protocol is relatively recent in application and therefor there are only
a few research studies about it. This opens further work on different parts of
the protocol:

• The created framework already has the infrastructure for further mea-
surements. This allows for example a study about the lifecycle of the
peers in the routing table. Already the working implementation exists to
record all attribute changes of the routing table contacts to the database.

• While the publishing and distribution performance is analysed in detail,
the search performance rest to be analysed. The next step is to optimise
the retrieving process for published data items.

• The possibility to take control of a data item is already shown in the end of
the measurements chapter. An attack to a popular keyword was already
analysed. Further on, the results can even be increased by changing and
structuring of the peers among each other.

• Another future work is the analysis and optimisation of the load and its
expansion of new feasibility. Therefore the tradeoff between varying the
republishing frequency versus reducing the content replication of popular
data items can be studied.

• An more extensive work is the change of the 2-level publishing scheme.
At the moment the published metadata of a file is under the control of
the host peer. That responsibility can be entrusted to the 1st level peer,
which checks the availability of the file with a ping [12].



A. aMule definitions

Constante Value Description

KADEMLIAASKTIME SEC2MS(1) 1 second

KADEMLIATOTALFILE 7 Total files to search sources for.

KADEMLIAREASKTIME HR2MS(1) 1 hour

KADEMLIAPUBLISHTIME SEC(2) 2 second

KADEMLIATOTALSTORENOTES 1 Total hashes to store.

KADEMLIATOTALSTORESRC 2 Total hashes to store.

KADEMLIATOTALSTOREKEY 1 Total hashes to store.

KADEMLIAREPUBLISHTIMES HR2S(5) 5 hours

KADEMLIAREPUBLISHTIMEN HR2S(24) 24 hours

KADEMLIAREPUBLISHTIMEK HR2S(24) 24 hours

KADEMLIADISCONNECTDELAY MIN2S(20) 20 mins

KADEMLIAMAXINDEX 50000 Total keyword indexes.

KADEMLIAMAXENTRIES 60000 Total keyword entries.

KADEMLIAMAXSOUCEPERFILE 300 Max number of sources per file

KADEMLIAMAXNOTESPERFILE 50 Max number of notes per entry

KADEMLIABUDDYTIMEOUT MIN2MS(10) 10 min to receive the buddy

Table A.1.: The kademlia time variables
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Constante Value

SEARCHTOLERANCE 16777216

const unsigned int K 10

KBASE 4

KK 5

ALPHA QUERY 3

LOG BASE EXPONENT 5

HELLO TIMEOUT 20

SEARCH JUMPSTART 2

SEARCH LIFETIME 45

SEARCHFILE LIFETIME 45

SEARCHKEYWORD LIFETIME 45

SEARCHNOTES LIFETIME 45

SEARCHNODE LIFETIME 45

SEARCHNODECOMP LIFETIME 10

SEARCHSTOREFILE LIFETIME 140

SEARCHSTOREKEYWORD LIFETIME 140

SEARCHSTORENOTES LIFETIME 100

SEARCHFINDBUDDY LIFETIME 100

SEARCHFINDSOURCE LIFETIME 45

SEARCHFILE TOTAL 300

SEARCHKEYWORD TOTAL 300

SEARCHNOTES TOTAL 50

SEARCHSTOREFILE TOTAL 10

SEARCHSTOREKEYWORD TOTAL 10

SEARCHSTORENOTES TOTAL 10

SEARCHNODECOMP TOTAL 10

SEARCHFINDBUDDY TOTAL 10

SEARCHFINDSOURCE TOTAL 20

Table A.2.: The kademlia variables



B. Kad opcodes

Identifier Opcode Parameter

KADEMLIA BOOTSTRAP REQ 0x00 < PEER(sender)[25] >

KADEMLIA BOOTSTRAP RES 0x08 < CNT [2] >< PEER[25] > ∗(CNT )

KADEMLIA HELLO REQ 0x10 < PEER(sender)[25] >

KADEMLIA HELLO RES 0x18 < PEER(receiver)[25] >

KADEMLIA REQ 0x20 < TY PE[1] >< HASH(target)[16] >

< HASH(receiver)16 >

KADEMLIA RES 0x28 < HASH(target)[16] >< CNT >

< PEER[25] > ∗(CNT )

KADEMLIA SEARCH REQ 0x30 < HASH(key)[16] >< ext0/1[1] >

< SEARCHTREE > [ext]

KADEMLIA SEARCH RES 0x38 < HASH(key)[16] >< CNT1[2] >

(< HASH(answer)[16] < CNT2[2] >>

< META > ∗(CNT2)) ∗ (CNT1)

KADEMLIA SRC NOTES REQ 0x32 < HASH(key)[16] >

KADEMLIA SRC NOTES RES 0x3A < HASH(key)[16] >< CNT1[2] >

< (< HASH(answer)[16] >< CNT2[2] >

<< META > ∗(CNT2)) ∗ (CNT1)

KADEMLIA PUBLISH REQ 0x40 < HASH(key)[16] >< CNT1[2] >

(< HASH(target)[16] >< CNT2[2] >

< META > ∗(CNT2)) ∗ (CNT1)

KADEMLIA PUBLISH RES 0x48 < HASH(key)[16] >

KADEMLIA PUB NOTES REQ 0x42 < HASH(key)[16] >

< HASH(target)[16] >< CNT2[2] >

< META > ∗(CNT2)) ∗ (CNT1)

KADEMLIA PUB NOTES RES 0x4A < HASH(key)[16] >

KADEMLIA FIREWALLED REQ 0x50 < TCPPORT (sender)[2] >

KADEMLIA FINDBUDDY REQ 0x51 < TCPPORT (sender)[2] >

KADEMLIA CALLBACK REQ 0x52 < TCPPORT (sender)[2] >

KADEMLIA FIREWALLED RES 0x58 < IP (sender)[4] >

KADEMLIA FIREWALLED ACK 0x59 (null)

KADEMLIA FINDBUDDY RES 0x5A < TCPPORT (sender)[2] >

KADEMLIA FIND VALUE 0x02

KADEMLIA STORE 0x04

KADEMLIA FIND NODE 0x0B

Table B.1.: The opcodes of the Kad-protocol
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C. Extract of a routing table

A for the investigation modified version of aMule made an extract of an routing
table with 510 contacts. It illustrates all containing nodes of a binary tree which
are internal nodes or leafs with the quantity of their containing contacts. Each
node or leave has a unique position in the tree which is indicated by the level
(L) and the position (Pos).

ShowRoutingTable!!!

Node L: 0 Pos.: 00000000000000000000000000000000

Node L: 1 Pos.: 00000000000000000000000000000000

Node L: 2 Pos.: 00000000000000000000000000000000

Node L: 3 Pos.: 00000000000000000000000000000000

Node L: 4 Pos.: 00000000000000000000000000000000

Node L: 5 Pos.: 00000000000000000000000000000000

Node L: 6 Pos.: 00000000000000000000000000000000

Node L: 7 Pos.: 00000000000000000000000000000000

Node L: 8 Pos.: 00000000000000000000000000000000

Node L: 9 Pos.: 00000000000000000000000000000000

Node L: 10 Pos.: 00000000000000000000000000000000

Node L: 11 Pos.: 00000000000000000000000000000000

Node L: 12 Pos.: 00000000000000000000000000000000

Node L: 13 Pos.: 00000000000000000000000000000000

Node L: 14 Pos.: 00000000000000000000000000000000

Node L: 15 Pos.: 00000000000000000000000000000000

Node L: 16 Pos.: 00000000000000000000000000000000

Node L: 17 Pos.: 00000000000000000000000000000000

Node L: 18 Pos.: 00000000000000000000000000000000

Node L: 19 Pos.: 00000000000000000000000000000000

Node L: 20 Pos.: 00000000000000000000000000000000

Leaf BinSize: 2 L: 21 Pos. : 00000000000000000000000000000000

Leaf BinSize: 8 L: 21 Pos. : 00000000000000000000000000000001

Leaf BinSize: 0 L: 20 Pos. : 00000000000000000000000000000001

Leaf BinSize: 2 L: 19 Pos. : 00000000000000000000000000000001

Node L: 18 Pos.: 00000000000000000000000000000001

Node L: 19 Pos.: 00000000000000000000000000000002

Node L: 20 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 21 Pos. : 00000000000000000000000000000008

Leaf BinSize: 0 L: 21 Pos. : 00000000000000000000000000000009

Leaf BinSize: 10 L: 20 Pos. : 00000000000000000000000000000005

Leaf BinSize: 2 L: 19 Pos. : 00000000000000000000000000000003

Node L: 17 Pos.: 00000000000000000000000000000001
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Leaf BinSize: 3 L: 18 Pos. : 00000000000000000000000000000002

Leaf BinSize: 9 L: 18 Pos. : 00000000000000000000000000000003

Node L: 16 Pos.: 00000000000000000000000000000001

Leaf BinSize: 5 L: 17 Pos. : 00000000000000000000000000000002

Node L: 17 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 18 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 18 Pos. : 00000000000000000000000000000007

Leaf BinSize: 4 L: 15 Pos. : 00000000000000000000000000000001

Node L: 14 Pos.: 00000000000000000000000000000001

Node L: 15 Pos.: 00000000000000000000000000000002

Leaf BinSize: 10 L: 16 Pos. : 00000000000000000000000000000004

Leaf BinSize: 10 L: 16 Pos. : 00000000000000000000000000000005

Node L: 15 Pos.: 00000000000000000000000000000003

Leaf BinSize: 7 L: 16 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 16 Pos. : 00000000000000000000000000000007

Node L: 13 Pos.: 00000000000000000000000000000001

Node L: 14 Pos.: 00000000000000000000000000000002

Leaf BinSize: 4 L: 15 Pos. : 00000000000000000000000000000004

Leaf BinSize: 10 L: 15 Pos. : 00000000000000000000000000000005

Node L: 14 Pos.: 00000000000000000000000000000003

Leaf BinSize: 7 L: 15 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 15 Pos. : 00000000000000000000000000000007

Leaf BinSize: 5 L: 12 Pos. : 00000000000000000000000000000001

Node L: 11 Pos.: 00000000000000000000000000000001

Node L: 12 Pos.: 00000000000000000000000000000002

Node L: 13 Pos.: 00000000000000000000000000000004

Leaf BinSize: 4 L: 14 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 14 Pos. : 00000000000000000000000000000009

Leaf BinSize: 4 L: 13 Pos. : 00000000000000000000000000000005

Leaf BinSize: 2 L: 12 Pos. : 00000000000000000000000000000003

Node L: 10 Pos.: 00000000000000000000000000000001

Leaf BinSize: 2 L: 11 Pos. : 00000000000000000000000000000002

Node L: 11 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 12 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 12 Pos. : 00000000000000000000000000000007

Leaf BinSize: 1 L: 9 Pos. : 00000000000000000000000000000001

Node L: 8 Pos.: 00000000000000000000000000000001

Node L: 9 Pos.: 00000000000000000000000000000002

Node L: 10 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 11 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 11 Pos. : 00000000000000000000000000000009

Leaf BinSize: 10 L: 10 Pos. : 00000000000000000000000000000005

Node L: 9 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 10 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 10 Pos. : 00000000000000000000000000000007

Node L: 7 Pos.: 00000000000000000000000000000001
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Node L: 8 Pos.: 00000000000000000000000000000002

Node L: 9 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 10 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 10 Pos. : 00000000000000000000000000000009

Leaf BinSize: 10 L: 9 Pos. : 00000000000000000000000000000005

Node L: 8 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 9 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 9 Pos. : 00000000000000000000000000000007

Node L: 6 Pos.: 00000000000000000000000000000001

Leaf BinSize: 5 L: 7 Pos. : 00000000000000000000000000000002

Node L: 7 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 8 Pos. : 00000000000000000000000000000006

Leaf BinSize: 8 L: 8 Pos. : 00000000000000000000000000000007

Node L: 5 Pos.: 00000000000000000000000000000001

Leaf BinSize: 1 L: 6 Pos. : 00000000000000000000000000000002

Node L: 6 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 7 Pos. : 00000000000000000000000000000006

Leaf BinSize: 3 L: 7 Pos. : 00000000000000000000000000000007

Node L: 4 Pos.: 00000000000000000000000000000001

Node L: 5 Pos.: 00000000000000000000000000000002

Node L: 6 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 7 Pos. : 00000000000000000000000000000008

Leaf BinSize: 3 L: 7 Pos. : 00000000000000000000000000000009

Leaf BinSize: 10 L: 6 Pos. : 00000000000000000000000000000005

Node L: 5 Pos.: 00000000000000000000000000000003

Leaf BinSize: 10 L: 6 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 6 Pos. : 00000000000000000000000000000007

Node L: 3 Pos.: 00000000000000000000000000000001

Node L: 4 Pos.: 00000000000000000000000000000002

Node L: 5 Pos.: 00000000000000000000000000000004

Leaf BinSize: 9 L: 6 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 6 Pos. : 00000000000000000000000000000009

Leaf BinSize: 9 L: 5 Pos. : 00000000000000000000000000000005

Node L: 4 Pos.: 00000000000000000000000000000003

Leaf BinSize: 6 L: 5 Pos. : 00000000000000000000000000000006

Leaf BinSize: 6 L: 5 Pos. : 00000000000000000000000000000007

Node L: 2 Pos.: 00000000000000000000000000000001

Node L: 3 Pos.: 00000000000000000000000000000002

Node L: 4 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 5 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 5 Pos. : 00000000000000000000000000000009

Leaf BinSize: 10 L: 4 Pos. : 00000000000000000000000000000005

Node L: 3 Pos.: 00000000000000000000000000000003

Leaf BinSize: 6 L: 4 Pos. : 00000000000000000000000000000006

Leaf BinSize: 10 L: 4 Pos. : 00000000000000000000000000000007

Node L: 1 Pos.: 00000000000000000000000000000001
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Node L: 2 Pos.: 00000000000000000000000000000002

Node L: 3 Pos.: 00000000000000000000000000000004

Leaf BinSize: 10 L: 4 Pos. : 00000000000000000000000000000008

Leaf BinSize: 10 L: 4 Pos. : 00000000000000000000000000000009

Node L: 3 Pos.: 00000000000000000000000000000005

Leaf BinSize: 10 L: 4 Pos. : 0000000000000000000000000000000A

Leaf BinSize: 4 L: 4 Pos. : 0000000000000000000000000000000B

Node L: 2 Pos.: 00000000000000000000000000000003

Node L: 3 Pos.: 00000000000000000000000000000006

Leaf BinSize: 10 L: 4 Pos. : 0000000000000000000000000000000C

Leaf BinSize: 10 L: 4 Pos. : 0000000000000000000000000000000D

Node L: 3 Pos.: 00000000000000000000000000000007

Leaf BinSize: 6 L: 4 Pos. : 0000000000000000000000000000000E

Leaf BinSize: 10 L: 4 Pos. : 0000000000000000000000000000000F



D. Database structure

Figure D.1.: The helper tables and the tables for the contact lifecycle
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Figure D.2.: Database tables for the passive meassurement
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Figure D.3.: Database tables for the passive meassurement
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