Summary so far

- Classes P and NP.
- $P \subseteq N P$ and it is assumed that $P \neq N P$.
- Problems in P are tractable.
- Problems in NP \P are untractable.
- HPP is untractable.
- What else is (un)tractable?
- Is "my problem" tractable or untractable?

Proving tractability

- "My problem" is tractable if...
... I exhibit a polynomial algorithm that solves it.
- What's next?
- I try to conceive the most efficient algorithm (see the rest of this course).
- Is the best algorithm efficient enough?
- If yes, then it's great.
- If not, I try heuristics (see later).

Proving untractability: the idea

- It is hard to prove that "I cannot do this".
- Easier to prove that "if I can do this, then I can also do that (and show how)".
- Assume I know a problem Pr that is untractable: if I show that the polynomial solution of my problem would also solve Pr with some extra work then...

Polynomial Reduction $\leq_{p} / 1$

- A problem P1 can be polynomially reduced to a problem P2 (P1 \leq_{p} P2) iff:
- An instance i1 of P1 can be transformed in polynomial time in an instance i2 of P2 such that:
- A solution of i2 corresponds to a solution of i1.

Somehow, it means that P 1 is not harder to solve than P2

Another way to see (and use) it:

- A "new" problem P2 can be polynomially reduced FROM a "known" problem P1 ($\mathrm{P} 1 \leq_{p} \mathrm{P} 2$) if ...

Then P2 is at least as difficult as P1.
In particular, if P 1 is untractable, then also P 2 is.

$\mathrm{P} 1 \leq_{p} \mathrm{P} 2$ when P 1 is untractable

Instance of P1 $\xrightarrow{\text { Polynomial Solution }}$ Solution of P1

Instance of P2 $\xrightarrow{\text { Polynomial Solution }}$ Solution of P2

NP-complete Problems

- A problem P is NP-complete $(\mathrm{P} \in \mathrm{NPC})$ iff:
- It is in NP and
- $P^{\prime} \leq_{p} P$ for each $P^{\prime} \in N P$.
- Somehow, they are the most difficult problems in NP: if I can efficiently solve one of them, then I can efficiently solve all of them, and in that case $P=N P$.

NP-complete Problems

- A problem P is NP-complete $(\mathrm{P} \in \mathrm{NPC})$ iff:
- It is in NP and
- $P^{\prime} \leq_{p} P$ for each $P^{\prime} \in N P$.
- If $\operatorname{Pr} \in N P C$ is polynomially solvable, since any problem $\mathrm{P}^{\prime} \in \mathrm{NP}$ can be reduced to it, then P^{\prime} can also be solved in polynomial time.

NP-complete Problems

- The existence of NP-complete problems enforces the conjecture that $P \neq N P$:
- Disproving the conjecture would mean that there exist polynomial solutions for a huge class of problems...
- ... for which nobody has found a polynomial solution so far!

P, NP, and NPC

