i Overview of the Lectures

=« Basics of Complexity Theory.
= The Complexity Class P.
= Nondeterminism and Class NP.

= NP-complete Problems and Polynomial
Reductions.

= Optimization Problems and NP-hardness.

= How to deal with Difficult Problems:
« Approximations.
= Heuristics.

You have sequenced your genome -
what do you do with it?

This is known as genome analysis or sequence analysis.

At present, most of bioinformatics is concerned with sequence analysis. Here are
some of the questions that one might want to answer:

= gene finding

= search a given fragment

= finding repetitions and regularities

= protein 3D structure prediction

= gene function prediction (homology search)

= prediction of important sites in proteins (highly conserved)

= reconstruction of phylogeny trees (computing evolutionary distance)

Example: methods for reconstruction
of phylogenies

Maximum parsimony: Given a tree, count the number of character
changes that must have occurred during evolution if the tree is
correct. The most parsimonious tree is the one that postulates the
fewest such changes among all possible trees.

Maximum likelihood: Given a tree and a model of molecular evolution,
compute the probability that the sequences actually observed in the
extant species have evolved. The maximum likelihood tree is the one
for which this probability is largest among all possible trees.

Problem example 1

THE MAXIMUM PARSIMONY PROBLEM

= INPUT: A character matrix C (m rows, one per each species, and n
columns, one per each character: C[i,j] describes the values of
character j in specie i).

= OUTPUT: The most parsimonious tree among all possible trees (with
m leaves and with one character change in each branch).

= INPUT:

= OUTPUT:

i Example TtHE MAXIMUM PARSIMONY PROBLEM

ALl |CODA
Uomo |[No No
Rondine | Si Si
Topo No Si

uomo

({
/\

topo

rondine

Problem example 2

PROBLEM OF SEARCHING A PATTERN IN A (DB OF) SEQUENCE(S)

= INPUT: a (set of) sequence(s) S, a fragment f.

= OUTPUT: All positions in S in which f occurs.

Example SEARCHING A PATTERN IN A SEQUENCE

INPUT: f= GATT

S=TCGATCGTCAGTAACACATACATGAAGACATAGCATAGCATAG
CATAGCAGTACAGTACGATTGACTGCTAGCTGTACGATAGTCAGT
CTCCTAGACAGATAGCATGCAGTGGAGATTTTCCAAGTCAAATCA

OUTPUT:

p1l p2 |

Problem example 3

PROBLEM OF SEARCHING AN APPROXIMATED PATTERN IN A DB
OF SEQUENCES

= [INPUT: a (set of) sequence(s) S, a fragment f, a maximum distance d.

= OUTPUT: All positions in S in which f d-approximatively occurs.

Exam ple APPROXIMATED PATTERN MATCHING

INPUT: f= GATT,
maximum Hamming distance (number of substitutions) d=1,

GCAGITACAGTACGATTGACTGCTAGCTGTACGATAGTCAGTCTCCTAGA
CAﬁ AGCATGC/AGTG AﬁATTTTCCAAGTC TCA

OUIPUIT:
p5p1 p2 p3pb p4

S=T(§EATCGTCAGTAACACATACATGAAGACATAG CATAGCATAGCATA

Problem example 4

PROBLEM OF MOTIFS INFERENCE

INPUT: A set of n sequences s1, s2, ..., sn,
a length L,
a quorum q.

OUTPUT: All fragments of length L that occur in at least q of the n
sequences.

10

Example woTiFs INFERENCE

INPUT: L=6, g=3

s1=TCGATCGTCAGTAACACATACATGAAGACATAGCATAGCCAGT
s2=ACAGTACGAACGTCTGCTAGCTGTACGATCGTCAGTCTCCTAG
s3=ATGCAGTGGAGATCGTCCAAGTCAATGACTGACCGTTACATCA

OUTPUT: m=GATCGT

11

Complexity VS Computability

Computational Problems: Problems formulated in
a mathematical way, and for which we seek an

algorithmical solution. computability theory

Non Computable Problems Computable Problems

complexity theo
CONCERN

Tractable Problems Untractable Problems

\
12

i Complexity Theory

= The theory of Computational Complexity:

= Classification of problems according to their
difficulty.

= Worst case complexity of the best algorithm.

= Analisys of tractability of problems according to

the availability of resources.

13

Complexity of a Problem

= The computational (space or time) cost of an algorithm that solves a
given problem:
= is expressed in terms of the size of the problem itself.

= represents an upper bound to the complexity of the problem: definitely it can
be solved in that time/space, but maybe there is a better way...

= [he necessary resources to solve a problem represent a lower

bound to the complexity of the problem: it cannot be done
better/faster than that...

= The computational complexity of a problem is determined when the
upper bound equals the lower bound.

14

An example

= Problem: Give me the sum of n given numbers.

= Problem’s size: n.
Problem’s lower bound: n (at least, | have to read all the numbers).

Problem’s upper bound:

= The algorithm that visits each number once and updates a variable with the partial
sum requires (“order of”) n operations.

= The upper bound (given from the algorithm above) is n.

Problem’s time complexity: n.
[...in this case we say ‘linear in the input size”...]

15

Cost of an algorithm

The evaluation of the complexity of an algorithm (hence of a problem), depends
from two factors:

= The adopted computation model;

» The cost measure.
The computational model must be simple and it should not be too far from real

machines: the Turing Machine model (taking other models there is a constant
multiplicative factor).

The cost measure for time is “one operation” (and not the actual time spent that
depends from technology) making the uniform cost assumption.
= Actually not all objects have the same size.

= Actually not all memory access have the same cost.

The cost measure for space is a byte.

16

i Exercise

= Give me the (lower bound and the upper bound of)
the complexity of the following problems:

= 1. Given an array A of n distinct integers, tell whether
there exists an i such that i = AJi].

= 2. Same as above but A is sorted.
= 3. Same as above but A has only positive numbers.

17

i Exercise: solution

= 1. Given an array A of n distinct integers, tell whether
there exists an i such that i = AJi].
= Upper and lower bound is n.

= 2. Same as above but A is sorted.

= Log(n) cause | can do binary search:
If i < AJi] | only look left.
If i > A[i] | only look right.

= 3. Same as above but A has only positive numbers.
= O(1) cause | just look A[1]: if A[1]=1 then yes else no.

18

Asyntotic complexity

©(g(n)) is the set of all functions f(n) for which there exist three positive constant numbers c1, c2,
and n0 such that c1 g(n) < f(n) = c2 g(n) for all n = nO.

... they are functions that behave like g(n) ...

O(g(n)) is the set of all functions f(n) for which there exist two positive constant numbers ¢ and nO
such that f(n) = ¢ g(n) for all n = nO.

... they are functions that behave at worst like g(n) ...

Q(g(n)) is the set of all functions f(n) for which there exist two positive constant numvers ¢ and n0
such that ¢ g(n) =< f(n) for all n = nO0.

... they are functions that behave at best like g(n) ...

We have that f(n) = ©(g(n)) if and only if f(n) = Q(g(n)) and f(n) = O(n).

19

i Asyntotic complexity

= [he speed of an algorithm is evaluated with respect to
its asyntotic behaviour, that is, when the problem’s
size tends to infinity:

= A good asyntotic behaviour guarantees that with the growth

of the problem’s size, we have a reasonable growth of the
time cost.

= On the other hand, a bad asyntotic behaviour makes the
algorithms applicable to small size instances only.

20

i Some genome’s sizes.

= HIV2 virus 9671 bp
s Mycoplasma genitalis 5.8 - 10° bp
= Haemophilus influenzae 1.83 - 10° bp

s Saccharomyces cerevisiae 1.21 - 107 bp
s Caenorhabditis elegans 108 bp

= Drosophila melanogaster 1.65 - 108 bp
= Homo sapiens 3.14 - 10° bp

= Some amphibians 8 -10"bp

= Amoeba dubia 6.7- 10" bp

i Polynomial Algorithms

= A general agreement is to classify an algorithm as efficient or

inefficient depending on whether its worst case execution time is
polynomial or exponential wrt the problem’s size.

= For example, given an input size n, we have that T(n) =n?2+ n &
O(n?) is polynomial and T(n)=c" is exponential.

n (1|2(3]... |20

50

n? 11149 (... 1400

2500

2" 1214 18 ... [1048576

1073741824

22

The computational challenge for
reconstruction of phylogenies

Maximum parsimony and maximum likelihood require us to consider all possible
trees.

Given n species, there are (2n-3)!/[2"2(n-2)!] distinct possible (rooted) trees for
depicting the phylogenetic relationship between these species.

For n = 10, this number is 34,459,425; for n = 15 it is already equal to
213,458,046,676,875.

For this problem, the most obvious solution requires then exponential running
time.

23

i Tractability and untractabillity

= A problem is untractable if it is possible to prove

that it does not exist a polynomial time algorithm
that solves it.

= A problem is If there are
no known polynomial algorithms that solve it, but
its untractability cannot be proved.

= A problem is fractable if it exists a polynomial
algorithm that solves it.

24

iCan technology and parallelism help?

= A processor k times faster, or

= A K processor machine.

= If k iIs a constant things do not change.

25

i Questions

= Is the problem “Give me the maximum among n
given numbers” tractable?

= Is the problem “Give me all distinct permutation
of n given numbers” tractable?

= Is the problem “Give me the number of all distinct
permutations of n given number” tractable?

26

Examples

= The problem of giving all permutations of n numbers is
exponential and thus untractable.

= Many exponential problems are such because its solutions are algorithms
that require an exhaustive search.

= The exhaustive search consists of the generation of all configurations that
are (candidate to be) solutions.

= The problem of summing n given number is linear and thus
tractable.

27

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@

v —

®\V

/

>

©

!

\@

28

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@

o

®\V

/

>

©

!

\@

29

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

4

®\V

//

>

©

!

\@

30

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

4

®\V

//

>

©

!

\@

31

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

S

®\V

//

>

©

!

\@

32

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

S

®\V

/

>

v
©

\

\

33

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

/f ® 1d
é%@

\V

//

v

\

\

34

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

OF7—— O

V% e

¢//

® 1d
/

@\é}/@

35

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

S

®\V

//

>

©

!

\@

36

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

@—>@

4

®\V

//

>

©

!

\@

37

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

38

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

39

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

40

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

41

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

42

i The Hamiltonian Path Problem

INPUT: An oriented graph G=(V,A) with n nodes.
OUTPUT: YES if it exists a path that visits each node exactly once;
NO otherwise.

There is no known polynomial algorithm for HPP !l

4

HPP is presumibly untractable

43

i Non determinism

A non deterministic computation is a computation that at each step is
able to consider simultaneously all possible alternative choices.

IV —

/
=

\V

/

O

!

N
©

44

i Non determinism

A non deterministic computation is a computation that at each step is
able to consider simultaneously all possible alternative choices.

©, 29,

O

N
W/

{

\v/

\

45

i Non determinism

A non deterministic computation is a computation that at each step is
able to consider simultaneously all possible alternative choices.

©, >®

O

N
W

1

\v/

\

46

i Non determinism

A non deterministic computation is a computation that at each step is
able to consider simultaneously all possible alternative choices.

O—— @

/ \@ unfortunately
© '. nondeterministic
4 machines do not
@ ® exist...
®

47

Decision Problems

= A decision problem is a problem whose solution is either YES or NO.

= The HPP is a decision problem.

= “Is the sum of these n numbers lower than k?” is a decision problem.
= An optimization problem is a problem whose solution is a value (optimal
according to a function to maximize or minimize).

= Finding a (Hamiltonian) path of minimun cost on a weighted graph is an
optimization problem.
= Telling whether there is an Hamiltonian path of cost lower than k is not an

optimization problem.

48

i The classes P and NP

= P is the class of all decision problems that admit a

deterministic polynomial solution.

= ‘Is the sum of these n numbers < k ?” € P.

= NP is the class of all decision problem that admit a

nondeterministic polynomial solution.
= HPP € NP.

= Does HPP belongto P ?
= P C NP.

49

i Polynomial check

Nobody knows a polynomial deterministic algorithm to find an HP

@,\’@ Assume | give you a path: 0,1,2,3,4,5,6.
™~
/f/ \‘i@ Can you check in polynomial
O #l%/ time ?//vhether itis gH)I; ?

¢ ®

'\

\

G

50

i The class NP: alternative definition

= NP is the class of the decision problems that
admit a polynomial check for the solutions.

= Again, it's clear that P C NP.

lP#NP?

= Is checking easier than finding?

Presumibly yes: problems in NP \ P are assumed untractable
51

i Exercise

= Are the following problems in NP?

Given a graph tell me whether there exists a clique.
Given a graph tell me the size of the biggest clique.
SAT.

KNAPSACK.

Are these two sequences “similar” (i.e. Their edit distance is

at most d)?

What is the Hamming distance of these two sequences?

52

iNP\P

NP
If the conjecture P = NP is correct,
@ » then here there must be something.
HPP

= HPP is a reasonable candidate. Let’s put it there.

= What else?.

53

