Summary so far

- We know everything about the complexity classes of decision problems.
- A "simple" interesting model, indeed.
- What if "my problem" is NOT a decision problem?
- How do I prove (un)tractability of other type of problems?

NP-hard problems: the idea.

- There are problems to which problems in NPC can be reduced, but that are not NP-complete because it is not possible to prove that they belong to NP.
- These problems are NP-hard:
- They are at least as difficult as NP-complete problems.
- They are not in NP.

Protein folding

- Lattice model assumes amino acids are of two types: hydrophobic, which are black, and hydrophilic, which are white
- They can take on discrete positions only
- The energy value of a fold is
 determined by the number of nonadjacent hydrophobic residues

Protein folding

- Finding the optimal fold in the 2D lattice is NP-hard.
- There are at least an exponential number of possible folds (as demonstrated by the staircase folds).

Optimization problems

- An optimization problem is $\left(\mathrm{I}_{\mathrm{P}}\right.$, Sol $\left._{p}, \mathrm{f}_{\mathrm{P}},\{\mathrm{max} / \mathrm{min}\}\right)$ where:
- I_{P} is the set of instances of P.
- Sol ${ }_{P}$ is the set of admissible solutions.
- f_{P} is a measure of the goodness of a solution.
- $\{\mathrm{max} / \mathrm{min}\}$ tells whether it is desiderable to maximize or minimize f_{p}.
- The set of optimal solutions of an instance $i \in I_{p}$ is the subset of Sol $_{p}$ that maximizes/minimizes f_{p}.
- You will meet more optimization problems that decision problems...

An example: minimun vertex cover

- minumum vertex cover:
- INPUT: A graph G=(V,E)
- OUTPUT: A subset of nodes $\mathrm{U} \subseteq \mathrm{V}$ of minimum size such that for each $(i, j) \in E$, either $i \in U$, or $j \in U$.
- The set I_{P} is the set of all possible graphs.
- The set Sol $_{p}$ is the subsets U of V such that for each $(i, j) \in E$, either $i \in U$, or $j \in U$; i.e. It is a vertex cover of G.
- The function f_{P} is $|U|$, and it has to be minimized.

Complexity Theory of Optimization Problems

- In bioinformatics they are more frequent than decision problems:
- Parsimony in phylogeny.
- Consensus models.
- Sequences alignments.
- Genomic distances.
- Protein folding.
- Fragment Assembly.
- ...
- There is a whole theory somehow parallel and related to that of decision problems.

The class NPO

- An optimization problem $\mathrm{P}=\left(\mathrm{I}_{\mathrm{P}}\right.$, Sol $\left._{P}, \mathrm{f}_{\mathrm{P}},\{\mathrm{max} / \mathrm{min}\}\right)$ belongs to the class NPO if and only if:
- The set I_{P} is recognizable in polynomial time.
- All solutions have polynomial size and can be verified in polynomial time.
- The function f_{P} can be computed in polynomial time.

Minimum Vertex Cover \in NPO

- Minimum Vertex Cover is such that:
- The set of the instances is that of undirected graphs, recognizable in polynomial time.
- Any solutions is a subset U of V, hence of polynomial size; whether it is a vertex cover can be verified in polynomial time by checking for all edges if each one of them involves a node in U.
- The cost function is the size of U, that can be computed in polynomial time.

The class PO

- An optimization problem belongs to PO if it is in NPO and there exists a polynomial time algorithm that, for any instance $i \in I_{\mathrm{p}}$, returns an optimal solution together with its value.
- In order to prove that a problem is in PO, one has to:
- Show that the problem is in NPO.
- Give a polynomial algorithm that finds always the optimal solution.

The class NP-hard

- An optimization problem Popt is NP-hard if, for any decision problem $\mathrm{Pd} \in \mathrm{NP}, \mathrm{Pd} \leq_{\mathrm{p}}$ Popt.
- In other words, if, assuming that we have a polynomial solution for Pd, then we can have a polynomial solution for Popt as well.
- As with NP-completeness, rather than reducing from all problems in NP, it is enough to reduce from one NPcomplete problem.

Tractable Optimization Problems

- Shortest Path:
- INPUT: A graph $G=(V, E)$, two nodes $i, j \in V$.
- OUTPUT: The shortest path in G from i to j.
- Shortest Path $\in P O$!

Shortest Path \in NPO

- Shortest Path:
- INPUT: A graph $G=(V, E)$, two nodes $i, j \in V$.
- OUTPUT: The shortest path in G from i to j.
- We first need to show that Shortest Path \in NPO
- The set of instance (graphs) is recognizable in polynomial time.
- A solution is a set of nodes: polynomial size and verification.
- Cost computable in polynomial time.

Polynomial solution of SP

1. BFS starting from i ;
2. First time you reach j it's done;

Polynomial solution of SP

1. BFS starting from i ;
2. First time you reach j it's done;

Polynomial solution of SP

1. BFS starting from i ;
2. First time you reach j it's done;

Polynomial solution of SP

1. BFS starting from i ;
2. First time you reach j it's done;

Polynomial solution of SP

1. BFS starting from i;

I don't visit twice the same node

Polynomial solution of SP

1. BFS starting from i ;
2. First time you reach j it's done;

$$
S P(i, j)=2
$$

I don't visit twice the same node

Polynomial solution of SP

1. BFS starting from i ;

2. First time you reach j it's done;

$$
S P(i, j)=2
$$

I don't visit twice the same node

In O(n+m) steps I am done

PO, NPO, NP-hard

- Clearly PO \subseteq NPO.
- Is $\mathrm{PO} \neq \mathrm{NPO}$?
- Do NP-hard problems belong to NPO \PO?
- What are the relations with P, NP, NPC?

Decision problem associated to an optimization problem

- TSP:
- INPUT: a graph with n nodes (cities) and weighted edges (distances).
- OUTPUT: the cost of the path visiting all nodes having the minimum total weight (the fastest tour of all cities).
- TSPd:
- INPUT: a graph with n nodes and weighted edges, and an integer k.
- OUTPUT: is there a path visiting all nodes and having total weight at most k?
- TSPd is the decision problem associated to the optmization problem TSP.

Decision problem associated to an optimization problem

- Optimization problem:
- INPUT: Instance x, set of admissible solutions, cost function f, \{min/max\}.
- OUTPUT: A solution of x that $\{m i n / m a x\}$ imizes f.
- Associated decision problem:
- INPUT: As above plus an integer k.
- OUTPUT: is there a solution of cost at most/least k ?
- For any optimization problem in NPO, the corresponding decision problem is in NP.

P, NP and PO, NPO

- For any problem Popt in NPO, if the associated decision problem Pd is NP-complete, then Popt is NP-hard.
- See for example how we proved that TSP is NPhard using that TSPd is NP-complete.
- If $P \neq N P$, then $P O \neq N P O$.

