
1

Summary so far

 We know everything about the complexity
classes of decision problems.

 A “simple” interesting model, indeed.
 What if “my problem” is NOT a decision

problem?
 How do I prove (un)tractability of other type of

problems?

2

NP-hard problems: the idea.

 There are problems to which problems in NPC can be
reduced, but that are not NP-complete because it is not
possible to prove that they belong to NP.

 These problems are NP-hard:
 They are at least as difficult as NP-complete problems.

 They are not in NP.

3

Protein folding
 Lattice model assumes amino

acids are of two types:
hydrophobic, which are black, and
hydrophilic, which are white

 They can take on discrete
positions only

 The energy value of a fold is
determined by the number of non-
adjacent hydrophobic residues

4

Protein folding

 Finding the optimal fold in the 2D lattice is NP-hard.

 There are at least an exponential number of possible
folds (as demonstrated by the staircase folds).

5

Optimization problems
 An optimization problem is (IP,SolP,fP,{max/min}) where:

 IP is the set of instances of P.

 SolP is the set of admissible solutions.

 fP is a measure of the goodness of a solution.

 {max/min} tells whether it is desiderable to maximize or minimize fP.

 The set of optimal solutions of an instance i ∈ IP is the subset of SolP that
maximizes/minimizes fP.

 You will meet more optimization problems that decision problems...

6

An example: minimun vertex cover

 minumum vertex cover:
 INPUT: A graph G=(V,E)

 OUTPUT: A subset of nodes U ⊆ V of minimum size
such that for each (i,j) ∈ E, either i ∈ U, or j ∈ U.

 The set IP is the set of all possible graphs.

 The set SolP is the subsets U of V such that for each (i,j) ∈ E,
either i ∈ U, or j ∈ U; i.e. It is a vertex cover of G.

 The function fP is |U|, and it has to be minimized.

7

Complexity Theory of Optimization Problems

 In bioinformatics they are more frequent than decision
problems:
 Parsimony in phylogeny.
 Consensus models.
 Sequences alignments.
 Genomic distances.
 Protein folding.
 Fragment Assembly.
 ...

 There is a whole theory somehow parallel and related to
that of decision problems.

8

The class NPO
 An optimization problem P = (IP,SolP,fP,{max/min})

belongs to the class NPO if and only if:

 The set IP is recognizable in polynomial time.
 All solutions have polynomial size and can be verified in

polynomial time.
 The function fP can be computed in polynomial time.

9

Minimum Vertex Cover ∈ NPO

 Minimum Vertex Cover is such that:
 The set of the instances is that of undirected graphs,

recognizable in polynomial time.
 Any solutions is a subset U of V, hence of polynomial size;

whether it is a vertex cover can be verified in polynomial time
by checking for all edges if each one of them involves a node
in U.

 The cost function is the size of U, that can be computed in
polynomial time.

10

The class PO

 An optimization problem belongs to PO if it is in NPO
and there exists a polynomial time algorithm that, for
any instance i ∈ IP, returns an optimal solution together
with its value.

 In order to prove that a problem is in PO, one has to:
 Show that the problem is in NPO.
 Give a polynomial algorithm that finds always the optimal

solution.

11

The class NP-hard

 An optimization problem Popt is NP-hard if, for any
decision problem Pd ∈ NP, Pd ≤p Popt.

 In other words, if, assuming that we have a polynomial
solution for Pd, then we can have a polynomial solution
for Popt as well.

 As with NP-completeness, rather than reducing from all
problems in NP, it is enough to reduce from one NP-
complete problem.

12

Tractable Optimization Problems

 Shortest Path:
 INPUT: A graph G=(V,E), two nodes i,j ∈ V.
 OUTPUT: The shortest path in G from i to j.

 Shortest Path ∈ PO!

13

Shortest Path ∈ NPO

 Shortest Path:
 INPUT: A graph G=(V,E), two nodes i,j ∈ V.
 OUTPUT: The shortest path in G from i to j.

 We first need to show that Shortest Path ∈ NPO
 The set of instance (graphs) is recognizable in polynomial time.
 A solution is a set of nodes: polynomial size and verification.
 Cost computable in polynomial time.

14

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

15

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

16

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1

17

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1

18

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1 2

2

I don’t visit twice the same node

19

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

SP(i,j)=2
1

1 2

2

I don’t visit twice the same node

20

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

SP(i,j)=2
1

1 2

2

I don’t visit twice the same node

In O(n+m) steps I am done

21

PO, NPO, NP-hard

 Clearly PO ⊆ NPO.

 Is PO ≠ NPO?

 Do NP-hard problems belong to NPO \ PO?

 What are the relations with P, NP, NPC?

22

Decision problem associated to an
optimization problem

 TSP:
 INPUT: a graph with n nodes (cities) and weighted edges (distances).
 OUTPUT: the cost of the path visiting all nodes having the minimum total

weight (the fastest tour of all cities).

 TSPd:
 INPUT: a graph with n nodes and weighted edges, and an integer k.
 OUTPUT: is there a path visiting all nodes and having total weight at most

k?

 TSPd is the decision problem associated to the optmization
problem TSP.

23

Decision problem associated to an
optimization problem

 Optimization problem:
 INPUT: Instance x, set of admissible solutions, cost function f,

{min/max}.
 OUTPUT: A solution of x that {min/max}imizes f.

 Associated decision problem:
 INPUT: As above plus an integer k.
 OUTPUT: is there a solution of cost at most/least k?

 For any optimization problem in NPO, the
corresponding decision problem is in NP.

24

P, NP and PO, NPO

 For any problem Popt in NPO, if the associated
decision problem Pd is NP-complete, then Popt is
NP-hard.

 See for example how we proved that TSP is NP-
hard using that TSPd is NP-complete.

 If P ≠ NP, then PO ≠ NPO.

