
1

Summary so far

 We know everything about the complexity
classes of decision problems.

 A “simple” interesting model, indeed.
 What if “my problem” is NOT a decision

problem?
 How do I prove (un)tractability of other type of

problems?

2

NP-hard problems: the idea.

 There are problems to which problems in NPC can be
reduced, but that are not NP-complete because it is not
possible to prove that they belong to NP.

 These problems are NP-hard:
 They are at least as difficult as NP-complete problems.

 They are not in NP.

3

Protein folding
 Lattice model assumes amino

acids are of two types:
hydrophobic, which are black, and
hydrophilic, which are white

 They can take on discrete
positions only

 The energy value of a fold is
determined by the number of non-
adjacent hydrophobic residues

4

Protein folding

 Finding the optimal fold in the 2D lattice is NP-hard.

 There are at least an exponential number of possible
folds (as demonstrated by the staircase folds).

5

Optimization problems
 An optimization problem is (IP,SolP,fP,{max/min}) where:

 IP is the set of instances of P.

 SolP is the set of admissible solutions.

 fP is a measure of the goodness of a solution.

 {max/min} tells whether it is desiderable to maximize or minimize fP.

 The set of optimal solutions of an instance i ∈ IP is the subset of SolP that
maximizes/minimizes fP.

 You will meet more optimization problems that decision problems...

6

An example: minimun vertex cover

 minumum vertex cover:
 INPUT: A graph G=(V,E)

 OUTPUT: A subset of nodes U ⊆ V of minimum size
such that for each (i,j) ∈ E, either i ∈ U, or j ∈ U.

 The set IP is the set of all possible graphs.

 The set SolP is the subsets U of V such that for each (i,j) ∈ E,
either i ∈ U, or j ∈ U; i.e. It is a vertex cover of G.

 The function fP is |U|, and it has to be minimized.

7

Complexity Theory of Optimization Problems

 In bioinformatics they are more frequent than decision
problems:
 Parsimony in phylogeny.
 Consensus models.
 Sequences alignments.
 Genomic distances.
 Protein folding.
 Fragment Assembly.
 ...

 There is a whole theory somehow parallel and related to
that of decision problems.

8

The class NPO
 An optimization problem P = (IP,SolP,fP,{max/min})

belongs to the class NPO if and only if:

 The set IP is recognizable in polynomial time.
 All solutions have polynomial size and can be verified in

polynomial time.
 The function fP can be computed in polynomial time.

9

Minimum Vertex Cover ∈ NPO

 Minimum Vertex Cover is such that:
 The set of the instances is that of undirected graphs,

recognizable in polynomial time.
 Any solutions is a subset U of V, hence of polynomial size;

whether it is a vertex cover can be verified in polynomial time
by checking for all edges if each one of them involves a node
in U.

 The cost function is the size of U, that can be computed in
polynomial time.

10

The class PO

 An optimization problem belongs to PO if it is in NPO
and there exists a polynomial time algorithm that, for
any instance i ∈ IP, returns an optimal solution together
with its value.

 In order to prove that a problem is in PO, one has to:
 Show that the problem is in NPO.
 Give a polynomial algorithm that finds always the optimal

solution.

11

The class NP-hard

 An optimization problem Popt is NP-hard if, for any
decision problem Pd ∈ NP, Pd ≤p Popt.

 In other words, if, assuming that we have a polynomial
solution for Pd, then we can have a polynomial solution
for Popt as well.

 As with NP-completeness, rather than reducing from all
problems in NP, it is enough to reduce from one NP-
complete problem.

12

Tractable Optimization Problems

 Shortest Path:
 INPUT: A graph G=(V,E), two nodes i,j ∈ V.
 OUTPUT: The shortest path in G from i to j.

 Shortest Path ∈ PO!

13

Shortest Path ∈ NPO

 Shortest Path:
 INPUT: A graph G=(V,E), two nodes i,j ∈ V.
 OUTPUT: The shortest path in G from i to j.

 We first need to show that Shortest Path ∈ NPO
 The set of instance (graphs) is recognizable in polynomial time.
 A solution is a set of nodes: polynomial size and verification.
 Cost computable in polynomial time.

14

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

15

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

16

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1

17

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1

18

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

1

1 2

2

I don’t visit twice the same node

19

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

SP(i,j)=2
1

1 2

2

I don’t visit twice the same node

20

Polynomial solution of SP

i=v1 v2

j=v3v4

v5

1. BFS starting from i;
2. First time you reach j it’s done;

SP(i,j)=2
1

1 2

2

I don’t visit twice the same node

In O(n+m) steps I am done

21

PO, NPO, NP-hard

 Clearly PO ⊆ NPO.

 Is PO ≠ NPO?

 Do NP-hard problems belong to NPO \ PO?

 What are the relations with P, NP, NPC?

22

Decision problem associated to an
optimization problem

 TSP:
 INPUT: a graph with n nodes (cities) and weighted edges (distances).
 OUTPUT: the cost of the path visiting all nodes having the minimum total

weight (the fastest tour of all cities).

 TSPd:
 INPUT: a graph with n nodes and weighted edges, and an integer k.
 OUTPUT: is there a path visiting all nodes and having total weight at most

k?

 TSPd is the decision problem associated to the optmization
problem TSP.

23

Decision problem associated to an
optimization problem

 Optimization problem:
 INPUT: Instance x, set of admissible solutions, cost function f,

{min/max}.
 OUTPUT: A solution of x that {min/max}imizes f.

 Associated decision problem:
 INPUT: As above plus an integer k.
 OUTPUT: is there a solution of cost at most/least k?

 For any optimization problem in NPO, the
corresponding decision problem is in NP.

24

P, NP and PO, NPO

 For any problem Popt in NPO, if the associated
decision problem Pd is NP-complete, then Popt is
NP-hard.

 See for example how we proved that TSP is NP-
hard using that TSPd is NP-complete.

 If P ≠ NP, then PO ≠ NPO.

