
1

Summary so far

 We have seen how to establish whether “my problem” is
tractable or not:
 If I can think of a polynomial algorithm then it is tractable.

 If “my algorithm” is fast enough, then I am happy.
 It may be still that its complexity is too high with “my input size” and for

the short time allowed for “my application”. In this case I am in trouble.
 If I can reduce it from an untractable problem then it is

untractable.
 Its complexity is almost certainly too high with “my input size” and for

the short time allowed for “my application”. In this case I am in trouble.

 What to do when “I am in trouble”?

2

Tractability in Bioinformatics/1

 Assume an algorithm A in bioinformatics with running time O(n2)
for which the input is the whole data set in Genbank.

 Let us make the conservative estimate that the size of this input
doubles every nine months.

 Moore’s Law says that computer speed doubles every 18 months.

 Algorithm A today takes one hour to run on the fastest available
computer, and it will take eight hours to run on the fastest
available computer 18 months from now.

3

Tractability in Bioinformatics/2

On the other hand:
 There are problems in which the input size is small:

examples in phylogeny, genome rearrangement. Here
time complexity is not a issue in practice.

 There are problems whose solutions deserve long
running time: examples in fragment assembly for
genome sequencing.

 Average case behavior may be far from worst case.

4

Approximation algorithms

 I want “my solution” to “my optimization
problem” to:

 Find an optimal solution.
 In polynomial time.
 For any instance.

 Drop condition 2: Exponential algorithm; hardly
feasible.

 Drop condition 3 and/or 1: Heuristics.
 Drop condition 1: Approximations.

5

Approximations and Heuristics

 Approximation algorithm: I cannot find the optimal
solution in short time, so I find a “good” solution in short
time.

 Heuristics: I do “reasonable” assumptions that “most
probably”, or “almost always”, lead me to a “decent” –
“maybe” optimal – solution.

 Actually approximations are a special case of heuristics.

6

Approximation algorithms

 Approximation algorithms are thought for hard
optimization problems.

 Optimization problem (I,Sol,f,{max/min}):
 Assume that finding the solution that {max/min}imizes

f is too time consuming.
 Maybe I can find in reasonable time a solution in Sol

that is not too far from the optimal:
 A constant multiplicative factor.
 A delta away from it where delta appears in the complexity.

7

Approximation algorithms

 Optimization problem (I,Sol,f,{max/min}). what is
a solution in Sol ? Examples:
 TSP: any path visiting all cities (not necessarily of

minimum length).
 COMPATIBILITY: a set of k’≤ k compatible

characters.
 MINIMUM VERTEX COVER: a vertex cover (not

necessarily of minimum size).
 An alignment (not necessarily that of minimum cost).

8

Why Approximation algorithms?

 Why studying approximation algorithms:

 To design solutions to NP-hard problems.
 They are heuristics with a mathematically rigorous

model behind.
 They open a new world of complexity classes that

 Show how hard problems are, and
 It can help to solve open theoretical problems.

9

r-Approximation algorithms

 An algorithm is an r-approximation for an
optimization problem P if:
 It runs in polynomial time.
 Il always produces a solution ‘sol’ in Sol which is

within a factor r of the value ‘opt’ of the optimal
solution.

 In case “max f”, I have r<1 and I produce a solution sol
such that r opt ≤ sol ≤ opt

 In case “min f”, I have r>1 and I produce a solution sol such
that opt ≤ sol ≤ r opt.

10

Approximation of knapsack

 MAXIMUM KNAPSACK:
 INPUT: n items with profits p1,...,pn and sizes

a1,...,an, and integer b (capacity).
 OUTPUT: a subset of the items having total size not

greater than the capacity, and maximum total profit.
 Algorithm A:

 Sort the items in non-decreasing order of pi/ai.
 Take them in that order as long as they fit in the

knapsack.

11

2-approximation of knapsack

 Algorithm A:
 Sort the items in non-decreasing order of pi/ai.
 Take them in that order as long as they fit in the knapsack.
 At the end name ptot the total sum of profits pi of selected

items.
 Output max{ptot,pmax} where pmax is the highest profit.

 It is a greedy algorithm.
 It is a 2-approximation: prove it as an exercise (hint:

check when ptot is bad).

12

Class APX

 APX is the class of all problems in NPO for
which there exist polynomial time r-
approximation algorithms with r≥1.

 MAX-KNAPSACK is in APX, but also MAX-SAT,
MIN-VERTEX COVER, and also some problems
in bioinformatics...

13

Reversal Distance is in APX

 Two genomic sequences G1 and G2 given as two
permutations of the set of labels {1,..,n}.

 The Reversal Distance between G1 and G2 is the
minum number of reversals that transform G1 in G2.

 Ex. 1254763  1254367  1234567; RD=2.
 Computing the reversal distance is NP-hard.
 Considered relevant in genome rearrangments, also

knows as inversion distance.
 It is a metric.
 Tractability of signed version.

14

Breakpoint Distance

 G1=Π(G2) and G2=1 2 ... n.
 The Breakpoint Distance between G1 and G2 is

the number of i’s in {0,..,n+1} such that |G1[i]-
G1[i+1]|≠1, assuming G1[0]=0 and G1[n+1]=n+1.

 The breakpoint distance can be computed in
linear time.

 The breakpoint distance is a 2-approximation of
the reversal distance.

15

Syntenic Distance is in APX

 A genome is seen as m sets (chromosomes) of elements over a
set of n objects (genes).

 Ex. G1={1,2,3},{2,5,6},{4} and G2={1,2,5},{3,6},{4}.
 The Syntenic Distance between G1 and G2 is the minimum

number of translocations, fusions and fissions that transform G1
into G2.

 It is a metric.
 Canonical version: m sets to be transformed into {1}{2}...{n}.
 The trivial m-1 fusions + n-1 fissions is a 2-approximations.
 Practically uninteresting compared to the worst case exponential

exact branch and bound solution.

16

On approximability

 There are problems that can be approximated
more or better than others.

 And some that cannot be approximated at all...

 MIN-TSP, MAX-CLIQUE are in NPO but
provably not in APX (unless P=NP)...

17

Not approximability in bioinformatics

 The multiple sequence alignment problem is NP-
hard with respect to the number k of sequences
k.

 Does the problem become tractable under
reasonable biological assumptions, such as
using a different (biologically significant) scoring
schemes, limiting the number of gaps that can
be inserted?

18

Computational complexity of multiple
sequence alignment

 [recent result] For every scoring scheme “used by biologists”, the
multiple sequence alignment problem is NP-hard. This remains
true even if the number and size of gaps that can be inserted into
each sequence is restricted in “the most severe” way possible.

 The multiple alignment problem cannot be approximated, even if
the number and size of gaps that can be inserted into each
sequence is most severely restricted.

19

A few words about the proof

 These negative results were proved by reducing the
MAX-CUT problem for graphs to the multiple sequence
alignment problem.

 The idea: given a simple graph G, a multiple sequence
alignment problem is constructed in such a way that from
a (nearly) optimal solution of the sequence alignment
problem a cut in the graph G of (nearly) maximal size
can be reconstructed in polynomial time.

20

The practice of multiple alignment

 The most frequently used multiple sequence alignment
algorithm used in practice is CLUSTAL.

 This is a heuristic algorithm for which no performance
guarantee is known.

 There are more accurate heuristics solutions that are
slower.

21

Approximation and heuristics strategies

 Greedy algorithms (knapsack).
 Dynamic Programming (alignments).
 (Integer) Linear Programming (SNPs).
 Computing lower and upper bounds

(distances).
 ... Intuition!

22

Heuristics: the idea
 Il non determinismo consente di “controllare” un numero

esponenziale di possibilità in tempo polinomiale.

 La simulazione di questo potente meccanismo in tempo
deterministico polinomiale significherebbe che:
 tutti i problemi verificabili efficientemente possiedono insospettate

proprietà che si prestano ad essere sfruttate anche per la loro risoluzione;
 per un'ampia classe di problemi, la ricerca esaustiva può essere sostituita

da procedure efficienti. Non esaustive, ma quasi...

23

Branch and bound
 Branch and bound for looking for a k-clique in a

graph (problem useful for some motifs finding
strategies).

 In the graph remove nodes that have less than
k adjacent nodes.

 It can result very fast in practice.

24

SOLUZIONI

What follows are solutions to exercises and ideas of
exercises.

25

Proof of 2-approx of knapsack/1

 A runs in O(n log n) time.
 Let j be the first item not selected by A; ptot is the sum

of the pi’s of the first j-1 elements (sorted by pi/ai) that
has atot < b occupancy.

 We have that opt < ptot + pj because:
 Exchanging any subset of selected items with any of the

unselected s.t. occupancy ≤ atot, does not incresae profit 
opt < ptot + max possible profit filling the free (b-atot) space.

 atot+aj > b  opt ≤ ptot+pj/aj(b -atot) < ptot + pj.

26

Proof of 2-approx of knapsack/2

Hence opt < ptot + pj
 If pj ≤ ptot then opt < 2 ptot ≤ 2 max{ptot,pmax}
 If pj > ptot then pmax ≥ pj > ptot and then

opt < ptot+pj ≤ ptot+pmax < 2pmax = 2max{ptot,pmax}

In both cases max{ptot,pmax} is a 2-approximation
of opt because opt/2 ≤ max{ptot,pmax} ≤ opt

