Summary so far

= We have seen how to establish whether “my problem” is
tractable or not:

= If I can think of a polynomial algorithm then it is tractable.
« If “my algorithm” is fast enough, then | am happy.

« It may be still that its complexity is too high with “my input size” and for
the short time allowed for “my application”. In this case | am in trouble.

= If | can reduce it from an untractable problem then it is
untractable.
= Its complexity is almost certainly too high with “my input size” and for
the short time allowed for “my application”. In this case | am in trouble.

= \What to do when “l am in trouble”?

i Tractability in Bioinformatics/1

= Assume an algorithm A in bioinformatics with running time O(n?)
for which the input is the whole data set in Genbank.

= Let us make the conservative estimate that the size of this input
doubles every nine months.

= Moore's Law says that computer speed doubles every 18 months.

= Algorithm A today takes one hour to run on the fastest available
computer, and it will take eight hours to run on the fastest
available computer 18 months from now.

i Tractability in Bioinformatics/2

On the other hand:

= There are problems in which the input size is small:
examples in phylogeny, genome rearrangement. Here
time complexity is not a issue in practice.

= [here are problems whose solutions deserve long
running time: examples in fragment assembly for
genome sequencing.

= Average case behavior may be far from worst case.

:| Approximation algorithms

= | want “'my solution” to “my optimization
problem” to:
r=n FInd an optimal solution.
=<0 IN polynomial time.
==v FOr any instance.

= Drop condition 2: Exponential algorithm; hardly
feasible.

= Drop condition 3 and/or 1: Heuristics.
= Drop condition 1: Approximations.

i Approximations and Heuristics

= Approximation algorithm: | cannot find the optimal

solution in short time, so | find a "good” solution in short
time.

= Heuristics: | do “reasonable” assumptions that “most

probably”, or "almost always”, lead me to a “"decent” —
“maybe” optimal — solution.

= Actually approximations are a special case of heuristics.

5

:| Approximation algorithms

= Approximation algorithms are thought for hard
optimization problems.
= Optimization problem (I,Sol,f,{max/min}):
= Assume that finding the solution that {max/min}imizes
fis too time consuming.
= Maybe | can find in reasonable time a solution in Sol
that is not too far from the optimal:

= A constant multiplicative factor.

= A delta away from it where delta appears in the complexity.
6

:| Approximation algorithms

= Optimization problem (I,Sol,f,{max/min}). what is
a solution in Sol ? Examples:

=« [SP: any path visiting all cities (not necessarily of
minimum length).

=« COMPATIBILITY: a set of k' k compatible
characters.

« MINIMUM VERTEX COVER: a vertex cover (not
necessarily of minimum size).

= An alignment (not necessarily that of minimum cost).
7

:| Why Approximation algorithms?

= Why studying approximation algorithms:

= [0 design solutions to NP-hard problems.

= They are heuristics with a mathematically rigorous
model behind.
= They open a new world of complexity classes that

= Show how hard problems are, and
= It can help to solve open theoretical problems.

:| r-Approximation algorithms

= An algorithm is an r-approximation for an
optimization problem P If:

= It runs in polynomial time.

= |l always produces a solution ‘sol’ in Sol which is
within a factor r of the value ‘opt’ of the optimal
solution.

= In case “max f’, | have r<1 and | produce a solution sol
such that r opt < sol < opt

= In case “min f*, | have r>1 and | produce a solution sol such
that opt < sol < r opt.

:| Approximation of knapsack

= MAXIMUM KNAPSACK:

= INPUT: n items with profits p1,...,pn and sizes
al,...,an, and integer b (capacity).

= OUTPUT: a subset of the items having total size not
greater than the capacity, and maximum total profit.

= Algorithm A:

= Sort the items in non-decreasing order of pi/ai.

»« Take them in that order as long as they fit in the
knapsack.

10

:| 2-approximation of knapsack

= Algorithm A:

« Sort the items in non-decreasing order of pi/ai.

= Take them in that order as long as they fit in the knapsack.

= At the end name ptot the total sum of profits pi of selected
items.

= Output max{ptot,pmax} where pmax is the highest profit.
= Itis a greedy algorithm.

= It is a 2-approximation: prove it as an exercise (hint:
check when ptot is bad).

11

:| Class APX

= APX is the class of all problems in NPO for
which there exist polynomial time r-
approximation algorithms with r=1.

» MAX-KNAPSACK is in APX, but also MAX-SAT,
MIN-VERTEX COVER, and also some problems
in bioinformatics...

12

:| Reversal Distance is in APX

Two genomic sequences G1 and G2 given as two
permutations of the set of labels {1,..,n}.

The Reversal Distance between G1 and G2 is the
minum number of reversals that transform G1 in G2.

Ex. 1254763 - 1254367 - 1234567; RD=2.
Computing the reversal distance is NP-hard.

Considered relevant in genome rearrangments, also
knows as inversion distance.

It IS a metric.

Tractability of signed version.
13

:| Breakpoint Distance

» G1=1(G2) and G2=1 2 ... n.

= The Breakpoint Distance between G1 and G2 is
the number of i's in {0,..,n+1} such that |G1[i]-
G1[i+1]|#1, assuming G1[0]=0 and G1[n+1]=n+1.

= [he breakpoint distance can be computed in
linear time.

= The breakpoint distance is a 2-approximation of
the reversal distance.

14

:| Syntenic Distance is in APX

A genome is seen as m sets (chromosomes) of elements over a
set of n objects (genes).

Ex. G1={1,2,3},{2,5,6},{4} and G2={1,2,5},{3,6},{4}.

The Syntenic Distance between G1 and G2 is the minimum

number of translocations, fusions and fissions that transform G1
into G2.

It is a metric.
Canonical version: m sets to be transformed into {1}{2}...{n}.
The trivial m-1 fusions + n-1 fissions is a 2-approximations.

Practically uninteresting compared to the worst case exponential
exact branch and bound solution.

15

:| On approximability

= [here are problems that can be approximated
more or better than others.

= And some that cannot be approximated at all...

= MIN-TSP, MAX-CLIQUE are in NPO but
provably not in APX (unless P=NP)...

16

| Not approximability in bioinformatics

= [he multiple sequence alignment problem is NP-
hard with respect to the number k of sequences
K.

= Does the problem become tractable under
reasonable biological assumptions, such as
using a different (biologically significant) scoring
schemes, limiting the number of gaps that can
be inserted?

17

Computational complexity of multiple

Sﬁquence alignment

[recent result] For every scoring scheme “used by biologists”, the
multiple sequence alignment problem is NP-hard. This remains
true even if the number and size of gaps that can be inserted into
each sequence is restricted in “the most severe” way possible.

The multiple alignment problem cannot be approximated, even if
the number and size of gaps that can be inserted into each
sequence is most severely restricted.

18

3| few words about the proof

= [hese negative results were proved by reducing the
MAX-CUT problem for graphs to the multiple sequence
alignment problem.

= [he idea: given a simple graph G, a multiple sequence
alignment problem is constructed in such a way that from
a (nearly) optimal solution of the sequence alignment
problem a cut in the graph G of (nearly) maximal size
can be reconstructed in polynomial time.

19

The practice of multiple alignment

= The most frequently used multiple sequence alignment
algorithm used in practice is CLUSTAL.

= This is a heuristic algorithm for which no performance
guarantee is known.

= [here are more accurate heuristics solutions that are
slower.

20

Agproximation and heuristics strategies

= Greedy algorithms (knapsack).
= Dynamic Programming (alignments).
= (Integer) Linear Programming (SNPs).

= Computing lower and upper bounds
(distances).

= ... Intuition!

21

Heuristics: the idea

= Il non determinismo consente di “controllare” un numero
esponenziale di possibilita in tempo polinomiale.

= La simulazione di questo potente meccanismo in tempo
deterministico polinomiale significherebbe che:

= tutti i problemi verificabili efficientemente possiedono insospettate
proprieta che si prestano ad essere sfruttate anche per la loro risoluzione;

= per un'ampia classe di problemi, la ricerca esaustiva puo essere sostituita
da procedure efficienti. Non esaustive, ma quasi...

22

i Branch and bound

= Branch and bound for looking for a k-clique in a
graph (problem useful for some motifs finding
strategies).

= In the graph remove nodes that have less than
kK adjacent nodes.

= It can result very fast in practice.

23

SOLUZIONI

What follows are solutions to exercises and ideas of
exercises.

24

:| Proof of 2-approx of knapsack/1

= Arunsin O(n log n) time.

= Let | be the first item not selected by A; ptot is the sum
of the pi’'s of the first j-1 elements (sorted by pi/ai) that
has atot < b occupancy.

= We have that opt < ptot + pj because:

« Exchanging any subset of selected items with any of the
unselected s.t. occupancy < atot, does not incresae profit 2

opt < ptot + max possible profit filling the free (b-atot) space.
« atot+aj > b = opt =< ptot+pj/aj(b -atot) < ptot + p;j.

25

:| Proof of 2-approx of knapsack/2

Hence opt < ptot + pj
= |f pj = ptot then opt < 2 ptot < 2 max{ptot,pmax}

= |f pj > ptot then pmax = pj > ptot and then
opt < ptot+pj = ptot+pmax < 2pmax = 2max{ptot,pmax}

In both cases max{ptot,pmax} is a 2-approximation
of opt because opt/2 < max{ptot,pmax} < opt

26

