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High Level Thesis

Data Structures + Data Compression      Faster Algorithms

Design space-efficient ad-hoc data structures, 
both from a theoretical and practical perspective, 

that support fast data extraction.

Data compression & Fast Retrieval 
together.
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Clustered Elias-Fano Indexes - TOIS’17

Every encoder represents each sequence individually.

No exploitation of redundancy.

Idea: encode clusters of posting lists.
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Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

reference list

R

log u bits
R << u
log R bitsVS

Problems
1. Build the clusters. 
2. Synthesise the reference list.

NP-hard problem
already for a simplified formulation.
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Clustered Elias-Fano Indexes - TOIS’17

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%) Much faster than BIC (103% on average)

Slightly slower than PEF (20% on average)
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(Integer) Dynamic Ordered Sets

A dynamic ordered set S is a data structure representing n 
keys and supporting the following operations: 
• Insert(x) inserts x in S 

• Delete(x) deletes x from S 

• Search(x) checks whether x belongs to S 
• Minimum() returns the minimum element of S 
• Maximum() returns the maximum element of S 
• Predecessor(x) returns max{y ∈ S : y < x} 

• Successor(x) returns min{y ∈ S : y ≥ x}
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Challenge
How to optimally solve the integer dynamic 
ordered set problem in compressed space?

In the comparison model this is 
solved optimally by any self-balancing 
tree data structure in O(log n) time and 
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More efficient solutions there exist if the 
considered keys are integers drawn 
from a bounded universe of size u.
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Motivation

Integer Data Structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

Elias-Fano Encoding
• EF(S(n,u)) = n log(u/n) + 2n bits to 

encode an ordered integer 
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor
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Motivation

Integer Data Structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

Elias-Fano Encoding
• EF(S(n,u)) = n log(u/n) + 2n bits to 

encode an ordered integer 
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

   space
+ time 
-

dynamic+
space+
static-

+ time

Can we grab the best from both?

?



For u = nγ, γ =    (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1
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Dynamic Elias-Fano Representation - CPM’17
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• O(1) Access 
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
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Dynamic Elias-Fano Representation - CPM’17

Y is an Y-fast trie 
• O(loglog n) time

P is a dynamic prefix-sums DS 
• O(b) time

O(n / (b x log2 n)) x O(log u) = o(n) bits each

upper level

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size 
b = log n / loglog n

P
Yblock of 

log2 n 
mini blocks

T T T T lower level
T is a k-ary tree of constant height: 
• O(loglog n) time 
• O(log2 n loglog n) bits

o(n) bits

o(n) bits

+ some technicalities
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N-grams

Strings of N words.
N typically ranges from 1 to 5.

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.
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High-level idea: map a word ID to the position it takes within its sibling IDs 
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.
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Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation 
gcc 5.4.1 with the highest 

optimization setting
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Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine 
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation 
gcc 5.4.1 with the highest 

optimization setting

will you notice this?• brings approximately 30% more time
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Compressed Tries with Context-based ID Remapping - SIGIR’17
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Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X
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On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation
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Thanks for your attention, 
time, patience!

Any questions?
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