
Space and Time-Efficient
Data Structures

for Massive Datasets
Giulio Ermanno Pibiri

giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Computer Science Department
University of Pisa

10/10/2017

1

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

2

High Level Thesis

Data Structures + Data Compression Faster Algorithms

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

Data compression & Fast Retrieval
together.

3

Published Results

1. Clustered Elias-Fano Indexes

2. Dynamic Elias-Fano Representation

3. Efficient Data Structures for Massive N-Gram Datasets

3

Published Results

1. Clustered Elias-Fano Indexes Journal paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2017

2. Dynamic Elias-Fano Representation

3. Efficient Data Structures for Massive N-Gram Datasets

3

Published Results

1. Clustered Elias-Fano Indexes Journal paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2017

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM), 2017

2. Dynamic Elias-Fano Representation

3. Efficient Data Structures for Massive N-Gram Datasets

3

Published Results

1. Clustered Elias-Fano Indexes Journal paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2017

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM), 2017

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR), 2017

2. Dynamic Elias-Fano Representation

3. Efficient Data Structures for Massive N-Gram Datasets

3

Published Results

http://pages.di.unipi.it/pibiri/
EVERYTHING that I do (papers, slides and code) is fully accessible at my page:

1. Clustered Elias-Fano Indexes Journal paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2017

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM), 2017

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR), 2017

2. Dynamic Elias-Fano Representation

3. Efficient Data Structures for Massive N-Gram Datasets

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of
queries, such as: “return me all documents in which terms {t1,…,tk}
occur”.

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of
queries, such as: “return me all documents in which terms {t1,…,tk}
occur”.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of
queries, such as: “return me all documents in which terms {t1,…,tk}
occur”.

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of
queries, such as: “return me all documents in which terms {t1,…,tk}
occur”.

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

5

Clustered Elias-Fano Indexes - TOIS’17

Every encoder represents each sequence individually.

No exploitation of redundancy.

5

Clustered Elias-Fano Indexes - TOIS’17

Every encoder represents each sequence individually.

No exploitation of redundancy.

Idea: encode clusters of posting lists.

6

Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

6

Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

reference list

R

6

Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

reference list

R

6

Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

reference list

R

log u bits
R << u
log R bitsVS

6

Clustered Elias-Fano Indexes - TOIS’17

cluster of posting lists

reference list

R

log u bits
R << u
log R bitsVS

Problems
1. Build the clusters.
2. Synthesise the reference list.

NP-hard problem
already for a simplified formulation.

7

Clustered Elias-Fano Indexes - TOIS’17

7

Clustered Elias-Fano Indexes - TOIS’17

7

Clustered Elias-Fano Indexes - TOIS’17

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%)

7

Clustered Elias-Fano Indexes - TOIS’17

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%)

7

Clustered Elias-Fano Indexes - TOIS’17

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%) Much faster than BIC (103% on average)

Slightly slower than PEF (20% on average)

8

(Integer) Dynamic Ordered Sets

A dynamic ordered set S is a data structure representing n
keys and supporting the following operations:
• Insert(x) inserts x in S

• Delete(x) deletes x from S

• Search(x) checks whether x belongs to S
• Minimum() returns the minimum element of S
• Maximum() returns the maximum element of S
• Predecessor(x) returns max{y ∈ S : y < x}

• Successor(x) returns min{y ∈ S : y ≥ x}

8

(Integer) Dynamic Ordered Sets

A dynamic ordered set S is a data structure representing n
keys and supporting the following operations:
• Insert(x) inserts x in S

• Delete(x) deletes x from S

• Search(x) checks whether x belongs to S
• Minimum() returns the minimum element of S
• Maximum() returns the maximum element of S
• Predecessor(x) returns max{y ∈ S : y < x}

• Successor(x) returns min{y ∈ S : y ≥ x}

In the comparison model this is
solved optimally by any self-balancing
tree data structure in O(log n) time and

O(n) space.

More efficient solutions there exist if the
considered keys are integers drawn
from a bounded universe of size u.

8

(Integer) Dynamic Ordered Sets

A dynamic ordered set S is a data structure representing n
keys and supporting the following operations:
• Insert(x) inserts x in S

• Delete(x) deletes x from S

• Search(x) checks whether x belongs to S
• Minimum() returns the minimum element of S
• Maximum() returns the maximum element of S
• Predecessor(x) returns max{y ∈ S : y < x}

• Successor(x) returns min{y ∈ S : y ≥ x}

Challenge
How to optimally solve the integer dynamic
ordered set problem in compressed space?

In the comparison model this is
solved optimally by any self-balancing
tree data structure in O(log n) time and

O(n) space.

More efficient solutions there exist if the
considered keys are integers drawn
from a bounded universe of size u.

9

Motivation

Integer Data Structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

Elias-Fano Encoding
• EF(S(n,u)) = n log(u/n) + 2n bits to

encode an ordered integer
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

 space
+ time
-

dynamic+
space+
static-

+ time

9

Motivation

Integer Data Structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

Elias-Fano Encoding
• EF(S(n,u)) = n log(u/n) + 2n bits to

encode an ordered integer
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

 space
+ time
-

dynamic+
space+
static-

+ time

9

Motivation

Integer Data Structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

Elias-Fano Encoding
• EF(S(n,u)) = n log(u/n) + 2n bits to

encode an ordered integer
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

 space
+ time
-

dynamic+
space+
static-

+ time

Can we grab the best from both?

?

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

10

Dynamic Elias-Fano Representation - CPM’17

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access
• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 3

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

10

Dynamic Elias-Fano Representation - CPM’17

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access
• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 3

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

10

Dynamic Elias-Fano Representation - CPM’17

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access
• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 3

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

10

Dynamic Elias-Fano Representation - CPM’17

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access
• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 3

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

10

Dynamic Elias-Fano Representation - CPM’17

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 2

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access
• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 3

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

block of
log2 n

mini blocks

T

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

block of
log2 n

mini blocks

T T T T

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

block of
log2 n

mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

block of
log2 n

mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

Yblock of
log2 n

mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

Yblock of
log2 n

mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

Yblock of
log2 n

mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

P
Yblock of

log2 n
mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

Y is an Y-fast trie
• O(loglog n) time

P is a dynamic prefix-sums DS
• O(b) time

O(n / (b x log2 n)) x O(log u) = o(n) bits each

upper level

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

P
Yblock of

log2 n
mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

Y is an Y-fast trie
• O(loglog n) time

P is a dynamic prefix-sums DS
• O(b) time

O(n / (b x log2 n)) x O(log u) = o(n) bits each

upper level

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

P
Yblock of

log2 n
mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits

o(n) bits

o(n) bits

11

Dynamic Elias-Fano Representation - CPM’17

Y is an Y-fast trie
• O(loglog n) time

P is a dynamic prefix-sums DS
• O(b) time

O(n / (b x log2 n)) x O(log u) = o(n) bits each

upper level

S

EF(S(n,u)) = n log(u/n) + 2n bits mini block of size
b = log n / loglog n

P
Yblock of

log2 n
mini blocks

T T T T lower level
T is a k-ary tree of constant height:
• O(loglog n) time
• O(log2 n loglog n) bits

o(n) bits

o(n) bits

+ some technicalities

12

N-grams

Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

12

N-grams

Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

12

N-grams

Strings of N words.
N typically ranges from 1 to 5.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

12

N-grams

Strings of N words.
N typically ranges from 1 to 5.

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

13

Compressed Tries with Context-based ID Remapping - SIGIR’17

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

14

Compressed Tries with Context-based ID Remapping - SIGIR’17

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

will you notice this?• brings approximately 30% more time

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

15

Compressed Tries with Context-based ID Remapping - SIGIR’17

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

16

On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation

se
co
nd
s

counting normalization interpolation

1117

36

20
30

60

35

52

104

Tongrams - 1
Tongrams - 2
Tongrams - 4

1,255,027
20,431,391
82,815,629

153,984,231
196,779,246

——————
455,265,524

1.3 GB
233,035,325 total words

se
co
nd
s

counting normalization interpolation

2226
46

3242

77
5362

112
84

104

179
148155

297
Tongrams - 1
Tongrams - 2
Tongrams - 4
Tongrams - 8
Tongrams - 16 15,039,323

44,033,774
142,894,817
280,714,113
381,284,741

——————
863,966,768

3.2 GB
495,527,349 total words

16

On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation

se
co
nd
s

counting normalization interpolation

1117

36

20
30

60

35

52

104

Tongrams - 1
Tongrams - 2
Tongrams - 4

se
co
nd
s

counting normalization interpolation

1117

36

51
60

138 KenLM
Tongrams

1,255,027
20,431,391
82,815,629

153,984,231
196,779,246

——————
455,265,524

1.3 GB
233,035,325 total words

se
co
nd
s

counting normalization interpolation

2226
46

3242

77
5362

112
84

104

179
148155

297
Tongrams - 1
Tongrams - 2
Tongrams - 4
Tongrams - 8
Tongrams - 16 15,039,323

44,033,774
142,894,817
280,714,113
381,284,741

——————
863,966,768

3.2 GB
495,527,349 total words

16

On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation

se
co
nd
s

counting normalization interpolation

1117

36

20
30

60

35

52

104

Tongrams - 1
Tongrams - 2
Tongrams - 4

se
co
nd
s

counting normalization interpolation

1117

36

51
60

138 KenLM
Tongrams

1,255,027
20,431,391
82,815,629

153,984,231
196,779,246

——————
455,265,524

1.3 GB
233,035,325 total words

se
co
nd
s

counting normalization interpolation

2226
46

3242

77
5362

112
84

104

179
148155

297
Tongrams - 1
Tongrams - 2
Tongrams - 4
Tongrams - 8
Tongrams - 16 15,039,323

44,033,774
142,894,817
280,714,113
381,284,741

——————
863,966,768

3.2 GB
495,527,349 total words

3.89X

16

On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation

se
co
nd
s

counting normalization interpolation

1117

36

20
30

60

35

52

104

Tongrams - 1
Tongrams - 2
Tongrams - 4

se
co
nd
s

counting normalization interpolation

1117

36

51
60

138 KenLM
Tongrams

1,255,027
20,431,391
82,815,629

153,984,231
196,779,246

——————
455,265,524

1.3 GB
233,035,325 total words

se
co
nd
s

counting normalization interpolation

2226
46

3242

77
5362

112
84

104

179
148155

297
Tongrams - 1
Tongrams - 2
Tongrams - 4
Tongrams - 8
Tongrams - 16

se
co
nd
s

counting normalization interpolation

2226
46

153
171

261

KenLM
Tongrams

15,039,323
44,033,774

142,894,817
280,714,113
381,284,741

——————
863,966,768

3.2 GB
495,527,349 total words

3.89X

16

On going work (preliminary results)

Scalable Modified Kneser-Ney Language Model Estimation

se
co
nd
s

counting normalization interpolation

1117

36

20
30

60

35

52

104

Tongrams - 1
Tongrams - 2
Tongrams - 4

se
co
nd
s

counting normalization interpolation

1117

36

51
60

138 KenLM
Tongrams

1,255,027
20,431,391
82,815,629

153,984,231
196,779,246

——————
455,265,524

1.3 GB
233,035,325 total words

se
co
nd
s

counting normalization interpolation

2226
46

3242

77
5362

112
84

104

179
148155

297
Tongrams - 1
Tongrams - 2
Tongrams - 4
Tongrams - 8
Tongrams - 16

se
co
nd
s

counting normalization interpolation

2226
46

153
171

261

KenLM
Tongrams

15,039,323
44,033,774

142,894,817
280,714,113
381,284,741

——————
863,966,768

3.2 GB
495,527,349 total words

3.89X

6.22X

17

Planned work for this year

1. Conclude two journal extensions
TCS

VLDBJ

17

Planned work for this year

1. Conclude two journal extensions

2. Develop other research ideas

TCS

VLDBJ

17

Planned work for this year

1. Conclude two journal extensions

2. Develop other research ideas

TCS

VLDBJ

Inverted Indexes with false positives allowed.

17

Planned work for this year

1. Conclude two journal extensions

2. Develop other research ideas

TCS

VLDBJ

Inverted Indexes with false positives allowed.

Data structures for features repository.

17

Planned work for this year

1. Conclude two journal extensions

2. Develop other research ideas

TCS

VLDBJ

Inverted Indexes with false positives allowed.

Compressed tries based on double-arrays.

Data structures for features repository.

17

Planned work for this year

1. Conclude two journal extensions

2. Develop other research ideas

3. 6 months abroad.

TCS

VLDBJ

Inverted Indexes with false positives allowed.

Compressed tries based on double-arrays.

Data structures for features repository.

Thanks for your attention,
time, patience!

Any questions?

18

