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Problem

Consider a sequence S[0,n) of n positive and monotonically 
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original 
integer is self-delimited, using as few as possible bits?
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Huge research corpora describing different space/time trade-offs.

• Elias gamma/delta [Salomon-2007] 
• Variable Byte [Salomon-2007] 
• Varint-G8IU [Stepanov et al.-2011] 
• Simple-9/16 [Anh and Moffat 2005-2010] 
• PForDelta (PFD) [Zukowski et al.-2006] 
• OptPFD [Yan et al.-2009] 
• Binary Interpolative Coding [Moffat and Stuiver-2000]
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Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents 
in which t appears.

Given a textual collection D, each document can be seen as a 
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.
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Lt2=[4, 5]
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Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, 
such as: “return me all documents in which terms {t1,…,tk} occur”.
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Genesis - 1970s

Peter Elias 
[1923 - 2001]

Robert Fano 
[1917 -]

Robert Fano. On the number of bits required to implement an associative 
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address 
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).
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Robert Fano 
[1917 -]

Robert Fano. On the number of bits required to implement an associative 
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address 
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Sebastiano Vigna. Quasi-succinct indices. 

In Proceedings of the 6-th ACM International Conference 
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!
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X is the set of all monotone sequence 
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ( (u+n
n

(less than half a bit away [Elias-1974])
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u
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n
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B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2
rank1(7) = 4

select0(5) = 10
select1(7) = 11

rank0/1(select0/1(i)) = i-1
rank0/1(i) + rank1/0(i) = i

rank1/0(select0/1(i)) = select0/1(i) - i
Relations

1
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rank             ~3% more bits
select        ~0.39% more bits

with practical constant-time 
selection
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Complexity: O(1)
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Performance 1

n u access successor iterated 
successor iterator

~2.4x106 ~1.76x109 27.6 ns 0.24 µs 7.61 ns 2.34 ns

~10.5x106 ~7.83x109 41.4 ns 0.29 µs 7.61 ns 2.36 ns

n uncompressed 
sequence bytes Elias-Fano bytes compression 

ratio

~2.4x106 18,787,288 3,530,704 532%

~10.5x106 83,565,504 15,704,680 532%

4 Intel i7-4790K cores (8 threads) clocked at 4Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits

C++11, compiled with gcc 5.3.0 with the highest optimisation setting
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Performance

Datasets

Space

AND queries (timings are in milliseconds)

Numbers from [Ottaviano and Venturini-2014].

2

24 Intel Xeon E5-2697 Ivy Bridge cores 
(48 threads) clocked at 2.70Ghz, with 
64 GB RAM, running Linux 3.12.7, 64 
bits

C++11, compiled with gcc 4.9 with the 
highest optimisation setting
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Killer applications

1. Inverted Indexes
Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM 

International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In 
Proceedings of the 37-th ACM International Conference on Research and 

Development in Information Retrieval (SIGIR), 273-282 (2014).
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Available Implementations

16

Library Author(s) Link Language

folly Facebook, Inc.
https://

github.com/
facebook/folly

C++

sdsl Simon Gog
https://

github.com/
simongog/sdsl-lite

C++

ds2i
Giuseppe Ottaviano 
Rossano Venturini 
Nicola Tonellotto

https://
github.com/ot/ds2i C++

Sux Sebastiano Vigna http://
sux.di.unimi.it Java/C++

https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/


Summary
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Elias-Fano encodes monotone integer sequences 
in space close to the information theoretic minimum, 
while allowing powerful search operations, namely 

predecessor/successor queries and random access.

Successfully applied to crucial problems, such as 
inverted indexes and social graphs representation.

Several optimized software implementations are available.
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Thanks for your attention, 
time, patience!

Any questions?
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