Elias-Fano Encoding

Succinct representation of monotone integer sequences with search operations

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it
Computer Science Department
University of Pisa

21/06/2016

Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}-1] \leq \mathrm{S}[\mathrm{i}]$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}-1] \leq \mathrm{S}[\mathrm{i}]$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

- Elias gamma/delta [Salomon-2007]
- Variable Byte [Salomon-2007]
- Varint-G8IU [Stepanov et al.-2011]
- Simple-9/16 [Anh and Moffat 2005-2010]
- PForDelta (PFD) [Zukowski et al.-2006]
- OptPFD [Yan et al.-2009]
- Binary Interpolative Coding [Moffat and Stuiver-2000]

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,}, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,}, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Genesis - 1970s

Peter Elias
[1923-2001]

Robert Fano [1917-]

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Genesis - 1970s

Peter Elias
[1923-2001]

Robert Fano
[1917-]

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Sebastiano Vigna. Quasi-succinct indices.
In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

3	1
4	2
7	3
13	4
14	5
15	6
21	
43	8

Elias-Fano solution

000011	3
000100	4
000111	7
001101	13
001110	14
001111	15
010101	21
101011	$u=43$

Elias-Fano solution

Elias-Fano solution

$$
\begin{aligned}
& \text { high low } \\
& \lceil\lg n\rceil\lceil g(u / n)\rceil \\
& 000011 \\
& \text { з } 000100 \\
& 000111 \\
& 001101 \\
& \text { з } 001110 \\
& 0100 \\
& u=43 \\
& L=011100111101110111101011
\end{aligned}
$$

Elias-Fano solution

Elias-Fano solution

		high $\lceil[\lg]$	low [$\mathrm{g}(\mathrm{u} / \mathrm{n})]$		
		000	011		
	3	000	100		
missing		000	111		
buckets		001	101		13
0011	3	001	110		145
0100		001	111		15 6
		010	101		217
		101	011		(43) 8
0110				$L=011100111101110$	10101
0111		3310	0100		

Elias-Fano solution

		high low $\lceil\lceil\mathrm{g}\rceil\rceil\lceil\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil$		
		000011		3
	3	000100		4
missing		000111		7
buckets		001101		13
0011	3	001110		14
0100		001111		15
		010101		21
		101011		(43)
0110			$L=011100111101110$	1010
0111		3100100	$H=11101110100$	100

$E F(S[0, n))=?$

$E F(S[0, n))=?$

$\lceil[g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

$$
\mathrm{EF}(\mathrm{~S}[0, \mathrm{n}))=\mathrm{n}\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil
$$

$\lceil g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

$$
\mathrm{EF}(\mathrm{~S}[0, \mathrm{n}))=\mathrm{n}\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil
$$

$\lceil g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$
n ones

Properties - Space

$$
\mathrm{EF}(\mathrm{~S}[0, \mathrm{n}))=\mathrm{n}\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil
$$

$\lceil g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

We store a 0 whenever we change bucket.
n ones

Properties - Space

$$
\mathrm{EF}(\mathrm{~S}[0, \mathrm{n}))=\mathrm{n}\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil
$$

「 $\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

We store a 0 whenever we change bucket.
n ones
$2^{\lceil\lg n\rceil}$ zeros

Properties - Space

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

$\lceil[g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

We store a 0 whenever we change bucket.
n ones
$2^{\lceil\lg n\rceil}$ zeros

Properties - Space

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

$\lceil[g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$
n ones
$2^{\lceil\lg n\rceil}$ zeros

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

$\lceil g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$
n ones

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

$\lceil g(u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set X is

$$
\lceil\lg |x|\rceil \text { bits. }
$$

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000000000000000000

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set X is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100000000000000

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100000000000

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100010000000

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000000

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000001

3	6	1011

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000001

With possible repetitions!
(weak monotonicity)

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is
bits.

$$
|x|=\binom{u+n}{n}
$$

000100100011000001

With possible repetitions!
(weak monotonicity)

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set \mathcal{X} is

bits.

$$
000100100011000001
$$

$$
\begin{array}{lll}
3 & 6 & 1011
\end{array}
$$

$$
\begin{aligned}
& |x|=\binom{u+n}{n} \\
& {\left[\lg \binom{u+n}{n}\right] \approx n \lg \frac{u+n}{n}}
\end{aligned}
$$

X is the set of all monotone sequence of length n drawn from a universe u.

With possible repetitions!
(weak monotonicity)

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set X is

$$
\lceil\lg |x| \mid \text { bits. }
$$

000100100011000001

361011
 17

With possible repetitions!
(weak monotonicity)

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

Is it good or not?
(less than half a bit away [Elias-1974])

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set x is

$$
\lceil\lg |x|\rceil \text { bits. }
$$

000100100011000001

$\begin{array}{lll}3 & 6 & 1011\end{array}$
 17

With possible repetitions!
(weak monotonicity)

access to each S[i] in O(1) worst-case

Properties - Operations

access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case
predecessor $(x)=\max \{S[i] \mid S[i]<x\}$ $\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\}$ queries in $O\left(\lg \frac{u}{n}\right)$ worst-case

access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

predecessor $(x)=\max \{S[i] \mid S[i]<x\}$ $\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\}$ queries in $O\left(\lg \frac{u}{n}\right)$ worst-case

access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

predecessor $(x)=\max \{S[i] \mid S[i]<x\}$ $\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\}$ queries in $O\left(\lg \frac{u}{n}\right)$ worst-case

but...

Properties - Operations

access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{aligned}
& \text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
& \text { successor }(x)=\min \{S[i] \mid S[i] \geq x\} \\
& \text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{aligned}
$$

but...
they need o(n) bits more space in order to support fast rank/select primitives on bitvector H

Properties - Operations

access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{aligned}
& \text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
& \text { successor }(x)=\min \{S[i] \mid S[i] \geq x\} \\
& \text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{aligned}
$$

but...
they need o(n) bits more space in order to support fast rank/select primitives on bitvector H

Definition

Given a bitvector B of n bits: rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$ select ${ }_{0 / 1}(\mathrm{i})=$ position of i-th 0/1

Succinct rank/select

Definition

Given a bitvector B of n bits: rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$ select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th 0/1

Examples
 $B=101011010101111010110101$

Succinct rank/select

Definition

Given a bitvector B of n bits: rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$ select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th 0/1

Examples
 $B=101011010101111010110101$ ranko(5) $=2$

Succinct rank/select

Definition

Given a bitvector B of n bits:
rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$
selecto/1 $(i)=$ position of i-th $0 / 1$

Examples
 $B=101011010101111010110101$ ranko(5) = 2
 $\operatorname{rank}_{1}(7)=4$

Succinct rank/select

Definition

Given a bitvector B of n bits:
rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$
selecto/1 $(i)=$ position of $i-t h 0 / 1$

Examples
 $B=101011010101111010110101$ ranko $_{0}(5)=2 \quad$ selecte $(5)=10$ $\operatorname{rank}_{1}(7)=4$

Succinct rank/select

Definition

Given a bitvector B of n bits:
rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$
select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th 0/1

Examples
 $B=101011010101111010110101$ ranko $_{0}(5)=2 \quad$ selecto $(5)=10$
 $\operatorname{rank}_{1}(7)=4 \quad \operatorname{select}_{1}(7)=11$

Definition

Given a bitvector B of n bits:
rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $[0, \mathrm{i})$
select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th $0 / 1$

Examples
 $$
B=101011010101111010110101
$$
 $$
\operatorname{rank}_{0}(5)=2 \quad \operatorname{select}(5)=10
$$
 $$
\operatorname{rank}_{1}(7)=4 \quad \operatorname{select}(7)=11
$$

Relations
rank $_{1 / 0}\left(\operatorname{select}_{0 / 1}(i)\right)=\operatorname{select}_{0 / 1}(i)-i$
ranko/1 $\left(s_{1}\right.$ lecto/1 $\left._{1}(i)\right)=i-1$
$\operatorname{rank}_{0 / 1}(\mathrm{i})+\operatorname{rank}_{1 / 0}(\mathrm{i})=\mathrm{i}$

Succinct rank/select

$O(1)$-solutions with $o(n)$ bits

rank
(multi)-layered index + precomputed table
[Jacobson-1989]

select

three-level directory tree
[Clark-1996]

Succinct rank/select

$O(1)$-solutions with o(n) bits

rank
(multi)-layered index + precomputed table [Jacobson-1989]
2^{30} bits $\rightarrow \sim 67 \%$ more bits!
select
three-level directory tree
[Clark-1996]

Succinct rank/select

$O(1)$-solutions with o(n) bits

rank
(multi)-layered index + precomputed table [Jacobson-1989]
2^{30} bits $\longrightarrow \sim 67 \%$ more bits!
select
three-level directory tree
[Clark-1996]

```
230}\mathrm{ bits }\longrightarrow~60% more bits
```


Succinct rank/select

$O(1)$-solutions with $o(n)$ bits
rank (multi)-layered index + precomputed table [Jacobson-1989]
2^{30} bits $\rightarrow \sim 67 \%$ more bits!

select

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:

- broadword programming
- interleaving
- Intel hardware popcnt instruction:

Long().bitCount (x) in Java
__builtin_popcountl(x) in C/C++

Succinct rank/select

$O(1)$-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989] 2^{30} bits $\longrightarrow \sim 67 \%$ more bits!

select

[Clark-1996]

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:

- broadword programming
- interleaving
- Intel hardware popcnt instruction:

rank $\longrightarrow \sim 3 \%$ more bits select $\rightarrow \sim 0.39 \%$ more bits

 with practical constant-time selectionLong().bitCount(x) in Java
__builtin_popcountl(x) in C/C++

access example

$$
S=[3,4,7,13,14,15,21,43]
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=?
\end{aligned}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=?
\end{aligned}
$$

```
H=1110111010001000
    L}=01110011110111011110101
    k= \lceilg(u/n)
```


access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=?
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{lg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=?
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{gg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=? \\
& \mathrm{H}=1110111010001000 \\
& L=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil \\
& \operatorname{access}(i)=\operatorname{select}_{1}(i)
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=?
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& H=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{Ig}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{access}(i)=\operatorname{rank}_{0}\left(\operatorname{select}_{1}(i)\right)$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001000
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{\| g}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{access}(i)=\operatorname{rank}_{0}\left(\operatorname{select}_{1}(i)\right)$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001000
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{g}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{access}(i)=\operatorname{rank}_{0}\left(\operatorname{select}_{1}(i)\right)$

$$
\operatorname{select}_{1}(\mathrm{i})-\mathrm{i}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001000
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{Ig}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{access}(i)=\operatorname{select}_{1}(i)-i$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \text { Recall: we store a } 0 \\
& \text { whenever we change } \\
& \text { bucket. } \\
& H=1110111010001000 \\
& L=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil \\
& \operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
\end{aligned}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \text { Recall: we store a } 0 \\
& \text { whenever we change } \\
& \text { bucket. } \\
& \mathrm{H}=1110111010001000 \\
& L=011100111101110111101011 \\
& \mathrm{k}=\lceil\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil \\
& \operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
\end{aligned}
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \operatorname{access}(7)=S[7]=?
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{lg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$$
\operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \operatorname{access}(7)=S[7]=?
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& H=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{lg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$$
\operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \operatorname{access}(7)=S[7]=010000
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{lg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$$
\operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \operatorname{access}(7)=S[7]=010101
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& H=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\| \mathrm{lg}(\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$$
\operatorname{access}(i)=\operatorname{select}_{1}(i)-i \ll k \mid L[(i-1) k, i k)
$$

access example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \operatorname{access}(4)=S[4]=001101 \\
& \operatorname{access}(7)=S[7]=010101
\end{aligned}
$$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=011100111101110111101011 \\
& \mathrm{k}=\left\lceil\mathrm{F}_{\mathrm{g}(\mathrm{u} / \mathrm{n})\rceil}\right.
\end{aligned}
$$

Complexity: $\mathrm{O}(1)$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

001100
$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor (12) =?

$$
h_{12}=001100
$$

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
h_{12}=001100
$$

$$
\begin{aligned}
& p_{1}=\operatorname{select}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selectect}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
h_{12}=001100
$$

$$
\begin{aligned}
& p_{1}=\operatorname{select}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selectect}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$\mathrm{H}=110111010001000$
$\mathrm{L}=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
h_{12}=001100
$$

$$
\begin{aligned}
& p_{1}=\operatorname{select}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{select}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$\mathrm{H}=\frac{1110111010001000}{11000}$
$L=011100111101110111101011$

successor example

$$
\begin{gathered}
\mathrm{S}=\left[\begin{array}{ccccc}
3, & 4, & 7, & 13, & 14, \\
1 & 2 & 3 & 4 & 21,43
\end{array}\right] \\
\text { successor }(12)=? \\
\mathrm{~h}_{12}=001100 \\
\mathrm{H}=1110111010001000 \\
\mathrm{~L}=0.1100111101110111101011
\end{gathered}
$$

$$
\begin{aligned}
& p_{1}=\operatorname{selecta}_{\theta}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selecte}_{\theta}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

successor example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \text { successor }(12)=? \\
& h_{12}=001100 \\
& \mathrm{H}=\frac{1110111010001000}{11000} \\
& L=011100111101110111101014 \\
& \text { binary search } \\
& \text { in [p1, } \mathrm{p}_{2} \text {) }
\end{aligned}
$$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

$$
\operatorname{successor}(12)=13
$$

$$
h_{12}=001100
$$

$$
\begin{aligned}
& p_{1}=\text { selecto }_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selectect}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$\mathrm{H}=\frac{1110111010001000}{11000}$
$L=011100111101110111101014$

binary search in [p1, p_{2})

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) $=13$

$$
h_{12}=001100
$$

$$
\begin{aligned}
& p_{1}=\text { selecto }\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selecta}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$\mathrm{H}=\frac{1110111010001000}{11000}$
$L=011100111101110111101014$

binary search in [p1, p_{2})

Complexity: $O\left(\lg \frac{\mathrm{u}}{\mathrm{n}}\right)$

Performance

4 Intel i7-4790K cores (8 threads) clocked at 4Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits $\mathrm{C}++11$, compiled with gcc 5.3 .0 with the highest optimisation setting

n	u	access	successor	iterated successor	iterator
$\sim 2.4 \times 10^{6}$	$\sim 1.76 \times 10^{9}$	27.6 ns	$0.24 \mu s$	7.61 ns	2.34 ns
$\sim 10.5 \times 10^{6}$	$\sim 7.83 \times 10^{9}$	41.4 ns	$0.29 \mu s$	7.61 ns	2.36 ns
n	unc sequ	mpressed nce bytes	Elias-Fano	compression ratio	
$\sim 2.4 \times 10^{6}$	18,787,288		3,530,704		532\%
$\sim 10.5 \times 10^{6}$	6 83,565,504		15,704,680		532\%

Performance

Datasets

	Gov2	ClueWeb09
Documents	$24,622,347$	$50,131,015$
Terms	$35,636,425$	$92,094,694$
Postings	$5,742,630,292$	$15,857,983,641$

Space

24 Intel Xeon E5-2697 Ivy Bridge cores (48 threads) clocked at 2.70Ghz, with 64 GB RAM, running Linux 3.12.7, 64 bits
$C++11$, compiled with gcc 4.9 with the highest optimisation setting

Numbers from [Ottaviano and Venturini-2014].

	Gov2					ClueWeb09					
	$\begin{gathered} \text { space } \\ \text { GB } \end{gathered}$	doc bpi		freq bpi		spaceGB		doc bpi		freq bpi	
EF single	7.66 (+64.7\%)	7.53	(+83.4\%)	3.14	(+32.4\%)	19.63	(+23.1\%)	7.46	(+27.7\%)	2.44	(+11.0\%)
EF uniform	5.17 (+11.2\%)	4.63	(+12.9\%)	2.58	(+8.4\%)	17.78	(+11.5\%)	6.58	(+12.6\%)	2.39	(+8.8\%)
EF ϵ-optimal	4.65	4.10		2.38		15.94		5.85		2.20	
Interpolative	4.57 (-1.8\%)	4.03	(-1.8\%)	2.33	(-1.8\%)	14.62	(-8.3\%)	5.33	(-8.8\%)	2.04	(-7.1\%)
OptPFD	5.22 (+12.3\%)	4.72	(+15.1\%)	2.55	(+7.4\%)	17.80	(+11.6\%)	6.42	(+9.8\%)	2.56	(+16.4\%)
Varint-G8IU	14.06 (+202.2\%)	10.60	(+158.2\%)	8.98	(+278.3\%)	39.59	(+148.3\%)	10.99	(+88.1\%)	8.98	(+308.8\%)

AND queries (timings are in milliseconds)

	Gov2		ClueWeb09	
	TREC 05	TREC 06	TREC 05	TREC 06
EF single	2.1 (+10\%)	4.7 (+1\%)	13.6 (-5\%)	15.8 (-9\%)
EF uniform	2.1 (+9\%)	$5.1{ }_{(+10 \%)}$	15.5 (+8\%)	18.9 (+9\%)
EF ϵ-optimal	1.9	4.6	14.3	17.4
Interpolative	7.5 (+291\%)	20.4 (+343\%)	55.7 (+289\%)	76.5 (+341\%)
OptPFD	2.2 (+14\%)	$5.7{ }_{(+24 \%)}$	$16.6{ }_{(+16 \%)}$	$21.9{ }_{(+26 \%)}$
Varint-G8IU	1.5 (-20\%)	$4.0{ }_{(-13 \%)}$	11.1 (-23\%)	$14.8(-15 \%)$

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang
Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

rative of the evolution of Unicorn's architecture, as well as documentation for the major features and components of the system.

To the best of our knowledge, no other online graph retrieval system has ever been built with the scale of Unicorn

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

rative of the evolution of Unicorn's architecture, as well as documentation for the major features and components of the system.

To the best of our knowledge, no other online graph retrieval system has ever been built with the scale of Unicorn

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

Open Source
All Unicorn index server and aggregator code is written in C++. Unicorn relies extensively on modules in Facebook's "Folly" Open Source Library [5]. As part of the effort of releasing Graph Search, we have open-sourced a C++ implementation of the Elias-Fano index representation [31] as part of Folly.

Available Implementations

Library
 Author(s)
 Link
 Language

folly	Facebook, Inc.	https:// github.com/ facebook/folly	C++
sdsl	Simon Gog	$\begin{aligned} & \frac{\text { https:/// }}{\text { github.com } / /} \\ & \text { simongog/sdsl-lite } \end{aligned}$	C++
ds2i	Giuseppe Ottaviano Rossano Venturini Nicola Tonellotto	https:// github.com/ot/ds2i	C++
Sux	Sebastiano Vigna	http:// sux.di.unimi.it	Java/C++

Summary

Elias-Fano encodes monotone integer sequences in space close to the information theoretic minimum, while allowing powerful search operations, namely predecessor/successor queries and random access.

Successfully applied to crucial problems, such as inverted indexes and social graphs representation.

Several optimized software implementations are available.
[Fano-1971]
[Elias-1974]
[Jacobson-1989]
[Clark-1996] David Clark. Compact Pat Trees. Ph.D. Thesis, University of Waterloo (1996).
[Moffat and Stuiver-2000]
[Anh and Moffat-2005]

Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for Effective Index Compression. Information Retrieval Journal 3, 1, 25-47 (2000).

Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using WordAligned Binary Codes. Information Retrieval Journal 8, 1, 151-166 (2005).
[Salomon-2007] David Salomon. Variable-length Codes for Data Compression. Springer (2007).
[Vigna-2008]
Sebastiano Vigna. Broadword implementation of rank/select queries. In Workshop in Experimental Algorithms (WEA), 154-168 (2008).

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query processing with optimized document ordering. In Proceedings of the 18th International Conference on World Wide Web (WWW). 401-410 (2009).
[Anh and Moffat-2010]
[Zukowski et al.-2010]
[Stepanov et al.-2011]
[Zhou et al.-2013]
[Vigna-2013]
[Curtiss et al.-2013]
Michael Curtiss et al. Unicorn: A System for Searching the Social Graph. In Proceedings of the Very Large Database Endowment (PVLDB), 1150-1161 (2013).
[Ottaviano and Venturini-2014] Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

Thanks for your attention, time, patience!

Any questions?

