
Elias-Fano Encoding

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

Computer Science Department
University of Pisa

21/06/2016

Succinct representation of monotone integer
sequences with search operations

1

mailto:giulio.pibiri@unipi.it?subject=

2

Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

2

Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

• Elias gamma/delta [Salomon-2007]
• Variable Byte [Salomon-2007]
• Varint-G8IU [Stepanov et al.-2011]
• Simple-9/16 [Anh and Moffat 2005-2010]
• PForDelta (PFD) [Zukowski et al.-2006]
• OptPFD [Yan et al.-2009]
• Binary Interpolative Coding [Moffat and Stuiver-2000]

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

inverted lists intersection

5

Genesis - 1970s

Peter Elias
[1923 - 2001]

Robert Fano
[1917 -]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

5

Genesis - 1970s

Peter Elias
[1923 - 2001]

Robert Fano
[1917 -]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Sebastiano Vigna. Quasi-succinct indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!

6

Elias-Fano solution

3
4
7
13
14
15
21
43

1

2

3

4

5

6

7

8

6

Elias-Fano solution

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

6

Elias-Fano solution

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano solution

3
4
7
13
14
15
21
43u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano solution

3
4
7
13
14
15
21
43u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano solution

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

3

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

3

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano solution

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano solution

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano solution

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

7

Properties - Space

EF(S[0,n)) = ?

1

7

Properties - Space

EF(S[0,n)) = ?

1

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

n ones

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

We store a 0 whenever
we change bucket.

n ones

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

We store a 0 whenever
we change bucket.

n ones
2 lg n zeros

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn bits+ 2n

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

We store a 0 whenever
we change bucket.

n ones
2 lg n zeros

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn bits+ 2n

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

n ones
2 lg n zeros

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn bits+ 2n

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

n ones

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn bits+ 2n

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

lg(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlgn bits+ 2n

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000
17

000100100011000001

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000
17

000100100011000001

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001 lg ≈ u+n

nlgn((u+n
n

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001

u
nlgn + 2n

lg ≈ u+n
nlgn((u+n

n
With possible repetitions!

(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlgn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

lg X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

(less than half a bit away [Elias-1974])

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001

u
nlgn + 2n

lg ≈ u+n
nlgn((u+n

n
With possible repetitions!

(weak monotonicity)

8

Properties - Operations 2

8

Properties - Operations

access to each S[i] in O(1) worst-case

2

8

Properties - Operations

access to each S[i] in O(1) worst-case

2

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

8

Properties - Operations

access to each S[i] in O(1) worst-case

2

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

8

Properties - Operations

access to each S[i] in O(1) worst-case

but…

2

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

8

Properties - Operations

access to each S[i] in O(1) worst-case

they need o(n) bits more space in order to support fast
rank/select primitives on bitvector H

but…

2

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

8

Properties - Operations

access to each S[i] in O(1) worst-case

they need o(n) bits more space in order to support fast
rank/select primitives on bitvector H

but…

2

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2
rank1(7) = 4

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2
rank1(7) = 4

select0(5) = 10

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2
rank1(7) = 4

select0(5) = 10
select1(7) = 11

1

B = 101011010101111010110101
Examples

rank0/1(i) = # of 0/1 in [0,i)
Given a bitvector B of n bits:

select0/1(i) = position of i-th 0/1

Succinct rank/select

9

Definition

rank0(5) = 2
rank1(7) = 4

select0(5) = 10
select1(7) = 11

rank0/1(select0/1(i)) = i-1
rank0/1(i) + rank1/0(i) = i

rank1/0(select0/1(i)) = select0/1(i) - i
Relations

1

10

Succinct rank/select

O(1)-solutions with o(n) bits

(multi)-layered index + precomputed table

three-level directory tree

rank

select

[Jacobson-1989]

[Clark-1996]

2

10

Succinct rank/select

O(1)-solutions with o(n) bits

(multi)-layered index + precomputed table

three-level directory tree

rank

select

[Jacobson-1989]

[Clark-1996]

230 bits ~67% more bits!

2

10

Succinct rank/select

O(1)-solutions with o(n) bits

(multi)-layered index + precomputed table

three-level directory tree

rank

select

[Jacobson-1989]

[Clark-1996]

230 bits ~67% more bits!

230 bits ~60% more bits!

2

10

Succinct rank/select

O(1)-solutions with o(n) bits

(multi)-layered index + precomputed table

three-level directory tree

rank

select

[Jacobson-1989]

[Clark-1996]

230 bits ~67% more bits!

230 bits ~60% more bits!

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:
• broadword programming
• interleaving
• Intel hardware popcnt instruction:

Long().bitCount(x) in Java

__builtin_popcountl(x) in C/C++

2

10

Succinct rank/select

O(1)-solutions with o(n) bits

(multi)-layered index + precomputed table

three-level directory tree

rank

select

[Jacobson-1989]

[Clark-1996]

230 bits ~67% more bits!

230 bits ~60% more bits!

rank ~3% more bits
select ~0.39% more bits

with practical constant-time
selection

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:
• broadword programming
• interleaving
• Intel hardware popcnt instruction:

Long().bitCount(x) in Java

__builtin_popcountl(x) in C/C++

2

11

access example

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

11

access example

access(4) = S[4] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

11

access example

access(4) = S[4] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

access(i) = select1(i)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

access(7) = S[7] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

access(7) = S[7] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

access(7) = S[7] = ?010000

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

access(7) = S[7] = ?010000101

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

11

access example

access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

select1(i) - i
=

access(7) = S[7] = ?010000101

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011
k = lg(u/n)

rank0()access(i) = select1(i)select1(i) - i

101

<< k | L[(i-1)k,ik)

Complexity: O(1)

H = 1110111010001000
L = 011100111101110111101011

12

successor example

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

13 p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

12

successor example

successor(12) = ?
001100h12 =

13 p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

 Complexity: u
nlg((O

13

Performance 1

n u access successor iterated
successor iterator

~2.4x106 ~1.76x109 27.6 ns 0.24 µs 7.61 ns 2.34 ns

~10.5x106 ~7.83x109 41.4 ns 0.29 µs 7.61 ns 2.36 ns

n uncompressed
sequence bytes Elias-Fano bytes compression

ratio

~2.4x106 18,787,288 3,530,704 532%

~10.5x106 83,565,504 15,704,680 532%

4 Intel i7-4790K cores (8 threads) clocked at 4Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits

C++11, compiled with gcc 5.3.0 with the highest optimisation setting

14

Performance

Datasets

Space

AND queries (timings are in milliseconds)

Numbers from [Ottaviano and Venturini-2014].

2

24 Intel Xeon E5-2697 Ivy Bridge cores
(48 threads) clocked at 2.70Ghz, with
64 GB RAM, running Linux 3.12.7, 64
bits

C++11, compiled with gcc 4.9 with the
highest optimisation setting

15

Killer applications

1. Inverted Indexes
Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM

International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).

15

Killer applications

1. Inverted Indexes

2. Social Networks

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).

15

Killer applications

1. Inverted Indexes

2. Social Networks

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).

15

Killer applications

1. Inverted Indexes

2. Social Networks

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).

15

Killer applications

1. Inverted Indexes

2. Social Networks

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).

Available Implementations

16

Library Author(s) Link Language

folly Facebook, Inc.
https://

github.com/
facebook/folly

C++

sdsl Simon Gog
https://

github.com/
simongog/sdsl-lite

C++

ds2i
Giuseppe Ottaviano
Rossano Venturini
Nicola Tonellotto

https://
github.com/ot/ds2i C++

Sux Sebastiano Vigna http://
sux.di.unimi.it Java/C++

https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/

Summary

17

Elias-Fano encodes monotone integer sequences
in space close to the information theoretic minimum,
while allowing powerful search operations, namely

predecessor/successor queries and random access.

Successfully applied to crucial problems, such as
inverted indexes and social graphs representation.

Several optimized software implementations are available.

References

18

Robert Mario Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files.
Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Guy Jacobson. Succinct Static Data Structures. Ph.D. Thesis, Carnegie Mellon
University (1989).

David Clark. Compact Pat Trees. Ph.D. Thesis, University of Waterloo (1996).

[Fano-1971]

[Elias-1974]

[Jacobson-1989]

[Clark-1996]

1

Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval Journal 8, 1, 151–166 (2005).

Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for Effective
Index Compression. Information Retrieval Journal 3, 1, 25–47 (2000).[Moffat and Stuiver-2000]

[Anh and Moffat-2005]

David Salomon. Variable-length Codes for Data Compression. Springer (2007).[Salomon-2007]

Sebastiano Vigna. Broadword implementation of rank/select queries. In Workshop in
Experimental Algorithms (WEA), 154-168 (2008).[Vigna-2008]

Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit Oberoi.
SIMD-based decoding of posting lists. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM). 317–326 (2011).

Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words.
In Software: Practice and Experience 40, 2, 131–147 (2010).

Marcin Zukowski, Sandor Hèman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE). 59–70 (2006).

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query processing with
optimized document ordering. In Proceedings of the 18th International Conference on World
Wide Web (WWW). 401–410 (2009).

References 2

19

[Yan et al.-2009]

[Stepanov et al.-2011]

[Anh and Moffat-2010]

[Zukowski et al.-2010]

Michael Curtiss et al. Unicorn: A System for Searching the Social Graph. In
Proceedings of the Very Large Database Endowment (PVLDB), 1150-1161 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

[Curtiss et al.-2013]

[Ottaviano and Venturini-2014]

Dong Zhou, David Andersen, Michael Kaminsky. Space-Efficient, High-Performance
Rank and Select Structures on Uncompressed Bit Sequences. In Proceedings of the
12-nd International Symposium on Experimental Algorithms (SEA), 151-163 (2013).

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).[Vigna-2013]

[Zhou et al.-2013]

Thanks for your attention,
time, patience!

Any questions?

20

