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Huge research corpora describing different space/time trade-offs.

* Elias gamma/delta [Salomon-2007]

e Variable Byte [Salomon-2007]

e Varint-G8lU [Stepanov et al.-2011]

e Simple-9/16 [Anh and Moffat 2005-2010]
 PForDelta (PFD) [Zukowski et al.-2006]

 OptPFD [Yan et al.-2009]

e Binary Interpolative Coding [Moffat and Stuiver-2000]
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Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

40 years later!
Sebastiano Vigna. Quasi-succinct indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).
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EF(S[O,n)) = n [Ig %_| + 2N bits

IS it good or Not? (less than half a bit away [Elias-1974])
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Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples

B=101011010101111010110101

ranke(5) = 2 selecto(5)
ranki(7) = 4 select1(7)

Relations

ran
ran
ran

<1/0(selecte/1(1)) = selecte1(1) - 1
os1(selecte/1(1)) = 1-1

ko/1(1) + rankie(i) =1
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Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table  [Jacobson-1989]

select three-level directory tree [Clark-1996]
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O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table  [Jacobson-1989]
select three-level directory tree [Clark-1996]

230 bits =—¥» ~60% more bits!

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:

* broadword programming rank — ~3% more bits

: : select = ~0.39% more bits
* nterleaV| qg with practical constant-time
* |ntel hardware popcnt instruction: SEECCEIon

Long().b1tCount(x) in Java
__builtin_popcountl(x) in C/C++
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access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38
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Performance

4 Intel i7-4790K cores (8 threads) clocked at 4Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits
C++11, compiled with gcc 5.3.0 with the highest optimisation setting

iterated

accCess successor iterator
successor

~2.4x106 ~1.76x10° 27.6 ns 0.24 us 7.61ns 2.34 ns

~10.5x106  ~7.83x10° 41.4 ns 0.29 us 7.61ns 2.36 NS

compression
ratio

uncompressed . Fano bytes

sequence bytes

~2.4x106 18,787,288 3,530,704 532%

~10.5x106 83,565,504 15,704,680 532%
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Performance

24 Intel Xeon E5-2697 Ivy Bridge cores
Datasets (48 threads) clocked at 2.70Ghz, with
Gov2 ClueWeb09 64 GB RAM, running Linux 3.12.7, 64
Documents 24, 622, 347 50,131,015 bits
Terms 35,636,425 92,094, 694 . . .
Postings 5, 742,630,292 15,857,983, 641 C++11, compiled with gcc 4.9 with the
highest optimisation setting
Spaoe Numbers from [Ottaviano and Venturini-2014].
Gov2 ClueWeb09
space doc freq space doc freq
GB bpi bpi GB bpi bpi
EF single 7.66 (+64.7%) 7.53 (+83.4%) 3.14 (+32.4%) 19.63 (+23.1%) 7.46 (+27.7%) 2.44 (+11.0%)
EF uniform 5.17 (+11.2%) 4.63 (+12.9%) 2.58 (+8.4%) 17.78 (+11.5%) 6.58 (+12.6%) 2.39 (+8.8%)
EF e-optimal  4.65 4.10 2.38 15.94 5.85 2.20
Interpolative 4.57 (-1.8%) 4.03 (-1.8%) 2.33 (-1.8%) 14.62 (-8.3%) 5.33 (-8.8%) 2.04 (-7.1%)
OptPFD 5.22 (+12.3%) 4.72 (+15.1%) 2.55 (+7.4%) 17.80 (+11.6%) 6.42 (+9.8%) 2.56 (+16.4%)
Varint-G8IU  14.06 (+4202.2%) 10.60 (+158.2%) 8.98 (4+278.3%) 39.59 (+148.3%) 10.99 (+88.1%) 8.98 (+308.8%)

AND queries (timings are in milliseconds)

Gov2 ClueWeb09
TREC05 TRECO06 TRECO05 TREC 06
EF single 2.1 (+10%) 4.7 (+1%) 13.6 (-5%) 15.8 (—9%)
EF uniform 2.1 (+9%) 5.1 (+10%) 15.5 (4+8%) 18.9 (49%)
EF e-optimal 1.9 4.6 14.3 174

Interpolative 7.5 (+201%) 20.4 (+343%)

OptPFD 2.2 (+14%)
Varint-G8IU 1.5 (—20%)

5.7 (+24%)
4.0 (—13%)

55.7 (+289%) 76.5 (+341%)
16.6 (+16%) 21.9 (+26%)
11.1 (—23%) 14.8 (—15%)
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Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).
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2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,

Lucian Grijincu, Tom Jackson, Sandh&a
in

Sriram Sankar, Guanghao Shen,

Kunnatur, Soren Lassen, Phili
taras Woss, Chao Yang, Ning Zhang

Pronin,

Facebook, Inc.

N “
ABSTRACT
Unicorn is an online, in-memory social graph-aware index-
ing system designed to search trillions of edges between tens
of billions of users and entities on thousands of commodity

servers, Unicorn is based on standard concepts in informa-
GLAGLS ( I OLIT ] D26 O I T | { 1] LIIT

15

rative of the evolution of Unicorn's architecture, as well as
documentation for the major features and components of
the system.

To the best of our knowledge, no other online graph re-
trieval system has ever been built with the scale of Unicorn
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Open Source

All Unicorn index server and aggregator code is written in
C++. Unicorn relies extensively on modules in Facebook’s
“Folly” Open Source Library [5]. As part of the effort of
releasing Graph Search, we have open-sourced a C+4+4 im-
plementation of the Elias-Fano index representation [31] as
part of Folly.



Available Implementations

Library Author(s) Language
https://
folly Facebook, Inc. github. com/ C++
facebook/folly
https://
sdsl Simon Gog github.com/ C++

simongog/sdsl-1lite

Giuseppe Ottaviano https://

dsZ Rl\cl)iiz?;%\gee?rgggl github.com/ot/ds21 G+
. . http:
Sux Sebastiano Vigna ttp:// Java/C++

sux.di.unimi.it

16


https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/

Elias-Fano encodes monotone integer sequences
IN space close to the information theoretic minimum,
while allowing powerful search operations, namely
predecessor/successor queries and random access.

Successfully applied to crucial problems, such as
inverted indexes and social graphs representation.

Several optimized software implementations are available.

17
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Thanks for your attention,

time, patience!

Any questions?
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