Elias-Fano Encoding

Succinct representation of monotone integer
sequences with search operations

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it
Computer Science Department
University of Pisa

21/06/2016

mailto:giulio.pibiri@unipi.it?subject=

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., Sli-1] < Sli] for 1 <i < n-1, possibly repeated.

How to represent it as a bit vector in which each original

integer is self-delimited, using as few as possible bits”

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., Sli-1] < Sli] for 1 <i < n-1, possibly repeated.

How to represent it as a bit vector in which each original

integer is self-delimited, using as few as possible bits”

Huge research corpora describing different space/time trade-offs.

* Elias gamma/delta [Salomon-2007]

e Variable Byte [Salomon-2007]

e Varint-G8lU [Stepanov et al.-2011]

e Simple-9/16 [Anh and Moffat 2005-2010]
 PForDelta (PFD) [Zukowski et al.-2006]

 OptPFD [Yan et al.-2009]

e Binary Interpolative Coding [Moffat and Stuiver-2000]

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

red

IS
s always
house
, good
S
red
the |::>
boy boy
- , IS
e - hungry
house red
IS
always
hungry

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

t; t ts ty te tg tr g
red .
S T = {always, boy, good, house, hungry, is, red, the}
the
FoUSe always
: good
is
red
the
boy b.oy
the | IS £
hungr
house red -
IS
always
hungry

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

E the

For each term tin T we store in a list L the identifiers of the documents

In which t appears.

The collection of all inverted lists {Lt,

red

L+,} is the inverted index.

T = {always, boy, good, house, hungry, is, red, the}

o

D IS
. always
, good
IS
red
the B
boy b.oy
— . IS
the ~ hungry
house red
IS
always e
hungry

o

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

L+,} is the inverted index.

The collection of all inverted lists {Lt,

o 5 to t3 ty ts tg t7 tg
S T = {always, boy, good, house, hungry, is, red, the}
the D
house SR]
good ,=[1, 3]
red N, B | +,=[4, 5]
| +,=[1]
bo boy =L
e the 3 iSy ° -=(2, 3|
house red nungry L=[3, O]
s | .=[1, 2, 3, 4, 5]
hall,lvr\:gilj e —t7=;11 21 4]
) 0 | ,=[2, 3, 9]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés _
5 i t,=[1, 3]
red r— _t2=;4, 5]
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry Li5=|3, o]
lis | .=[1, 2, 3, 4, 5]
= o i
a ,=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés)
: goc ,=[1, 3]
red the | —t2=:4, 5] g = {bOy, iS, the}
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry _t5=_3, 5]
is | .=[1, 2, 3, 4, 5]
= 0 i
6 L.=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés)
: goc L, =[1, 3]
red the | _ty= :4, 5] g = {bOy, iS, the}
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry —t5=-3’ 5]
is .=[1, 2, 3, 4, 5]
= o o
6 L=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés)
: goc ,=[1, 3]
red the | —t2=:4, 5] g = {bOy, iS, the}
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry _t5=_3, 5]
is | .=[1, 2, 3, 4, 5]
= 0 i
6 L.=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés]
: G0 ,=[1, 3]
red o _,=[4, 5] g = {boy, is, the}
| =[1
e i b_c;y L _E: :2? 3] g = {good, hungry}
h(t)rtljese red hungry —t5=:31 5]
s | .=[1, 2, 3, 4, 5]
o © urod
a .=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés]
s G0 ,=[1, 3]
red o _,=[4, 5] g = {boy, is, the}
| =[1
e i b_c;y L _tj: :2? 3] g = {good, hungry}
e ,=[3, 5]
s .=[1, 2, 3, 4, 5]
o © .o
a .=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés]
: G0 ,=[1, 3]
red o _,=[4, 5] g = {boy, is, the}
| =[1
e i b_c;y L _E: :2? 3] g = {good, hungry}
h(t)rtljese red hungry —t5=:31 5]
s | .=[1, 2, 3, 4, 5]
o © urod
a .=[2, 3, 5]

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

n red

ty to ty ty ts tg t7 fg

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houze alwaés i
s o0 ,=[1, 3]
red b he B _t2=:4j 5] g = {boy, iS, the}
=[1
bo boy T = d, h
) P [.=[2.3] 7 lgoed, hungy
house red nungry |t=[3, 9]
s L ,=[1, 2, 3, 4, 5]
iy P
| 1,=[2, 3, 5]

Inverted lists intersection

Genesis - 1970s

Peter Elias Robert Fano
[1923 - 2001] [1917 -]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Genesis - 1970s

Peter Elias Robert Fano
[1923 - 2001] [1917 -]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

40 years later!
Sebastiano Vigna. Quasi-succinct indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).

5

Elias-Fano solution

~N B~ W

OO B~

21
43

Elias-Fano solution

~N B~ W

— O B~ W

Elias-Fano solution

000011 3
000100 4
00011 7
00110" 13
001110 14
00111" 15
01010" 21
10101 " u = (43)

Elias-Fano solution

high low
ign] [ig(u/n)

000011
000100
00011°
00110° 1
001110
00111°
01010° 2
10101~ U

~N B~ W

— O B~ W

®

Elias-Fano solution

high low
ign] [ig(u/n)

00001 T
000100
00011°
00110° 1
001110
0O0111°
01010 ° 2
10101 ° U

~N B~ W

— O B~ W

®

Elias-Fano solution

high

low

lgn] [igum)]
000011

000"
000"

001"
001~

00111°

010°

10101°

00
1 -
0 -
10

0 -

~N B~ W

OO B~

21

L =011100111101110111101011

Elias-Fano solution

high

low

lgn] [igum)]
000011

000"
000 -

001"
001~

00111°

010°

10101°

00
1 -
0 -
10

0 -

~N B~ W

OO B~

21

L =011100111101110111101011

Elias-Fano solution

high low
lgn] fig(um)l
000011 3

3 000100 4
00011 7
00110 13

3001110 14
00111 15
01010 21
10101 u = (43)

L =011100111101110111101011

Elias-Fano solution

high low
lgn] fig(um)l
000011 3
3 000100 4
00011 7
00110 13
3001110 14
00111 15
1 01010" 21
10101 u = (43)

L =011100111101110111101011

Elias-Fano solution

high low
lgn] fig(um)l
000011 3
3 000100 4
00011 7
00110 13
3001110 14
00111 15
1 01010" 21
110101 " u = (43)

L =011100111101110111101011

Elias-Fano solution

high low

lgn] [ig(u/m)]
000011 3
3 000100 4
missing 000111 7
buckets 00110 13
0011 3001110 14
0100 00111 - 15
101010° 21

110101 u =43

L =011100111101110111101011

Elias-Fano solution

missing
buckets

0011
0100

high low
[lgn] fig(u/m)]
00001 T
3000100
000111
001107
3001110
001117
1 010107
1 101017

~N B~ W

OO B~

21

L =011100111101110111101011

Elias-Fano solution

missing
buckets

0011
0100

high low
lgn] [ig(um)]
000011
3000100
000117
00110°
3001110
001117
1 01010°
1 10101°
33100100

~N B~ W

OO B~

21

L =011100111101110111101011

Elias-Fano solution

missing
buckets

0011
0100

high low
lgn] [ig(um)]
000011
3000100
000117
00110°
3001110
001117
1 01010°
1 10101°
33100100

~N B~ W

OO B~

21

L =011100111101110111101011
H=1110 1110 10 O 0 10 O O

Properties - Space 1

EF(S[0,n)) = ?

Properties - Space 1

EF(S[O,n)) =7
llg(u/my]
L =011100111101110111101011

4=1110 1110 10 0 0 10 0 O

Properties - Space 1

EF(S[O.N)) = N Pg %]
llg(u/m)]

. =011100111101110111101011
4=1110 1110 10 0 0 10 0 O

Properties - Space 1

EF(S[O.N)) = N Pg %]
llg(u/m)]

. =011100111101110111101011
4=1110 1110 10 0 0 10 0 O

N ONES

Properties - Space 1

EF(S[O.N)) = 1 [lg H]

N
llg(u/my]
- =011100111101110111101011
We store a 0O whenever
H=1110 1110 10 O 0 10 O O we change bucket.

N ONES

Properties - Space 1

EF(S[O.N)) = 1 Pg H]

N
llg(u/my]
- =011100111101110111101011
We store a 0O whenever
H=1110 1110 10 O 0 10 O O we change bucket.

n ones
olienl -arag

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2N bits

llg(u/my]
- =011100111101110111101011
We store a 0O whenever
H=1110 1110 10 O 0 10 O O we change bucket.

n ones
olienl -arag

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2n Dbits
llg(u/m))
. =011100111101110111101011

4=1110 1110 10 0 0 10 0 O

n ones
olienl -arag

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2n Dbits
llg(u/m))
. =011100111101110111101011

4=1110 1110 10 0 0 10 0 O

N ONES

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2n Dbits
llg(u/m))
. =011100111101110111101011

4=1110 1110 10 0 0 10 0 O

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2N bits

Properties - Space 1

EF(S[O,n)) = n Pg %_| + 2N bits

|s it good or not?

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound
The minimum number of bits

needed to describe a set X IS

[Ig\xﬂ bits.

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000000000000000000

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000100000000000000

3

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000100100000000000

3 0

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000100100010000000

3 0 10

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000100100011000000

3 0 1011

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.

[Ig\xﬂ bits.

| X2

000100100011000001

3 0 1011 17

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.
[e X_| bits.
o] x| x|
000100100011000001
3 6 1011 17

With possible repetitions!
(weak monotonicity)

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.
[e X_| bits.
[‘ ‘ ‘ X‘ _ <u+n>
N
000100100011000001
3 6 1011 17

With possible repetitions!
(weak monotonicity)

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.
[e X_| bits.
[‘ ‘ ‘ X‘ _ <u+n>
N
000100100011000001 [@(U;”ﬂ < nigLH

3 0 1011 17

With possible repetitions!
(weak monotonicity)

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

|s it good or not?

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.
[e X_| bits.
[‘ ‘ ‘ X‘ _ <u+n>
N
000100100011000001 [@(U;”ﬂ < nigLH

3 0 1011 17

With possible repetitions!
(weak monotonicity)

Properties - Space 1

EF(S[O,n)) = n [Ig %_| + 2N bits

IS it good or Not? (less than half a bit away [Elias-1974])

Information Theoretic Lower Bound

The minimum number of bits X is the set of all monotone sequence
needed to describe a set X Is of length n drawn from a universe u.
[e X_| bits.
[‘ ‘ ‘ X‘ _ <u+n>
N
000100100011000001 [@(U;”ﬂ < nigLH

3 0 1011 17

With possible repetitions!
(weak monotonicity)

Properties - Operations

Properties - Operations

access to each S[i] in O(1) worst-case

Properties - Operations

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}

successor(x) = min{S[i] | S[i] = x}

queries in O('Q%) worst-case

Properties - Operations

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}

successor(x) = min{S[i] | S[i] = x}

queries in O('Q%) worst-case

Properties - Operations

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}

successor(x) = min{S[i] | S[i] = x}

queries in O('Q%) worst-case

but...

Properties - Operations

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}

successor(x) = min{S[i] | S[i] = x}

queries in O('Q%) worst-case

but...

they need o(n) bits more space in order to support fast
rank/select primitives on bitvector H

Properties - Operations

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}

successor(x) = min{S[i] | S[i] = x}

queries in O('Q%) worst-case

but...

they need o(n) bits more space in order to support fast
rank/select primitives on bitvector H

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples
B =1010110101011110101101011

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples
B =1010110101011110101101011

ranke(5) = 2

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples
B =1010110101011110101101011

ranke(5) = 2
ranki(7) = 4

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples
B =101011010101111010110101

ranke(5) = 2 selecteo(5) = 10
ranki(7) = 4

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples
B =101011010101111010110101

ranke(5) = 2 selecte(5) =
ranki(7) = 4 selecti(7) =

Succinct rank/select

Definition

Given a bitvector B of n bits:
ranke,1(1) = # of 0/1in [O,1)
selecto/1(1) = position of 1-th O/1

Examples

B=101011010101111010110101

ranke(5) = 2 selecto(5)
ranki(7) = 4 select1(7)

Relations

ran
ran
ran

<1/0(selecte/1(1)) = selecte1(1) - 1
os1(selecte/1(1)) = 1-1

ko/1(1) + rankie(i) =1

9

Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989]

select three-level directory tree [Clark-1996]

10

Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989]

230 bits =¥ ~67% more bits!

select three-level directory tree [Clark-1996]

10

Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989]

230 bits =¥ ~67% more bits!

select three-level directory tree [Clark-1996]

230 bits =—¥» ~60% more bits!

10

Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989]

230 bits =¥ ~67% more bits!

select three-level directory tree [Clark-1996]

230 bits =—¥» ~60% more bits!

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:

* pbroadword programming

* Interleaving

* Intel hardware popcnt instruction:
Long().b1tCount(x) in Java
__builtin_popcountl(x) in C/C++

10

Succinct rank/select

O(1)-solutions with o(n) bits

rank (multi)-layered index + precomputed table [Jacobson-1989]
select three-level directory tree [Clark-1996]

230 bits =—¥» ~60% more bits!

Nowadays practical solutions are based on
[Vigna-2008, Zhou et al.-2013]:

* broadword programming rank — ~3% more bits

: : select = ~0.39% more bits
* nterleaV| qg with practical constant-time
* |ntel hardware popcnt instruction: SEECCEIon

Long().b1tCount(x) in Java
__builtin_popcountl(x) in C/C++

10

access example

S=1[3,4,7,13, 14, 15, 21, 43]

11

access example

S=1[3,4,7,13, 14, 15, 21, 43]

access(4) =S[4] =7

11

access example

S=[3,4,7,13, 14, 15, 21, 43]

access(4) =S[4] =7

H=1110111010001000
L =011100111101110111101011
k

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) =S[4] =7 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O‘l_‘|100‘1‘101‘10111101011

k = [lg(u/n)|

— L
|l

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) =S[4] =7 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O‘l_‘|100‘1‘101‘10111101011

k = [lg(u/n)|

— L
|l

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) =S[4] =7 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O‘l_‘|100‘1‘101‘10111101011

k = [lg(u/n)|

H
L

access(1) = select1(1)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) =S[4] =7 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O‘l_‘|100‘1‘101‘10111101011

k = [lg(u/n)|

H
L

access(1) = ranke(selecti(i))

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001000 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(1) = ranke(selecti(i))

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001000 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = ranke(selecti(i))

select1(1) - 1
11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001000 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0

whenever we change
bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0

. whenever we change
access(7) =9[7] =7 sucket

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0

. whenever we change
access(7) =9[7] =7 sucket

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0
whenever we change

access(7) = S[7] = 010000 bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0
whenever we change

access(7) = S[7] = 010101 bucket.

1110111010001000
O;jOO‘ 11101110111101011
= [lg(u/n)]

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

access example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

access(4) = S[4] = 001101 Recall: we store a 0
whenever we change

access(7) = S[7] = 010101 bucket.

1110111010001000
OJI_JI‘IOO‘ 11101110111101011
= [lg(u/n)]

Complexity: O(1)

H
L
K

access(i) = selecti(i) - 1 << k | L[(1-1)k,1k)

11

successor example

S=[3,4,7,13, 14, 15, 21, 43]

H=1110111010001000
L =011100111101110111101011

12

successor example

S=[3,4,7,13, 14, 15, 21, 43]

successor(12) =7

H=1110111010001000
L =011100111101110111101011

12

successor example

S=[3,4,7,13, 14, 15, 21, 43]

successor(12) =7
001100

H=1110111010001000
L =011100111101110111101011

12

successor example

S=[3,4,7,13, 14, 15, 21, 43]

successor(12) =7

hiz = (0011100

H=1110111010001000
L =011100111101110111101011

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(12) =7

hi2 = 1 00 selecto(hx+1)-hy-1

H=1110111010001000
L =011100111101110111101011

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(12) =7

hi2 = 1 00 selecto(hx+1)-hy-1

H =-4+3+4+6111010001000
L =011100111101110111101011

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(12) =7

hi2 = 1 00 selecto(hx+1)-hy-1

H = +1+1011101606+606
L =011100111101110111101011

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(12) =7

hi2 = 1 00 selecto(hx+1)-hy-1

H = +1+1011101606+606
[= 0+11061+110111011140404+

1

P1 P2

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(12) =7

hi2 = 1 00 selecto(hx+1)-hy-1

H = ++4+61110 16664666 binary search
L = +-4664+4101110111404044+- in [p1,p2)

1

P1 P2

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(1l2) =13

hi2 = 1 00 selecto(hx+1)-hy-1

H = ++4+61110 16664666 binary search
L = +-4664+4101110111404044+- in [p1,p2)

1

P1 P2

selecto(hx)-hx

12

successor example

S=1[3,4,7,13, 14,15, 21, 43]
1 2 3

4 5 0 / 38

successor(1l2) =13

hi2 = 1 00 selecto(hy+1)-hy-1

H = ++4+61110 16664666 binary search
L = +-4664+4101110111404044+- in [p1,p2)

1

pl pz Complexity: O<|9%>

selecto(hx)-hx

12

Performance

4 Intel i7-4790K cores (8 threads) clocked at 4Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits
C++11, compiled with gcc 5.3.0 with the highest optimisation setting

iterated

accCess successor iterator
successor

~2.4x106 ~1.76x10° 27.6 ns 0.24 us 7.61ns 2.34 ns

~10.5x106 ~7.83x10° 41.4 ns 0.29 us 7.61ns 2.36 NS

compression
ratio

uncompressed . Fano bytes

sequence bytes

~2.4x106 18,787,288 3,530,704 532%

~10.5x106 83,565,504 15,704,680 532%

13

Performance

24 Intel Xeon E5-2697 Ivy Bridge cores
Datasets (48 threads) clocked at 2.70Ghz, with
Gov2 ClueWeb09 64 GB RAM, running Linux 3.12.7, 64
Documents 24, 622, 347 50,131,015 bits
Terms 35,636,425 92,094, 694 . . .
Postings 5, 742,630,292 15,857,983, 641 C++11, compiled with gcc 4.9 with the
highest optimisation setting
Spaoe Numbers from [Ottaviano and Venturini-2014].
Gov2 ClueWeb09
space doc freq space doc freq
GB bpi bpi GB bpi bpi
EF single 7.66 (+64.7%) 7.53 (+83.4%) 3.14 (+32.4%) 19.63 (+23.1%) 7.46 (+27.7%) 2.44 (+11.0%)
EF uniform 5.17 (+11.2%) 4.63 (+12.9%) 2.58 (+8.4%) 17.78 (+11.5%) 6.58 (+12.6%) 2.39 (+8.8%)
EF e-optimal 4.65 4.10 2.38 15.94 5.85 2.20
Interpolative 4.57 (-1.8%) 4.03 (-1.8%) 2.33 (-1.8%) 14.62 (-8.3%) 5.33 (-8.8%) 2.04 (-7.1%)
OptPFD 5.22 (+12.3%) 4.72 (+15.1%) 2.55 (+7.4%) 17.80 (+11.6%) 6.42 (+9.8%) 2.56 (+16.4%)
Varint-G8IU 14.06 (+4202.2%) 10.60 (+158.2%) 8.98 (4+278.3%) 39.59 (+148.3%) 10.99 (+88.1%) 8.98 (+308.8%)

AND queries (timings are in milliseconds)

Gov2 ClueWeb09
TREC05 TRECO06 TRECO05 TREC 06
EF single 2.1 (+10%) 4.7 (+1%) 13.6 (-5%) 15.8 (—9%)
EF uniform 2.1 (+9%) 5.1 (+10%) 15.5 (4+8%) 18.9 (49%)
EF e-optimal 1.9 4.6 14.3 174

Interpolative 7.5 (+201%) 20.4 (+343%)

OptPFD 2.2 (+14%)
Varint-G8IU 1.5 (—20%)

5.7 (+24%)
4.0 (—13%)

55.7 (+289%) 76.5 (+341%)
16.6 (+16%) 21.9 (+26%)
11.1 (—23%) 14.8 (—15%)

14

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

15

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

15

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,

Lucian Grijincu, Tom Jackson, Sandh&a
in

Sriram Sankar, Guanghao Shen,

Kunnatur, Soren Lassen, Phili
taras Woss, Chao Yang, Ning Zhang

Pronin,

Facebook, Inc.

N “
ABSTRACT
Unicorn is an online, in-memory social graph-aware index-
ing system designed to search trillions of edges between tens
of billions of users and entities on thousands of commodity

servers, Unicorn is based on standard concepts in informa-
GLAGLS (I OLIT] D26 O I T | { 1] LIIT

15

rative of the evolution of Unicorn's architecture, as well as
documentation for the major features and components of
the system.

To the best of our knowledge, no other online graph re-
trieval system has ever been built with the scale of Unicorn

- =P L AL i_a_ T P | T —— o o | TAP—
v} v I I I

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,

Lucian Grijincu, Tom Jackson, Sandh&a
in

Sriram Sankar, Guanghao Shen,

Kunnatur, Soren Lassen, Phili
taras Woss, Chao Yang, Ning Zhang

Pronin,

Facebook, Inc.

N “
ABSTRACT
Unicorn is an online, in-memory social graph-aware index-
ing system designed to search trillions of edges between tens
of billions of users and entities on thousands of commodity

servers, Unicorn is based on standard concepts in informa-
GLAGLS (I OLIT] D26 O I T | { 1] LIIT

15

rative of the evolution of Unicorn's architecture, as well as
documentation for the major features and components of
the system.

To the best of our knowledge, no other online graph re-
trieval system has ever been built with the scale of Unicorn

- =P L AL i_a_ T P | T —— o o | TAP—
v} v I I I

Killer applications

1. Inverted Indexes

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,

Lucian Grijincu, Tom Jackson, Sandh&a
in

Sriram Sankar, Guanghao Shen,

Kunnatur, Soren Lassen, Philip Pronin,
taras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

N “
ABSTRACT
Unicorn is an online, in-memory social graph-aware index-
ing system designed to search trillions of edges between tens
of billions of users and entities on thousands of commodity

servers, Unicorn is based on standard concepts in informa-
GLAGLS (I OLIT 1 D26 O I I | { { ITTIOILITT

15

Open Source

All Unicorn index server and aggregator code is written in
C++. Unicorn relies extensively on modules in Facebook’s
“Folly” Open Source Library [5]. As part of the effort of
releasing Graph Search, we have open-sourced a C+4+4 im-
plementation of the Elias-Fano index representation [31] as
part of Folly.

Available Implementations

Library Author(s) Language
https://
folly Facebook, Inc. github. com/ C++
facebook/folly
https://
sdsl Simon Gog github.com/ C++

simongog/sdsl-1lite

Giuseppe Ottaviano https://

dsZ Rl\cl)iiz?;%\gee?rgggl github.com/ot/ds21 G+
. . http:
Sux Sebastiano Vigna ttp:// Java/C++

sux.di.unimi.it

16

https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/

Elias-Fano encodes monotone integer sequences
IN space close to the information theoretic minimum,
while allowing powerful search operations, namely
predecessor/successor queries and random access.

Successfully applied to crucial problems, such as
inverted indexes and social graphs representation.

Several optimized software implementations are available.

17

References

[Fano-1971] Robert Mario Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Elias-1974] Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files.
Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Guy Jacobson. Succinct Static Data Structures. Ph.D. Thesis, Carnegie Mellon

[Jacobson-1989]) W\ ersity (1989).

[Clark-1996] David Clark. Compact Pat Trees. Ph.D. Thesis, University of Waterloo (1996).

- Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for Effective
[Motfat and Stuiver-2000] Index Compression. Information Retrieval Journal 3, 1, 25-47 (2000).

Vo Ngoc Anh and Alistair Moftat. Inverted Index Compression Using Word-
[Anh and Moffat-2005] Aligned Binary Codes. Information Retrieval Journal 8, 1, 151-166 (2005).

[Salomon-2007] David Salomon. Variable-length Codes for Data Compression. Springer (2007).

'Vigna-2008] Sebastiano Vigna. Broadword implementation of rank/select queries. In Workshop in
J Experimental Algorithms (WEA), 154-168 (2008).

18

References

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query processing with
[Yan et al.-2009] optimized document ordering. In Proceedings of the 18th International Conference on World
Wide Web (WWW). 401-410 (2009).

) Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words.
/Anh and Moffat-2010)) s oftware: Practice and Experience 40, 2, 131-147 (2010).

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
[Zukowski et al.-2010] CPU Cache Compression. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE). 59-70 (2006).

Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramiit Oberoi.
[Stepanov et al.-2011] SIMD-based decoding of posting lists. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management (CIKM). 317-326 (2011).

Dong Zhou, David Andersen, Michael Kaminsky. Space-Efficient, High-Performance
Rank and Select Structures on Uncompressed Bit Sequences. In Proceedings of the
12-nd International Symposium on Experimental Algorithms (SEA), 151-163 (2013).

[Zhou et al.-2013]

[Vigna-2013] Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

[Curtiss et al-2013] Michael Curtiss et al. Unicorn: A System for Searching the Social Graph. In
' Proceedings of the Very Large Database Endowment (PVLDB), 1150-1161 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
[Ottaviano and Venturini-2014] Proceedings of the 37-th ACM International Conference on Research and

Development in Information Retrieval (SIGIR), 273-282 (2014).
19

Thanks for your attention,

time, patience!

Any questions?

20

