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Access, Contains, Successor, Predecessor efficiently.

Let us assume our items are integers  
drawn from some universe of size u ≥ n.

If the integers are not to be compressed: 
use an array. 

Operations are made efficient  
by binary search with loop unrolling  

with cut-off to SSE/AVX (SIMD) linear search  
on small segments.

If the keys are uniformly distributed, 
interpolation search can help:  

O(log log n) time with high probability.

Let us also assume n is so big that we 
must compress the set.



Sorted integer sets are ubiquitous

Inverted indexes

Databases

Semantic data

Geospatial data

Graph compression

E-Commerce



The Static Compressed Ordered Set Problem

Large research corpora describing different space/time trade-offs.

• Elias’ Gamma and Delta 
• Elias-Fano 
• Variable-Byte Family 
• Binary Interpolative Coding 
• Simple Family 
• PForDelta 
• QMX 
• Quasi-Succinct 
• Partitioned Elias-Fano 
• Clustered Elias-Fano 
• Optimal Variable-Byte 
• DINT

~1970

2019

+ set intersection, union and decode
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Solution 2 
Redesign the data structure.
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Partitioning by Universe

[Elias-Fano 1971-1975]

√u

1  1  0  1

1  0  0  1 1  1  0  1 0  0  0  0 0  1  1  1

√u

[van Emde Boas 1974-1975]

summary

Does this remind you of something?
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Partitioning by Universe

Contains(x): 
    i = x >> 3  
    search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101

Successor(x): 
    i = x >> 3 
    search for successor of x - (i << 3) in the i-th slice 
    (if i-th slice is empty or x - (i << 3) > max_value in i-th slice, 
     then return first value on the right)

Intersection between lists has to intersect only the slices in common 
between the lists.

x - 16 = 5
010101
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Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.
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S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Contains: testing a bit 
Successor/Predecessor: __builtin_ctzll 
Select: __builtin_ctzll 
Max: __builtin_clzll 
Min: __builtin_ctzll 
Decode: __builtin_ctzll 
Insertion: setting a bit  
Deletion: clearing a bit

Nothing is better than a bitmap for dense sets.



Roaring
[Lemire et al. 2013]

Assume u = 232

216 216

…

216

216

≤ 216 spans of 216 values each



Roaring
[Lemire et al. 2013]

Assume u = 232

216 216

…

216

216

Dense: cardinality > 4096
Sparse: otherwise

Sparse Dense Sparse

Dense spans are represented with bitmaps of 216 bits.

Sparse spans are represented with sorted-arrays of 16-bit integers.

Ensure at most 16 bits x key 
(excluding overhead)

≤ 216 spans of 216 values each



Slicing

216 216

…

216

…

216

Dense: cardinality > 216/2Sparse Dense Sparse

Dense slices are represented with bitmaps of 216 or 28 bits.
Sparse slices are represented with sorted-arrays of 8-bit integers.

S D

≤ 216 slices of 216 values each

≤ 28 slices of 28 values each

D S D S D

28 28 28 28 28 28 28

(ensure at most 2 bits x key)

Dense: cardinality ≥ 31
(ensure at most 8 bits x key)

Assume u = 232



Intersection

• Dense vs. Dense (Bitmap vs. Bitmap): 
bitwise AND operations + (usually) automatic compiler vectorization 

 

• Dense vs. Sparse (Bitmap vs. Array): 
Given the array A: check if bit A[i] is set in the bitmap 
 

• Sparse vs. Sparse (Array vs. Array): 
Vectorized processing using _mm_cmpestrm and  
_mm_shuffle_epi8 SIMD instructions

Intersection between lists has to intersect only the slices in common between the lists.



Summing up

Partitioning by Cardinality  
(PC)

Partitioning by Universe 
(PU)

2 different paradigms



Experimental Comparison — Setting

C++ sources 
https://github.com/jermp/s_indexes 
https://github.com/jermp/dint 
https://github.com/ot/ds2i 
https://github.com/RoaringBitmap/CRoaring

Machine 
Intel i7-4790K CPU @4GHz, 32 GiB RAM, Linux 4.13.0

Compiler 
gcc 7.2.0 (with all optimizations: -march=native and -O3)

Datasets



Experimental Comparison — Setting

Datasets

Configurations



Experimental Comparison — Compression Effectiveness

bits per integer

PC-based methods, such as BIC and PEF, are best for space usage. 
Slicing (PU-based) stands in trade-off position.



Experimental Comparison — Sequential Decoding Time

Experimental Comparison — Compression Effectiveness

ns per integer 

PU-based methods, are as fast as the fastest (vectorized) PC-based methods.



Experimental Comparison — Intersection Time

musec per intersection 

PU-based methods outperform PC-based methods.



Experimental Comparison — Point Queries

Experimental Comparison — Compression Effectiveness

Access: ns per query

Successor: ns per query



Experimental Comparison — The Trade-Off Curve

Experimental Comparison — Compression Effectiveness

Density = 1/1000



Future Research Directions

The Dynamic Ordered Set Problem
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Future Research Directions

The Dynamic Ordered Set Problem

The Static Ordered Set Problem

Theory 
Fusion Trees 

van Emde Boas Trees 
Exponential Search Trees  

Y-Fast Tries 
Dynamic Elias-Fano

Practice 
Red-Black Trees 

B-Trees

Memory management is the 
challenge.

+ insertions / deletions



The Dynamic Ordered Set Problem — On-going Work

Insert 

n = 1,000,000 32-bit keys uniformly distributed
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Successor 

n = 1,000,000 32-bit keys uniformly distributed



The Dynamic Ordered Set Problem — On-going Work

Heap usage



Any questions?

Thanks for your attention,

time, patience!


