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The Static Ordered Set Problem

Given a set of n items and an order relation defined on them,
we are asked to design a data structure that supports
Access, Contains, Successor, Predecessor efficiently.
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If the integers are not to be compressed.:
use an array.
Operations are made efficient
by binary search with loop unrolling
with cut-off to SSE/AVX (SIMD) linear search
on small segments.

If the keys are uniformly distributed,
interpolation search can help:
O(log log n) time with high probability .
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Given a set of n items and an order relation defined on them,
we are asked to design a data structure that supports
Access, Contains, Successor, Predecessor efficiently.

Let us assume our items are integers

drawn from some universe of size u = n.

If the integers are not to be compressed.:
use an array.
Operations are made efficient
by binary search with loop unrolling
with cut-off to SSE/AVX (SIMD) linear search
on small segments.

If the keys are uniformly distributed,
interpolation search can help:
O(log log n) time with high probability .

Let us also assume n is so big that we

must compress the set.




Sorted integer sets are ubiquitous
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The Static Compressed Ordered Set Problem

Large research corpora describing different space/time trade-offs.
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+ set intersection, union and decode
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are not natively supported, but we can just
decode sequentially.
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Partitioning by Cardinality

The problem of (almost all) such representations is that
Access, Contains, Predecessor/Successor
are not natively supported, but we can just
decode sequentially.

Solution 1

Introduce some redundancy to accelerate queries:
the so-called skip pointers.

Upperbounds | FZE e il e g e

Solution 2

Redesign the data structure.

[Upperbounds]: Offsets I Bits ]




Partitioning by Universe
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(a) partitioning by cardinality — PC

32 40 48 56

(b) partitioning by universe — PU

Does this remind you of something?

input 3 4 7 13 14 15 | 21 | 25 | 36 38 54 | 62
0 0 0 0 0 O 0 0 1 1 1 1 1
high 0 0 0 0 0 O 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 0 O 1 0 1
0 1 1 1 1 1 1 0 1 1 1 1
low 1 01 0 1 1 0 0 0 1 1 1
1 01 1 0 1 1 1 0 0 0 0
H 1110 1110 10 | 10 110 0 | 10 | 10
L  001-100-111|101-110-111| 101 | 001 | 100-110 110|110

[Elias-Fano 1971-1975]



Partitioning by Universe

(a) partitioning by cardinality — PC
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(b) partitioning by universe — PU

Does this remind you of something?

input 3 4 7 13 14 15 | 21 | 25 | 36 38 54 | 62
0 0 0 0 0 O 0 0 1 1 1 1 1
high 0 0 0 0 0 O 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 0 0 1 0 1
0 1 1 1 1 1 1 0 1 1 1 1
low 1 01 0 1 1 0 0 0 1 1 1
1 01 1 0 1 1 1 0 0 0 0
H 1110 1110 10 | 10 110 0 | 10 | 10 "
L  001-100-111|101-110-111| 101 | 001 | 100-110 110|110 l JU

[Elias-Fano 1971-1975] [van Emde Boas 1974-1975]
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Partitioning by Universe

Assume a slice size of 23
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Contains(x): x=010101
l=x>>3 010101

search for x - (i << 3) in the i-th slice x-16=25

Successor(x):
l=x>>3
search for successor of x - (i << 3) in the i-th slice
(if i-th slice is empty or x - (i << 3) > max_value in i-th slice,
then return first value on the right)



Partitioning by Universe

Assume a slice size of 23

}:0—0&7—1 |—nm;‘|o¢ o}—o-0—o-o0ojoo-oo00-0-0o}—o—o000o]

32 40 48 56

Contains(x): x=010101
l=x>>3 010101

search for x - (i << 3) in the i-th slice x-16=25

Successor(x):
l=x>>3
search for successor of x - (i << 3) in the i-th slice
(if i-th slice is empty or x - (i << 3) > max_value in i-th slice,
then return first value on the right)

Intersection between lists has to intersect only the slices in common
between the lists.
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X-th bit is set if integer x is in the set.

S =1{0,1,5,7,8,10,11,14,18,21,22,28,29,30}
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11000101101100100010011000001010

o1 2 3 45 6 7v 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Contains: testing a bit
Successor/Predecessor: __builtin_ctzll
Select:  builtin_ctzll

Max: __builtin_clzll

Min: __ builtin_ctzll
Decode: _ builtin_ctzll

Insertion: setting a bit

Deletion: clearing a bit

Nothing is better than a bitmap for dense sets.




[Lemire et al. 2013]
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[Lemire et al. 2013]
Assume u = 232 216

- < 216 gpans of 216 values each

/A
N

216 - 16 | | 16

Dense: cardinality > 4096
Sparse: otherwise

Ensure at most 16 bits x key
(excluding overhead)

Dense spans are represented with bitmaps of 216 bits.

Sparse spans are represented with sorted-arrays of 16-bit integers.



Assume u = 232

216

- < 216 glices of 216 values each

e S

216 - 216

Dense: cardinality > 216/2
(ensure at most 2 bits x key)

Dense: cardinality > 31
(ensure at most 8 bits x key)

I 28 28 28 28 i1 28 i1 28 i1 28:

Dense slices are represented with bitmaps of 216 or 28 bits.
Sparse slices are represented with sorted-arrays of 8-bit integers.



Intersection

Intersection between lists has to intersect only the slices in common between the lists.

e Dense vs. Dense (Bitmap vs. Bitmap):
bitwise AND operations + (usually) automatic compiler vectorization

e Dense vs. Sparse (Bitmap vs. Array):
Given the array A: check if bit A[1] is set in the bitmap

e Sparse vs. Sparse (Array vs. Array):
Vectorized processing using _mm_cmpestrm and
_mm_shuffle_epi8 SIMD instructions



2 different paradigms

/N

Partitioning by Cardinality Partitioning by Universe

(PC) (PU)




Experimental Comparison — Setting

Datasets
Statistic Gov2 CW09 CCNews
Lists 35,636,425 92,094,694 43,844,574
Universe 24,622,347 50,131,015 43,530,315

Integers  5,742,630,292 15,857,983,641 20,150,335,440

Machine
Intel i7-4790K CPU @4GHz, 32 GiB RAM, Linux 4.13.0

Compiler
gcc 7.2.0 (with all optimizations: —march=native and -03)

C++ sources

https://github.com/jermp/s_indexes
https://github.com/jermp/dint
https://github.com/ot/ds2i
https://github.com/RoaringBitmap/CRoaring




Experimental Comparison — Setting

Datasets
Density Statistic Gov2 CW09 CCNews
Lists 3513 5802 5930
1072 Integers 4,347,653,438 11,676,154,022 16,677,342,102
o 76 74 33
Lists 13,276 21,924 23,085
1073 Integers 5,066,748,826 13,864,451,283 18,969,946,075
To 38 87 94
Lists 85,893 99,227 79,954
10~* Integers 5,390,038,277 14,805,194,135 19,681,352,639
To 94 93 98
Configurations
Method Shorthand Strategy
Variable-Byte \Y% PC; fixed-sized partitions of 128 integers; byte-aligned
Elias-Fano EF PC; fixed-sized partitions of 128 integers; bit-aligned
Interpolative BIC PC; fixed-sized partitions of 128 integers; bit-aligned
Elias-Fano e-opt. PEF PC; variable-sized partitions; bit-aligned
Roaring without run opt. R2 PU; single-span; 2 container types; byte-aligned
Roaring with run opt. R3 PU; single-span; 3 container types; byte-aligned
Slicing S PU; multi-span; byte-aligned




Experimental Comparison — Compression Effectiveness

bits per integer

Method d=10" d=10"° d=10"
Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CWO09 CCNews
\% 8.60 8.72 8.66 8.72 9.00 9.08 8.85 9.19 9.28
EF 2.72 4.44 4.72 3.25 5.14 5.37 3.65 5.56 5.66
BIC 2.33 3.59 4.37 2.72 4.11 4.97 3.02 4.41 5.24
PEF 2.37 4.01 4.52 2.85 4.62 5.16 3.20 4.96 5.45
R2 6.00 8.88 8.25 7.03 9.99 9.21 7.60 10.47 9.53
R3 5.33 8.49 8.22 6.25 9.40 9.17 6.75 9.75 9.48
S 3.23 5.44 5.98 3.91 6.39 7.18 4.46 7.00 7.77

PC-based methods, such as BIC and PEF, are best for space usage.

Slicing (PU-based) stands in trade-off position.




Experimental Comparison — Sequential Decoding Time

ns per integer

Method d =102 d=10"3 d=10""
Gov2 CWO09 CCNews Gov2 CWO09 CCNews Gov2 CWO09 CCNews
VvV 0.51 0.61 0.53 0.55 0.66 0.59 0.58 0.71 0.62
EF 0.87 1.29 1.36 0.94 1.34 1.41 0.98 1.36 1.42
BIC 5.26 6.73 7.71 5.54 6.95 7.86 5.70 7.01 7.90
PEF 0.78 1.15 1.34 0.86 1.22 1.48 0.91 1.25 1.53
R2 0.53 0.72 0.68 0.53 0.70 0.69 0.54 0.71 0.69
R3 0.55 0.76 0.70 0.55 0.76 0.69 0.57 0.78 0.70
S 0.56 0.67 0.65 0.57 0.69 0.67 0.60 0.73 0.71

PU-based methods, are as fast as the fastest (vectorized) PC-based methods.




Experimental Comparison — Intersection Time

musec per intersection

Method d=10""2 d=10"3 d=10"

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CWO09 CCNews

V 3648 6671 16954 710 1591 3732 40 214 523
EF 4652 8356 22818 856 1700 4455 40 192 530
BIC 12169 23608 58349 2649 6377 14765 160 905 2323
PEF 4380 7920 21710 826 1640 4185 40 190 490
R2 377 598 1138 99 232 353 10 57 98
R3 503 962 1338 128 331 395 13 75 115

S 507 1080 2370 135 378 820 11 60 159

PU-based methods outperform PC-based methods.




Experimental Comparison — Point Queries

Access: ns per query

Method d=10""2 d=10"" d=10""*

Gov2 CW09 CCNews Gov2 CWO09 CCNews Gov2 CWO09 CCNews

\% 195 174 240 155 184 222 105 151 189
EF 118 122 173 88 103 123 58 75 86
BIC 890 835 1295 904 960 1230 685 876 1062
PEF 154 171 210 118 145 126 77 100 72
R2 475 545 610 294 453 402 111 365 310
R3 5604 18710 2852 2151 7681 1221 443 2254 612

S 153 170 244 105 116 152 55 61 78

Successor: ns per query

Method d=10""2 d=10"° d=10""*

Gov2 CWO09 CCNews Gov2 CWO09 CCNews Gov2 CWO09 CCNews

V 252 226 308 255 226 279 197 181 243
EF 187 122 250 146 155 175 91 113 120
BIC 955 897 1385 951 1012 1290 710 878 1100
PEF 167 182 229 138 157 144 94 118 89
R2 115 137 185 90 119 133 55 80 82
R3 105 138 188 80 115 136 50 72 85

S 145 174 225 90 110 134 438 57 69




Experimental Comparison — The Trade-Off Curve
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Density = 1/1000



Future Research Directions

The Static Ordered Set Problem
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Future Research Directions

The Static Ordered Set Problem

l

The Dynamic Ordered Set Problem

+ insertions / deletions

Theory Practice
Fusion Trees Red-Black Trees
van Emde Boas Trees B-Trees
Exponential Search Trees
Y-Fast Tries Memory management is the

Dynamic Elias-Fano challenge.



The Dynamic Ordered Set Problem — On-going Work

Insert

n = 1,000,000 32-bit keys uniformly distributed

—0— std::set —&— s set

ns/update
W
o
o




The Dynamic Ordered Set Problem — On-going Work

Successor

n = 1,000,000 32-bit keys uniformly distributed

—0— std::set —8— s set
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The Dynamic Ordered Set Problem — On-going Work

Heap usage

—— std::set —— s _set

bytes [MiB]
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Thanks for your attention,

time, patience!

Any questions?



