
Ordered Set Problems

Giulio Ermanno Pibiri

07/06/2019

giulio.pibiri@di.unipi.it
http://pages.di.unipi.it/pibiri

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it
http://pages.di.unipi.it/pibiri/

The Static Ordered Set Problem

Given a set of n items and an order relation defined on them, 
we are asked to design a data structure that supports 

Access, Contains, Successor, Predecessor efficiently.

The Static Ordered Set Problem

Given a set of n items and an order relation defined on them, 
we are asked to design a data structure that supports 

Access, Contains, Successor, Predecessor efficiently.

Let us assume our items are integers  
drawn from some universe of size u ≥ n.

The Static Ordered Set Problem

Given a set of n items and an order relation defined on them, 
we are asked to design a data structure that supports 

Access, Contains, Successor, Predecessor efficiently.

Let us assume our items are integers  
drawn from some universe of size u ≥ n.

If the integers are not to be compressed: 
use an array. 

Operations are made efficient  
by binary search with loop unrolling  

with cut-off to SSE/AVX (SIMD) linear search  
on small segments.

If the keys are uniformly distributed,
interpolation search can help:  

O(log log n) time with high probability.

The Static Ordered Set Problem

Given a set of n items and an order relation defined on them, 
we are asked to design a data structure that supports 

Access, Contains, Successor, Predecessor efficiently.

Let us assume our items are integers  
drawn from some universe of size u ≥ n.

If the integers are not to be compressed: 
use an array. 

Operations are made efficient  
by binary search with loop unrolling  

with cut-off to SSE/AVX (SIMD) linear search  
on small segments.

If the keys are uniformly distributed,
interpolation search can help:  

O(log log n) time with high probability.

Let us also assume n is so big that we 
must compress the set.

Sorted integer sets are ubiquitous

Inverted indexes

Databases

Semantic data

Geospatial data

Graph compression

E-Commerce

The Static Compressed Ordered Set Problem

Large research corpora describing different space/time trade-offs.

• Elias’ Gamma and Delta
• Elias-Fano
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Quasi-Succinct
• Partitioned Elias-Fano
• Clustered Elias-Fano
• Optimal Variable-Byte
• DINT

~1970

2019

+ set intersection, union and decode

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Solution 1 
Introduce some redundancy to accelerate queries:  

the so-called skip pointers.

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Solution 1 
Introduce some redundancy to accelerate queries:  

the so-called skip pointers.

3 9 10 14 23 24 25 34 38 42 44 49 50 65 71 98

B

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Solution 1 
Introduce some redundancy to accelerate queries:  

the so-called skip pointers.

14 34 49 98Upperbounds

3 9 10 14 23 24 25 34 38 42 44 49 50 65 71 98

B

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Solution 1 
Introduce some redundancy to accelerate queries:  

the so-called skip pointers.

BitsOffsetsUpperbounds

14 34 49 98Upperbounds

3 9 10 14 23 24 25 34 38 42 44 49 50 65 71 98

B

Partitioning by Cardinality

The problem of (almost all) such representations is that 
Access, Contains, Predecessor/Successor 

are not natively supported, but we can just 
decode sequentially.

Solution 1 
Introduce some redundancy to accelerate queries:  

the so-called skip pointers.

BitsOffsetsUpperbounds

14 34 49 98Upperbounds

3 9 10 14 23 24 25 34 38 42 44 49 50 65 71 98

B

Solution 2 
Redesign the data structure.

Partitioning by Universe

Partitioning by Universe

Does this remind you of something?

Partitioning by Universe

[Elias-Fano 1971-1975]

Does this remind you of something?

Partitioning by Universe

[Elias-Fano 1971-1975]

√u

1 1 0 1

1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 1

√u

[van Emde Boas 1974-1975]

summary

Does this remind you of something?

Partitioning by Universe

Assume a slice size of 23

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101
010101

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101

x - 16 = 5
010101

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101

Successor(x): 
 i = x >> 3 
 search for successor of x - (i << 3) in the i-th slice 
 (if i-th slice is empty or x - (i << 3) > max_value in i-th slice, 
 then return first value on the right)

x - 16 = 5
010101

Partitioning by Universe

Contains(x):
 i = x >> 3  
 search for x - (i << 3) in the i-th slice

Assume a slice size of 23

x = 010101

Successor(x): 
 i = x >> 3 
 search for successor of x - (i << 3) in the i-th slice 
 (if i-th slice is empty or x - (i << 3) > max_value in i-th slice, 
 then return first value on the right)

Intersection between lists has to intersect only the slices in common
between the lists.

x - 16 = 5
010101

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0

S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0

S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Contains: testing a bit 
Successor/Predecessor: __builtin_ctzll 
Select: __builtin_ctzll 
Max: __builtin_clzll 
Min: __builtin_ctzll 
Decode: __builtin_ctzll 
Insertion: setting a bit  
Deletion: clearing a bit

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0

S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Contains: testing a bit 
Successor/Predecessor: __builtin_ctzll 
Select: __builtin_ctzll 
Max: __builtin_clzll 
Min: __builtin_ctzll 
Decode: __builtin_ctzll 
Insertion: setting a bit  
Deletion: clearing a bit

Nothing is better than a bitmap for dense sets.

Roaring
[Lemire et al. 2013]

Assume u = 232

216 216

…

216

216

≤ 216 spans of 216 values each

Roaring
[Lemire et al. 2013]

Assume u = 232

216 216

…

216

216

Dense: cardinality > 4096
Sparse: otherwise

Sparse Dense Sparse

Dense spans are represented with bitmaps of 216 bits.

Sparse spans are represented with sorted-arrays of 16-bit integers.

Ensure at most 16 bits x key 
(excluding overhead)

≤ 216 spans of 216 values each

Slicing

216 216

…

216

…

216

Dense: cardinality > 216/2Sparse Dense Sparse

Dense slices are represented with bitmaps of 216 or 28 bits.
Sparse slices are represented with sorted-arrays of 8-bit integers.

S D

≤ 216 slices of 216 values each

≤ 28 slices of 28 values each

D S D S D

28 28 28 28 28 28 28

(ensure at most 2 bits x key)

Dense: cardinality ≥ 31
(ensure at most 8 bits x key)

Assume u = 232

Intersection

• Dense vs. Dense (Bitmap vs. Bitmap): 
bitwise AND operations + (usually) automatic compiler vectorization

 

• Dense vs. Sparse (Bitmap vs. Array): 
Given the array A: check if bit A[i] is set in the bitmap 
 

• Sparse vs. Sparse (Array vs. Array): 
Vectorized processing using _mm_cmpestrm and  
_mm_shuffle_epi8 SIMD instructions

Intersection between lists has to intersect only the slices in common between the lists.

Summing up

Partitioning by Cardinality  
(PC)

Partitioning by Universe 
(PU)

2 different paradigms

Experimental Comparison — Setting

C++ sources
https://github.com/jermp/s_indexes 
https://github.com/jermp/dint 
https://github.com/ot/ds2i
https://github.com/RoaringBitmap/CRoaring

Machine
Intel i7-4790K CPU @4GHz, 32 GiB RAM, Linux 4.13.0

Compiler
gcc 7.2.0 (with all optimizations: -march=native and -O3)

Datasets

Experimental Comparison — Setting

Datasets

Configurations

Experimental Comparison — Compression Effectiveness

bits per integer

PC-based methods, such as BIC and PEF, are best for space usage. 
Slicing (PU-based) stands in trade-off position.

Experimental Comparison — Sequential Decoding Time

Experimental Comparison — Compression Effectiveness

ns per integer

PU-based methods, are as fast as the fastest (vectorized) PC-based methods.

Experimental Comparison — Intersection Time

musec per intersection

PU-based methods outperform PC-based methods.

Experimental Comparison — Point Queries

Experimental Comparison — Compression Effectiveness

Access: ns per query

Successor: ns per query

Experimental Comparison — The Trade-Off Curve

Experimental Comparison — Compression Effectiveness

Density = 1/1000

Future Research Directions

The Dynamic Ordered Set Problem

The Static Ordered Set Problem

+ insertions / deletions

Future Research Directions

The Dynamic Ordered Set Problem

The Static Ordered Set Problem

Theory 
Fusion Trees 

van Emde Boas Trees 
Exponential Search Trees  

Y-Fast Tries
Dynamic Elias-Fano

Practice 
Red-Black Trees 

B-Trees

Memory management is the 
challenge.

+ insertions / deletions

The Dynamic Ordered Set Problem — On-going Work

Insert

n = 1,000,000 32-bit keys uniformly distributed

The Dynamic Ordered Set Problem — On-going Work

Successor 

n = 1,000,000 32-bit keys uniformly distributed

The Dynamic Ordered Set Problem — On-going Work

Heap usage

Any questions?

Thanks for your attention,

time, patience!

