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“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information 
does not scale with technology.

Even more relevant today!
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High Level Thesis

“Space optimization is closely related to time optimization in a disk memory.”

Donald E. Knuth, The Art of Computer Programming

Data Structures + Data Compression      Faster Algorithms
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Proposal

Design space-efficient ad-hoc data structures, 
both from a theoretical and practical perspective, 

that support fast data extraction.

Must exploit properties of the addressed problem.

Data compression & Fast Retrieval 
together.

Mature algorithmic solutions 
now ready for technology transfer.
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Prefer cache-friendly (non discontiguous) data structures. 
Always.

Use std::vector.
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Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents 
in which t appears.

Given a textual collection D, each document can be seen as a 
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.
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Peter Elias 
[1923 - 2001]

Robert Fano 
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative 
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address 
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).
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Sebastiano Vigna. Quasi-Succinct Indices. 

In Proceedings of the 6-th ACM International Conference 
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!
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Every encoder represents each sequence individually.

No exploitation of redundancy.

1

Idea: encode clusters of posting lists.
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Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

Problems
1. how to build clusters 
2. how to synthesise the reference list

unbounded universe

lg u bits
R << u
lg R bitsVS

NP-hard problem
already for a simplified formulation.
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Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

Always better than PEF (by up to 11%) 
and better than BIC (by up to 6.25%) Much faster than BIC (103% on average) 

Slightly slower than PEF (20% on average)
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• x/y-Fast Tries [Willard, IPL 1983] 
• Fusion Trees [Fredman and Willard, JCSS 1993] 
• Exponential Search Trees [Andersson and Thorup, JACM 2007] 
• …

• Dynamic 
• Most of them take 

optimal time

Static succinct data structure.
NO dynamic updates.

1

n lg(u/n) + 2n + o(n) bits

O(n lg u) bits

(or even worse)
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Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n lg(u/n) + 2n + o(n) bits o(n) bits+
negligible redundancy!

1. Extend the static Elias-Fano representation to support 
predecessor and successor queries in optimal worst-
case O(lg lg n) time. 

2. Maintain S in a fully dynamic fashion, supporting in 
optimal worst-case time all the operations defined in the 
Dynamic Dictionary and Dynamic List Representation 
problems.
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Results - Static Elias-Fano Optimal Successor Queries

• optimal time/space trade-off for successor 
search [Patrascu and Thorup, STC 2007] 

• y-fast tries [Willard, IPL 1983]
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Results - Static Elias-Fano Optimal Successor Queries

Idea: divide the sequence into 
blocks and use a y-fast trie to 

index the blocks.

• optimal time/space trade-off for successor 
search [Patrascu and Thorup, STC 2007] 

• y-fast tries [Willard, IPL 1983]

1
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Results - Dynamic Elias-Fano 2

• optimal time/space trade-off for successor 
search [Patrascu and Thorup, STC 2007] 

• y-fast tries [Willard, IPL 1983] 

• dynamic prefix-sum data structure [Bille et al., 
arXiv preprint 2015]
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Results - Dynamic Elias-Fano 2

   Idea: use a 2-level indexing data structure. 
• First level indexes blocks using a y-fast trie and the 

dynamic prefix-sum data structure by Bille et al. 
• Second level indexes mini blocks using the data 

structure of the Lemma.

• optimal time/space trade-off for successor 
search [Patrascu and Thorup, STC 2007] 

• y-fast tries [Willard, IPL 1983] 

• dynamic prefix-sum data structure [Bille et al., 
arXiv preprint 2015]
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Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

Books
~6% of the books ever published

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billion grams.
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Word prediction.

space and time-efficient ?

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

context

f (“space and time-efficient data structures”)
f (“space and time-efficient”)

P (“data structures”|“space and time-efficient”)   ≈ 
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Data Structures + Data Compression      Faster Algorithms
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Several software libraries 

• KenLM [Heafield, 2011] 
• BerkeleyLM [Pauls and Klein, 2011] 
• IRSTLM [Federico et al., 2008] 
• RandLM [Talbot and Osborne, 2007] 
• Get1T [Hawker et al., 2007] 
• SRILM [Stolcke, 2002] 
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Bradley Kuszmaul
MIT Laboratory for 
Computer Science
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Thanks for your attention, 
time, patience!

Any questions?
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