
Space and Time-Efficient
Data Structures

for Massive Datasets
Giulio Ermanno Pibiri

giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Computer Science Department
University of Pisa

17/10/2016

1

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

3

Evidence

The increase of information
does not scale with technology.

3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information
does not scale with technology.

3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information
does not scale with technology.

Even more relevant today!

4

Scenario

Data Structures
PERFORMANCE

Algorithms
EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program” - less work

4

Scenario

Data Structures
PERFORMANCE

Algorithms
EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program” - less work

+ time
- space

4

Scenario

Data Compression

Data Structures
PERFORMANCE

Algorithms
EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program” - less work

+ time
- space

4

Scenario

Data Compression

Data Structures
PERFORMANCE

Algorithms
EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program” - less work

+ space
- time

+ time
- space

4

Scenario

Data Compression

Data Structures
PERFORMANCE

Algorithms
EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program” - less work

+ space
- time

?

+ time
- space

Small VS Fast?

Dichotomy Problem

5

Small VS Fast?

Dichotomy Problem

5

Choose one.

Small VS Fast?

NO

Dichotomy Problem

5

Choose one.

6

High Level Thesis

Data Structures + Data Compression Faster Algorithms

6

High Level Thesis

“Space optimization is closely related to time optimization in a disk memory.”

Donald E. Knuth, The Art of Computer Programming

Data Structures + Data Compression Faster Algorithms

7

CPU
registers

L1 L2 RAM

Hierarchical Memory Organisation

DI
SK

7

CPU
registers

L1 L2 RAM

Hierarchical Memory Organisation

DI
SK

Size

Speed

7

CPU
registers

L1 L2 RAM

Hierarchical Memory Organisation

DI
SK

Size

Speed

32-64 bits

1 ns

32 KB 256 KB 4-32 GB 1 TB

1-10 ms

Numbers are taken from: https://gist.github.com/jboner/2841832

0.5 ns 7 ns 100 ns

7

CPU
registers

L1 L2 RAM

Hierarchical Memory Organisation

DI
SK

14x 200X
Size

Speed

32-64 bits

1 ns

32 KB 256 KB 4-32 GB 1 TB

1-10 ms

Numbers are taken from: https://gist.github.com/jboner/2841832

0.5 ns 7 ns 100 ns

8

Proposal

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

8

Proposal

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

Data compression & Fast Retrieval
together.

Mature algorithmic solutions
now ready for technology transfer.

8

Proposal

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

Must exploit properties of the addressed problem.

Data compression & Fast Retrieval
together.

Mature algorithmic solutions
now ready for technology transfer.

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

9

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

• Inverted Indexes
• N-grams
• B-trees
• …

10

Wait!

Can’t we use existing libraries?

10

Wait!

Can’t we use existing libraries?

C++ Standard Template Library (STL)?

10

Wait!

Can’t we use existing libraries?

C++ Standard Template Library (STL)?

std::unordered_map

std::list

std::map

std::stack
std::queue

10

Wait!

Can’t we use existing libraries?

C++ Standard Template Library (STL)?

std::unordered_map

std::list

std::map

std::stack
std::queue

10

Wait!

Can’t we use existing libraries?

C++ Standard Template Library (STL)?

std::unordered_map

std::list

std::map

std::stack
std::queue

Prefer cache-friendly (non discontiguous) data structures.
Always.

Use std::vector.

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

~5.2GBs

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

~5.2GBs

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

~5.2GBs

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

~5.2GBs

~3GBs

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42

0

5

8

12

18

20

25

26

28

34

35

38

40

memory
vector of offsets

Prefer cache-friendly data structures.

11

Example: vector of strings VS string pool

Every access is a cache miss.
Pointer chasing :-(

Offsets instead of pointers.
Contiguous memory layout.

memory
vector of pointers

~5.2GBs

~3GBs
X5

12

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

1

12

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

1

12

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

12

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

12

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

13

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

13

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

13

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

13

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

13

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

posting lists intersection

14

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] ≤ S[i+1] for 0 ≤ i < n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

14

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] ≤ S[i+1] for 0 ≤ i < n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.
• Elias gamma/delta [Elias, TIT 1975]
• Variable Byte [Salomon, Springer 2007]
• Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
• Simple-9 [Anh and Moffat, IRJ 2005]
• PForDelta [Zukowski et al., ICDE 2006]
• OptPFD [Yan et al., WWW 2009]
• Simple-16 [Anh and Moffat, SPE 2010]
• Varint-G8IU [Stepanov et al., CIKM 2011]
• Elias-Fano [Vigna, WSDM 2013]
• Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

14

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] ≤ S[i+1] for 0 ≤ i < n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.
• Elias gamma/delta [Elias, TIT 1975]
• Variable Byte [Salomon, Springer 2007]
• Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
• Simple-9 [Anh and Moffat, IRJ 2005]
• PForDelta [Zukowski et al., ICDE 2006]
• OptPFD [Yan et al., WWW 2009]
• Simple-16 [Anh and Moffat, SPE 2010]
• Varint-G8IU [Stepanov et al., CIKM 2011]
• Elias-Fano [Vigna, WSDM 2013]
• Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Consequence? Query time latencies deteriorate from 250ms to 1s.

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

15

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Consequence? Query time latencies deteriorate from 250ms to 1s.

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

15

September 7, 2016

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Consequence? Query time latencies deteriorate from 250ms to 1s.

Solution?

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

15

September 7, 2016

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Consequence? Query time latencies deteriorate from 250ms to 1s.

Solution?

Compress the index to reduce I/O pressure.

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

15

September 7, 2016

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Consequence? Query time latencies deteriorate from 250ms to 1s.

Solution?

Compress the index to reduce I/O pressure.

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

15

September 7, 2016

Data Structures + Data Compression Faster Algorithms

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

16

Elias-Fano - Genesis

Peter Elias
[1923 - 2001]

Robert Fano
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

1

16

Elias-Fano - Genesis

Peter Elias
[1923 - 2001]

Robert Fano
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Sebastiano Vigna. Quasi-Succinct Indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!

1

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

1

2

3

4

5

6

7

8

2

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

2

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

3

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

3

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

1

3

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

1

3

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
high bits

L = 011100111101110111101011

u =

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

1

3

3

17

Elias-Fano - Encoding example

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
high bits

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

1

3

3

17

Elias-Fano - Encoding example

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
high bits

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

1

1

3

3

17

Elias-Fano - Encoding example

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
high bits

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

high low
lg n lg(u/n)

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

2

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

u
nlgn + 2n

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

(less than half a bit away [Elias, JACM 1974])

u
nlgn + 2n

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

(less than half a bit away [Elias, JACM 1974])

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

but…

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

need o(n) bits more to support fast
rank/select primitives on bitvector H

but…

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

18

Elias-Fano - Properties

EF(S[0,n)) =

3

u
nlgn bits+ 2n

X is the set of all monotone sequence
of length n drawn from a universe u.

X = ((u+n
n

lg ≈ u+n
nlgn((u+n

n

access to each S[i] in O(1) worst-case

need o(n) bits more to support fast
rank/select primitives on bitvector H

but…

predecessor(x) = max{S[i] | S[i] < x}
successor(x) = min{S[i] | S[i] ≥ x}

u
n

lg((O worst-casequeries in

19

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

1

19

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

1

19

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

1

Idea: encode clusters of posting lists.

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

unbounded universe

lg u bits

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

unbounded universe

lg u bits

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

unbounded universe

lg u bits

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

unbounded universe

lg u bits

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

unbounded universe

lg u bits
R << u
lg R bitsVS

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

Problems
1. how to build clusters
2. how to synthesise the reference list

unbounded universe

lg u bits
R << u
lg R bitsVS

20

Clustered Elias-Fano Indexes 2

cluster of posting lists

reference list

R

Problems
1. how to build clusters
2. how to synthesise the reference list

unbounded universe

lg u bits
R << u
lg R bitsVS

NP-hard problem
already for a simplified formulation.

21

Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

21

Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

21

Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%)

21

Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%)

21

Clustered Elias-Fano Indexes 3

Time VS Space tradeoffs by varying reference size

Always better than PEF (by up to 11%)
and better than BIC (by up to 6.25%) Much faster than BIC (103% on average)

Slightly slower than PEF (20% on average)

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

1

n lg(u/n) + 2n + o(n) bits

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

• O(1) random access
• O(lg(u/n)) predecessor/successor

1

n lg(u/n) + 2n + o(n) bits

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

• O(1) random access
• O(lg(u/n)) predecessor/successor

Static succinct data structure.
NO dynamic updates.

1

n lg(u/n) + 2n + o(n) bits

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

• O(1) random access
• O(lg(u/n)) predecessor/successor

• vEB Trees [van Emde Boas, FOCS 1975]
• x/y-Fast Tries [Willard, IPL 1983]
• Fusion Trees [Fredman and Willard, JCSS 1993]
• Exponential Search Trees [Andersson and Thorup, JACM 2007]
• …

• Dynamic
• Most of them take

optimal time

Static succinct data structure.
NO dynamic updates.

1

n lg(u/n) + 2n + o(n) bits

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

• O(1) random access
• O(lg(u/n)) predecessor/successor

• vEB Trees [van Emde Boas, FOCS 1975]
• x/y-Fast Tries [Willard, IPL 1983]
• Fusion Trees [Fredman and Willard, JCSS 1993]
• Exponential Search Trees [Andersson and Thorup, JACM 2007]
• …

• Dynamic
• Most of them take

optimal time

Static succinct data structure.
NO dynamic updates.

1

n lg(u/n) + 2n + o(n) bits

O(n lg u) bits

(or even worse)

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}

Given a list S of n sorted integer, support the
following operations
• access(i) return the i-th smallest element of S
• insert(x) inserts x in S
• delete(x) deletes x from S

under the assumption that w ≤ lgγ n for some γ.

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}
Ω(lg n/lg lg n) amortized time per operation,

in the cell-probe computational model.

Given a list S of n sorted integer, support the
following operations
• access(i) return the i-th smallest element of S
• insert(x) inserts x in S
• delete(x) deletes x from S

under the assumption that w ≤ lgγ n for some γ.

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}
Ω(lg n/lg lg n) amortized time per operation,

in the cell-probe computational model.

Given a list S of n sorted integer, support the
following operations
• access(i) return the i-th smallest element of S
• insert(x) inserts x in S
• delete(x) deletes x from S

under the assumption that w ≤ lgγ n for some γ.

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]

Optimal space/time trade-off for a static data structure taking m =
n2aw bits, where a is the number of bits necessary to represent
the mean number of bits per integer, i.e., a = lg(m/n) − lg w

[Patrascu and Thorup, STC 2007]

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}
Ω(lg n/lg lg n) amortized time per operation,

in the cell-probe computational model.

Given a list S of n sorted integer, support the
following operations
• access(i) return the i-th smallest element of S
• insert(x) inserts x in S
• delete(x) deletes x from S

under the assumption that w ≤ lgγ n for some γ.

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]

Optimal space/time trade-off for a static data structure taking m =
n2aw bits, where a is the number of bits necessary to represent
the mean number of bits per integer, i.e., a = lg(m/n) − lg w

[Patrascu and Thorup, STC 2007]

23

Integer Data Structures - Problems and Results 2

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.
• insert(x) inserts x in S
• delete(x) deletes x from S
• search(x) checks whether x belongs to S
• minimum() returns the minimum element of S
• maximum() returns the maximum element of S
• predecessor(x) returns max{y ∈ S : y < x}

• successor(x) returns min{y ∈ S : y ≥ x}
Ω(lg n/lg lg n) amortized time per operation,

in the cell-probe computational model.

Given a list S of n sorted integer, support the
following operations
• access(i) return the i-th smallest element of S
• insert(x) inserts x in S
• delete(x) deletes x from S

under the assumption that w ≤ lgγ n for some γ.

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n lg(u/n) + 2n + o(n) bits

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n lg(u/n) + 2n + o(n) bits o(n) bits+

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n lg(u/n) + 2n + o(n) bits o(n) bits+
negligible redundancy!

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n lg(u/n) + 2n + o(n) bits o(n) bits+
negligible redundancy!

1. Extend the static Elias-Fano representation to support
predecessor and successor queries in optimal worst-
case O(lg lg n) time.

2. Maintain S in a fully dynamic fashion, supporting in
optimal worst-case time all the operations defined in the
Dynamic Dictionary and Dynamic List Representation
problems.

25

Results - Static Elias-Fano Optimal Successor Queries

• optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

• y-fast tries [Willard, IPL 1983]

1

25

Results - Static Elias-Fano Optimal Successor Queries

Idea: divide the sequence into
blocks and use a y-fast trie to

index the blocks.

• optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

• y-fast tries [Willard, IPL 1983]

1

26

Results - Dynamic Elias-Fano 2

• optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

• y-fast tries [Willard, IPL 1983]

• dynamic prefix-sum data structure [Bille et al.,
arXiv preprint 2015]

26

Results - Dynamic Elias-Fano 2

 Idea: use a 2-level indexing data structure.
• First level indexes blocks using a y-fast trie and the

dynamic prefix-sum data structure by Bille et al.
• Second level indexes mini blocks using the data

structure of the Lemma.

• optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

• y-fast tries [Willard, IPL 1983]

• dynamic prefix-sum data structure [Bille et al.,
arXiv preprint 2015]

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1

27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

…
27

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

N number of grams

1 8761
2 38900
3 61516
4 70186
5 73187

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

N number of grams

1 8761
2 38900
3 61516
4 70186
5 73187

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

N number of grams

1 8761
2 38900
3 61516
4 70186
5 73187

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

Books
~6% of the books ever published

N number of grams

1 8761
2 38900
3 61516
4 70186
5 73187

N-grams 1

Strings of at most N words.
N typically ranges from 1 to 5.

different
algorithms
devised

different algorithms
algorithms devised
devised to

N = 1 N = 2

… …

27

Books
~6% of the books ever published

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billion grams.

28

N-grams - Why? 2

Word prediction.

28

N-grams - Why? 2

Word prediction.

space and time-efficient ?

28

N-grams - Why? 2

Word prediction.

space and time-efficient ?

context

28

N-grams - Why? 2

Word prediction.

space and time-efficient ?

algorithms

foo

data structures

bar

baz
context

28

N-grams - Why? 2

Word prediction.

space and time-efficient ?

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

context

28

N-grams - Why? 2

Word prediction.

space and time-efficient ?

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

context

f (“space and time-efficient data structures”)
f (“space and time-efficient”)

P (“data structures”|“space and time-efficient”) ≈

29

N-grams - Who cares? 3

29

N-grams - Who cares? 3

29

N-grams - Who cares? 3

What can I
help you with?

What can I
help you with?

Siri

31

N-grams - Challenge 4

Store massive N-grams datasets such
that given a pattern, we can return its

frequency count at light speed.

31

N-grams - Challenge 4

Store massive N-grams datasets such
that given a pattern, we can return its

frequency count at light speed.

Efficient map.

31

N-grams - Challenge 4

Store massive N-grams datasets such
that given a pattern, we can return its

frequency count at light speed.

Efficient map.

Data Structures + Data Compression Faster Algorithms

32

N-grams - Data structures 5

Open-addressing TriesVS

32

N-grams - Data structures 5

Open-addressing Tries

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

32

N-grams - Data structures 5

Open-addressing Tries

X
h

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

32

N-grams - Data structures 5

Open-addressing Tries

X
h

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ space
- time

+ time
- space

32

N-grams - Data structures 5

Open-addressing Tries

X
h

BBC

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

10100101

10001011

00001010

11011110

00010101

01010011

24

24
582

24

582
36352

VS

+ space
- time

+ time
- space

Several software libraries

• KenLM [Heafield, 2011]
• BerkeleyLM [Pauls and Klein, 2011]
• IRSTLM [Federico et al., 2008]
• RandLM [Talbot and Osborne, 2007]
• Get1T [Hawker et al., 2007]
• SRILM [Stolcke, 2002]

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24

00010101

01010011

582
36352

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24

00010101

01010011

582
36352

Open addressing?

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24

00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24

00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24

00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24
A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

VS
A 0
B 1
C 2
D 3vo

ca
bu

la
ry

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

0 1 2 3

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

VS
A 0
B 1
C 2
D 3vo

ca
bu

la
ry

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

0 1 2 3

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

0 1 3 6

0 1 3 4 5 5 7 8

1 1 2 4 4 4 6 6 7 9 9

VS
A 0
B 1
C 2
D 3vo

ca
bu

la
ry

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

0 1 2 3

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

0 1 3 6

0 1 3 4 5 5 7 8

1 1 2 4 4 4 6 6 7 9 9

Encode each level
with Elias-Fano.

VS
A 0
B 1
C 2
D 3vo

ca
bu

la
ry

33

tongrams - Tons of N-Grams 1

Hash-based Trie-based

10001011

00001010

24
582

11011110 24
00010101

01010011

582
36352

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101 24

36352

24
582

0

1

2

0
0
1
0
1
2

A B C

A B

D

D B C A C D

B A B D A A C A B D A

6891133244

9012010024 11435022543

43342324 881773120 11414123

0 1 2 3

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

0 1 3 6

0 1 3 4 5 5 7 8

1 1 2 4 4 4 6 6 7 9 9

Encode each level
with Elias-Fano.

VS
A 0
B 1
C 2
D 3vo

ca
bu

la
ry

Random access.

34

tongrams - Preliminary results 2

34

tongrams - Preliminary results 2

34

tongrams - Preliminary results 2

X2.6

X3.8

35

(Some) Future Research Problems 1

Dynamic Inverted Indexes.

35

(Some) Future Research Problems 1

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot.

Merge them periodically.

35

(Some) Future Research Problems 1

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot.

Merge them periodically.

36

(Some) Future Research Problems 2

Compressed B-trees.

36

(Some) Future Research Problems 2

Compressed B-trees.
Problem: maintain a dictionary on disk.

Motivations: databases and file-systems.

36

(Some) Future Research Problems 2

Compressed B-trees.
Problem: maintain a dictionary on disk.

Motivations: databases and file-systems.

“Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.”

Michael Bender
Stony Brook University

Martin Farach-Colton
Rutgers University

Bradley Kuszmaul
MIT Laboratory for
Computer Science

36

(Some) Future Research Problems 2

Compressed B-trees.
Problem: maintain a dictionary on disk.

Motivations: databases and file-systems.

“Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.”

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1110111010001000
Build an index on zeros.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1110111010001000
Build an index on zeros.

p = select0(hx) - hx

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1110111010001000
Build an index on zeros.

p = select0(hx) - hx

x = 001100 (12)

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1110111010001000
Build an index on zeros.

p = select0(hx) - hx

x = 001100 (12)

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

37

(Some) Future Research Problems 3

Fast Successor for IP-lookup.

We can directly jump to the position of
the first address having the same lg n bits
as the searched pattern in O(1) using the
powerful search capabilities of Elias-Fano.

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1110111010001000
Build an index on zeros.

p = select0(hx) - hx

x = 001100 (12)

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efficiency is crucial.

Thanks for your attention,
time, patience!

Any questions?

38

