Space and Time-Efficient

Data Structures
for Massive Datasets

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Computer Science Department
University of Pisa

17/10/2016

1

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

The increase of information
does not scale with technology.

The increase of information
does not scale with technology.

i il

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

. y

The increase of information
does not scale with technology.

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

Data Structures Algorithms

PERFORMANCE EFFICIENCY

“how quickly a program “how much work Is required
does its work” - faster work by a program’ - less work

Data Structures
PERFORMANCE

“how quickly a program
does its work” - faster work

- Space

+ time Algorithms
EFFICIENCY

“how much work is required
by a program’ - less work

Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

Data Compression
4

Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

Data Compression

+ space
- time

Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

"/
Data Compression

+ space
- time

Dichotomy Problem

Small VS Fast?

Dichotomy Problem

Small VS Fast?
Choose one.

Dichotomy Problem

Small VS Fast?
Choose one.

NO

High Level Thesis

Data Structures + Data Compression =» Faster Algorithms

High Level Thesis

Data Structures + Data Compression =» Faster Algorithms

THE CLASSIC WORK
NEWLY UPDATED AND REVISEI

The Art of
Computer
Programming

Fundamental Algorithms
Third Edition

DONALD E. KNUTH

“Space optimization is closely related to time optimization in a disk memory.”
Donald E. Knuth, The Art of Computer Programming

Hierarchical Memory Organisation

DISK

Hierarchical Memory Organisation

DISK

Size

Speed

Hierarchical Memory Organisation

\'d
—[R]— RN -— YNV - %
O
_ 32-64 bits 32 KB 256 KB 4-32 GB 1TB
Size
1ns 0.5ns / Nns 100 ns 1-10 ms

Speed —7—77 - —2————7-—7-7D"—7—"——7—

Numbers are taken from: https://gist.github.com/jboner/2841832 7

Hierarchical Memory Organisation

A’
QO
_ 32-64 bits 32 KB 256 KB 4-32 GB 1TB
Size -
14X X
— .
1ns 0.5ns / NS 100 ns 1-10 ms

Speed +—— —7—7-~"—"F¢F""¥—¥“"""""" "

Numbers are taken from: https://gist.github.com/jboner/2841832 7

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Data compression & Fast Retrieval
together.

Mature algorithmic solutions
now ready for technology transfer.

Must exploit properties of the addressed problem.

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Data compression & Fast Retrieval
together.

Mature algorithmic solutions
now ready for technology transfer.

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

Inverted Indexes
N-grams

B-trees

Why? Who cares?

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

A

Inverted Indexes
N-grams

B-trees

Google

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

A

Inverted Indexes
N-grams

B-trees

Google

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

A

Inverted Indexes
N-grams

B-trees

Google oo

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

A

Inverted Indexes
N-grams

B-trees

Google oo

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

A

Inverted Indexes
N-grams

B-trees

Google oo

Because engineered data structures
are the ones the boost the availability
and wealth of information around us.

Inverted Indexes

—_= = N-grams
B-trees

Can'’t we use existing libraries?

10

Can'’t we use existing libraries?

C Standard Template Library (STL)?

10

Can'’t we use existing libraries?

C Standard Template Library (STL)?

std::list
std::stack
std::queue

std::map

std::unordered map

10

Can'’t we use existing libraries?

C Standard Template Library (STL)?

std::list
std::stack
std::queue

std::map

std::unordered map

10

Can'’t we use existing libraries?

C Standard Template Library (STL)?

std::list
std::stack
std::queue

std::map

std::unordered map

Prefer cache-friendly (non discontiguous) data structures.
Always.

Use std::vector.

10

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory

vector of pointers —>

—>

11

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memaory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—>

32|33 |34

40 (41|42

11

Example: vector of strings VS string pool

vector of pointers

Preter cache-friendly data structures.

memory

11

memory

516(7

vector of offsets

0] 2220

Example: vector of strings VS string pool

vector of pointers

Preter cache-friendly data structures.

memory

memory

vector of offsets

516(7

0] 2220
[_ |

Offsets instead of pointers.
Contiguous memory layout.

11

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings

3224822962

2016-10-12 09:43:46: elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings

3224822962

2016-10-12 09:43:46: elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings

3224822962

2016-10-12 09:43:46:(elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings

3224822962 ~5.2GBs

2016-10-12 09:43:46:(elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings

3224822962 ~5.2GBs

2016-10-12 elapsed 6.705554 [sec]

giulio@xor: ~/sx1m/bu1ld$./string_pool_benchmark ~/random_strings.50M.128
2016-10-12 09:44:18: Loading strings

2016-10-12 09:44:26: read 3224822962 bytes

2016-10-12 09:44:26: Scanning strings

3224822962

2016-10-12 09:44:27: elapsed 1.341409 [sec]

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings
3224822962 ~5.2GBs

2016-10-12

giulio@xor:~/sxlm/build$./string_pool_benchmark ~/random_strings.50M.128
2016-10-12 09:44:18: Loading strings

2016-10-12 09:44:26: read 3224822962 bytes

2016-10-12 09:44:26: Scanning strings

3224822962

2016-10-12 09:44:27:(elapsed 1.341409 [sec

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings
3224822962 ~5.2GBs

2016-10-12

giulio@xor:~/sxlm/build$./string_pool_benchmark ~/random_strings.50M.128
2016-10-12 09:44:18: Loading strings

2016-10-12 09:44:26: read 3224822962 bytes

2016-10-12 09:44:26: Scanning strings

3224822962

2016-10-12 09:44:27:(elapsed 1.341409 [sec

Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
vector of pointers — vector of offsets 0|1]2|3
4|5]6|7

—»

giulio@xor:~/sxlm/build$./string_vector_benchmark 50000000 ~/random_strings.50M.128
2016-10-12 09:43:31: Loading strings

2016-10-12 09:43:39: Scanning strings
3224822962 ~5.2GBs

2016-10-12

giulio@xor:~/sxlm/build$./string_pool_befchmark ~/random_strings.50M.128
2016-10-12 09:44:18: Loading strings

2016-10-12 09:44:26: read 3224822962 byteqd X5

2016-10-12 09:44:26: Scanning strings

3224822962

2016-10-12 09:44:27:(elapsed 1.341409 [sec

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

12

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

red

IS
s always
house
, good
S
red
the |::>
boy boy
- , IS
e - hungry
house red
IS
always
hungry

12

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

The collection of all inverted lists {Lt,,... Lt} is the inverted index.

t; t ts ty te tg tr g
red .
S T = {always, boy, good, house, hungry, is, red, the}
the
FoUSe always
: good
is
red
the
boy b.oy
the | IS £
hungr
house red -
IS
always
hungry

12

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

E the

For each term tin T we store in a list L the identifiers of the documents

In which t appears.

The collection of all inverted lists {Lt,

red

L+,} is the inverted index.

T = {always, boy, good, house, hungry, is, red, the}

o

D IS
. always
, good
IS
red
the B
boy b.oy
— . IS
the ~ hungry
house red
IS
always e
hungry

o

12

Inverted Indexes 1

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

For eachtermtin T we store in a list L the identifiers of the documents
In which t appears.

L+,} is the inverted index.

The collection of all inverted lists {Lt,

o 5 to t3 ty ts tg t7 tg
S T = {always, boy, good, house, hungry, is, red, the}
the D
house SR]
good ,=[1, 3]
red N, B | +,=[4, 5]
| +,=[1]
bo boy =L
e the 3 iSy ° -=(2, 3|
house red nungry L=[3, O]
s | .=[1, 2, 3, 4, 5]
hall,lvr\:gilj e —t7=;11 21 4]
) 0 | ,=[2, 3, 9]

12

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

13

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés _
5 i t,=[1, 3]
red r— _t2=;4, 5]
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry Li5=|3, o]
lis | .=[1, 2, 3, 4, 5]
= o i
a ,=[2, 3, 5]

13

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés)
: goc ,=[1, 3]
red the | —t2=:4, 5] g = {bOy, iS, the}
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry _t5=_3, 5]
is | .=[1, 2, 3, 4, 5]
= 0 i
6 L.=[2, 3, 5]

13

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G {1 t I3 tg l5 e 17 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houie alwaés)
: goc L, =[1, 3]
red the | _ty= :4, 5] g = {bOy, iS, the}
e boy boy _t3=:1]
the —Y s = —la~ :2’ 3|
house red hungry —t5=-3’ 5]
is .=[1, 2, 3, 4, 5]
= o o
6 L=[2, 3, 5]

13

Inverted Indexes 2

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t4,...,tx} occur”.

G t to t3 ty tsg tg t7 tg
red

e N = T = {always, boy, good, house, hungry, is, red, the}
th
houze alwaés i
s G0 ,=[1, 3]
red e N\ Lt,=[4, o] g = {boy, is, the}
e boy b boy _t3=:1]
the B_ s = —la~ :2’ 3]
house red nungry Lts=[3, O]
s L ,=[1, 2, 3, 4, 5]
= 0 Il
6 =2, 3, 5]

posting lists intersection

13

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] < S[i+1] for 0 <i < n-1, possibly repeated.

How to represent it as a bit vector in which each original

integer is self-delimited, using as few as possible bits”

14

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] < S[i+1] for 0 <i < n-1, possibly repeated.

How to represent it as a bit vector in which each original

integer is self-delimited, using as few as possible bits”

Huge research corpora describing different space/time trade-offs.

Elias gamma/delta [Elias, TIT 1975]

Variable Byte [Salomon, Springer 2007

Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
Simple-9 [Anh and Moffat, IRJ 2005]

PForDelta [Zukowski et al., ICDE 2006]

OptPED [Yan et al.,, WWW 2009]

Simple-16 [Anh and Moffat, SPE 2010]

Varint-G8IU [Stepanov et al., CIKM 2011]

Elias-Fano [Vigna, WSDM 2013]

Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

14

General Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i] < S[i+1] for 0 <i < n-1, possibly repeated.

How to represent it as a bit vector in which each original

integer is self-delimited, using as few as possible bits”

Huge research corpora describing different space/time trade-offs.

Elias gamma/delta [Elias, TIT 1975]

Variable Byte [Salomon, Springer 2007

Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
Simple-9 [Anh and Moffat, IRJ 2005]

PForDelta [Zukowski et al., ICDE 2006]

OptPED [Yan et al.,, WWW 2009]

Simple-16 [Anh and Moffat, SPE 2010]

Varint-G8IU [Stepanov et al., CIKM 2011]

Elias-Fano [Vigna, WSDM 2013]

Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

14

&% Dropbox Tech Blog

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Improving the performance of full-text search

Adam Faulkner | September 7, 2016 w Fo @z B>

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Conseqguence” Query time latencies deteriorate from 250ms to 1s.

15

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

&% Dropbox Tech Blog

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Improving the performance of full-text search

Adam Faulkner: September 7, 2016 L 4 n 0 m 13 E 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Conseqguence” Query time latencies deteriorate from 250ms to 1s.

15

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

&% Dropbox Tech Blog

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Improving the performance of full-text search

Adam Faulkner: September 7, 2016 L 4 n 0 m 13 E 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Conseqguence” Query time latencies deteriorate from 250ms to 1s.

Solution?

15

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

&3 Dropbox Tech Blog

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Improving the performance of full-text search

Adam Faulkner September 7, 2016 L 4 n 0 m 13 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Conseqguence” Query time latencies deteriorate from 250ms to 1s.

Solution?

Compress the index to reduce I/O pressure.

15

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

&% Dropbox Tech Blog

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Improving the performance of full-text search

Adam Faulkner September 7, 2016 L 4 n 0 m 13 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index.
Conseqguence” Query time latencies deteriorate from 250ms to 1s.

Solution?

Compress the index to reduce I/O pressure.

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

Elias-Fano - Genesis

Peter Elias Robert Fano
[1923 - 2001] [1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

16

Elias-Fano - Genesis

Peter Elias Robert Fano
[1923 - 2001] [1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

40 years later!
Sebastiano Vigna. Quasi-Succinct Indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).

16

Elias-Fano - Encoding example

17

~N B~ W

OO B~

21
43

Elias-Fano - Encoding example

~N B~ W

— O B~ W

17

Elias-Fano - Encoding example

00001 1 3
000100 4
00011" 7
00110" 13
001110 14
00111- 15
01010" 21
10101 - u = 43)

17

Elias-Fano - Encoding example

high low
lg n lg(u/n)

000011
000100

00011°
00110° 1
001110
00111°
01010° 2
10101~ U

~N B~ W

— O B~ W

®

17

Elias-Fano - Encoding example

high low
lg n lg(u/n)

00001 T
000100

00011°
00110° 1
001110
0O0111°
01010 ° 2
10101° U

~N B~ W

— O B~ W

®

17

Elias-Fano - Encoding example

high low
ign Ig(u/n)

00001 1 3
000100 4
00011 " 7
00110 13
001110 14
00111 15
01010 21
10101 - u =43

L =011100111101110111101011

17

Elias-Fano - Encoding example

high low
ign Ig(u/n)
00001 1 3

3 000100 4
00011 " 7
00110 13
001110 14
00111 15
01010 21
10101 - u =43

L =011100111101110111101011

17

Elias-Fano - Encoding example

high low
ign Ig(u/n)
000011 3

3 000100 4
00011 " 7
00110" 13

3001110 14
00111" 15
01010 21
10101 - u =43

L =011100111101110111101011

17

Elias-Fano - Encoding example

high low
ign Ig(u/n)
00001 1 3
3 000100 4
00011 " 7
00110" 13
3001110 14
00111" 15
101010° 2
10101 - u =43

L =011100111101110111101011

17

Elias-Fano - Encoding example

;
0

10

-

high low
ign Ig(u/mn)
0000 T
300010
000111
001101
30017
001111
1 01010°
1 10101

~N B~ W

OO B~

21

L =011100111101110111101011

17

missing
high bits

0011
0100

Elias-Fano - Encoding example

high low
ign Ig(u/mn)
0000 11
3000100
000111
001101
3001110
001111
1 01010°
1 10101 "

~N B~ W

OO B~

21

L =011100111101110111101011

17

Elias-Fano - Encoding example

high low

lg n lg(u/n)

000011
3000100

missing 00011°
high bits 00110

0 011 3001110
0100 00111 -
1 01010
1 101011
0110

17

~N B~ W

OO B~

21

L =011100111101110111101011

Elias-Fano - Encoding example

high low
lg n lg(u/n)
000011 3
3000100 4
missing 00011° /
high bits 00110 13
011 3001110 14
0100 00111 - 15
1 01010° 21
110101 " u = (43)
0110 L =011100111101110111101011
0 1 1 33100100

17

Elias-Fano - Encoding example

high low

lg n lg(u/n)
000011 3
3000100 4
missing 00011° /
high bits 00110 13
011 3001110 14
0100 00111 - 15
1 01010° 21
110101 " u = (43)

0 110 L =011100111101110111101011

0 111 33100100 H=1110 1110 10 O 0 10 O O

17

Elias-Fano - Properties

EF(S[0.N)) = [Ig %LG bits

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

X is the set of all monotone sequence
of length n drawn from a universe u.

ERCY

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[O,n)) = N Pg %_| + 2n bits

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[O,n)) = N Pg %_| + 2n bits

(less than half a bit away [Elias, JACM 1974])

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

(less than half a bit away [Elias, JACM 1974])

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

X is the set of all monotone sequence
of length n drawn from a universe u.

18

Elias-Fano - Properties

EF(S[0.N)) = [Ig %LG bits

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2N bits

access to each S[i] in O(1) worst-case

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2n Dbits
access to each S[i] in O(1) worst-case

X}

X}

predecessor(x) = max{S[i] | S[i]

vV A

successor(x) = min{S[i] | S[i]

queries in O('Q%) worst-case

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2n Dbits
access to each S[i] in O(1) worst-case

X}

X}

predecessor(x) = max{S[i] | S[i]

vV A

successor(x) = min{S[i] | S[i]

queries in O('Q%) worst-case

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2n Dbits
access to each S[i] in O(1) worst-case

X}

X}

predecessor(x) = max{S[i] | S[i]

vV A

successor(x) = min{S[i] | S[i]

queries in O('Q%) worst-case

but...

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2n Dbits
access to each S[i] in O(1) worst-case

X}

X}

predecessor(x) = max{S[i] | S[i]

AVARRAN

successor(x) = min{SJ[i] | S[i]

queries in O('Q%) worst-case

but...

need o(n) bits more to support fast
rank/select primitives on bitvector H

18

Elias-Fano - Properties

EF(S[O,n)) = n Pg %_| + 2n Dbits
access to each S[i] in O(1) worst-case

X}

X}

predecessor(x) = max{S[i] | S[i]

AVARRAN

successor(x) = min{SJ[i] | S[i]

queries in O('Q%) worst-case

but...

need o(n) bits more to support fast
rank/select primitives on bitvector H

18

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

19

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

- 1050
- 900

- 750

- 600

- 450

- 300

- 150

o

19

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

- 1050
- 900
- 750
- 600
- 450
- 300

- 150

ldea: encode clusters of posting lists.

19

Clustered Elias-Fano Indexes

cluster of posting lists

20

Clustered Elias-Fano Indexes

cluster of posting lists

unbounded universe

20

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe

20

Clustered Elias-Fano Indexes

cluster of posting lists

reference list
R

unbounded universe

20

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe

20

Clustered Elias-Fano Indexes

cluster of posting lists

reference list
R

unbounded universe R << U

v

20

Clustered Elias-Fano Indexes

cluster of posting lists

unbounded universe

Vs
Problems

1. how to build clusters
2. how to synthesise the reference list

20

reference list

I
R

R << U

Ig R bits

Clustered Elias-Fano Indexes

cluster of posting lists

reference list
R

unbounded universe R << U

v

Problems
1. how to build clusters
2. how to synthesise the reference list

NP-hard problem
already for a simplified formulation.

20

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

4.80 - ! = - ' ! ‘ ‘ i i
+— CPEF space-based +—e CPEF space-based i +—s CPEF space-based

2.90 S »— CPEF space-based) ~ 13 -
’ ™~ +—= CPEF frequency-based "~ == CPEF frequency-based +—= CPEF frequency-based «—= CPEF frequency-based /"'/
4.75 — 35 y
2.85 - \ - 12 -
4.70
2.80 - 11 -
4.65 -
2.75 10-
4.60
2.70 9-
4.55 -
2.65 8
50‘{» \QQY‘ :ng\g AQQYS %QQ‘(* N 500‘6 6@\‘ \00‘6 :LQQ‘{L bp@é— %QQY” \ g)g@l*{b beQ‘{* 6:5'0@& 60‘6 . XQ'Q‘ZS %00‘6 . A‘Q‘QY\ %00‘5 | \ 5091‘ 60'\" XQ‘QV; "LQQY& &QQY* %le‘{* \ ’6501;3 2‘00{‘ 6)@0‘6
(a) Gov2 (b) ClueWeb09 (2) Gov2 (b) ClueWeb09
Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size. Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
MIN MID MAX MIN MID MAX MIN MID MAX MIN MID MAX
PEF 2,94 (45.60%) 2,94 (47.91%) 2,94 (410.95% PEF 4,80 (42.13%) 4,80 (43.98% 4.80 (46.25% 8 PEF 14.6 (=17.5%) 14.6 (=29.0%) 14.6 (~49.7%) uo-) PEF 3.7 (~30.4% 3.7 (=37.5% 3.7 (=52.1%
CPEF 2.78 2.72 2.65 CPEF 4.70 4.62 4.52 é cPer 17.7 20.6 29.1 é cPeF 5.3 5.9 7.8
BIC 2.80 (o5 2.80 (1274%)2.80 (1560 BIC 4.27 (o92m) 4.27 (7580 427 (- s56%) Toaic 411 (oo 411 (s 411 (e Taic 105 (1o 10.5 (e 10.5 (1550w
(a) Gov2 (b) ClueWeb09 g PEF 17.7 (16w 17.7 (-2009%) 17.7 (~503%) g PEF 6.1 () 6.1 (sow) 6.1 (a0
¥ v
Table 2: Bits per posting in selected trade-off points. g 21.2 250 3.6 i e 8.3 73 1.9
BIC 55.1 (+1507%) 55.1 (+1208%) 55.1 (454.7%) BIC 185 (ri26m) 18.5 (1osen) 18.5 (1s60m
(a) ClueWeb09 (b) Gov2

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query
sets TREC 05 and TREC 05. In parentheses we show the relative percentage
against CPEF.

21

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

4.80 - ! = - ' ! ‘ ‘ i i
+— CPEF space-based +—e CPEF space-based i +—s CPEF space-based

2.90 -~ »— CPEF space-based) ~ 13 -
’ ™~ +—= CPEF frequency-based "~ == CPEF frequency-based +—= CPEF frequency-based «—= CPEF frequency-based /"'/
4.75 — 35 y
2.85 - \ - 12 -
4.70
2.80 - 11-
4.65 -
2.75 10-
4.60
2.70 9-
4.55 -
2.65 8
N S P S o 0B g g o0 o oo % | @&z» RS | @{ﬂ» o | (¥ @'\A @{ﬂ! R %Q'@{» . 5@»3 o o
(a) Gov2 (b) ClueWeb09 (2) Gov2 (b) ClueWeb09
Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size. Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
MIN MID MAX MIN MID MAX MIN MID MAX MIN MID MAX
PEF 2,94 (45.60%) 2,94 (+7.91%) 2,94 (410.95%) PEF 4,80 (42.13%) 4.80 (4+3.98%) 4,80 (46.25%) g PEF 14.6 (=17.5%) 14.6 (=29.0%) 14.6 (=49.7%) uo-) PEF 3.7 (~30.4% 3.7 (~37.5% 3.7 (=52.1%
CPEF 2.78 2.72 2.65 CPEF 4.70 4.62 4.52 é cPer 17.7 20.6 29.1 é CPEF 5.3 5.9 7.8
BIC 2.80 (io53%) 2.80 (12744 2.80 (1560 BIC 4.27 (92w 427 (7500 427 (s50m) Toaic 411 (oo 411 (s 411 (e T 10.5 (o) 10.5 (1762 10.5 (150
(a) Gov2 (b) ClueWeb09 g PEF 17.7 (16w 17.7 (-2009%) 17.7 (~503%) g PEF 6.1 () 6.1 (sow) 6.1 (a0
¥ v
Table 2: Bits per posting in selected trade-off points. g 21.2 250 3.6 i e 8.3 73 1.9
BIC 55.1 (+1597%) 55.1 (+1208%) 55.1 (4547%) BIC 185 (ri26m) 18.5 (1osen) 18.5 (1s60m
(a) ClueWeb09 (b) Gov2

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query
sets TREC 05 and TREC 05. In parentheses we show the relative percentage
against CPEF.

21

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

| |

2.90 - +—s CPEF space-based) =607 +— CPEF space-based 13 *— CPEF space-based +—s CPEF space-based
' +—+ CPEF frequency-based +—= CPEF frequency-based ~ «—+ CPEF frequency-based i +—= CPEF frequency-based
4.75 - - 35
2.85 - 12 -
4.70
2.80 - 11- %0
4.65 -
2.75 10-
4.60 25 -
2.70 9-
4.55 -
2.65 8-
20 -
EIC R N T C LN E P I L S g NS @'oxk oo @&» o ﬁgoxk o @&s RS @0‘@1» %Q'@ls . &‘;°$3 o &@\A
(2) Gov2 (b) ClueWeb09 (a) Gov2 (b) ClueWeb09
Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size. Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
MIN MID MAX MIN MID MAX MIN MID MAX MIN MID MAX
PEF 294 (isem) 2.94 (17019294 (100s) PEF 4.80 (1200%) 4.80 (139055 4.80 (1e25m) g PEF 14.6 (5w 14.6 (-oow) 14.6 (wrn) g PEF 3.7 (s0a%) 37 (-wsw) 3.7 (-s2am
CPEF 2.78 272 2,65 CPEF 4.70 4.62 4.52 g ceer 17.7 20.6 29.1 g cpeF 5.3 5.9 7.8
BIC 2.80 (1o5m%) 2.80 (+274%)2.80 (1560 BIC 4.27 (92x) 4.27 (7500 427 (s556m) ToBic 411 o 411 (s 410 TBic 105 (19 10.5 (7ean) 105 (350w
(a) Gov2 (b) ClueWeb09 8 PEF 17.7 (-16ew) 17.7 (-20a%) 17.7 (-s503%) 8 PEF 6.1 27.4%) 6.1 (-3529%) 6.1 (—49.1%
O v
Table 2: Bits per posting in selected trade-off points. g 21.2 250 3.6 i e 8.3 73 1.9
BIC 55.1 (+1507%) 55.1 (+1208%) 55.1 (454.7%) BIC 185 (ri26m) 18.5 (1osen) 18.5 (1s60m
(a) ClueWeb09 (b) Gov2
AlWayS better than PEF (by up to 11 %) Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query
sets TREC 05 and TREC 05. In parentheses we show the relative percentage
and better than BIC (by up to 6.25%) ©gainst CPEF, d pereeTiis

21

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

2.90 - +—s CPEF space-based) =607 +— CPEF space-based 13 *— CPEF space-based +—s CPEF space-based
' +—= CPEF frequency-based +—= CPEF frequency-based -+ CPEF frequency-based i +—= CPEF frequency-based
4.75 - - 35
2.85 - 12 -
4.70
2.80 - 11- 30
4.65 -
2.75 10-
4.60 25 -
2.70 9-
4.55 -
2.65 8-
20 -
EIC R N T C LN E P I L S g NS @&» oo @;ﬂ» o @xﬁ o Xg&» RS &0‘@6 %Q'e*ls . g’;@l»% o &@\A
(a) Gov2 (b) ClueWeb09 (a) Gov2 (b) ClueWeb09
Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size. Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
MIN MID MAX MIN MID MAX MIN MID MAX MIN MID MAX
PEF 294 (is60%) 2.94 (179194 2.94 (10955 PEF 4.80 (i213%) 4.80 (13.98%) 4.80 (1625%) I PEF 14.6 [1vow) 14.6 (2900 14.6 (090w 9 PEF 3.7 (-a04%) 3.7 (-375%) 3.7 (-52.1%
CPEF 2.78 2.72 2.65 CPEF 4.70 4.62 4.52 g crer 17.7 20.6 29.1 g crer 5.3 5.9 7.8
BIC 2.80 (iosm) 2.80 (+274%) 2.80 (1563%) BIC 4.27 (92x) 4.27 (7500 4.27 (-556m) " BIC (4L1 (bisiom) 41.1 (1995%) 41.1 (ra13%) " Bic | 10.5 (96am) 10.5 (+762%) 10.5 (4350%
(a) Gov2 (b) ClueWeb09 8 PEF 17.7 (=16.6%) 177 (~29.1%) 177\ 50.3%) 8 PEF 6.1 (=27.4%) 6.1x 35.2%) 6.1\ 49.1%
¥ v
Table 2: Bits per posting in selected trade-off points. g 212 >0 3.6 g e 5.2 73 1.9
BiIc 55.1 (4159.7%) 55.1 (+1208%) 55.1 (4547%) BIC 18.5 (+122.6%) 18.5 (498.6%) 18.5 (1 se0m
(a) ClueWeb09 (b) Gov2
AlwayS better than PEF (by up to 11 %) Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query
sets TREC 05 and TREC 05. In parentheses we show the relative percentage
and better than BIC (by up to 6.25%) ©gainst CPEF, d pereeTiis

21

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

s a 4.80 - —_——
2.90 - ~—= CPEF space-based) ~—= CPEF space-based
' «—= CPEF frequency-based +—= CPEF frequency-based

4.75 - .

2.85 -
4.70 -

2.80 -
4.65 -

2.75 -
4.60

2.70
4.55 -

2.65

o XQQ% CLQQ‘S &QQYs %00‘6 N g)QQYs N X@Y\ ?‘QQ\B B‘Q@ls %00‘6 N ,600?&?, :}Qg\k 69‘00?’
(a) Gov2 (b) ClueWeb09

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

MIN MID MAX MIN MID MAX
PEF 2.94 (+45.60%) 2.94 (+7.91%) 2.94 (+10.95%) PEF 4.80 (4+2.13%) 4.80 (+3.98%) 4.80 (+46.25%)
CPEF 2.78 2.72 2.65 CPEF 4.70 4.62 4.52
BIC 2.80 (+40.53%) 2.80 (+2.74%) 2.80 (+5.63%) BIC 4.27 (92w 4.27 (7.58%) 427 (~5.56%)
(a) Gov2 (b) ClueWeb09

Table 2: Bits per posting in selected trade-off points.

Always better than PEF (by up to 11%)

and better than BIC (by up to 6.25%)

+—e CPEF space-based i +—s CPEF space-based

13 -2 CPEF frequency-based +—= CPEF frequency-based

35

30

25 -

20 -

NS XQQY’ ‘LQQ\A D‘Qg‘ls %Qo‘ls N 1‘600?5 &% X@Y\ ‘LQQ\A @0‘6 %Qe‘ls N 500‘!”3 fbgo‘ls 69‘00\&

(a) Gov2 (b) ClueWeb09

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
MIN MID MAX MIN MID MAX

I PEF 14.6 (=17.5%) 14.6 (=29.0%) 14.6 | 49.7%)) PEF 3.7 (~30.4%) 3.7 (=37.5%) 3.7 52.1%)
§ crer 17.7 20.6 29.1 é cPEF 5.3 59 7.8
Taic AL om0 Goos 410 Gasw T oBic 105 (s 105 (1762 10.5 (150w
8 PEF 17.7 (=16.6%) 17.7 (=29.1%) 17.71 50.3%) 8 PEF 6.1 (=27.4%) 6.1 (=35.2%) 6.1\ 49.1%)
o cper 21.2 25.0 35.6 g cPer 8.3 9.3 11.9
" Bic 55.1 (+1597%) 55.1 (+1208%) 55.1 (+54.7%) BIC 18.5 (11226%) 18.5 (19s.6%) 18.5 (156.0%

(a) ClueWeb09 (b) Gov2

Much faster than BIC (103% on average)

Slightly slower than PEF (20% on average)

21

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

n Ig(u/n) + 2n + o(n) bits

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

n Ig(u/n) + 2n + o(n) bits

 O(1) random access
* O(lg(u/n)) predecessor/successor

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

n Ig(u/n) + 2n + o(n) bits

 O(1) random access
* O(lg(u/n)) predecessor/successor

Static succinct data structure.
NO dynamic updates.

22

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

n Ig(u/n) + 2n + o(n) bits

 O(1) random access
* O(lg(u/n)) predecessor/successor

Static succinct data structure.
NO dynamic updates.

« VEB Trees [van Emde Boas, FOCS 1975]
« x/y-Fast Tries [Willard, IPL 1983]

 Fusion Trees [Fredman and Willard, JCSS 1993]
Exponential Search Trees [Andersson and Thorup, JACM 2007

22

Dynamic
Most of them take
optimal time

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.

n Ig(u/n) + 2n + o(n) bits

 O(1) random access
* O(lg(u/n)) predecessor/successor

Static succinct data structure.
NO dynamic updates.

EB Trees [van Emde Boas, FOCS 1975] * Dynamic

e V rees |van cmdade boas, °

+ x/y-Fast Tries [Willard, IPL 1983] Mot?’t O‘; I_hem take
e Fusion Trees [Fredman and Willard, JCSS 1993] optimal time

Exponential Search Trees [Andersson and Thorup, JACM 2007

O(n Ig u) bits

(or even worse)

22

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

 delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

o predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

23

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

o predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

23

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

o predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

23

The Dynamic List Representation problem
[Fredman and Saks, STC 1989]

Given a list S of n sorted integer, support the
following operations

e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

» predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

23

The Dynamic List Representation problem
[Fredman and Saks, STC 1989]

Given a list S of n sorted integer, support the
following operations

e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.

Q(lg n/lg Ig n) amortized time per operation,

in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

» predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

23

The Dynamic List Representation problem
[Fredman and Saks, STC 1989]

Given a list S of n sorted integer, support the
following operations

e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.

Q(lg n/lg Ig n) amortized time per operation,

in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

» predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

[Patrascu and Thorup, STC 2007]

Optimal space/time trade-off for a static data structure taking m =

n24w bits, where a is the number of bits necessary to represent
the mean number of bits per integer, i.e., a = Ig(m/n) — Ig w

@(min{logwn,lgw_lgn lg lg %)})

@ ,lg(lginlg%),lg(lg%/lglg"

a

23

The Dynamic List Representation problem
[Fredman and Saks, STC 1989]

Given a list S of n sorted integer, support the
following operations

e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.

Q(lg n/lg Ig n) amortized time per operation,

in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

e delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

» predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}

[Patrascu and Thorup, STC 2007]

Optimal space/time trade-off for a static data structure taking m =

n24w bits, where a is the number of bits necessary to represent
the mean number of bits per integer, i.e., a = Ig(m/n) — Ig w

@(min{logwn,lgw_lgn lg lg)})

@ ,lg(élg%),lg(lg%/lglg"

a

23

The Dynamic List Representation problem
[Fredman and Saks, STC 1989]

Given a list S of n sorted integer, support the
following operations

e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.

Q(lg n/lg Ig n) amortized time per operation,

in the cell-probe computational model.

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n Ilg(u/n) + 2n + o(n) bits

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

n Ilg(u/n) + 2n + o(n) bits +

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

negligible redundancy!

n Ilg(u/n) + 2n + o(n) bits +

24

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

negligible redundancy!

n Ilg(u/n) + 2n + o(n) bits +

1. Extend the static Elias-Fano representation to support
predecessor and successor gueries in optimal worst-
case O(lg Ig n) time.

2. Maintain S in a fully dynamic fashion, supporting in
optimal worst-case time all the operations defined in the
Dynamic Dictionary and Dynamic List Representation
problems.

24

Results - Static Elias-Fano Optimal Successor Queries

* optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

» Theorem 1. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = (1), that takes EF(S(n,u)) +
o(n) bits of space and supports Access in O(1) worst-case and Predecessor/Successor queries
in optimal O(min{1 + log %,loglogn}) worst-case time.

25

Results - Static Elias-Fano Optimal Successor Queries

* optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

» Theorem 1. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = ©(1), that takes EF(S(n,u)) +
o(n) bits of space and supports Access in O(1) worst-case and Predecessor/Successor queries
in optimal O(min{1 + log *,loglogn}) worst-case time.

ldea: divide the sequence into

blocks and use a y-fast trie to
iIndex the blocks.

25

Results - Dynamic Elias-Fano

« optimal time/space trade-off for successor

search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

* dynamic prefix-sum data structure [Bille et al.,

arXiv preprint 2015]

» Lemma 4. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn - loglogn) bits of space and supports the following operations in
O(loglogn) worst-case time: Search(z) which returns a pointer to the block containing the
integer x; Access(i) which returns the i-th integer of the total order; Insert/Delete of a block.

» Theorem 3. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = (1), that takes EF(S(n,u)) +
o(n) bits of space and supports: Access in O(logn/loglogn) worst-case; Insert/Delete in
O(logn/loglogn) amortized; Minimum/Maximum in O(1) and Predecessor /Successor queries
in O(min{l + log ¥,loglogn}) worst-case time. These time bounds are optimal.

20

Results - Dynamic Elias-Fano

« optimal time/space trade-off for successor

search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

* dynamic prefix-sum data structure [Bille et al.,

arXiv preprint 2015]

» Lemma 4. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn - loglogn) bits of space and supports the following operations in
O(loglogn) worst-case time: Search(z) which returns a pointer to the block containing the
integer x; Access(i) which returns the i-th integer of the total order; Insert/Delete of a block.

» Theorem 3. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = (1), that takes EF(S(n,u)) +
o(n) bits of space and supports: Access in O(logn/loglogn) worst-case; Insert/Delete in
O(logn/loglogn) amortized; Minimum/Maximum in O(1) and Predecessor /Successor queries
in O(min{l + log ¥,loglogn}) worst-case time. These time bounds are optimal.

ldea: use a 2-level indexing data structure.
« First level indexes blocks using a y-fast trie and the
dynamic prefix-sum data structure by Bille et al.

« Second level indexes mini blocks using the data
structure of the Lemma.

Strings of at most N words.

N typically ranges from 1 to 5.

27

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1 N=2

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1 N=2

different
algorithms

devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

N=2

different algorithms

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

N=2

different algorithms

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

N=2

different algorithms
algorithms devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1

different
algorithms

devised

N=2

different algorithms
algorithms devised

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1 N=2

different different algorithms
algorithms algorithms devised

devised devised to

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1 N=2

different different algorithms
algorithms algorithms devised

devised devised to

Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

27

N=1 N=2

different different algorithms
algorithms algorithms devised

devised devised to
N number of grams
e 8761
S 2 38900
S C T B 61516
S S N 70186
5 73187

Strings of at most N words.

N typically ranges from 1 to 5.

27

Strings of at most N words.

N typically ranges from 1 to 5.

— (Google Books

— =

e ~6% of the books ever published
C'

d___,.,

27

Strings of at most N words.

N typically ranges from 1 to 5.

((Google Books

. \
(‘f‘ ~6% of the books ever published
(it N Enumberofgrams
1] 24359473
Ca - 2| 667284771 More than 11
C(.—.__a— .3.1.7,397,041,901 billion grams.
- _4.|.1,644,807,896
5 1,415,355,596

27

N-grams - Why?

Word prediction.

28

N-grams - Why?

Word prediction.

space and time-efficient ?

28

N-grams - Why?

Word prediction.

space and time-efficient ?

context

28

N-grams - Why?

Word prediction.

space and time-efficient

context

28

algorithms

foo

data structures
bar

baz

N-grams - Why?

Word prediction.

space and time-efficient

context

28

algorithms

foo

data structures
bar

baz

frequency count

1214
2
3647

N-grams - Why?

Word prediction.

frequency count

algorithms 1214

foo 2

space and time-efficient ? data structures 3647
b

context o £

baz 1

y - _ L f(“space and time-efficient data structures”)
P (“data structures’|“space and time-efficient”) =

f(“space and time-efficient”)

28

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,
such as statistical machine translation, speech recognition, spelling correction, entity detection,
information extraction, and others. While such models have usually been estimated from training
corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

29

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,
such as statistical machine translation, speech recognition, spelling correction, entity detection,
information extraction, and others. While such models have usually been estimated from training
corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

29

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

Google

Translate

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,
such as statistical machine translation, speech recognition, spelling correction, entity detection,
information extraction, and others. While such models have usually been estimated from training
corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

29

What can |
help you with”

j—‘*a’

What can |
help you with”

e e e m—

" Sir

N-grams - Challenge

Store massive N-grams datasets such
that given a pattern, we can return its
frequency count at light speed.

31

N-grams - Challenge

Store massive N-grams datasets such
that given a pattern, we can return its
frequency count at light speed.

Efficient map.

31

N-grams - Challenge

Store massive N-grams datasets such
that given a pattern, we can return its
frequency count at light speed.

Efficient map.

Data Structures + Data Compression =» Faster Algorithms

— — — _——=—— = ——————

31

N-grams - Data structures

Open-addressing VS Tries

32

N-grams - Data structures

Open-addressing VS Tries

10100101 | 24

10001011 | 24

00001010 | 582

11011110 24

00010101 | 582
01010011 | 36352

32

N-grams - Data structures

Open-addressing VS Tries

10100101 | 24

10001011 | 24

00001010 | 582
" ol

11011110 24

00010101 | 582
01010011 | 36352

32

N-grams - Data structures

Open-addressing VS Tries

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582
" ol

11011110 24

00010101 | 582
01010011 | 36352

32

Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS

24

32

23

Tries

A B C

244

L —

A B D B C
—

34

43

120

N

120

133 1

v

90 43
A

73

17

D

689

v
A

225

N

88

C D

350

123

114

\
B A B D AA C A|/B D A

14

114

N-grams - Data structures

Open-addressing VS Tries

+ time

- Space

10100101 | 24 BBC
10001011 | 24 A/B/C D
00001010 | 582 — v v

X ‘ ‘ | AB DB CAC D

120 225 350 114

11011110 | 24 A/j/mo o 90\ : e ~,
‘ ‘ | B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

00010101 | 582
01010011 | 36352

32

N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — v v
X , ‘ ‘ | A B D B C A C D
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B| D A

00010101 | 582
01010011 | 36352

32

N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — Vv v
X , ‘ ‘ | A B D B C A C D
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B D A

00010101 | 582
01010011 | 36352

32

N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — v v
X . ‘ | A B DB CACD
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B D A

00010101 | 582
01010011 | 36352

32

Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS Tries
BBC
AlB C
4/244 iS 1
A B D|B|C
/A24/100 120\‘ 90\ 43

24

32

23

34

43

120

73

17

D

689

v
A

225

N

88

C D

350

123

114

\
B A B D AA C A|/B D A

14

114

Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS Tries
BBC
AlB C
4/244 iS 1
A B D|B|C
/A24/100 120\‘ 90\ 43

689

A C D

225 350 114

N T~

B A B D A A

24

32

23

34

43

120

C/ A/ B D A

73

17 88 123 14 114

Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS

24

32

23

244

A B D|B|C

—
B A B D A A

34

43

Tries
+ space
- time
BBC
AlB c D
v y
A C D

120

C/ A/ B D A

73

17 88 123 14 114

N-grams - Data structures

Open-addressing VS Tries

+ time + space
- space - time
C C C . C o . C C
10100101 C
carleld, 204
= -3 aNa Kle 0
10001011 » Yo l= N et 5 NO8 C D
TR Rano alpot ana Osborne, 200 !
X : Awker et a/., 20U Al C D
ﬁ n J S " 43 225 350 114
11011110 2 g \ \
B A B D|A A B D A

24 23 34 43 120 73 17 88 123 14 114

00010101 | 582
01010011 | 36352

32

tongrams - Tons of N-Grams

Hash-based VS Trie-based

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B C A C D

00001010
582 120 225 | 350 114

I e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B C A C D

00001010
582 120 225 | 350 114

I e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B/ C A C D
00001010 | 582

T e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v X
00001010 | B£82 A/B/DIBICIAICID

T e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v v
A B D B C A|C D
00001010 | 582
11011110 | 24 — N N N T~
B A B D A A|IC A B D A

00010101 | 582
01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v v
A B D B C A|C D
00001010 | 582
11011110 | 24 — N N N T~
00010101 | 582 B A B D A A|IC A B D A

01010011 | 36352

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C|D
10100101 24 244 133 1 689
10001011 | 24 — v v
g 24 A B D B C A C D
00001010 | 582
1 2 24 100 120 90 43 225 350 114
11011110 | 24 2% — N N N T~
24 36352 B A B D A A|IC A B D A

00010101 | £582
01010011 | 36352

24 23 34 43 120 73 17 88 123 14 114

33

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101
10001011
O et
00001010
] 582
11011110
24 36352
00010101
01010011

VS Trie-based
A B Cl/D

A B D B C A C D

120 225 350 114

B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

33

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based
> A 0
IS
3 B 1
S C 2
2 D 3
A B C| D

244 133 1 689

A B D B C A C D

120 225 350 114

B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

33

tongrams - Tons of N-Grams

Hash-based VS Trie-based
Open addressihg? | o A 0
Data structure Is static. i . 1
Minimal Perfect Hashing. 8 co o
2 D 3
0O 1 2 3

10100101 244 133 1 689
10001011 — v v

g 24 O 1 3/ 1 20 2 3
00001010

1 2 24 100 120 90 43 225 350 114
11011110 %€ — A N T~

2d 36352 i1 0 1 3 0 0 2,0 1 3 0

00010101

24 23 34 43 120 73

01010011

33

17

88 123 14 114

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

Vo

1

24

Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v
O 1 3 4 5 5 7 8

24 100 120 90 43 225

e Ny Ny

350 114

1 2 4 4 4 6 6 7 9 9

23 34 43 120 73 17 88 123 14

33

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v

0

24 100 120 90 43 225

1 3 4 5 5 7 8

e Ny Ny

1 1 2 4 4 4 6 6 7 9 9

24 23 34 43 120 73 17 88

Encode each level
with Elias-Fano.

33

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v

0

24 100 120 90 43 225

1 3 4 5 5 7 8

e Ny Ny

1 1 2 4 4 4 6 6 7 9 9

24 23 34 43 120 73 17 88

Encode each level
with Elias-Fano.

Random access.

33

tongrams - Preliminary results

" Number of Maximum Unique [lg] of unique
n-grams frequency count frequency counts frequency counts
1 24,359,472 468,491,999,592 246,588 18
2 5,089,239 155,178,163 44,822 16
3 52,635,338 102,329,901 71,690 17
4 11,149,161 6,401,274 21,127 15
5 8,261,975 958,556 12,171 14
Total 101,495,185 468,491,999,592 266,760 19
Table 4: Basic statistics for the GoogleWeb1T subset.
Total space in GBs Bytes per gram Lookup time [us]
& KenlM 2.570 27.19 0.248
<
T odm 1.012 1043 (—61.64%) 0242 (—2.42%)
%J KenLM 1.829 21.5 1.272
= sxIm 0.541 57 (—73.34%) 1229 (—3.38%)

Table 5: Bytes per grams and average lookup time in us for the GoogleWeb1T subset.

34

tongrams - Preliminary results

" Number of Maximum Unique [lg] of unique
n-grams frequency count frequency counts frequency counts
1 24,359,472 468,491,999,592 246,588 18
2 5,089,239 155,178,163 44,822 16
3 52,635,338 102,329,901 71,690 17
4 11,149,161 6,401,274 21,127 15
5 8,261,975 958,556 12,171 14
Total 101,495,185 468,491,999,592 266,760 19
Table 4: Basic statistics for the GoogleWeb1T subset.
Total space in GBs Bytes per gram Lookup time [us]
T KenLM 2.570 27.19 0.248
<
T sxIm 1.012 1043 (—61.64%) 0242 (—2.42%)
u KenLM 1.829 21.5 1.272
= sxIm 0.541 57 (—73.34%) 1229 (—3.38%)

Table 5: Bytes per grams and average lookup time in us for the GoogleWeb1T subset.

34

tongrams - Preliminary results

" Number of Maximum Unique [lg] of unique
n-grams frequency count frequency counts frequency counts
1 24,359,472 468,491,999,592 246,588 18
2 5,089,239 155,178,163 44,822 16
3 52,635,338 102,329,901 71,690 17
4 11,149,161 6,401,274 21,127 15
5 8,261,975 958,556 12,171 14
Total 101,495,185 468,491,999,592 266,760 19
Table 4: Basic statistics for the GoogleWeb1T subset.
Total space in GBs Bytes per gram Lookup time [us]
T KenlLM 2.570 27.19 X2.6 0.248
<
T sxIm 1.012 1043 (—61.64%) 0242 (—2.42%)
u KenLM 1.829 21.5 X3.8 1.272
= sxIm 0.541 57 (—73.34%) 1229 (—3.38%)

Table 5: Bytes per grams and average lookup time in us for the GoogleWeb1T subset.

34

(Some) Future Research Problems

Dynamic Inverted Indexes.

35

(Some) Future Research Problems

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot.
Merge them periodically.

35

(Some) Future Research Problems

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot.
Merge them periodically.

35

(Some) Future Research Problems

Compressed B-trees.

36

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.

36

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.

“Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.”

36

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.

“Fancy indexing structures may be a luxury now,
but they will be essential by the decade’s end.”

Michael Bender Martin Farach-Colton Bradley Kuszmaul

Stony Brook University Rutgers University MIT Laboratory for

Computer Science
Miek ®
36

(Some) Future Research Problems

Fast Successor for IP-lookup.

37

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

37

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

37

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of

the first address having the same /g n bits V0001
. . 000100

as the searched pattern in O(1) using the
- . 000111

powerful search capabillities of Elias-Fano.
001101
001110

001111

010101
101011

37

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000
Build an index on zeros.

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000
Build an index on zeros.

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x = 001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x =001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x =001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011

Thanks for your attention,

time, patience!

Any questions?

38

