Space and Time-Efficient Data Structures for Massive Datasets

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it
Supervisor
Rossano Venturini
Computer Science Department
University of Pisa

Evidence

The increase of information does not scale with technology.

Evidence

The increase of information does not scale with technology.

"Software is getting slower more rapidly than hardware becomes faster."
Niklaus Wirth, A Plea for Lean Software

Evidence

The increase of information does not scale with technology.

"Software is getting slower more rapidly than hardware becomes faster."
Niklaus Wirth, A Plea for Lean Software

Scenario

Data Structures

PERFORMANCE

"how quickly a program does its work" - faster work

Algorithms

EFFICIENCY

"how much work is required by a program" - less work

Scenario

Data Structures

PERFORMANCE
"how quickly a program does its work" - faster work

+ time
- space

Algorithms

EFFICIENCY
"how much work is required by a program" - less work

Scenario

Data Structures

PERFORMANCE
"how quickly a program does its work" - faster work

+ time
- space

Algorithms

 EFFICIENCY"how much work is required by a program" - less work

Data Compression

Scenario

Data Structures

PERFORMANCE
"how quickly a program does its work" - faster work

+ time
- space

Algorithms

 EFFICIENCY"how much work is required by a program" - less work

Data Compression

+ space
- time

Scenario

Data Structures

PERFORMANCE
"how quickly a program does its work" - faster work

+ time
- space

\uparrow
?

Data Compression

+ space
- time

Small VS Fast?

Small VS Fast?

Choose one.

Small VS Fast?
 Choose one.

NO

High Level Thesis

Data Structures + Data Compression $\boldsymbol{\rightarrow}$ Faster Algorithms

High Level Thesis

Data Structures + Data Compression $\boldsymbol{\rightarrow}$ Faster Algorithms

"Space optimization is closely related to time optimization in a disk memory."
Donald E. Knuth, The Art of Computer Programming

Hierarchical Memory Organisation

registers
 CPU $\longleftrightarrow L 1 \leftrightarrow L 2 \longleftrightarrow$

Size

Speed

Hierarchical Memory Organisation

Hierarchical Memory Organisation

Design space-efficient ad-hoc data structures, both from a theoretical and practical perspective, that support fast data extraction.

Proposal

Design space-efficient ad-hoc data structures, both from a theoretical and practical perspective, that support fast data extraction.

Data compression \& Fast Retrieval together.

Mature algorithmic solutions now ready for technology transfer.

Proposal

Must exploit properties of the addressed problem.

Design space-efficient ad-hoc data structures, both from a theoretical and practical perspective, that support fast data extraction.

Data compression \& Fast Retrieval together.

Mature algorithmic solutions now ready for technology transfer.

Why? Who cares?

> Because engineered data structures are the ones the boost the availability and wealth of information around us.

Why? Who cares?

Because engineered data structures are the ones the boost the availability and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

Because engineered data structures are the ones the boost the availability and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

Google

Because engineered data structures are the ones the boost the availability and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

facebook

Google

Because engineered data structures are the ones the boost the availability and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

facebook

Google

 DropboxBecause engineered data structures
are the ones the boost the availability
and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

facebook

Google

 Dropbox
Because engineered data structures are the ones the boost the availability and wealth of information around us.

- Inverted Indexes
- N-grams
- B-trees

Why? Who cares?

facebook

Google

 DropboxY
Because engineered data structures are the ones the boost the availability and wealth of information around us.

Can't we use existing libraries?

Wait!

Can't we use existing libraries?

C++ Standard Template Library (STL)?

Wait!

Can't we use existing libraries?

C++ Standard Template Library (STL)?

std::list
std::stack
std::queue
std::map
std::unordered_map

Wait!

Can't we use existing libraries?

C++ Standard Template Library (STL)?

$$
\begin{aligned}
& \text { std::list } \\
& \text { std::stack } \\
& \text { std::queue } \\
& \text { std::map } \\
& \text { std::unordered_map }
\end{aligned}
$$

Wait!

Can't we use existing libraries?

C++ Standard Template Library (STL)?

$$
\begin{aligned}
& \text { std::list } \\
& \text { std::stack } \\
& \text { std::queue } \\
& \text { std::map } \\
& \text { std::unordered_map }
\end{aligned}
$$

Prefer cache-friendly (non discontiguous) data structures. Always.

Use std::vector.

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

Every access is a cache miss. Pointer chasing :-(

\[

\]

Offsets instead of pointers. Contiguous memory layout.

Example: vector of strings VS string pool

Prefer cache-friendly data structures.
memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(

c	memory		
vector of offsets	0 1 2 3 4 5 6 7 0 8 9 10 12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 18		

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
3224822962
2016-10-12 09:43:46: elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Prefer cache-friendly data structures.
memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
\ldots	\ldots	\ldots	\ldots

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
3224822962
2016-10-12 09:43:46: elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Prefer cache-friendly data structures.
memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
\ldots	\ldots	\ldots	\ldots

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
3224822962
2016-10-12 09:43:46: elapsed 6.705554 [sec]

Example: vector of strings VS string pool

Prefer cache-friendly data structures.
memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
	-2	-	-

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
\ldots	\ldots	\ldots	\ldots

Offsets instead of pointers.

 Contiguous memory layout.giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23
24	25	26	27
28	29	30	31
\ldots	\ldots	\ldots	\ldots

Offsets instead of pointers.

 Contiguous memory layout.giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
2016-10-12 09:43:46: elapsed 6.705554 [sec]
giulio@xor:~/sxlm/build\$./string_pool_benchmark ~/random_strings.50M. 128
2016-10-12 09:44:18: Loading strings
2016-10-12 09:44:26: read 3224822962 bytes
2016-10-12 09:44:26: Scanning strings
3224822962
2016-10-12 09:44:27: elapsed 1.341409 [sec]

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark $50000000 \sim / r a n d o m _s t r i n g s .50 M .128$
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
2016-10-12 09:43:46: elapsed 6.705554 [sec]
giulio@xor:~/sxlm/build\$./string_pool_benchmark ~/random_strings.50M. 128
2016-10-12 09:44:18: Loading strings
2016-10-12 09:44:26: read 3224822962 bytes
2016-10-12 09:44:26: Scanning strings
3224822962
~3GBs
2016-10-12 09:44:27: elapsed 1.341409 [sec]

Example: vector of strings VS string pool

Prefer cache-friendly data structures.

memory
vector of pointers

Every access is a cache miss. Pointer chasing :-(
memory
vector of offsets

0
5
8
12
18

Offsets instead of pointers. Contiguous memory layout.
giulio@xor:~/sxlm/build\$./string_vector_benchmark 50000000 ~/random_strings.50M. 128
2016-10-12 09:43:31: Loading strings
2016-10-12 09:43:39: Scanning strings
2016-10-12 09:43:46: elapsed 6.705554 [sec]
giulio@xor:~/sxlm/build\$./string_pool_be chmark ~/random_strings.50M. 128
2016-10-12 09:44:18: Loading strings
2016-10-12 09:44:26: read 3224822962 bytes X5
2016-10-12 09:44:26: Scanning strings
3224822962
2016-10-12 09:44:27: elapsed 1.341409 [sec]

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,}, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,}, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{\mathrm{L}_{t_{1}, \ldots,} \mathrm{~L}_{t_{T}}\right\}$ is the inverted index.

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

General Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[i] \leq \mathrm{S}[\mathrm{i}+1]$ for $0 \leq \mathrm{i}<\mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

General Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}] \leq \mathrm{S}[\mathrm{i}+1]$ for $0 \leq \mathrm{i}<\mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

- Elias gamma/delta [Elias, TIT 1975]
- Variable Byte [Salomon, Springer 2007]
- Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
- Simple-9 [Anh and Moffat, IRJ 2005]
- PForDelta [Zukowski et al., ICDE 2006]
- OptPFD [Yan et al., WWW 2009]
- Simple-16 [Anh and Moffat, SPE 2010]
- Varint-G8IU [Stepanov et al., CIKM 2011]
- Elias-Fano [Vigna, WSDM 2013]
- Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

General Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}] \leq \mathrm{S}[\mathrm{i}+1]$ for $0 \leq \mathrm{i}<\mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

- Elias gamma/delta [Elias, TIT 1975]
- Variable Byte [Salomon, Springer 2007]
- Binary Interpolative Coding [Moffat and Stuiver, IRJ 2000]
- Simple-9 [Anh and Moffat, IRJ 2005]
- PForDelta [Zukowski et al., ICDE 2006]
- OptPFD [Yan et al., WWW 2009]
- Simple-16 [Anh and Moffat, SPE 2010]
- Varint-G8IU [Stepanov et al., CIKM 2011]
- Elias-Fano [Vigna, WSDM 2013]
- Partitioned Elias-Fano [Ottaviano and Venturini, SIGIR 2014]

Improving the performance of full-text search

Adam Faulkner | September 7, 2016
y f 0 in 13 8+ 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index. Consequence? Query time latencies deteriorate from $\mathbf{2 5 0 m s}$ to $\mathbf{1 s}$.

Improving the performance of full-text search

Adam Faulkner September 7, 2016
y) forin 13 8+ 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index. Consequence? Query time latencies deteriorate from $\mathbf{2 5 0 m s}$ to $\mathbf{1 s}$.

Improving the performance of full-text search

Adam Faulkner September 7, 2016
y) forin 13 8+ 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index. Consequence? Query time latencies deteriorate from $\mathbf{2 5 0 m s}$ to $\mathbf{1 s}$.

Solution?

Improving the performance of full-text search

Adam Faulkner September 7, 2016
y f 0 目 13 8 2

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index. Consequence? Query time latencies deteriorate from $\mathbf{2 5 0 m s}$ to $\mathbf{1 s}$.

Solution?

Compress the index to reduce I/O pressure.

Improving the performance of full-text search

Adam Faulkner September 7, 2016

```
y) fo in 13 8+ 2
```

For Firefly, Dropbox full text-search engine, speed has always been a priority.

They were unable to scale because of the dimension of their (distributed) inverted index. Consequence? Query time latencies deteriorate from $\mathbf{2 5 0 m s}$ to $\mathbf{1 s}$.

Solution?

Compress the index to reduce I/O pressure.

Data Structures $\boldsymbol{+}$ Data Compression $\boldsymbol{\rightarrow}$ Faster Algorithms

Elias-Fano - Genesis

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Elias-Fano - Genesis

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Sebastiano Vigna. Quasi-Succinct Indices.
In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

000011	3
000100	4
000111	7
001101	13
001110	14
001111	15
010101	21
101011	$u=43$

Elias-Fano - Encoding example

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

X is the set of all monotone sequence of length n drawn from a universe u.

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x|=\binom{u+n}{n}
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

X is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{gathered}
|x|=\binom{u+n}{n} \\
{\left[\lg \binom{u+n}{n}\right] \approx n \lg \frac{u+n}{n}}
\end{gathered}
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

χ is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{gathered}
|x|=\binom{u+n}{n} \\
{\left[\lg \binom{u+n}{n}\right] \approx n \lg \frac{u+n}{n}}
\end{gathered}
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 \mathrm{n}$ bits

χ is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{gathered}
|x|=\binom{u+n}{n} \\
{\left[\lg \binom{u+n}{n}\right] \approx n \lg \frac{u+n}{n}}
\end{gathered}
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

(less than half a bit away [Elias, JACM 1974])
X is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{gathered}
|x|=\binom{u+n}{n} \\
{\left[\lg \binom{u+n}{n}\right\rceil \approx n \lg \frac{u+n}{n}}
\end{gathered}
$$

Elias-Fano - Properties

$E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n$ bits

X is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{gathered}
|x|=\binom{u+n}{n} \\
{\left[\lg \binom{u+n}{n}\right] \approx n \lg \frac{u+n}{n}}
\end{gathered}
$$

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Elias-Fano - Properties

$$
\begin{aligned}
& E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits } \\
& \text { access to each } S[i] \text { in } O(1) \text { worst-case }
\end{aligned}
$$

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{\mathrm{u}}{\mathrm{n}}\right\rceil+2 n \text { bits }
$$

access to each $\mathrm{S}[\mathrm{i}]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{aligned}
& \text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
& \operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\} \\
& \text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{aligned}
$$

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

access to each $\mathrm{S}[\mathrm{i}]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{array}{r}
\text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\} \\
\text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{array}
$$

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

access to each $\mathrm{S}[\mathrm{i}]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{array}{r}
\text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\} \\
\text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{array}
$$

but...

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

access to each $\mathrm{S}[\mathrm{i}]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{array}{r}
\text { predecessor }(x)=\max \{S[i] \mid S[i]<x\} \\
\operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\} \\
\text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case }
\end{array}
$$

but...

need o(n) bits more to support fast rank/select primitives on bitvector H

Elias-Fano - Properties

$$
E F(S[0, n))=n\left\lceil\lg \frac{u}{n}\right\rceil+2 n \text { bits }
$$

access to each $\mathrm{S}[\mathrm{i}]$ in $\mathrm{O}(1)$ worst-case

$$
\begin{aligned}
& \operatorname{predecessor}(x)=\max \{S[i] \mid S[i]<x\} \\
& \operatorname{successor}(x)=\min \{S[i] \mid S[i] \geq x\} \\
& \text { queries in } O\left(\lg \frac{u}{n}\right) \text { worst-case } \\
& \text { but... }
\end{aligned}
$$

need o(n) bits more to support fast rank/select primitives on bitvector H

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.
No exploitation of redundancy.

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

Clustered Elias-Fano Indexes

Every encoder represents each sequence individually.

No exploitation of redundancy.

Idea: encode clusters of posting lists.

Clustered Elias-Fano Indexes

cluster of posting lists

Clustered Elias-Fano Indexes

cluster of posting lists

unbounded universe
Ig u bits

Clustered Elias-Fano Indexes

cluster of posting lists

unbounded universe
$\lg \mathrm{u}$ bits

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe
lg u bits

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe
Ig u bits

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

$R \ll u$
Ig R bits

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe
Ig u bits VS
$R \ll u$
Ig R bits

Problems

1. how to build clusters
2. how to synthesise the reference list

Clustered Elias-Fano Indexes

cluster of posting lists

reference list

unbounded universe

Ig u bits
 VS

$R \ll u$
Ig R bits

Problems

1. how to build clusters
2. how to synthesise the reference list

NP-hard problem
already for a simplified formulation.

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

(a) Gov2

Table 2: Bits per posting in selected trade-off points.

	MIN	MID	MAX
PEF	4.80 (+2.13\%)	4.80 (+3.98\%)	$4.80{ }_{\text {(+6.25\%) }}$
CPEF	4.70	4.62	4.52
BIC	4.27 (-9.22\%)	$4.27{ }_{(-7.58 \%)}$	4.27 (-5.56\%)

(b) ClueWeb09

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set TREC 06.

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query sets TREC 05 and TREC 05. In parentheses we show the relative percentage against CPEF.

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

	MIN	MID	MAX
PEF	$2.94_{(+5.60 \%)}$	$2.94{ }_{(+7.95 \%}$	$2.94_{(+10.956)}$
CPEF	2.78	2.72	2.65
BIC	2.80		

(a) Gov2
(a)

Table 2: Bits per posting in selected trade-off points.

(b) ClueWeb09

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set TREC 06.

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query sets TREC 05 and TREC 05. In parentheses we show the relative percentage against CPEF.

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

	MIN	MID	MAX
PEF	$2.94(+5.60 \%)$	$2.94_{(+7.91 \%)}$	$2.94(+10.95 \%)$
CPEF	2.78	2.72	2.65
BIC	2.80		

(a) Gov2

Table 2: Bits per posting in selected trade-off points.

Always better than PEF (by up to 11\%) and better than BIC (by up to 6.25\%)

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set TREC 06.

	MIN	MID	MAX		MIN		MID	MAX
	$14.6{ }_{(-17.5 \%)}$	14.6 (-29.0\%)	14.6 (-197\%)		3.7	(-30.46)	$3.7{ }_{(-37.5 \%)}$	3.7 (-52.1\%)
	17.7	20.6	29.1		5.3		5.9	7.8
	$41.1{ }_{(+131.9 \%)}$	41.1 (+99.5\%)	$41.1{ }^{(+41.3 \%)}$		10.5	(+9.2\%)	10.5 (+76.2\%)	10.5 (+35.0\%)
	17.7 (-16.6\%)	17.7 (-29.1\%)	17.7 (-50.3\%)		6.1	(-27.4\%)	$6.1{ }_{(-35.2 \%)}$	6.1 (-19.1\%)
	21.2	25.0	35.6		8.3		9.3	11.9
	55.1 (+1597\%)	55.1 (+120.8\%)	55.1 (+54.7\%)		18.5	+122.65)	18.5 (+98.6\%)	18.5 (+56.0\%)
(a) ClueWeb09				(b) Gov2				

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query sets TREC 05 and TREC 05. In parentheses we show the relative percentage against CPEF.

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

	MIN	MID	MAX
PEF	$2.94(+5.68 \%)$	$2.94_{(+7.91 \%)}$	$2.94(+10.95 \%)$
CPEF	2.78	2.72	2.65
BIC	2.80	$(+0.53 \%)$	2.80

(a) Gov2

(b) ClueWeb09

Table 2: Bits per posting in selected trade-off points.

Always better than PEF (by up to 11\%) and better than BIC (by up to 6.25\%)

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set TREC 06.

	MIN	MID	MAX
\& PEF	$3.7{ }^{(-30.45)}$	$3.7{ }_{(-375 \%)}$	3.7 (-52.1\%)
$\underset{\sim}{4}$ CPEF	5.3	5.9	7.8
BIC	10.5 (+96.250)	10.5 (+76.2\%)	10.5 (+35.0\%)
8_{8} PEF	$6.1{ }_{(-2,145)}$	$6.1{ }_{(-35.2 \%)}$	$6.1{ }^{(-19.1 \%)}$
${ }_{\text {U }}^{\sim}$ CPEF	8.3	9.3	11.9
BIC	18.5 (+122.68)	18.5 (+98.6\%)	18.5 (+56.0\%)
		Gov2	

Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query sets TREC 05 and TREC 05. In parentheses we show the relative percentage against CPEF.

Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size

Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

	MIN	MID		AX
PEF	2.94 (+5.60\%)	2.94 (+7.91\%)	2.94	(+10.95\%)
CPEF	2.78	2.72	2.65	
BIC	2.80 (+0.53\%)	$2.80{ }_{(+2748)}$	2.80	(+5.63\%)

(a) Gov2

Table 2: Bits per posting in selected trade-off points.

Always better than PEF (by up to 11\%) and better than BIC (by up to 6.25\%)

Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set TREC 06.

Much faster than BIC (103\% on average) Slightly slower than PEF (20\% on average)

Integer Data Structures

Elias-Fano matches the

information theoretic minimum.

$$
n \lg (u / n)+2 n+o(n) \text { bits }
$$

Integer Data Structures

Elias-Fano matches the information theoretic minimum.
$n \lg (u / n)+2 n+o(n)$ bits

- O(1) random access
- O(Ig(u/n)) predecessor/successor

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.
$n \lg (u / n)+2 n+o(n)$ bits

- $\mathbf{O (1)}$ random access
- O(lg(u/n)) predecessor/successor

Static succinct data structure. NO dynamic updates.

Integer Data Structures

Elias-Fano matches the
information theoretic minimum.
$n \lg (u / n)+2 n+o(n)$ bits

- $\mathbf{O (1)}$ random access
- O(lg(u/n)) predecessor/successor

Static succinct data structure.
 NO dynamic updates.

```
- vEB Trees [van Emde Boas, FOCS 1975]
- x/y-Fast Tries [Willard, IPL 1983]
- Fusion Trees [Fredman and Willard, JCSS 1993]
- Exponential Search Trees [Andersson and Thorup, JACM 2007]
```

- Dynamic
- Most of them take optimal time

Integer Data Structures

Elias-Fano matches the information theoretic minimum.
$n \lg (u / n)+2 n+o(n)$ bits

- $\mathbf{O (1)}$ random access
- O(lg(u/n)) predecessor/successor

Static succinct data structure.
 NO dynamic updates.

```
- vEB Trees [van Emde Boas, FOCS 1975]
- x/y-Fast Tries [Willard, IPL 1983]
- Fusion Trees [Fredman and Willard, JCSS 1993]
- Exponential Search Trees [Andersson and Thorup, JACM 2007]
```

- Dynamic
- Most of them take optimal time

O(n lg u) bits

(or even worse)

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete(x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete(x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete (x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]
Given a list S of n sorted integer, support the following operations

- access(i) return the i-th smallest element of S
- insert(x) inserts x in S
- delete(x) deletes x from S
under the assumption that $\mathrm{w} \leq \lg \bigvee \mathrm{n}$ for some γ.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete (x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]
Given a list S of n sorted integer, support the following operations

- access(i) return the i-th smallest element of S
- insert(x) inserts x in S
- $\operatorname{delete}(\mathrm{x})$ deletes x from S
under the assumption that $w \leq \lg \gamma \mathrm{n}$ for some γ.
$\Omega(\lg n / \lg \lg \mathrm{n})$ amortized time per operation,
in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete (x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- $\operatorname{predecessor}(x)$ returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]
Given a list S of n sorted integer, support the following operations

- access(i) return the i-th smallest element of S
- insert(x) inserts x in S
- $\operatorname{delete}(\mathrm{x})$ deletes x from S
under the assumption that $w \leq \lg \gamma \mathrm{n}$ for some γ.
$\Omega(\lg n / \lg \lg \mathrm{n})$ amortized time per operation,
in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete(x) deletes x from S
- $\operatorname{search}(\mathrm{x})$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$
[Patrascu and Thorup, STC 2007]
Optimal space/time trade-off for a static data structure taking $\mathrm{m}=$ $n 2^{2}{ }_{w}$ bits, where a is the number of bits necessary to represent the mean number of bits per integer, i.e., $a=\lg (m / n)-\lg w$

$$
\Theta\left(\min \left\{\log _{w} n, \lg \frac{w-\lg n}{a}, \frac{\lg \frac{w}{a}}{\lg \left(\frac{a}{\lg n} \lg \frac{w}{a}\right)}, \frac{\lg \frac{w}{a}}{\lg \left(\lg \frac{w}{a} / \lg \frac{\lg n}{a}\right)}\right\}\right)
$$

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]
Given a list S of n sorted integer, support the following operations

- access(i) return the i-th smallest element of S
- insert(x) inserts x in S
- $\operatorname{delete}(\mathrm{x})$ deletes x from S
under the assumption that $w \leq \lg \bigvee n$ for some γ.
$\Omega(\lg n / \lg \lg \mathrm{n})$ amortized time per operation,
in the cell-probe computational model.

Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in representing a set S of n objects so that the following operations are supported.

- insert(x) inserts x in S
- delete(x) deletes x from S
- $\operatorname{search}(x)$ checks whether x belongs to S
- minimum() returns the minimum element of S
- maximum() returns the maximum element of S
- predecessor (x) returns $\max \{y \in S: y<x\}$
- successor (x) returns $\min \{y \in S: y \geq x\}$
[Patrascu and Thorup, STC 2007]
Optimal space/time trade-off for a static data structure taking $\mathrm{m}=$ $n 2^{2}{ }_{w}$ bits, where a is the number of bits necessary to represent the mean number of bits per integer, i.e., $a=\lg (m / n)-\lg w$

$$
\Theta\left(\min \left\{\log _{w} n, \lg \frac{w-\lg n}{a}, \frac{\lg \frac{w}{a}}{\lg \left(\frac{a}{\lg n} \lg \frac{w}{a}\right)}, \frac{\lg \frac{w}{a}}{\lg \left(\lg \frac{w}{a} / \lg \frac{\lg n}{a}\right)}\right\}\right)
$$

The Dynamic List Representation problem

[Fredman and Saks, STC 1989]
Given a list S of n sorted integer, support the following operations

- access(i) return the i-th smallest element of S
- insert(x) inserts x in S
- $\operatorname{delete}(\mathrm{x})$ deletes x from S
under the assumption that $w \leq \lg \gamma n$ for some γ.
$\Omega(\lg n / \lg \lg \mathrm{n})$ amortized time per operation,
in the cell-probe computational model.

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

$n \lg (u / n)+2 n+o(n)$ bits

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

negligible redundancy!
$n \lg (u / n)+2 n+o(n)$ bits $\quad+\quad o(n)$ bits

Dynamic Integer Sets in Succinct Space and Optimal Time

Goals

negligible redundancy!

$n \lg (u / n)+2 n+o(n)$ bits $\quad+\quad o(n)$ bits

1. Extend the static Elias-Fano representation to support predecessor and successor queries in optimal worstcase $\mathrm{O}(\lg \lg \mathrm{n})$ time.
2. Maintain S in a fully dynamic fashion, supporting in optimal worst-case time all the operations defined in the Dynamic Dictionary and Dynamic List Representation problems.

Results - Static Elias-Fano Optimal Successor Queries

- optimal time/space trade-off for successor search [Patrascu and Thorup, STC 2007]
- y-fast tries Willard, IPL 1983]
\rightarrow Theorem 1. There exists a data structure representing an ordered set $\mathcal{S}(n, u)$ of n integers drawn from a polynomial universe of size $u=n^{\gamma}$, for any $\gamma=\Theta(1)$, that takes $\operatorname{EF}(\mathcal{S}(n, u))+$ $o(n)$ bits of space and supports Access in $\mathcal{O}(1)$ worst-case and Predecessor/Successor queries in optimal $\mathcal{O}\left(\min \left\{1+\log \frac{u}{n}, \log \log n\right\}\right)$ worst-case time.

Results - Static Elias-Fano Optimal Successor Queries

- optimal time/space trade-off for successor search [Patrascu and Thorup, STC 2007]
- y-fast tries Willard, IPL 1983]
- Theorem 1. There exists a data structure representing an ordered set $\mathcal{S}(n, u)$ of n integers drawn from a polynomial universe of size $u=n^{\gamma}$, for any $\gamma=\Theta(1)$, that takes $\operatorname{EF}(\mathcal{S}(n, u))+$ $o(n)$ bits of space and supports Access in $\mathcal{O}(1)$ worst-case and Predecessor/Successor queries in optimal $\mathcal{O}\left(\min \left\{1+\log \frac{u}{n}, \log \log n\right\}\right)$ worst-case time.

Results - Dynamic Elias-Fano

```
- optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]
y-fast tries [Willard, IPL 1983]
dynamic prefix-sum data structure [Bille et al.,
arXiv preprint 2015]
```

- Lemma 4. The total order of the blocks of \mathcal{C} can be maintained by using a data structure that takes $\mathcal{O}(\operatorname{poly} \log n \cdot \log \log n)$ bits of space and supports the following operations in $\mathcal{O}(\log \log n)$ worst-case time: $\operatorname{Search}(x)$ which returns a pointer to the block containing the integer x; Access (i) which returns the i-th integer of the total order; Insert/Delete of a block.

Theorem 3. There exists a data structure representing an ordered set $\mathcal{S}(n, u)$ of n integers drawn from a polynomial universe of size $u=n^{\gamma}$, for any $\gamma=\Theta(1)$, that takes $\operatorname{EF}(\mathcal{S}(n, u))+$ $o(n)$ bits of space and supports: Access in $\mathcal{O}(\log n / \log \log n)$ worst-case; Insert/Delete in $\mathcal{O}(\log n / \log \log n)$ amortized; Minimum/Maximum in $\mathcal{O}(1)$ and Predecessor/Successor queries in $\mathcal{O}\left(\min \left\{1+\log \frac{u}{n}, \log \log n\right\}\right)$ worst-case time. These time bounds are optimal.

Results - Dynamic Elias-Fano

```
- optimal time/space trade-off for successor
    search [Patrascu and Thorup, STC 2007]
y-fast tries [Willard, IPL 1983]
- dynamic prefix-sum data structure [Bille et al.,
arXiv preprint 2015]
```

- Lemma 4. The total order of the blocks of \mathcal{C} can be maintained by using a data structure that takes $\mathcal{O}(\operatorname{poly} \log n \cdot \log \log n)$ bits of space and supports the following operations in $\mathcal{O}(\log \log n)$ worst-case time: $\operatorname{Search}(x)$ which returns a pointer to the block containing the integer x; Access (i) which returns the i-th integer of the total order; Insert/Delete of a block.

Theorem 3. There exists a data structure representing an ordered set $\mathcal{S}(n, u)$ of n integers drawn from a polynomial universe of size $u=n^{\gamma}$, for any $\gamma=\Theta(1)$, that takes $\operatorname{EF}(\mathcal{S}(n, u))+$ $o(n)$ bits of space and supports: Access in $\mathcal{O}(\log n / \log \log n)$ worst-case; Insert/Delete in $\mathcal{O}(\log n / \log \log n)$ amortized; Minimum/Maximum in $\mathcal{O}(1)$ and Predecessor/Successor queries in $\mathcal{O}\left(\min \left\{1+\log \frac{u}{n}, \log \log n\right\}\right)$ worst-case time. These time bounds are optimal.

> Idea: use a 2-level indexing data structure.
> - First level indexes blocks using a y-fast trie and the dynamic prefix-sum data structure by Bille et al.
> - Second level indexes mini blocks using the data structure of the Lemma.

N-grams

Strings of at most N words.

N typically ranges from 1 to 5 .

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in
$\mathrm{N}=1$ their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in
$N=1$ their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.
As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.
As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$N=1$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$\mathrm{N}=1$
$\mathrm{N}=2$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$\mathrm{N}=1$
$\mathrm{N}=2$
different
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.
$\mathrm{N}=1$
$\mathrm{N}=2$
different
different algorithms
algorithms
devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms algorithms devised devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms algorithms devised devised

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms algorithms devised devised devised to

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms algorithms devised devised devised to

Strings of at most N words.

N typically ranges from 1 to 5 .

Different algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to $c_{1} n^{2}$ to sort n items, where c_{1} is a constant that does not depend on n. That is, it takes time roughly proportional to n^{2}. The second, merge sort, takes time roughly equal to $c_{2} n \lg n$, where $\lg n$ stands for $\log _{2} n$ and c_{2} is another constant that also does not depend on n. Insertion sort typically has a smaller constant factor than merge sort, so that $c_{1}<c_{2}$. We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n. Let's write insertion sort's running time as $c_{1} n \cdot n$ and merge sort's running time as $c_{2} n \cdot \lg n$. Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when $n=1000, \lg n$ is approximately 10 , and when n equals one million, $\lg n$ is approximately only 20.) Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of $\lg n$ vs. n will more than compensate for the difference in constant factors. No matter how much smaller c_{1} is than c_{2}, there will always be a crossover point beyond which merge sort is faster.

$$
N=1 \quad N=2
$$

different different algorithms algorithms algorithms devised devised devised to

N-grams

Strings of at most N words.
N typically ranges from 1 to 5 .

N-grams

Strings of at most N words.
N typically ranges from 1 to 5 .

Google Books

~6\% of the books ever published

N-grams

Strings of at most N words.

N typically ranges from 1 to 5 .

Google Books

$\sim 6 \%$ of the books ever published

N	number of grams
1	$24,359,473$
2	$667,284,771$
3	$7,397,041,901$
4	$1,644,807,896$
5	$1,415,355,596$

More than 11
billion grams.

Word prediction.

Word prediction.

space and time-efficient

N-grams - Why?

Word prediction.

space and time-efficient

context

N-grams - Why?

Word prediction.

N-grams - Why?

Word prediction.

N-grams - Why?

Word prediction.

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You

Thursday, August 03, 2006
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team
Here at Google Research we have been using word n-gram models for a variety of R\&D projects, such as statistical machine translation, speech recognition, spelling correction, entity detection, information extraction, and others. While such models have usually been estimated from training corpora containing at most a few billion words, we have been harnessing the vast power of Google's datacenters and distributed processing infrastructure to process larger and larger training corpora. We found that there's no data like more data, and scaled up the size of our data by one order of magnitude, and then another, and then one more - resulting in a training corpus of one trillion words from public Web pages.

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You

Thursday, August 03, 2006
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team
Here at Google Research we have been using word n-gram models for a variety of R\&D projects, such as statistical machine translation, speech recognition, spelling correction, entity detection, information extraction, and others. While such models have usually been estimated from training corpora containing at most a few billion words, we have been harnessing the vast power of Google's datacenters and distributed processing infrastructure to process larger and larger training corpora. We found that there's no data like more data, and scaled up the size of our data by one order of magnitude, and then another, and then one more - resulting in a training corpus of one trillion words from public Web pages.

N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

Google Translate

All Our N-gram are Belong to You

Thursday, August 03, 2006
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team
Here at Google Research we have been using word n-gram models for a variety of R\&D projects, such as statistical machine translation, speech recognition, spelling correction, entity detection, information extraction, and others. While such models have usually been estimated from training corpora containing at most a few billion words, we have been harnessing the vast power of Google's datacenters and distributed processing infrastructure to process larger and larger training corpora. We found that there's no data like more data, and scaled up the size of our data by one order of magnitude, and then another, and then one more - resulting in a training corpus of one trillion words from public Web pages.

What can I help you with?

What can I help you with?

Siri

N-grams - Challenge

Store massive N-grams datasets such that given a pattern, we can return its frequency count at light speed.

Store massive N-grams datasets such that given a pattern, we can return its frequency count at light speed.

Efficient map.

N-grams - Challenge

Store massive N-grams datasets such that given a pattern, we can return its frequency count at light speed.

Efficient map.

Data Structures + Data Compression $\boldsymbol{\rightarrow}$ Faster Algorithms

Open-addressing
 VS
 Tries

N-grams - Data structures

Open-addressing
 VS
 Tries

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	36352

Open-addressing
 VS
 Tries

N-grams - Data structures

Open-addressing

+ time
- space

N-grams - Data structures

Open-addressing
 + time
 - space

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing
 + time
 - space

Tries

BBC

N-grams - Data structures

Open-addressing

+ time
- space

VS
Tries

+ space
- time

BBC

N-grams - Data structures

Open-addressing

tongrams - Tons of N-Grams

Hash-based

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	$\mathbf{3 6 3 5 2}$

VS
Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	$\mathbf{3 6 3 5 2}$

VS
Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	36352

VS
Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	$\mathbf{3 6 3 5 2}$

VS
Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101	24
10001011	24
00001010	582
11011110	24

00010101	582
01010011	36352

VS
Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

10100101	24
10001011	24
00001010	582
11011110	24
00010101	582
01010011	$\mathbf{3 6 3 5 2}$

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

$A \longrightarrow$

Encode each level with Elias-Fano.

tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure is static.
Minimal Perfect Hashing.

Trie-based

$A \longrightarrow$

Encode each level with Elias-Fano.

Random access.

tongrams - Preliminary results

n	Number of n-grams	Maximum frequency count	Unique frequency counts	$\lceil\mathrm{lg}\rceil$ of unique frequency counts
1	$24,359,472$	$468,491,999,592$	246,588	18
2	$5,089,239$	$155,178,163$	44,822	16
3	$52,635,338$	$102,329,901$	71,690	17
4	$11,149,161$	$6,401,274$	21,127	15
5	$8,261,975$	958,556	12,171	14
Total	$101,495,185$	$468,491,999,592$	266,760	19

Table 4: Basic statistics for the GoogleWeb1T subset.

$\begin{aligned} & \frac{I}{N} \\ & \stackrel{1}{I} \end{aligned}$	KenLM sxIm	Total space in GBs	Bytes per gram		Lookup time [$\mu \mathrm{s}$]	
		2.570	27.19		0.248	
		1.012	10.43	(-61.64\%)	0.242	(-2.42\%)
$\stackrel{\text { w }}{\sim}$	KenLM	1.829	21.5		1.272	
$\stackrel{\rightharpoonup}{\vdash}$	sxlm	0.541	5.7	(-73.34\%)	1.229	(-3.38\%)

Table 5: Bytes per grams and average lookup time in μ s for the GoogleWeb1T subset.

tongrams - Preliminary results

n	Number of n-grams	Maximum frequency count	Unique frequency counts	$\lceil\mathrm{lg}\rceil$ of unique frequency counts
1	$24,359,472$	$468,491,999,592$	246,588	18
2	$5,089,239$	$155,178,163$	44,822	16
3	$52,635,338$	$102,329,901$	71,690	17
4	$11,149,161$	$6,401,274$	21,127	15
5	$8,261,975$	958,556	12,171	14
Total	$101,495,185$	$468,491,999,592$	266,760	19

Table 4: Basic statistics for the GoogleWeb1T subset.

TST	KenLM sxlm	Total space in GBs	Bytes per gram		Lookup time [$\mu \mathrm{s}$]	
		2.570	27.19		0.248	
		1.012	10.43	(-61.64\%)	0.242	(-2.42\%)
$\underline{\underline{\sim}}$	KenLM	1.829	21.5		1.272	
$\stackrel{ }{\vdash}$	sxim	0.541	5.7	(-73.34\%)	1.229	(-3.38\%)

Table 5: Bytes per grams and average lookup time in μ s for the GoogleWeb1T subset.

tongrams - Preliminary results

n	Number of n-grams	Maximum frequency count	Unique frequency counts	$\lceil\mathrm{lg}\rceil$ of unique frequency counts
1	$24,359,472$	$468,491,999,592$	246,588	18
2	$5,089,239$	$155,178,163$	44,822	16
3	$52,635,338$	$102,329,901$	71,690	17
4	$11,149,161$	$6,401,274$	21,127	15
5	$8,261,975$	958,556	12,171	14
Total	$101,495,185$	$468,491,999,592$	266,760	19

Table 4: Basic statistics for the GoogleWeb1T subset.

$\begin{aligned} & \frac{I}{n} \\ & \mathbb{I} \end{aligned}$	KenLM	Total space in GBs	Bytes per gram		Lookup time [$\mu \mathrm{s}$]	
		2.570	27.19	X2.6	0.248	
	sxlm	1.012	10.43	(-61.64\%)	0.242	(-2.42\%)
山	KenLM	1.829	21.5	X3.8	1.272	
$\stackrel{1}{\vdash}$	sxlm	0.541	5.7	(-73.34\%)	1.229	(-3.38\%)

Table 5: Bytes per grams and average lookup time in μ s for the GoogleWeb1T subset.

Dynamic Inverted Indexes.

(Some) Future Research Problems

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot. Merge them periodically.

(Some) Future Research Problems

Dynamic Inverted Indexes.

Classic solution: use two indexes.
One is big and cold; the other is small and hot. Merge them periodically.

Dropbox

Compressed B-trees.

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.
"Fancy indexing structures may be a luxury now, but they will be essential by the decade's end."

(Some) Future Research Problems

Compressed B-trees.

Problem: maintain a dictionary on disk.
Motivations: databases and file-systems.
"Fancy indexing structures may be a luxury now, but they will be essential by the decade's end."

Martin Farach-Colton
Rutgers University

Bradley Kuszmaul
MIT Laboratory for
Computer Science

Tokutek.

Fast Successor for IP-lookup.

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.
Time and space efficiency is crucial.

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.
Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $\mathrm{O}(1)$ using the powerful search capabilities of Elias-Fano.

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet. Hence, the most run algorithm in the world.

Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $\mathrm{O}(1)$ using the powerful search capabilities of Elias-Fano.

0	0	0	0	1	1
0	0	0	1	0	0
0	0	0	1	1	1
0	0	1	1	0	1
0	0	1	1	1	0
0	0	1	1	1	1
0	1	0	1	0	1
1	0	1	0	1	1

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.
Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $O(1)$ using the powerful search capabilities of Elias-Fano.

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.
Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $O(1)$ using the powerful search capabilities of Elias-Fano.

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet. Hence, the most run algorithm in the world.

Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $O(1)$ using the powerful search capabilities of Elias-Fano.

$$
1110111010001000
$$

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet. Hence, the most run algorithm in the world.

Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $O(1)$ using the powerful search capabilities of Elias-Fano.

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet. Hence, the most run algorithm in the world.

Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $\mathrm{O}(1)$ using the powerful search capabilities of Elias-Fano.

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet. Hence, the most run algorithm in the world.

Time and space efficiency is crucial.
We can directly jump to the position of the first address having the same $\lg n$ bits as the searched pattern in $O(1)$ using the powerful search capabilities of Elias-Fano.

| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |

Thanks for your attention, time, patience!

Any questions?

