Space and Time-Efficient

Data Structures
for Massive Datasets

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Computer Science Department
University of Pisa

17/10/2016

1


http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=




The increase of information
does not scale with technology.




The increase of information
does not scale with technology.

i il

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

. y



The increase of information
does not scale with technology.

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software



Data Structures Algorithms

PERFORMANCE EFFICIENCY

“how quickly a program “how much work Is required
does its work” - faster work by a program’ - less work




Data Structures
PERFORMANCE

“how quickly a program
does its work” - faster work

- Space

+ time Algorithms
EFFICIENCY

“how much work is required
by a program’ - less work




Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

Data Compression
4



Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

Data Compression

+ space
- time




Data Structures + time Algorithms
PERFORMANCE " shace EFFICIENCY

“how quickly a program
does its work” - faster work

“how much work is required
by a program’ - less work

"/
Data Compression

+ space
- time




Dichotomy Problem

Small VS Fast?



Dichotomy Problem

Small VS Fast?
Choose one.



Dichotomy Problem

Small VS Fast?
Choose one.

NO



High Level Thesis

Data Structures + Data Compression =» Faster Algorithms




High Level Thesis

Data Structures + Data Compression =» Faster Algorithms

THE CLASSIC WORK
NEWLY UPDATED AND REVISEI

The Art of
Computer
Programming

Fundamental Algorithms
Third Edition

DONALD E. KNUTH

“Space optimization is closely related to time optimization in a disk memory.”
Donald E. Knuth, The Art of Computer Programming
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Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Data compression & Fast Retrieval
together.

Mature algorithmic solutions
now ready for technology transfer.
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are the ones the boost the availability
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Inverted Indexes

—_= = N-grams
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Prefer cache-friendly (non discontiguous) data structures.
Always.

Use std::vector.
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vector of pointers

Preter cache-friendly data structures.

memory

memory

vector of offsets

516(7

0] 2220
[ _ |

Offsets instead of pointers.
Contiguous memory layout.
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Example: vector of strings VS string pool

Preter cache-friendly data structures.

memory memory
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General Problem

Consider a sequence S[0,n) of n positive and monotonically
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integer is self-delimited, using as few as possible bits”
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Elias-Fano - Genesis

Peter Elias Robert Fano
[1923 - 2001] [1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).
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Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

40 years later!
Sebastiano Vigna. Quasi-Succinct Indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).
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cluster of posting lists
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R

unbounded universe R << U

v

Problems
1. how to build clusters
2. how to synthesise the reference list

NP-hard problem
already for a simplified formulation.
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Clustered Elias-Fano Indexes

Time VS Space tradeoffs by varying reference size
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Figure 2: Bits per posting of Gov2 and ClueWeb09 by varying the reference size. Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.
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Table 3: Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query
sets TREC 05 and TREC 05. In parentheses we show the relative percentage
against CPEF.
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Figure 3: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
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Much faster than BIC (103% on average)

Slightly slower than PEF (20% on average)
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n Ig(u/n) + 2n + o(n) bits

 O(1) random access
* O(lg(u/n)) predecessor/successor

Static succinct data structure.
NO dynamic updates.

EB Trees [van Emde Boas, FOCS 1975] * Dynamic

e V rees |van cmdade boas, °

+  x/y-Fast Tries [Willard, IPL 1983] Mot?’t O‘; I_hem take
e Fusion Trees [Fredman and Willard, JCSS 1993] optimal time

Exponential Search Trees [Andersson and Thorup, JACM 2007

O(n Ig u) bits

(or even worse)
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Integer Data Structures - Problems and Results

The (general) Dictionary problem

The dynamic dictionary problem consists in
representing a set S of n objects so that the
following operations are supported.

* insert(x) inserts x in S

 delete(x) deletes x from S

 search(x) checks whether x belongs to S

e minimum() returns the minimum element of S
e maximum() returns the maximum element of S

o predecessor(x) returns max{y € S : y < x}

 successor(x) returns minfy € S : y = x}
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Given a list S of n sorted integer, support the
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e access(i) return the i-th smallest element of S
* insert(x) inserts x in S

 delete(x) deletes x from S

under the assumption that w < IgY n for some y.
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1. Extend the static Elias-Fano representation to support
predecessor and successor gueries in optimal worst-
case O(lg Ig n) time.

2. Maintain S in a fully dynamic fashion, supporting in
optimal worst-case time all the operations defined in the
Dynamic Dictionary and Dynamic List Representation
problems.
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Results - Static Elias-Fano Optimal Successor Queries

* optimal time/space trade-off for successor
search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

» Theorem 1. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = (1), that takes EF(S(n,u)) +
o(n) bits of space and supports Access in O(1) worst-case and Predecessor/Successor queries
in optimal O(min{1 + log %,loglogn}) worst-case time.
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ldea: divide the sequence into

blocks and use a y-fast trie to
iIndex the blocks.
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Results - Dynamic Elias-Fano

« optimal time/space trade-off for successor

search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

* dynamic prefix-sum data structure [Bille et al.,

arXiv preprint 2015]

» Lemma 4. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn - loglogn) bits of space and supports the following operations in
O(loglogn) worst-case time: Search(z) which returns a pointer to the block containing the
integer x; Access(i) which returns the i-th integer of the total order; Insert/Delete of a block.

» Theorem 3. There exists a data structure representing an ordered set S(n,u) of n integers
drawn from a polynomial universe of size u = n", for any v = (1), that takes EF(S(n,u)) +
o(n) bits of space and supports: Access in O(logn/loglogn) worst-case; Insert/Delete in
O(logn/loglogn) amortized; Minimum/Maximum in O(1) and Predecessor /Successor queries
in O(min{l + log ¥,loglogn}) worst-case time. These time bounds are optimal.
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Results - Dynamic Elias-Fano

« optimal time/space trade-off for successor

search [Patrascu and Thorup, STC 2007]

» y-fast tries [Willard, IPL 1983]

* dynamic prefix-sum data structure [Bille et al.,

arXiv preprint 2015]

» Lemma 4. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn - loglogn) bits of space and supports the following operations in
O(loglogn) worst-case time: Search(z) which returns a pointer to the block containing the
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O(logn/loglogn) amortized; Minimum/Maximum in O(1) and Predecessor /Successor queries
in O(min{l + log ¥,loglogn}) worst-case time. These time bounds are optimal.

ldea: use a 2-level indexing data structure.
« First level indexes blocks using a y-fast trie and the
dynamic prefix-sum data structure by Bille et al.

« Second level indexes mini blocks using the data
structure of the Lemma.
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Strings of at most N words.

N typically ranges from 1 to 5.

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,n lg n, where Ign
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢, < c,.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢in - n and merge sort’s running time as c,n - g n. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of lgn,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ig n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.
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time than the dependence on the input size n. Let’s write insertion sort’s running
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insertion sort has a factor of » in its running time, merge sort has a factor of 1gn,
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N-grams - Who cares?

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,
such as statistical machine translation, speech recognition, spelling correction, entity detection,
information extraction, and others. While such models have usually been estimated from training
corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.
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N-grams - Challenge

Store massive N-grams datasets such
that given a pattern, we can return its
frequency count at light speed.
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Store massive N-grams datasets such
that given a pattern, we can return its
frequency count at light speed.

Efficient map.

Data Structures + Data Compression =» Faster Algorithms
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31



N-grams - Data structures

Open-addressing VS Tries

32



N-grams - Data structures

Open-addressing VS Tries

10100101 | 24

10001011 | 24

00001010 | 582

11011110 24

00010101 | 582
01010011 | 36352

32



N-grams - Data structures

Open-addressing VS Tries

10100101 | 24

10001011 | 24

00001010 | 582
" ol

11011110 24

00010101 | 582
01010011 | 36352

32



N-grams - Data structures

Open-addressing VS Tries

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582
" ol

11011110 24

00010101 | 582
01010011 | 36352

32



Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS

24

32

23

Tries

A B C

244

L —

A B D B C
—

34

43

120

N

120

133 1

v

90 43
A

73

17

D

689

v
A

225

N

88

C D

350

123

114

\
B A B D AA C A|/B D A

14

114



N-grams - Data structures

Open-addressing VS Tries

+ time

- Space

10100101 | 24 BBC
10001011 | 24 A/B/C D
00001010 | 582 — v v

X ‘ ‘ | AB DB CAC D

120 225 350 114

11011110 | 24 A/j/mo o 90\ : e ~,
‘ ‘ | B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

00010101 | 582
01010011 | 36352

32



N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — v v
X , ‘ ‘ | A B D B C A C D
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B| D A

00010101 | 582
01010011 | 36352

32



N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — Vv v
X , ‘ ‘ | A B D B C A C D
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B D A

00010101 | 582
01010011 | 36352

32



N-grams - Data structures

Open-addressing VS Tries

+ time
= Space
10100101 | 24 BBC
10001011 24 . l = | Qe
00001010 | 582 — v v
X . ‘ | A B DB CACD
11011110 | 24 A/j/wo 120\‘ 90\ - 225\ b 114\.
‘ ‘ | B A B D A A C A B D A

00010101 | 582
01010011 | 36352

32



Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS Tries
BBC
AlB C
4/244 iS 1
A B D|B|C
/A24/100 120\‘ 90\ 43

24

32

23

34

43

120

73

17

D

689

v
A

225

N

88

C D

350

123

114

\
B A B D AA C A|/B D A

14

114



Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS Tries
BBC
AlB C
4/244 iS 1
A B D|B|C
/A24/100 120\‘ 90\ 43

689

A C D

225 350 114

N T~

B A B D A A

24

32

23

34

43

120

C/ A/ B D A

73

17 88 123 14 114



Open-addressing

N-grams - Data structures

+ time
- space

10100101 | 24

10001011 | 24

00001010 | 582

P

11011110 24

00010101 | 582
01010011 | 36352

VS

24

32

23

244

A B D|B|C

—
B A B D A A

34

43

Tries
+ space
- time
BBC
AlB c D
v y
A C D

120

C/ A/ B D A

73

17 88 123 14 114



N-grams - Data structures

Open-addressing VS Tries

+ time + space
- space - time
C C C . C o . C C
10100101 C
carleld, 204
= -3 aNa Kle 0
10001011 » Yo l= N et 5 NO8 C D
TR Rano alpot ana Osborne, 200 !
X : Awker et a/., 20U Al C D
ﬁ n J S " 43 225 350 114
11011110 2 g \ \
B A B D|A A B D A

24 23 34 43 120 73 17 88 123 14 114

00010101 | 582
01010011 | 36352

32



tongrams - Tons of N-Grams

Hash-based VS Trie-based

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B C A C D

00001010
582 120 225 | 350 114

I e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B C A C D

00001010
582 120 225 | 350 114

I e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101 | 24

‘ ‘ ‘ A B C D
10001011 | 24 — v v

A B D B/ C A C D
00001010 | 582

T e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v X
00001010 | B£82 A/B/DIBICIAICID

T e NN N —
B A B D/ A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

11011110 | 24

00010101 | 582
01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v v
A B D B C A|C D
00001010 | 582
11011110 | 24 — N N N T~
B A B D A A|IC A B D A

00010101 | 582
01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C D
10100101 24 244 133 1 689
10001011 | 24 — v v
A B D B C A|C D
00001010 | 582
11011110 | 24 — N N N T~
00010101 | 582 B A B D A A|IC A B D A

01010011 | 36352

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

A B C|D
10100101 24 244 133 1 689
10001011 | 24 — v v
g 24 A B D B C A C D
00001010 | 582
1 2 24 100 120 90 43 225 350 114
11011110 | 24 2% — N N N T~
24 36352 B A B D A A|IC A B D A

00010101 | £582
01010011 | 36352

24 23 34 43 120 73 17 88 123 14 114

33



tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101
10001011
O et
00001010
] 582
11011110
24 36352
00010101
01010011

VS Trie-based
A B Cl/D

A B D B C A C D

120 225 350 114

B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

33



tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based
> A 0
IS
3 B 1
S C 2
2 D 3
A B C| D

244 133 1 689

A B D B C A C D

120 225 350 114

B A B D A A C A B D A

24 23 34 43 120 73 17 88 123 14 114

33



tongrams - Tons of N-Grams

Hash-based VS Trie-based
Open addressihg? | o A 0
Data structure Is static. i . 1
Minimal Perfect Hashing. 8 co o
2 D 3
0O 1 2 3

10100101 244 133 1 689
10001011 — v v

g 24 O 1 3/ 1 20 2 3
00001010

1 2 24 100 120 90 43 225 350 114
11011110 %€ — A N T~

2d 36352 i1 0 1 3 0 0 2,0 1 3 0

00010101

24 23 34 43 120 73

01010011

33

17

88 123 14 114



tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

Vo

1

24

Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v
O 1 3 4 5 5 7 8

24 100 120 90 43 225

e Ny Ny

350 114

1 2 4 4 4 6 6 7 9 9

23 34 43 120 73 17 88 123 14

33



tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v

0

24 100 120 90 43 225

1 3 4 5 5 7 8

e Ny Ny

1 1 2 4 4 4 6 6 7 9 9

24 23 34 43 120 73 17 88

Encode each level
with Elias-Fano.

33



tongrams - Tons of N-Grams

Hash-based

Open addressing?
Data structure Is static.

Minimal Perfect Hashing.

10100101

10001011

a 24
] 582
24 36352

00001010

11011110

00010101

01010011

VS Trie-based

-
©
)
Q
@
O
o
>

244 133 1 689

v v

0

24 100 120 90 43 225

1 3 4 5 5 7 8

e Ny Ny

1 1 2 4 4 4 6 6 7 9 9

24 23 34 43 120 73 17 88

Encode each level
with Elias-Fano.

Random access.

33



tongrams - Preliminary results

" Number of Maximum Unique [lg] of unique
n-grams frequency count  frequency counts frequency counts
1 24,359,472 468,491,999,592 246,588 18
2 5,089,239 155,178,163 44,822 16
3 52,635,338 102,329,901 71,690 17
4 11,149,161 6,401,274 21,127 15
5 8,261,975 958,556 12,171 14
Total 101,495,185 468,491,999,592 266,760 19
Table 4: Basic statistics for the GoogleWeb1T subset.
Total space in GBs Bytes per gram Lookup time [us]
& KenlM 2.570 27.19 0.248
<
T odm 1.012 1043 (—61.64%) 0242 (—2.42%)
%J KenLM 1.829 21.5 1.272
= sxIm 0.541 57 (—73.34%) 1229 (—3.38%)

Table 5: Bytes per grams and average lookup time in us for the GoogleWeb1T subset.
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Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

37



(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.
Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of

the first address having the same /g n bits V0001
. . 000100

as the searched pattern in O(1) using the
- . 000111

powerful search capabillities of Elias-Fano.
001101
001110

001111

010101
101011

37



(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000
Build an index on zeros.

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000
Build an index on zeros.

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x = 001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x =001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




(Some) Future Research Problems

Fast Successor for IP-lookup.

Successor search is what routers do for every incoming packet.

Hence, the most run algorithm in the world.

Time and space efticiency iIs crucial.

We can directly jump to the position of
the first address having the same Ig n bits
as the searched pattern in O(1) using the
powerful search capabillities of Elias-Fano.

1110111010001000

Build an index on zeros. x =001100 (12)

p = selectg(hy) - hy

37

000
000

000

011
100

111

001
001
001

101
110
111

010

101

101

011




Thanks for your attention,

time, patience!

Any questions?
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