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“Software is getting slower more rapidly than hardware becomes faster.” 
Niklaus Wirth, A Plea for Lean Software

The increase of data and, hence, information 
does not scale with technology.

Even more relevant today!
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Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each 
original integer is uniquely-decodable, 

using as few as possible bits?

How to maintain fast decompression speed?



Ubiquity

Inverted indexes

Databases

Semantic data

Geo-spatial data

Graph compression

E-Commerce



Inverted indexes

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.
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Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
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The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.
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1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

Encode clusters of (similar) inverted lists.

Always better than 
PEF (by up to 11%)
and better than BIC 

(by up to 6.25%)

Slightly slower 
than PEF (~20%)
Much faster than 

BIC (2X)

Space Time

Spectrum
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2 - Optimally-partitioned Variable-Byte codes (TKDE 2019)

The majority of values are small (very small indeed).

Encode dense regions 
with unary codes, sparse 

regions with VByte.

Compression ratio 
improves by 2X.

Query processing speed 
and sequential decoding 

(almost) not affected.

Optimal partitioning in 
linear time and constant 

space.
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3 - Dictionary-based compression (WSDM 2019)

If we consider subsequences of d-gaps in inverted lists, 
these are repetitive across the whole inverted index.

Close to the most space-efficient 
representation (~7% away from BIC).

Almost as fast as the fastest 
SIMD-ized decoders.

Put the most frequent patterns 
in a dictionary of size k. 

Then encode inverted lists as 
sequences of log2 k-bit codewords.
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Problem 2

Consider a large text.

How to represent all its substrings of size 1 ≤ k ≤ N words 
for fixed N (e.g., N = 5), using as few as possible bits?

How to estimate the probability of occurrence of the 
patterns under a given probability model?

Fast access to individual N-grams?



Indexing

Books
~6% of the books ever published

N number of N-grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billions of N-grams!



Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.
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k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

The (Elias-Fano) context-based 
remapped trie is even smaller than 

the most space-efficient competitors, 
that are lossy and with false-positives 

allowed, and up to 5X faster.

The (Elias-Fano) context-based 
remapped trie is as fast as the fastest 
competitor, but up to 65% smaller.
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Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney 
probabilities of the N-grams, 

the fastest algorithm in the literature uses 
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block 
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Estimation runs 4.5X faster 
with billions of strings. 



Take-home messages

• Efficiency to deliver better services by using less resources. 
Impact is far reaching and implies substantial economic 
gains. 

 

• Compression is mandatory if your data are “big”. 

 
 

• Experiments are primary: design driven by numbers.



Any questions?

Thanks for your attention,

time, patience!



High level thesis

Data Structures + Data Compression = Fast Algorithms

Design space-efficient ad-hoc data structures, 
both from a theoretical and practical perspective, 

that support fast data extraction.
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Can we grab the best from both?

Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits 
to encode a sorted integer 
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

Elias-Fano encoding

Problem 3



Dynamic inverted indexes

Classic solution: use two indexes. 
One is big and static; the other is small and dynamic. 

Merge them periodically.

Append-only inverted indexes.



For u = nγ, γ =    (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM 2017)
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Result 1

Result 2

Result 3



For u = nγ, γ =    (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM 2017)
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• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

Optimal time 
bounds for all 

operations 
using a sublinear 

redundancy.


