
Space- and Time-Efficient Data
Structures for Massive Datasets

Supervisor
Rossano Venturini

Giulio Ermanno Pibiri

Referee
Daniel Lemire

Referee
Simon Gog

08/03/2019

Department of Computer Science
University of Pisa

http://pages.di.unipi.it/pibiri

Evidence

The increase of data and, hence, information
does not scale with technology.

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

The increase of data and, hence, information
does not scale with technology.

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

The increase of data and, hence, information
does not scale with technology.

Even more relevant today!

Achieved results

Journal paper Clustered Elias-Fano Indexes
Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
IEEE Transactions on Knowledge and Data Engineering (TKDE). To appear.
Full paper, 12 pages, 2019.

 On Optimally Partitioning Variable-Byte Codes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS). To appear.
Full paper, 41 pages, 2019.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

Achieved results

Journal paper Clustered Elias-Fano Indexes
Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
IEEE Transactions on Knowledge and Data Engineering (TKDE). To appear.
Full paper, 12 pages, 2019.

 On Optimally Partitioning Variable-Byte Codes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS). To appear.
Full paper, 41 pages, 2019.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

integer
sequences

Achieved results

Journal paper Clustered Elias-Fano Indexes
Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
IEEE Transactions on Knowledge and Data Engineering (TKDE). To appear.
Full paper, 12 pages, 2019.

 On Optimally Partitioning Variable-Byte Codes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS). To appear.
Full paper, 41 pages, 2019.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

integer
sequences

short strings

Problem 1

Consider a sorted integer sequence.

Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each
original integer is uniquely-decodable,

using as few as possible bits?

How to maintain fast decompression speed?

Ubiquity

Inverted indexes

Databases

Semantic data

Geo-spatial data

Graph compression

E-Commerce

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

Large research corpora describing different space/time trade-offs.

• Elias’ Gamma and Delta
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Elias-Fano
• Partitioned Elias-Fano

Many solutions

~1970

2014

Large research corpora describing different space/time trade-offs.

• Elias’ Gamma and Delta
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Elias-Fano
• Partitioned Elias-Fano

Many solutions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

~1970

2014

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative
Coding (BIC)

Variable-Byte
(VByte)
Family

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative
Coding (BIC)

Variable-Byte
(VByte)
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative
Coding (BIC)

Variable-Byte
(VByte)
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Is it possible to design an
encoding that is as fast as
VByte and much smaller?

2

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative
Coding (BIC)

Variable-Byte
(VByte)
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Is it possible to design an
encoding that is as fast as
VByte and much smaller?

2

What about both objectives
at the same time?!

3

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative
Coding (BIC)

Variable-Byte
(VByte)
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Is it possible to design an
encoding that is as fast as
VByte and much smaller?

2

What about both objectives
at the same time?!

3

TOIS 2017

WSDM 2019

TKDE 2019

1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

Encode clusters of (similar) inverted lists.

reference list

1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

Encode clusters of (similar) inverted lists.

reference list

1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

Encode clusters of (similar) inverted lists.

reference list

1 - Clustered inverted indexes (TOIS 2017)

Every encoder represents each sequence individually.

Encode clusters of (similar) inverted lists.

Always better than
PEF (by up to 11%)
and better than BIC

(by up to 6.25%)

Slightly slower
than PEF (~20%)
Much faster than

BIC (2X)

Space Time

Spectrum

2 - Optimally-partitioned Variable-Byte codes (TKDE 2019)

The majority of values are small (very small indeed).

2 - Optimally-partitioned Variable-Byte codes (TKDE 2019)

The majority of values are small (very small indeed).

2 - Optimally-partitioned Variable-Byte codes (TKDE 2019)

The majority of values are small (very small indeed).

Encode dense regions
with unary codes, sparse

regions with VByte.

2 - Optimally-partitioned Variable-Byte codes (TKDE 2019)

The majority of values are small (very small indeed).

Encode dense regions
with unary codes, sparse

regions with VByte.

Compression ratio
improves by 2X.

Query processing speed
and sequential decoding

(almost) not affected.

Optimal partitioning in
linear time and constant

space.

3 - Dictionary-based compression (WSDM 2019)

If we consider subsequences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

3 - Dictionary-based compression (WSDM 2019)

If we consider subsequences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Put the most frequent patterns
in a dictionary of size k.

Then encode inverted lists as
sequences of log2 k-bit codewords.

3 - Dictionary-based compression (WSDM 2019)

If we consider subsequences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Put the most frequent patterns
in a dictionary of size k.

Then encode inverted lists as
sequences of log2 k-bit codewords.

3 - Dictionary-based compression (WSDM 2019)

If we consider subsequences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Close to the most space-efficient
representation (~7% away from BIC).

Almost as fast as the fastest
SIMD-ized decoders.

Put the most frequent patterns
in a dictionary of size k.

Then encode inverted lists as
sequences of log2 k-bit codewords.

The bigger picture

The bigger picture

The bigger picture

Problem 2

Consider a large text.

Problem 2

Consider a large text.

How to represent all its substrings of size 1 ≤ k ≤ N words
for fixed N (e.g., N = 5), using as few as possible bits?

How to estimate the probability of occurrence of the
patterns under a given probability model?

Fast access to individual N-grams?

Indexing

Books
~6% of the books ever published

N number of N-grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billions of N-grams!

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

Context-based remapped tries (SIGIR 2017)

The number of words following a given context is small.

The (Elias-Fano) context-based
remapped trie is even smaller than

the most space-efficient competitors,
that are lossy and with false-positives

allowed, and up to 5X faster.

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Fast estimation in external memory (TOIS 2019)

To compute the modified Kneser-Ney
probabilities of the N-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Estimation runs 4.5X faster
with billions of strings.

Take-home messages

• Efficiency to deliver better services by using less resources. 
Impact is far reaching and implies substantial economic
gains. 

 

• Compression is mandatory if your data are “big”. 

 
 

• Experiments are primary: design driven by numbers.

Any questions?

Thanks for your attention,

time, patience!

High level thesis

Data Structures + Data Compression = Fast Algorithms

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

Next word prediction

Next word prediction

space and time-efficient ?

context

Next word prediction

algorithms

foo

data

bar

baz

1214

2

3647

3

1

frequency

space and time-efficient ?

context

Next word prediction

algorithms

foo

data

bar

baz

1214

2

3647

3

1

frequency

space and time-efficient ?

context

f(“space and time-efficient data”)

f(“space and time-efficient”)
P(“data” | “space and time-efficient”) ≈

Next word prediction

algorithms

foo

data

bar

baz

1214

2

3647

3

1

frequency

space and time-efficient ?

context

f(“space and time-efficient data”)

f(“space and time-efficient”)
P(“data” | “space and time-efficient”) ≈

 space
+ time
-

dynamic+
space+
static-

+ time

Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits
to encode a sorted integer
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

Elias-Fano encoding

Problem 3

 space
+ time
-

dynamic+
space+
static-

+ time

Can we grab the best from both?

Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits
to encode a sorted integer
sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

Elias-Fano encoding

Problem 3

Dynamic inverted indexes

Classic solution: use two indexes.
One is big and static; the other is small and dynamic.

Merge them periodically.

Append-only inverted indexes.

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM 2017)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM 2017)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

Optimal time
bounds for all

operations
using a sublinear

redundancy.

