
Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Department of Computer Science
University of Pisa

1

Space- and Time-Efficient
Data Structures

for Massive Datasets

15/11/2018

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

3

Evidence

The increase of information
does not scale with technology.

3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information
does not scale with technology.

3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information
does not scale with technology.

Even more relevant today!

4

Scenario

time
 space

Algorithms
EFFICIENCY

how much work is required
by a program - less work

Data structures
PERFORMANCE

how quickly a program
does its work - faster work

4

Scenario

time
 space

Algorithms
EFFICIENCY

how much work is required
by a program - less work

Data structures
PERFORMANCE

how quickly a program
does its work - faster work

?

Data compression
 space
time

Small vs. fast?

The dichotomy problem

5

Small vs. fast?

The dichotomy problem

5

Choose one.

Small vs. fast?

NO

The dichotomy problem

5

Choose one.

6

High level thesis

Data Structures + Data Compression Fast Algorithms

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,

that support fast data extraction.

Data Compression & Fast Retrieval together.

7

Achieved results
Journal paper Clustered Elias-Fano Indexes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paperGiulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
arXiv (CoRR), April 2018.
Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)
Full paper, 12 pages, 2018.

 Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

7

Achieved results
Journal paper Clustered Elias-Fano Indexes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paperGiulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
arXiv (CoRR), April 2018.
Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)
Full paper, 12 pages, 2018.

 Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

integer
sequences

7

Achieved results
Journal paper Clustered Elias-Fano Indexes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Conference paperGiulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)
Full paper, 14 pages, 2017.

 Dynamic Elias-Fano Representation

Conference paper
Giulio Ermanno Pibiri and Rossano Venturini
ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.

 Efficient Data Structures for Massive N-Gram Datasets

Conference paper

Giulio Ermanno Pibiri and Rossano Venturini
arXiv (CoRR), April 2018.
Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)
Full paper, 12 pages, 2018.

 Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

 Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

 Fast Dictionary-based Compression for Inverted Indexes

Journal paper

Journal paper

integer
sequences

short strings

8

Problem 1

Consider a sorted integer sequence.

8

Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original
integer is uniquely-decodable, using as few as possible

bits?

How to maintain fast decompression speed?

8

Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original
integer is uniquely-decodable, using as few as possible

bits?

How to maintain fast decompression speed?

This is a difficult problem that has been studied since the the ’60.

9

Applications

Inverted indexes Databases

RDF indexing

Geo-spatial data Graph-compression

E-Commerce

9

Applications

Inverted indexes Databases

RDF indexing

Geo-spatial data Graph-compression

E-Commerce

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

 {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:

“return all documents in which terms {t1,…,tk} occur”.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

 {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:

“return all documents in which terms {t1,…,tk} occur”.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

 {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:

“return all documents in which terms {t1,…,tk} occur”.

Q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

 {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:

“return all documents in which terms {t1,…,tk} occur”.

Q = {boy, is, the}

Huge research corpora describing different space/time trade-offs.

• Elias Gamma and Delta
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Elias-Fano
• Partitioned Elias-Fano

Many solutions

12

‘70

2014

Huge research corpora describing different space/time trade-offs.

• Elias Gamma and Delta
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Elias-Fano
• Partitioned Elias-Fano

Many solutions

12

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

‘70

2014

Huge research corpora describing different space/time trade-offs.

• Elias Gamma and Delta
• Variable-Byte Family
• Binary Interpolative Coding
• Simple Family
• PForDelta
• QMX
• Elias-Fano
• Partitioned Elias-Fano

Many solutions

12

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

‘70

2014

13

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

13

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

13

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Is it possible to design an
encoding that is as fast as
VByte and much smaller?

2

13

Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary
Interpolative

Coding

Variable-Byte
Family

Is it possible to design an
encoding that is as small as

BIC and much faster?
1

Is it possible to design an
encoding that is as fast as
VByte and much smaller?

2

What about both objectives
at the same time?!

3

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

Encode clusters of
inverted lists.

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

Encode clusters of
inverted lists.

Always better than
PEF (by up to 11%)
and better than BIC

(by up to 6.25%)

Much faster than BIC
(~103%)

Slightly slower than
PEF (~20%)

Space Time

Spectrum

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

Encode dense regions
with unary codes, sparse

regions with VByte.

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

Encode dense regions
with unary codes, sparse

regions with VByte.

Optimal partitioning in
linear time and

constant space.

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

Encode dense regions
with unary codes, sparse

regions with VByte.

Compression ratio
improves by 2X.

Optimal partitioning in
linear time and

constant space.

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

Encode dense regions
with unary codes, sparse

regions with VByte.

Compression ratio
improves by 2X.

Query processing speed
and sequential decoding

not affected.

Optimal partitioning in
linear time and

constant space.

Idea 3 - Dictionary compression (WSDM ’19)

16

with M. Petri and A. Moffat
(University of Melbourne)If we consider subsequences of d-gaps in inverted lists,

these are repetitive across the whole inverted index.

Idea 3 - Dictionary compression (WSDM ’19)

16

with M. Petri and A. Moffat
(University of Melbourne)If we consider subsequences of d-gaps in inverted lists,

these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.

Then encode inverted lists as
sequences of log k-bit codewords.

Idea 3 - Dictionary compression (WSDM ’19)

16

with M. Petri and A. Moffat
(University of Melbourne)If we consider subsequences of d-gaps in inverted lists,

these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.

Then encode inverted lists as
sequences of log k-bit codewords.

Close to the most space-efficient
representation (~7% away from BIC).

Idea 3 - Dictionary compression (WSDM ’19)

16

with M. Petri and A. Moffat
(University of Melbourne)If we consider subsequences of d-gaps in inverted lists,

these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.

Then encode inverted lists as
sequences of log k-bit codewords.

Close to the most space-efficient
representation (~7% away from BIC).

Almost as fast as the fastest
SIMD-ized decoders.

The bigger picture

17

The bigger picture

17

The bigger picture

17

Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits to
encode a sorted integer sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

 space
+ time
-

dynamic+
space+
static-

+ time

Elias-Fano encoding

Problem 2

18

Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits to
encode a sorted integer sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

 space
+ time
-

dynamic+
space+
static-

+ time

Can we grab the best from both?

Elias-Fano encoding

Problem 2

18

19

Dynamic inverted indexes

Classic solution: use two indexes.
One is big and cold; the other is small and hot.

Merge them periodically.

Append-only inverted indexes.

20

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM ’17)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

20

For u = nγ, γ = (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM ’17)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

Optimal time
bounds for all

operations
using a sublunar

redundancy.

21

Problem 3

Consider a large text.

21

Problem 3

Consider a large text.

How to represent all its substrings of size 1 ≤ k ≤ N words
for fixed N (e.g., N = 5), using as few as possible bits?

How to estimate the probability of occurrence of the
patterns under a given probability model?

Fast Access to individual N-grams?

21

Problem 3

Consider a large text.

How to represent all its substrings of size 1 ≤ k ≤ N words
for fixed N (e.g., N = 5), using as few as possible bits?

How to estimate the probability of occurrence of the
patterns under a given probability model?

Fast Access to individual N-grams?

This is problem is central to applications in IR, ML, NLP, WSE.

22

Applications

Next word prediction.

22

Applications

Next word prediction.

space and time-efficient ?

context

22

Applications

Next word prediction.

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

space and time-efficient ?

context

22

Applications

Next word prediction.

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

space and time-efficient ?

context

f (“space and time-efficient data structures”)

f (“space and time-efficient”)
P(“data structures” | “space and time-efficient”) ≈

What can I
help you with?

Siri

24

Applications

24

Applications

Indexing

25

Books
~6% of the books ever published

n number of n-grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billion n-grams.

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.

k = 1

Map a word ID to the position
it takes within its sibling IDs

(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

The (Elias-Fano) context-based
remapped trie is even smaller than

the most space-efficient competitors,
that are lossy and with false-positives

allowed, and up to 5X faster.

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney
probabilities of the n-grams,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Suffix order Context order

Computing the distinct left extensions.

Using a scan of the block
and O(|V|) space.

Rebuilding the last level of the trie.

A 4
B 2
C 2
X 4

A 1
B 5
C 7
X 9

Estimation runs 4.5X faster
with billions of strings.

28

Thanks for your attention,
time, patience!

Any questions?

