
Giulio Ermanno Pibiri 
giulio.pibiri@di.unipi.it 

Supervisor 
Rossano Venturini 

Department of Computer Science 
University of Pisa

1

Space- and Time-Efficient
Data Structures

for Massive Datasets

15/11/2018

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=




3

Evidence

The increase of information 
does not scale with technology.



3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information 
does not scale with technology.



3

Evidence

“Software is getting slower more rapidly than hardware becomes faster.”

Niklaus Wirth, A Plea for Lean Software

The increase of information 
does not scale with technology.

Even more relevant today!
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EFFICIENCY
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by a program - less work

Data structures
PERFORMANCE

how quickly a program 
does its work - faster work

?

Data compression
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time
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High level thesis

Data Structures + Data Compression      Fast Algorithms

Design space-efficient ad-hoc data structures, 
both from a theoretical and practical perspective, 

that support fast data extraction.

Data Compression & Fast Retrieval together.
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Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original 
integer is uniquely-decodable, using as few as possible 

bits?

How to maintain fast decompression speed?

This is a difficult problem that has been studied since the the ’60.
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Inverted indexes

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

      {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

      {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

      {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



Inverted indexes

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

      {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

The inverted index is the de-facto data structure at 
the basis of every large-scale retrieval system.

10



11

Inverted indexes
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efficient resolution of queries, such as: 

“return all documents in which terms {t1,…,tk} occur”.
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Key research questions

Space Time

Spectrum

~3X smaller ~4.5X faster

Binary 
Interpolative 

Coding

Variable-Byte
Family

Is it possible to design an 
encoding that is as small as 

BIC and much faster?
1

Is it possible to design an 
encoding that is as fast as 
VByte and much smaller?

2

What about both objectives 
at the same time?!

3
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Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

Encode clusters of 
inverted lists.

Always better than 
PEF (by up to 11%)
and better than BIC 

(by up to 6.25%)

Much faster than BIC 
(~103%)

Slightly slower than 
PEF (~20%)

Space Time

Spectrum
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Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level 
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).
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Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level 
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

Encode dense regions 
with unary codes, sparse 

regions with VByte.

Compression ratio 
improves by 2X.

Query processing speed 
and sequential decoding 

not affected.

Optimal partitioning in 
linear time and 

constant space.
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with M. Petri and A. Moffat 
(University of Melbourne)If we consider subsequences of d-gaps in inverted lists, 

these are repetitive across the whole inverted index.

Put the top-k frequent patters in a 
dictionary of size k. 

Then encode inverted lists as 
sequences of log k-bit codewords.

Close to the most space-efficient 
representation (~7% away from BIC).

Almost as fast as the fastest 
SIMD-ized decoders.
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Integer data structures

• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
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• O(1) Access
• O(1 + log(u/n)) Predecessor
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• van Emde Boas Trees
• X/Y-Fast Tries
• Fusion Trees
• Exponential Search Trees
• …

• EF(S(n,u)) = n log(u/n) + 2n bits to 
encode a sorted integer sequence S

• O(1) Access
• O(1 + log(u/n)) Predecessor

   space
+ time 
-

dynamic+
space+
static-

+ time

Can we grab the best from both?

Elias-Fano encoding

Problem 2

18
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Dynamic inverted indexes

Classic solution: use two indexes. 
One is big and cold; the other is small and hot. 

Merge them periodically.

Append-only inverted indexes.
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For u = nγ, γ =    (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM ’17)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3
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For u = nγ, γ =    (1):
• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(min{1+log(u/n), loglog n}) Predecessor

Integer dictionaries in succinct space (CPM ’17)

• EF(S(n,u)) + o(n) bits
• O(1) Access
• O(1) Append (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

• EF(S(n,u)) + o(n) bits
• O(log n / loglog n) Access

• O(log n / loglog n) Insert/Delete (amortized)
• O(min{1+log(u/n), loglog n}) Predecessor

Result 1

Result 2

Result 3

Optimal time 
bounds for all 

operations 
using a sublunar 

redundancy.
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Consider a large text.

How to represent all its substrings of size 1 ≤ k ≤ N words 
for fixed N (e.g., N = 5), using as few as possible bits?

How to estimate the probability of occurrence of the 
patterns under a given probability model?

Fast Access to individual N-grams?

This is problem is central to applications in IR, ML, NLP, WSE.
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Next word prediction.

algorithms

foo

data structures

bar

baz

1214

2

3647

3

1

frequency count

space and time-efficient ?

context

f (“space and time-efficient data structures”)

f (“space and time-efficient”)
P(“data structures” | “space and time-efficient”)   ≈ 



What can I 
help you with?

Siri
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Books
~6% of the books ever published

n number of n-grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billion n-grams.
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

The (Elias-Fano) context-based 
remapped trie is as fast as the fastest 
competitor, but up to 65% smaller.



k = 1

Map a word ID to the position 
it takes within its sibling IDs 

(the IDs following a context of 
fixed length k).
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

The (Elias-Fano) context-based 
remapped trie is even smaller than 

the most space-efficient competitors, 
that are lossy and with false-positives 

allowed, and up to 5X faster.

The (Elias-Fano) context-based 
remapped trie is as fast as the fastest 
competitor, but up to 65% smaller.
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Estimation runs 4.5X faster 
with billions of strings. 
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Thanks for your attention, 
time, patience!

Any questions?


