Space- and Time-Efficient

Data Structures
for Massive Datasets

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

Supervisor
Rossano Venturini

Department of Computer Science
University of Pisa

15/11/2018

1

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

The increase of information
does not scale with technology.

The increase of information
does not scale with technology.

i il

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

. y

The increase of information
does not scale with technology.

7/

“Software is getting slower more rapidly than hardware becomes faster.”
Niklaus Wirth, A Plea for Lean Software

Data structures time v/ Algorithms
Space
PERFORMANCE X EFFICIENCY

how quickly a program
does its work - faster work

how much work Is required
by a program - less work

Data structures time v/ Algorithms
Space
PERFORMANCE X EFFICIENCY

how quickly a program
does its work - faster work

how much work Is required
by a program - less work

Data compression
v/ space

time X

4

The dichotomy problem

Small vs. fast?

The dichotomy problem

Small vs. fast?

Choose one.

The dichotomy problem

Small vs. fast?

Choose one.

NO

High level thesis

Data Structures + Data Compression =» Fast Algorithms

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Data Compression & Fast Retrieval together.

Achieved results

Clustered Elias-Fano Indexes

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Dynamic Elias-Fano Representation

Giulio Ermanno Pibiri and Rossano Venturini
Annual Symposium on Combinatorial Pattern Matching (CPM)

Full paper, 14 pages, 2017.

Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini

arXiv (CoRR), April 2018.
Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)

Full paper, 12 pages, 2018.

Fast Dictionary-based Compression for Inverted Indexes

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat

ACM Conference on Web Search and Data Mining (WSDM) Conference paper

Full paper, 9 pages, 2019.

Efficient Data Structures for Massive N-Gram Datasets
Giulio Ermanno Pibiri and Rossano Venturini

ACM Conference on Research and Development in Information Retrieval (SIGIR)

Full paper, 10 pages, 2017.

Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

Achieved results

Clustered Elias-Fano Indexes

Journal paper
Giulio Ermanno Pibiri and Rossano Venturini

ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Dynamic Elias-Fano Representation
Giulio Ermanno Pibiri and Rossano Venturini onterence paper integer

Annual Symposium on Combinatorial Pattern Matching (CPM) sequences
Full paper, 14 pages, 2017.

Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini Journal paper
arXiv (CoRR), April 2018.

Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)
Full paper, 12 pages, 2018.

Fast Dictionary-based Compression for Inverted Indexes
Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat
ACM Conference on Web Search and Data Mining (WSDM) Conference paper

Full paper, 9 pages, 2019.

Efficient Data Structures for Massive N-Gram Datasets [y TNty
Giulio Ermanno Pibiri and Rossano Venturini

ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.
Handling Massive N-Gram Datasets Efficiently
Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

Achieved results

Clustered Elias-Fano Indexes

Journal paper
Giulio Ermanno Pibiri and Rossano Venturini

ACM Transactions on Information Systems (TOIS)
Full paper, 34 pages, 2017.

Dynamic Elias-Fano Representation
Giulio Ermanno Pibiri and Rossano Venturini onterence paper integer

Annual Symposium on Combinatorial Pattern Matching (CPM) sequences
Full paper, 14 pages, 2017.

Variable-Byte Encoding is Now Space-Efficient Too

Giulio Ermanno Pibiri and Rossano Venturini Journal paper
arXiv (CoRR), April 2018.

Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)
Full paper, 12 pages, 2018.

Fast Dictionary-based Compression for Inverted Indexes

Giulio Ermanno Pibiri, Matthias Petri and Alistair Moffat

ACM Conference on Web Search and Data Mining (WSDM)
Full paper, 9 pages, 2019.

Efficient Data Structures for Massive N-Gram Datasets [y TNty
Giulio Ermanno Pibiri and Rossano Venturini

ACM Conference on Research and Development in Information Retrieval (SIGIR)
Full paper, 10 pages, 2017.
Handling Massive N-Gram Datasets Efficiently
Giulio Ermanno Pibiri and Rossano Venturini
ACM Transactions on Information Systems (TOIS), 2018. To appear.
Full paper, 41 pages, 2018.

short strings

Problem 1

Consider a sorted integer sequence.

Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original
iInteger is uniquely-decodable, using as few as possible
DItS?

How to maintain fast decompression speed?’

Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original
iInteger is uniquely-decodable, using as few as possible
DItS?

How to maintain fast decompression speed?’

This is a difficult problem that has been studied since the the '60.

Applications

Inverted indexes

Google YAHOO!

Databases

T=: &9 Dropbox

ORACLE

E-Commerce

eb=y amazon

Graph-compression

L
Linkedf] (@)

Applications

Inverted indexes

Google YAHOO!

Databases

EEE: @ :} Dropbox
ORACLE

E-Commerce

eb=y amazon

Graph-compression

L
Linked [G)

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

10

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

red
b IS
s always
house Y
, good
IS
red
the
boy boy
h . IS IS
the
hungry
house red
IS
always
hungry

10

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

) ty to ta ty ts tg t7 tg
re |
. N S {always, boy, good, house, hungry, is, red, the}
e
house SR
. good
is
red
the
boy b.oy
h | is S
the
house red hungry
IS
always
hungry

10

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

] t to ts ty ts tg t7 tg
re .
e N S {always, boy, good, house, hungry, is, red, the}
the
FouSe always
. good
IS
red
the
©
n u IS S
the
hungr
house red -
IS
always

hungry a

10

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

the

boy

IS

hungry

e red
the b =
o always
, good
S
red
boy
the | s
house red
S
always
hungry

1

to

i3

Iy

t5

le

t7

Ig

{always, boy, good, house, hungry, is, red, the}

10

N = W N — N —

o1 L

WM N UTW

| IS [y S—

N
S

OB W»

Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.

the

boy

IS

hungry

e red
the b S
- always
, good
S
red
boy
the | s
house red
IS
always
hungry

1

to

i3

ty ts

le

t7

Ig

{always, boy, good, house, hungry, is, red, the}

10

N = W N — N —

N
S

WM N UTW
OB WL

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:
“return all documents in which terms {t1,...,tx} occur”.

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:
“return all documents in which terms {t1,...,tx} occur”.

| t to t3 ty tg tg t7 tg
e B {always, boy, good, house, hungry, is, red, the}
hctJ:ze always
s good |+, =[1, 3]
red the Lty = 4:,| 5]
bo —t3:-1
9 TN X o .=[2, 3]
house red nunory L15=|3, O]
amilsays —t6=;1, 2,3, 4, 5]
hungry e —t7::1’ 2, 4]
i a | ,=[2, 3, 9]

11

Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:
“return all documents in which terms {t1,...,tx} occur”.

) t; t tg ty te tg t g
e — {always, boy, good, house, hungry, is, red, the}
|
IS good 4= 1 , 3]
o N | t,= ;?j 5] Q = {boy, is, the}
b —t3=1
e the . bf;y ‘?’ |,=[2, 3]
house red nungry —t5::31 5]
IS _t6=:1, 2, 3, 4, 5]
aheys 5 =[1, 2, 4]
ungry a —’[8=:2, 3, 5]

11

Inverted indexes

|EI the

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:
“return all documents in which terms {t1,...,tx} occur”.

red |

house

always

IS

good

red

the

house

IS

always

hungry

boy

IS

red

the

boy

IS

hungry

o

1

11

to

[

Li.=[1, 3]

I—tzz[

ta=
—M:[

4, 5]

]
]

Iy

(C

e N
N o1 W

L=

31

4,5

)

[2. 4

(I—T8=

N
W
@)

t5 e 17

{always, boy, good, house, hungry, is, red, the}

Q = {boy, is, the}

Many solutions

Huge research corpora describing different space/time trade-offs.

* Elias Gamma and Delta ‘70
* Variable-Byte Family

* Binary Interpolative Coding

 Simple Family

* PForDelta

« QMX

* Elias-Fano

* Partitioned Elias-Fano 2014

12

Many solutions

Huge research corpora describing different space/time trade-offs.

* Elias Gamma and Delta ‘70
* Variable-Byte Family

* Binary Interpolative Coding

 Simple Family

* PForDelta

« QMX

* Elias-Fano

* Partitioned Elias-Fano 2014

Time

Binary

Coding

Family

~3X smaller ~4.5X faster

12

Many solutions

Huge research corpora describing different space/time trade-offs.

* Elias Gamma and Delta ‘70
* Variable-Byte Family

* Binary Interpolative Coding

 Simple Family

* PForDelta

« QMX

* Elias-Fano

* Partitioned Elias-Fano 2014

Google

< Drophox

Time

Binary

< Variable-Byt
Interpolative Spectrum —> ar?:rr?ilyy : amazon
Coding Ma<

~3X smaller ~4.5X faster

12

Key research questions

Space Time

Binary ‘ Spectrum —» Variable-Byte

Interpolative
Coding

~3X smaller ~4.5X faster

Family

13

Key research questions

Space Time
Binary

Interpolative
Coding

~3X smaller ~4.5X faster

Family

Is It possible to design an
encoding that is as small as

BIC and much faster”

13

Key research questions

Space Time
Binary

Interpolative
Coding

~3X smaller ~4.5X faster

Family

Is It possible to design an Is It possible to design an
encoding that is as small as encoding that is as fast as

BIC and much faster? VByte and much smaller?

13

2

Key research questions

Space Time
Binary :
Vv le-B
Interpolative - Spectru m —» a”Fa: r:i y yte
Coding

~3X smaller ~4.5X faster

Is It possible to design an Is It possible to design an
encoding that is as small as encoding that is as fast as
BIC and much faster? VByte and much smaller”

What about both objectives
at the same time?!

3

13

2

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

- 1050
- 900
- 750
- 600
- 450
- 300

- 150

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

- 1050
- 900

- 750

Encode clusters of
inverted lists.

- 300

- 150

14

Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.

1050
- 900

- 750

Encode clusters of
inverted lists.

- 300
- 150

-0

Time

Much faster than BIC
(~103%)

Always better than

PEF (by up to 11%) <— Spectrum

and better than BIC
(by up to 6.25%)

Slightly slower than
PEF (~20%)

14

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

mm Dense [Sparse B Dense Bl Sparse

85.4% 90.7%

65.3%
55.8%

442/

55 5% 560/

146/
93/

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%
(a) Gov2 (b) ClueWeb09

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

mm Dense [Sparse B Dense Bl Sparse

85.4% 90.7%

65.3%
55.8%

442/

55 5% 560/

Encode dense regions

with unary codes, sparse
regions with VByte.

146/

93/o

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%

(a) Gov2 (b) ClueWeb09

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

[Dense [Sparse B Dense Bl Sparse

85.4% 90.7%

65.3%
55.8%

55 5% 560/
44 2/

Encode dense regions

with unary codes, sparse
regions with VByte.

146/

93/o

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%
(a) Gov2 (b) ClueWeb09

Optimal partitioning in

linear time and
constant space.

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

[Dense [Sparse B Dense Bl Sparse

85.4% 90.7%

65.3%
55.8%

55 5% 560/
44 2/

Encode dense regions
with unary codes, sparse
regions with VByte.

146/

93/o

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%
(a) Gov2 (b) ClueWeb09

Optimal partitioning in Compression ratio

Improves by 2X.

linear time and
constant space.

15

Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).

[Dense | Sparse [Dense Bl Sparse

85.4% 90.7%

65.3%

55.8%
442/

55 5% 56 0%

Encode dense regions
with unary codes, sparse
regions with VByte.

14.
6/ 93/o

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%
(a) Gov2 (b) ClueWeb09

Optimal partitioning in
linear time anad
constant space.

Query processing speed
and sequential decoding
not affected.

Compression ratio
Improves by 2X.

15

Idea 3 - Dictionary compression (WSDM ’19)

with M. Petri and A. Moffat
(University of Melbourne)

If we consider subseqguences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

16

Idea 3 - Dictionary compression (WSDM ’19)

with M. Petri and A. Moffat
(University of Melbourne)

If we consider subseqguences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.

Then encode inverted lists as
sequences of log k-bit codewords.

[T T 17T 1 llIIlIllIIIII[IlIIII

)
=
o
0
wn

0 10 20 30 40 50 60 70 80 90 100
distribution [%]
M exceptions (J1CJ204E8 MM 16 Mruns

16

Idea 3 - Dictionary compression (WSDM ’19)

with M. Petri and A. Moffat
(University of Melbourne)

If we consider subseqguences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.

Then encode inverted lists as
sequences of log k-bit codewords.

[T T 17T 1 llIIlIllII]IIIIlIIII

)
=
o
0
wn

0 10 20 30 40 50 60 70 80 90 100
distribution [%]
M exceptions (J1CJ204E8 MM 16 Mruns

Close to the most space-efficient

representation (~7% away from BIC).

16

Idea 3 - Dictionary compression (WSDM ’19)

with M. Petri and A. Moffat
(University of Melbourne)

If we consider subseqguences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.

Put the top-k frequent patters in a
dictionary of size k.
Then encode inverted lists as
sequences of log k-bit codewords.

[T T 17T 1 llIIlIllII]IIIIlIIII

)
=
o
0
wn

0 10 20 30 40 50 60 70 80 90 100
distribution [%]
M exceptions (J1CJ204E8 MM 16 Mruns

Close to the most space-efficient Almost as fast as the fastest

representation (~7% away from BIC). SIMD-ized decoders.

16

The bigger picture

16 - ® ® BIC Y% VByte
A PEF) Varint-GB
g - [l Opt-PFOR @ Varint-G8IU
. <> Simplel6 sk Masked-VByte
)]
=
£
E 2- " ¢
15- @ v
1- . 4
0.7 -
4 45 5 55 6 7 8
Space [GB]
@ BIC \/ QMX
35 -
® () CPEF ' VByte
A PEF) Varint-GB
> [] Opt-PFOR @ Varint-G8IU
%)_ 22 - @ <> Simplel6 == Masked-VByte
)
£
(O] 15 -
£ 135- AN <<>>
12 -
11- @
10 - o \V4
9_
4 45 5 55 6 7 8
Space [GB]

17

200N

12 13 14

200N

Stream-VByte
Opt-VByte

DINT Time-Opt
DINT Space-Opt

16

Stream-VByte
Opt-VByte

DINT Time-Opt
DINT Space-Opt

DA
+ o =
1I2 1I3 1I4

16

The bigger picture

16 - Q ® BIC ¢ VByte ¢ Stream-VByte
A PEF () Varint-GB <> Opt-VByte
. '\ I Opt-PFOR @ Varint-G8IU @ DINT Time-Opt
. () simplel6 = Masked-VByte @ DINT Space-Opt
2 * \/ QMX
S 5- T
3 -
c .
— .
(O] L
£ m e $
= - ~ S
15- @ Ll
1_ . <> -..---.----F-.---Q-
0.7 - »®
4 45 5 55 6 7 8 12 13 14 16
Space [GB]
35- 1@ @ BIC \/ QMX ¢ Stream-VByte
' () CPEF ' VByte <> Opt-VByte
“ A PEF () Varint-GB @ DINT Time-Opt
> s] Opt-PFOR @ Varint-G8IU @ DINT Space-Opt
L oo “Q <> Simplel6 == Masked-VByte
O
m ‘s
£ Se
L3
v 15- ~
£ 135- AE.o
" 12 C~~
11- @ BT
18_ . v ---.---____+-.-_u---
4 45 5 55 6 7 8 12 13 14 16
Space [GB]

17

The bigger picture

BIC ¢ VByte ¢ Stream-VByte
PEF () Varint-GB <> Opt-VByte
Opt-PFOR @® Varint-G8IU @® DINT Time-Opt
_ Simplel6 dk= Masked-VByte ® DINT Space-Opt
I= QMX
S
=
£
~
[<>~~v~ ¢
~ -~ - -
e ...®
* o x
6 7 8 12 13 14 16
Space [GB]
@ BIC \/ QMX ¢ Stream-VByte
O CPEF ¢ VByte <> Opt-VByte
A PEF () Varint-GB @ DINT Time-Opt
>] Opt-PFOR @ Varint-G8IU @ DINT Space-Opt
g <> Simplel6 #= Masked-VByte
=
S
(O]
£ ~ O
— O~~... *
- i -y
—— oo BT T gl
55 6 7 8 12 13 14 16
Space [GB]

17

Problem 2

Integer data structures Elias-Fano encoding

van Emde Boas Trees EF(S(n,u)) = nlog(u/n) + 2n bits to
X/Y-Fast Tries

_ encode a sorted integer sequence S
Fusion Trees ;

. O(1) Access
Exponential Search Trees O(1 + log(u/n)) Predecessor

+ time + time

- space + Spape
+dynamic - static

18

Problem 2

Integer data structures Elias-Fano encoding

van Emde Boas Trees EF(S(n,u)) = nlog(u/n) + 2n bits to
X/Y-Fast Tries

_ encode a sorted integer sequence S
Fusion Trees ;

. O(1) Access
Exponential Search Trees O(1 + log(u/n)) Predecessor

+ time + time
- space + Spape
+dynamic - static

Can we grab the best from both?

18

Dynamic inverted indexes

Classic solution: use two indexes.
One is big and cold; the other is small and hot.
Merge them periodically.

Append-only inverted indexes.

ebay

19

Integer dictionaries in succinct space (CPM ’17)

For u = n¥, y = ©(1): FHERIE
EF(S(n,u)) + o(n) bits
O(1) Access
O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n.1)) + o(n) bits Result 2

O(1) Access
O(1) Append (amortized)
O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n,u)) + o(n) bits Result 3
- O(log n / loglog n) Access

- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

20

Integer dictionaries in succinct space (CPM ’17)

For u = n¥, y = ©(1): FHERIE
EF(S(n,u)) + o(n) bits
O(1) Access

+ O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n,)) + o(n) bits Result 2 Optimal time
bounds for all
O(1) Access

O(1) Append (amortized) operations

+ O(min{1+log(u/n), loglog n}) Predecessor using a sublunar
redundancy.

EF(S(n,u)) + o(n) bits Result 3
- O(log n / loglog n) Access

- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

20

Problem 3

Consider a large text.

21

Problem 3

Consider a large text.

How to represent all its substrings of size 1 < k < N words
for fixed N (e.g., N = 5), using as few as possible bits”

Fast Access to individual N-grams?

How to estimate the probability of occurrence of the
patterns under a given probability model?

21

Problem 3

Consider a large text.

How to represent all its substrings of size 1 < k < N words
for fixed N (e.g., N = 5), using as few as possible bits”

Fast Access to individual N-grams?

How to estimate the probability of occurrence of the
patterns under a given probability model?

This is problem is central to applications in IR, ML, NLP, WSE.

21

Applications

Next word prediction.

22

Applications

Next word prediction.

space and time-efficient ?

context

22

Applications

Next word prediction.

frequency count

algorithms 1214
foo 2
space and time-efficient ? data structures 3647
bar 3

context
baz 1

22

Applications

Next word prediction.

frequency count

algorithms 1214
foo 2
space and time-efficient ? data structures 3647
context bar £
baz 1

f (“space and time-efficient data structures”)

P(“data structures” | “space and time-efficient”) = _ _
f (“space and time-efficient”)

22

What can |
help you with”

e e e m—

" Sir

Applications

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

such as statistical machine translation, speech recognition, spelling correction, entity detection,

i JUIC ve UsSuUdlly Dec < alecl 9

g

corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

24

Applications

Google Research Blog

The latest news from Research at Google h

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

such as statistical machine translation, speech recognition, spelling correction, entity detection,

U JUIC ve UsSuUdlly Dec < alecl 9

g

corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.

24

Google

Translate

(Google Books

~6% of the books ever published

n inumber of n-grams

1 24,359,473

2 667,284 771 More than 11

3 | 7,397,041,901 billion n-grams.

5 | 1,415,355,596

25

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds
(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds

[a][) b][][d j[d] (b°)(d] (the IDs following a context of

ﬁ Q@ _ @\’ fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds

[a][) b][][d a’) (.] (b°)(d] (the IDs following a context of

ﬁ Q@ _ @\’ fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds
(the IDs following a context of
fixed length k).

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds
(the IDs following a context of
fixed length k).

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.

26

Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds

(the IDs following a context of

fixed length k).

The (Elias-Fano) context-based
The (Elias-Fano) context-based remapped trie is even smaller than
remapped trie is as fast as the fastest the most space-efficient competitors,
competitor, but up to 65% smaller. that are lossy and with false-positives
allowed, and up to 5X faster.

26

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, Tt
1 2
the fastest algorithm in the literature uses () _.62: ﬁ)
3

3 sorting steps in external memory.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 , |
the fastest algorithm in the literature uses :2 ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABBCCXXXX C ACBAABXXXX A
ABBXACAACXXX AAAABBU CCIXIXNXX
B ACXXAABATZ CXX A B B X ACAAZCXNX X
AX A X X A BCBA AU CX B ACXXAABATZ CX X
X XA X X B AACBAUC A XA X X ABCBAZ CX

Suffix order Context order

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 , |
the fastest algorithm in the literature uses :2 ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABB CCXXXX C ACBAABXXXX A
ABBXACAAZCXXX AAAABBU CCIXIXNXX
B ACXXAABATZ CXX A B B X ACAAZCXNX X
AX A X X A BCBA AU CX B ACXXAABATZ CX X
X XA X X B AACBAUC A XA X X ABCBAZ CX

Suffix order Context order

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 , |
the fastest algorithm in the literature uses :2 ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABB CCXXXX C ACBAABXXXX A
A B B X A C C X X X AAAABBU CCIXIXNXX
B ACXXA A | B'A C X X A B B X ACAAZCXNX X
AX A X XA BCBATZ CX B ACXXAABATZ CX X
X XA X X B AACBAUC A XA X X ABCBAZ CX

Suffix order Context order

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 X |
the fastest algorithm in the literature uses Q ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABB CCXXXX Cc ACBAADBXXXX A
A B B X A C C X X X AAAAABBU CCIXIXNX X
B ACXXA A | B'A C X X A B B X ACAAZCXNX X
AX A X XA BCBATZ CX B ACXXAABATZ CX X
X XA X X B AACBAUC A XA X X ABCBAZ CX

Suffix order Context order

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 X |
the fastest algorithm in the literature uses Q ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABBT CCXIXXX C ACBAABIXIXXNX A
A BB XA C C X X X A AAABBTG CT CIXNXX X
BACXXAA|BACXX A'BIB.XACAATCXX X
AXAXXATBTCBATC X BEATX XAABATC X X
X X AX X B AAGCTBA C A XA X XABTG CBATC X

Suffix order Context order

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 2%
the fastest algorithm in the literature uses Q

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4

A A A A BB CCXXX X C A CB AABXX X X A

A BB X A C C X X X A AAABBT CCXIXIX X

B A C X X AAB A C X X A'B B X A CAATZ CX X X

A X A X X A B CDB A C X B A C X X A A BAUZ C X X

X X A X X B A A CB A C A X A X X A B CB A C X
Suffix order Context order

Using a scan of the block
and O(|V|) space.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney DU
probabilities of the n-grams, ,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4

A A A A BB CCXXX X C A CB AABXX X X A

A BB X A C C X X X A AAABBT CCXIXIX X

B A C X X AAB A C X X A'B B X A CAATZ CX X X

A X A X X A B CDB A C X B A C X X A A BAUZ C X X

X X A X X B A A CB A C A X A X X A B CB A C X
Suffix order Context order

Using a scan of the block
and O(|V|) space.

27

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

(A)
/\

0@@@..@0@.!'

O.@@........
.....O.'..O.

10 11

/" / / / /'

S~
/

P
”~
-~
e
/
;7 7
\ Sy
\<,
\ 7/ /
«\/’
r~a !
VA
y O~
AN
/’\\/
vV
\ N
\WLY
76\
I\
!
~/
~~
~
d
IS o
l ~
~
~
~
~
~
~
~

\
\
A
\
\
~
/
/

—_—
()
—_—
—_—
-
N

XWX X v

>0 0P O «.,
XX X>rmm -+

XX>wWr o’
> 00 > o/
wolis =l — I o i v BEENE Y
> O X X X

O X X X X

X X X X >

27

0050

Rebuilding the last level of the trie.

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

(A)
/\

0@@@..@0@.!'

O.@@........
.....O.'..O.

10 11

/" / / / /'

S~
/

P
”~
/
/7 7/
/
\/ /
4 !
/\\\l
WA
\
\
v N
\WLY
“h o\
Iy \
I\
~
~
~
~
~
~
~
~

-
-~
\/
\< /
\ 7/ /
~
y
\
-
”~
I
~ 1
!
N
I~
/
~
~
~

\
\
A
\
\
~
A
/
7\
/7 \
/

—_—
()
—_—
—_—
-
N

XWX X v

>0 0P O «.,
XX X>rmm -+

XX>wWr o’
> 00 > o/
wolis =l — I o i v BEENE Y
> O X X X

O X X X X

X X X X >

27

0050

Rebuilding the last level of the trie.

X O W >
NG S ORI N

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

RR
2res PP

0@@@..@0@.!'

| |
RGBT
ﬁﬁﬂﬁﬁﬂﬁﬁﬂﬂﬂﬂ

1 0 2

--" / / / /

-

/
!

!

/
/
\

!
\ IS
\
\/
[\
LY

\

\

\
~
~
~
~

/
/ A\~
\
A
A
/
/
~
~
~
~

\v

4

-
-

/
/
()/

-
\
\
\ 7/
X<
y
7\

\

\
\
/\
\
\
~
/
/7 \
/
”~
”~
!
~ 1
]
Jd
'\
/
~
~
~

-
N

1 2 3 4 5 6 7 8 9

C ACBAABXNXXNX A
A AAABBU CUCNXNXXX
AAB B XACAATCXXX
B ACXXAAZBATZ CIX X
A XA X X A B CBA AU CX

27

0050

Rebuilding the last level of the trie.

X O W »
I ORI CI N
X O W »
© N o =

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

RR
2res PP

0@@@..@0@.!'

| |
RGBT
ﬁﬁﬂﬁﬁﬂﬁﬁﬂﬂﬂﬂ

1 0 2

--" / / / /

-

/
!

!

/
/
\

/ A\~
\
\

v N
\WLY
I\
I\
~
~
~
~
~
~
~
~

<

/
\v
\ IS

4

-

\

\ /
\ /< /
X<

)
7\

\

\ -
\
/\
\ /
\
~
/
/7 \
/
”~
”~
!
~ 1
]
Jd
'\
/
~
~
~

-
N

1 2 3 4 5 6 7 8 9

C ACBAABXXXNX A
A AAABBU CUCNXXXX
AAB B XACAATCXXX
B ACXXAAZBATZ CIX X
A XA X X A B CBA AU CX

27

0050

Rebuilding the last level of the trie.

X O W »
I ORI CI N
X O W »
© N o =

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

RR
2res PP

0@@@..@0@.!'

| |
RGBT
ﬁﬁﬂﬁﬁﬂﬂﬁﬂﬂﬂﬂ

1 0 2

--" / / / /

-

/
!

!

/
/
\

/ A\~
\
\

v N
\WLY
I\
I\
~
~
~
~
~
~
~
~

<

/
\v
\ IS

4

-

\

\ /
\ /< /
X<

)
7\

\

\ -
\
/\
\ /
\
~
/
/7 \
/
”~
”~
!
~ 1
]
Jd
'\
/
~
~
~

-
N

1 2 3 4 5 6 7 8 9

C ACBAABXXXNX A
A AAABBU CUCNXXXX
AAB B XACAATCXXX
B ACXXAAZBATZ CIX X
A XA X X ABU CBA AU CX

27

0050

Rebuilding the last level of the trie.

X O W »
I ORI CI N
X O W »
© N o =

Idea 2 - Fast estimation in external memory (TOIS ’18)

ESN w

O3}

- N W A O,

RR
2res PP

0@@@..@0@.!'

| |
RGBT
ﬁﬁﬂﬁﬁﬂﬂﬁﬂﬂﬂﬂ

1 0 2

--" / / / /

-

/
!

!

/
/
\

/ A\~
\
\

v N
\WLY
I\
I\
~
~
~
~
~
~
~
~

<

/
\v
\ IS

4

-

\

\ /
\ /< /
X<

)
7\

\

\ -
\
/\
\ /
\
~
/
/7 \
/
”~
”~
!
~ 1
]
Jd
'\
/
~
~
~

-
N

1 2 3 4 5 6 7 8 9

C ACBAABXXXNX A
A AAABBU CUCNXXXX
AAB B XACAATCXXX
B ACXXAAZBATZ CIX X
A XA X X ABU CBA AU CX

27

Do e

Rebuilding the last level of the trie.

X O W »
I ORI CI N
X O W »
© N o =

Idea 2 - Fast estimation in external memory (TOIS ’18)

(A)
/\

G@@@..@B@.I’

I I Rebuilding the last level of the trie.

@@@@@@B@B@@@

S~
/

w

SN

I I I I e e e e
 RERREENCPRO [~ A
1 6 8 9 10 11 12 B 2 B 5
\ N ‘~\L yv-— - / / / / —
\\\ A N \\ \: -ql’/’ :’>,<~‘>\ :: - // // /, /, C 2 C 7
,'\’(”’:’::’ :’\ti\‘\ \\\ ///\\/7\\/7 /‘\7/‘~\ X 4 X 9
1 2 3 4 5 6 7 8 9 10 11 12
5 € A CBAAIBX X X X A
4+ A A A A B B CZCX X X X
3 A B B XA CAATCXX X Estimation runs 4.5X faster
2 B ACXXAABACXKX with billions of strings.
T A X A X X A B CB A C X

27

Thanks for your attention,

time, patience!

Any questions?

28

