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High level thesis

Data Structures + Data Compression =» Fast Algorithms

Design space-efficient ad-hoc data structures,
both from a theoretical and practical perspective,
that support fast data extraction.

Data Compression & Fast Retrieval together.
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Problem 1

Consider a sorted integer sequence.

How to represent it as a bit-vector where each original
iInteger is uniquely-decodable, using as few as possible
DItS?

How to maintain fast decompression speed?’

This is a difficult problem that has been studied since the the '60.
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Inverted indexes

The inverted index is the de-facto data structure at
the basis of every large-scale retrieval system.
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Inverted indexes

Inverted indexes owe their popularity to the
efficient resolution of queries, such as:
“return all documents in which terms {t1,...,tx} occur”.
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Many solutions

Huge research corpora describing different space/time trade-offs.

* Elias Gamma and Delta ‘70
* Variable-Byte Family

* Binary Interpolative Coding

 Simple Family

* PForDelta

« QMX

* Elias-Fano

* Partitioned Elias-Fano 2014
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Is It possible to design an Is It possible to design an
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BIC and much faster? VByte and much smaller”
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at the same time?!
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Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.
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Idea 1 - Clustered inverted indexes (TOIS ’17)

Every encoder represents each sequence individually.
No exploitation of redundancy.
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Encode clusters of
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Time

Much faster than BIC
(~103%)

Always better than

PEF (by up to 11%) <— Spectrum

and better than BIC
(by up to 6.25%)

Slightly slower than
PEF (~20%)

14



Idea 2 - Optimally-partitioned VByte (TKDE ’18)

The majority of values are small (very small indeed).

VByte needs at least 8 bits per integer, that is sensibly far away from bit-level
effectiveness (BIC: 3.54, PEF: 4.1 on Gov2).
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(a) Gov2 (b) ClueWeb09

Optimal partitioning in
linear time anad
constant space.

Query processing speed
and sequential decoding
not affected.

Compression ratio
Improves by 2X.
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Idea 3 - Dictionary compression (WSDM ’19)

with M. Petri and A. Moffat
(University of Melbourne)

If we consider subseqguences of d-gaps in inverted lists,
these are repetitive across the whole inverted index.
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M exceptions (J1CJ204E8 MM 16 Mruns

Close to the most space-efficient Almost as fast as the fastest

representation (~7% away from BIC). SIMD-ized decoders.
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The bigger picture
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Problem 2

Integer data structures Elias-Fano encoding

van Emde Boas Trees EF(S(n,u)) = nlog(u/n) + 2n bits to
X/Y-Fast Tries
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Problem 2

Integer data structures Elias-Fano encoding

van Emde Boas Trees EF(S(n,u)) = nlog(u/n) + 2n bits to
X/Y-Fast Tries

_ encode a sorted integer sequence S
Fusion Trees ;

. O(1) Access
Exponential Search Trees O(1 + log(u/n)) Predecessor

+ time + time
- space + Spape
+dynamic - static

Can we grab the best from both?
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Dynamic inverted indexes

Classic solution: use two indexes.
One is big and cold; the other is small and hot.
Merge them periodically.

Append-only inverted indexes.

ebay
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Integer dictionaries in succinct space (CPM ’17)

For u = n¥, y = ©(1): FHERIE
EF(S(n,u)) + o(n) bits
O(1) Access
O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n.1)) + o(n) bits Result 2

O(1) Access
O(1) Append (amortized)
O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n,u)) + o(n) bits Result 3
- O(log n / loglog n) Access

- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor
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Integer dictionaries in succinct space (CPM ’17)

For u = n¥, y = ©(1): FHERIE
EF(S(n,u)) + o(n) bits
O(1) Access

+ O(min{1+log(u/n), loglog n}) Predecessor

EF(S(n,)) + o(n) bits Result 2 Optimal time
bounds for all
O(1) Access

O(1) Append (amortized) operations

+ O(min{1+log(u/n), loglog n}) Predecessor using a sublunar
redundancy.

EF(S(n,u)) + o(n) bits Result 3
- O(log n / loglog n) Access

- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor
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Consider a large text.
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patterns under a given probability model?
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for fixed N (e.g., N = 5), using as few as possible bits”

Fast Access to individual N-grams?

How to estimate the probability of occurrence of the
patterns under a given probability model?

This is problem is central to applications in IR, ML, NLP, WSE.
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Applications

Next word prediction.

frequency count

algorithms 1214
foo 2
space and time-efficient ? data structures 3647
context bar £
baz 1

f (“space and time-efficient data structures”)

P(“data structures” | “space and time-efficient”) = _ _
f (“space and time-efficient”)
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Applications

Google Research Blog

The latest news from Research at Google

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

such as statistical machine translation, speech recognition, spelling correction, entity detection,

i JUIC ve UsSuUdlly Dec < alecl 9

g

corpora containing at most a few billion words, we have been harnessing the vast power of
Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.
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Google's datacenters and distributed processing infrastructure to process larger and larger training
corpora. We found that there's no data like more data, and scaled up the size of our data by one
order of magnitude, and then another, and then one more - resulting in a training corpus of one
trillion words from public Web pages.
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(Google Books

~6% of the books ever published

n inumber of n-grams

1 24,359,473

2 667,284 771 More than 11

3 | 7,397,041,901 billion n-grams.

5 | 1,415,355,596
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds
(the IDs following a context of
fixed length k).

26



Idea 1 - Context-based remapped tries (SIGIR ’17)
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds
(the IDs following a context of
fixed length k).

The (Elias-Fano) context-based
remapped trie is as fast as the fastest
competitor, but up to 65% smaller.
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Idea 1 - Context-based remapped tries (SIGIR ’17)

The number of words following a given context is small.

Map a word ID to the position
It takes within its sibling |Ds

(the IDs following a context of

fixed length k).

The (Elias-Fano) context-based
The (Elias-Fano) context-based remapped trie is even smaller than
remapped trie is as fast as the fastest the most space-efficient competitors,
competitor, but up to 65% smaller. that are lossy and with false-positives
allowed, and up to 5X faster.
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Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, Tt
1 2
the fastest algorithm in the literature uses ( ) _.62: ﬁ)
3

3 sorting steps in external memory.
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Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 , |
the fastest algorithm in the literature uses :2 ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABBCCXXXX C ACBAABXXXX A
ABBXACAACXXX AAAABBU CCIXIXNXX
B ACXXAABATZ CXX A B B X ACAAZCXNX X
AX A X X A BCBA AU CX B ACXXAABATZ CX X
X XA X X B AACBAUC A XA X X ABCBAZ CX

Suffix order Context order
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Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 X |
the fastest algorithm in the literature uses Q ﬁ
3

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
AAAABBT CCXIXXX C ACBAABIXIXXNX A
A BB XA C C X X X A AAABBTG CT CIXNXX X
BACXXAA|BACXX A'BIB.XACAATCXX X
AXAXXATBTCBATC X BEATX XAABATC X X
X X AX X B AAGCTBA C A XA X XABTG CBATC X

Suffix order Context order
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Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney

probabilities of the n-grams, @_1 2%
the fastest algorithm in the literature uses Q

3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4

A A A A BB CCXXX X C A CB AABXX X X A

A BB X A C C X X X A AAABBT CCXIXIX X

B A C X X AAB A C X X A'B B X A CAATZ CX X X

A X A X X A B CDB A C X B A C X X A A BAUZ C X X

X X A X X B A A CB A C A X A X X A B CB A C X
Suffix order Context order

Using a scan of the block
and O(|V|) space.
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Idea 2 - Fast estimation in external memory (TOIS ’18)

To compute the modified Kneser-Ney DU
probabilities of the n-grams, ,

the fastest algorithm in the literature uses
3 sorting steps in external memory.

Computing the distinct left extensions.

1 2 3 4 5 6 7 8 9 10 11 12 7 1 8 5 2 3 6 9 10 11 12 4
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Idea 2 - Fast estimation in external memory (TOIS ’18)
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Rebuilding the last level of the trie.
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Idea 2 - Fast estimation in external memory (TOIS ’18)
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Idea 2 - Fast estimation in external memory (TOIS ’18)
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Idea 2 - Fast estimation in external memory (TOIS ’18)

(A)
/\

G@@@..@B@.I’

I I Rebuilding the last level of the trie.
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 RERREENCPRO [~ A
1 6 8 9 10 11 12 B 2 B 5
\ N ‘~\L yv-— - / / / / —
\\\ A N \\ \: -ql’/’ :’>,<~‘>\ :: - // // /, /, C 2 C 7
,'\’(”’:’::’ :’\ti\‘\ \\\ ///\\/7\\/7 /‘\7/‘~\ X 4 X 9
1 2 3 4 5 6 7 8 9 10 11 12
5 € A CBAAIBX X X X A
4+ A A A A B B CZCX X X X
3 A B B XA CAATCXX X Estimation runs 4.5X faster
2 B ACXXAABACXKX with billions of strings.
T A X A X X A B CB A C X
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Thanks for your attention,

time, patience!

Any questions?
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