
Efficiency for 
Real-World Applications

Giulio Ermanno Pibiri

04/03/2021

giulio.ermanno.pibiri@isti.cnr.it 
http://pages.di.unipi.it/pibiri

http://pages.di.unipi.it/pibiri
mailto:giulio.ermanno.pibiri@isti.cnr.it
http://pages.di.unipi.it/pibiri/


Myself

giulio.ermanno.pibiri@isti.cnr.it


http://pages.di.unipi.it/pibiri

https://github.com/jermp

PhD in Computer Science from the University of Pisa

(November 2015 - October 2018)

Thesis defended on 08/03/2019

PostDoc at HPCLab since November 2018

mailto:giulio.ermanno.pibiri@isti.cnr.it
http://pages.di.unipi.it/pibiri/
https://github.com/jermp


Research

“A good programmer cares 
about data structures and 

their relationships.”

Linus Torvalds

Data 
Structures
how quickly a 

program does its 
work - faster work

1 Algorithms

how much work is 
required by a 

program - less work

2

Data
Compression3



What is Efficiency?

Space efficiency means storing the data in compressed format.

Time efficiency?

You can use the theory.  
Time efficiency means “low” 
asymptotic complexity.

You can (also) run experiments. 
Time efficiency means:

- cache-friendliness

- few data dependencies

- predictable branches

- super scalar execution

Yet, no textbook can teach you this.



Goal

Design time/space efficient algorithms and data structures with:

- appealing theoretical guarantees;

- a significant impact in practice, i.e.,

   applications to problems at an industrial scale. 

Inverted indexes Databases

RDF indexing

Geo-spatial data Graph-compression

E-Commerce



Some Problems

Inverted Indexing

Language Modeling

RDF Triples Indexing

Prefix-Sums

Rank/Select Over Bitmaps

Query Auto-Completion

TOIS 2017, WSDM 2019, TKDE 2019,

CSUR 2020, DCC 2021

SIGIR 2017, TOIS 2019

TKDE 2020

SIGIR 2020

SPE 2020

INFOSYS 2021

https://github.com/jermp/tongrams

https://github.com/jermp/psds

https://github.com/jermp/mutable_rank_select

https://github.com/jermp/autocomplete

https://github.com/jermp/rdf_indexes

https://github.com/jermp/2i_bench

https://github.com/jermp/tongrams
https://github.com/jermp/psds
https://github.com/jermp/mutable_rank_select
https://github.com/jermp/autocomplete
https://github.com/jermp/rdf_indexes
https://github.com/jermp/2i_bench


Inverted Indexing

You have a large collection of Web pages, like several millions. 
Given k words, how to find all Web pages


where these words occur?

On Gov2 (~5 billion integers):

- Use PEF (SIGIR 2014) for 3.12 bits/int and 3 ms/query

- Use Slicing (DCC 2021) for 4.31 bits/int and 1 ms/query

Build an inverted index data structure.



Language Modeling

You have a large collection of q-grams, like 11 billions. 
How, given a q-gram, return its context probability


as fast as possible?

On GoogleBooksV2 (~11 billion q-grams):

- Use EF-Trie (SIGIR 2017, TOIS 2019) for 1.31 bytes/q-gram and 2 µs/query 
- KenLM (best alternative) is much larger with scalability problems

Build a compressed trie data structure.



RDF Triples Indexing

You have a large collection of RDF triples (S,P,O), like 350 millions. 
Given a wildcard query like (? ? O) or (? P ?), 

how to return all matching triples?

On DBpedia (~350 millions of triples):

- Use HDT (W3 standard) for 77 bits/triple

- Use 2T/3T (TKDE 2020) for 54 bits/triple but 3-5X faster queries on average

Build a compressed trie data structure.



Query Auto-Completion

Given a collection S of scored strings and a partially 
completed user query Q,


how to find the top-k strings that “match” Q in S?



You work at Facebook. Your task is to find which users didn't ever 
create a post with an emoji. You have the list of users (2 billions), which 
you can scan several times, and a huge list of posts (user and text), 
which you can scan only once. 
Also, you have one computer, with 1 GB of RAM. Can you do it? How?

Puzzle



Minimal Perfect Hashing

You work at Facebook. Your task is to find which users didn't ever 
create a post with an emoji. You have the list of users (2 billions), which 
you can scan several times, and a huge list of posts (user and text), 
which you can scan only once. 
Also, you have one computer, with 1 GB of RAM. Can you do it? How?

Puzzle



Take-home messages

• Efficiency to deliver better services by using less 
resources. Impact is far-reaching and implies 
substantial economic gains. 

• Compression is mandatory if your data are “big”. 

• Experiments are primary: design driven by numbers.

Drop me a line if you are interested in this stuff!



Any questions?

Thanks for your attention!


