
Handling

Massive N-Gram Datasets

Efficiently

Giulio Ermanno Pibiri Rossano Venturini

https://dl.acm.org/doi/10.1145/3302913

ACM Transactions on Information Systems
37(2): 25:1-25:41 (2019)

The University of Pisa and ISTI-CNR
Pisa, Italy

http://pages.di.unipi.it/pibiri
http://pages.di.unipi.it/pibiri

Problems

Consider a large textual source.

Problems

Consider a large textual source.

How to represent all its substrings of size n = 1, …, N words
(for a small N, e.g., 5), using as few as possible bits?

Fast access to individual n-grams?

Problems

Consider a large textual source.

How to estimate the probability of occurrence
of the n-grams under a given probability model?

How to represent all its substrings of size n = 1, …, N words
(for a small N, e.g., 5), using as few as possible bits?

Fast access to individual n-grams?

• auto-completion in search engines

• spelling correction

• similarity search

• identification of text reuse and plagiarism

• automatic speech recognition

• machine translation

• and many others….

N-Grams Applications

Many results and softwares available

• CSTLM [Shareghi et al., TACL 2016]

• KenLM [Heafield, WMT 2011]

• BerkeleyLM [Pauls and Klein, ACL 2011]

• ExpGram [Watanabe et al., IJCNLP 2009]

• IRSTLM [Federico et al., ACL 2008]

• RandLM [Talbot and Osborne, ACL 2007]

• SRILM [Stolcke, INTERSPEECH 2002]

Numbers are big

Books
~6% of the books ever published

n number of n-grams

1 24,359,473

2 667,284,771

3 7,397,041,901

4 1,644,807,896

5 1,415,355,596

More than 11 billions of n-grams!

Indexing: Context-based Remapped Trie

(1) Store all distinct words in a hash table (the vocabulary)
mapping words to integer ids.

(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.

Indexing: Context-based Remapped Trie

Idea: assign a word an integer in [0, m),
where m is the number of distinct words appearing after a context.

(1) Store all distinct words in a hash table (the vocabulary)
mapping words to integer ids.

(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.

Indexing: Context-based Remapped Trie

Even smaller than the most
space-efficient competitors and

up to 5X faster.

As fast as the fastest competitor,
but up to 65% smaller.

Idea: assign a word an integer in [0, m),
where m is the number of distinct words appearing after a context.

(1) Store all distinct words in a hash table (the vocabulary)
mapping words to integer ids.

(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.

Estimation: 1-Sort Algorithm for Kneser-Ney

To compute the modified Kneser-Ney
probabilities of the n-grams,
the fastest algorithm in the literature uses
3 sorting steps in external memory
[Heafield et al., ACL 2013].

Estimation: 1-Sort Algorithm for Kneser-Ney

To compute the modified Kneser-Ney
probabilities of the n-grams,
the fastest algorithm in the literature uses
3 sorting steps in external memory
[Heafield et al., ACL 2013].

Idea: compute statistics directly over the context-sorted n-grams,
using space only proportional to the vocabulary.

3-Sort 1-Sort

Estimation: 1-Sort Algorithm for Kneser-Ney

To compute the modified Kneser-Ney
probabilities of the n-grams,
the fastest algorithm in the literature uses
3 sorting steps in external memory
[Heafield et al., ACL 2013].

Estimation runs 4.5X faster
with billions of strings.

Idea: compute statistics directly over the context-sorted n-grams,
using space only proportional to the vocabulary.

3-Sort 1-Sort

https://github.com/jermp/tongrams

https://github.com/jermp/tongrams_estimation

Tongrams — Tons of N-Grams

C++

Thanks for your attention!

