Handling Massive N-Gram Datasets Efficiently

Giulio Ermanno Pibiri
Rossano Venturini

The University of Pisa and ISTI-CNR
Pisa, Italy

ACM Transactions on Information Systems

https://dl.acm.org/doi/10.1145/3302913
Consider a large textual source.
Consider a large textual source.

How to represent all its substrings of size \(n = 1, \ldots, N \) words (for a small \(N \), e.g., 5), using as few as possible bits?

Fast access to individual n-grams?
Consider a large textual source.

How to estimate the probability of occurrence of the n-grams under a given probability model?

How to represent all its substrings of size n = 1, ..., N words (for a small N, e.g., 5), using as few as possible bits?

Fast access to individual n-grams?

How to estimate the probability of occurrence of the n-grams under a given probability model?
N-Grams Applications

- auto-completion in search engines
- spelling correction
- similarity search
- identification of text reuse and plagiarism
- automatic speech recognition
- machine translation
- and many others….
Many results and softwares available

- **CSTLM** [Shareghi et al., TACL 2016]
- **KenLM** [Heafield, WMT 2011]
- **BerkeleyLM** [Pauls and Klein, ACL 2011]
- **ExpGram** [Watanabe et al., IJCNLP 2009]
- **IRSTLM** [Federico et al., ACL 2008]
- **RandLM** [Talbot and Osborne, ACL 2007]
- **SRILM** [Stolcke, INTERSPEECH 2002]
Numbers are big

~6% of the books ever published

<table>
<thead>
<tr>
<th>n</th>
<th>number of n-grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24,359,473</td>
</tr>
<tr>
<td>2</td>
<td>667,284,771</td>
</tr>
<tr>
<td>3</td>
<td>7,397,041,901</td>
</tr>
<tr>
<td>4</td>
<td>1,644,807,896</td>
</tr>
<tr>
<td>5</td>
<td>1,415,355,596</td>
</tr>
</tbody>
</table>

More than 11 billions of n-grams!
(1) Store all distinct words in a hash table (the vocabulary) mapping words to integer ids.
(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.
(1) Store all distinct words in a hash table (the vocabulary) mapping words to integer ids.
(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.

Idea: assign a word an integer in $[0, m)$, where m is the number of distinct words appearing after a context.
Indexing: Context-based Remapped Trie

(1) Store all distinct words in a hash table (the vocabulary) mapping words to integer ids.
(2) Represent the (mapped) integer n-grams with a trie data structure.

The number of distinct words appearing after a given context is small.

Idea: assign a word an integer in $[0, m)$, where m is the number of distinct words appearing after a context.

As fast as the fastest competitor, but up to 65% smaller.

Even smaller than the most space-efficient competitors and up to 5X faster.
To compute the modified *Kneser-Ney* probabilities of the n-grams, the fastest algorithm in the literature uses **3 sorting steps** in external memory [Heafield et al., ACL 2013].
To compute the modified *Kneser-Ney* probabilities of the n-grams, the fastest algorithm in the literature uses **3 sorting steps** in external memory [Heafield et al., ACL 2013].

Idea: compute statistics directly over the *context*-sorted n-grams, using space only proportional to the vocabulary.
To compute the modified *Kneser-Ney* probabilities of the n-grams, the fastest algorithm in the literature uses **3 sorting steps** in external memory [Heafield et al., ACL 2013].

Idea: compute statistics directly over the context-sorted n-grams, using space only proportional to the vocabulary.

Estimation runs 4.5X faster with billions of strings.
Tongrams — Tons of N-Grams

C++

https://github.com/jermp/tongrams

https://github.com/jermp/tongrams_estimation
Thanks for your attention!