
Efficient Data Structures
for Massive N-Gram Datasets

10/08/2017

1

The 40-th ACM SIGIR Conference
on Research and Development in Information Retrieval

Tokyo, Japan

Giulio Ermanno Pibiri
University of Pisa and ISTI-CNR

Pisa, Italy
giulio.pibiri@di.unipi.it

Rossano Venturini
University of Pisa and ISTI-CNR

Pisa, Italy
rossano.venturini@unipi.it

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=
mailto:rossano.venturini@unipi.it?subject=

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

2

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

2

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

2

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

2

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

frequency count
(integer)

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

frequency count
(integer)

probability/backoff
weight

(floating point)

For backoff-interpolated
models, such as Kneser-Ney.

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability/backoff
weight

(floating point)

For backoff-interpolated
models, such as Kneser-Ney.

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability/backoff
weight

(floating point)

For backoff-interpolated
models, such as Kneser-Ney.

hash + time
 space-

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability/backoff
weight

(floating point)

For backoff-interpolated
models, such as Kneser-Ney.

hash + time
 space-

trie + space
 time-

3

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

Active field of research
Many software libraries

• KenLM [Heafield, WMT 2011]
• BerkeleyLM [Pauls and Klein, ACL 2011]
• ExpGram [Watanabe at el., IJCNLP 2009]
• IRSTLM [Federico et al., ACL 2008]
• RandLM [Talbot and Osborne, ACL 2007]
• SRILM [Stolcke, INTERSPEECH 2002]

probability/backoff
weight

(floating point)

For backoff-interpolated
models, such as Kneser-Ney.

hash + time
 space-

trie + space
 time-

4

Trie Indexing

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30

0

0 1 4 7 10

5

7 10

3 5

5

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

We need an encoder for integer
sequences, supporting fast

random Access.

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

We need an encoder for integer
sequences, supporting fast

random Access.

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8

We need an encoder for integer
sequences, supporting fast

random Access.

4

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8
Elias-Fano Tries

One NextGEQ per level
Constant-time random Access

We need an encoder for integer
sequences, supporting fast

random Access.

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

5

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

6

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

6

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

will you notice this?• brings approximately 30% more time

7

Experimental Analysis - Overall comparison

7

Experimental Analysis - Overall comparison

7

Experimental Analysis - Overall comparison

2.3X 2.5X

7

Experimental Analysis - Overall comparison

2.3X 2.5X

7

Experimental Analysis - Overall comparison

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

7

Experimental Analysis - Overall comparison

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

7

Experimental Analysis - Overall comparison

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

8

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

• Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

8

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

• Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

8

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

• Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

+60% +65%

8

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

• Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

+60% +65%

8

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

• Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

+60% +65%

2X 2X4X 2.7X

+40% +80%15X 36X

+30% +20%25X 16X

3X 2.5X
4X 3.5X

3.3X 2X
+25%

https://github.com/jermp/tongrams

9

https://github.com/jermp/tongrams

https://github.com/jermp/tongrams

9

https://github.com/jermp/tongrams

https://github.com/jermp/tongrams

9

On-going work

• Parallel and scalable estimation of Kneser-Ney
language models

• Python wrapper, installable through pip utility

https://github.com/jermp/tongrams

https://github.com/jermp/tongrams

9

On-going work

• Parallel and scalable estimation of Kneser-Ney
language models

• Python wrapper, installable through pip utility

Future work

• Optimal ID-assignment for Elias-Fano? (NP-hard
problem)

• Make queries (especially perplexity) even faster

https://github.com/jermp/tongrams

 Proudly supported by a

 Student Travel Grant

10

Thanks for your attention,
time, patience!

Any questions?

