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Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.
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i number of grams

24,359,473

1,415,355,596

(Google Books

~ 6% of the books ever published

More than 11
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N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

For backoft-interpolated
models, such as Kneser-Ney.

: Active field of research
hash +time Many software libraries

- Space .
o « KenLM [Heafield, WMT 2011]
Efficient map - BerkeleyLM [Pauls and Klein, ACL 2011]
 ExpGram [Watanabe at el., [JCNLP 2009]
LS OCOSR . ooty i [Federico ot al.. ACL 2008]
- time * RandLM [Talbot and Osborne, ACL 2007]
+ SRILM [Stolcke, INTERSPEECH 2002]

trie
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We need an encoder for integer

seguences, supporting fast

random Access. > A0
% 2 B 1
o] O
3 C 2
S D— 3
Take range-wise prefix sums
on gram-ID sequences. — 0|13 |6

Elias-Fano Tries

One NextGEQ per level 11121414146 |6]7]9)9
Constant-time random Access
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Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

* Millions of unigrams. u/n by varying context-length k

e Height 5: longer contexts.
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Experimental Analysis - EF/PEF (R)Trie
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5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
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¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but more than twice smaller.



Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function
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¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.
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tongrams - Tons of N-Grams

tongrams is @ C++ library implementing the compressed data structures described in the paper Efficient Data
Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR
2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency
counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and
compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The
context-based remapping of such identifiers (Subsection 3.2 of [1]) permits to encode a word following a context of
fixed length k, i.e., its preceding k words, with an integer whose value is bounded by the number of words that follow
such context and not by the size of the whole vocabulary (number of uni-grams). Additionally to the trie data
structure, the library allows to build models based on minimal perfect hashing (MPH), for constant-time retrieval
(Section 4 of [1]).

When used to store frequency counts, the data structures support a lookup() operation that returns the number of
occurrences of the specified N-gram. Differently, when used to store probabilities and backoffs, the data structures
implement a score() function that, given a text as input, computes the perplexity score of the text.

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some
examples.
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