Efficient Data Structures for Massive *N*-Gram Datasets

Giulio Ermanno Pibiri

University of Pisa and ISTI-CNR Pisa, Italy <u>giulio.pibiri@di.unipi.it</u> Rossano Venturini University of Pisa and ISTI-CNR Pisa, Italy <u>rossano.venturini@unipi.it</u>

The 40-th ACM SIGIR Conference on Research and Development in Information Retrieval

Tokyo, Japan

10/08/2017

Strings of N words. N typically ranges from 1 to 5.

Extracted from text using a *sliding window* approach.

Strings of N words. N typically ranges from 1 to 5.

Extracted from text using a *sliding window* approach.

Strings of *N* words. *N* typically ranges from 1 to 5.

Extracted from text using a *sliding window* approach.

Google Books

 \approx 6% of the books ever published

Strings of *N* words. *N* typically ranges from 1 to 5.

Extracted from text using a *sliding window* approach.

Google Books

 \approx 6% of the books ever published

N	number of grams				
1	24,359,473				
2	667,284,771				
3	7,397,041,901				
4	1,644,807,896				
5	1,415,355,596				

More than 11 billion grams.

Store massive *N*-grams datasets in **compressed space** such that given a pattern, we can **return its value efficiently**.

N-Gram values

Store massive *N*-grams datasets in **compressed space** such that given a pattern, we can **return its value efficiently**.

N-Gram **values**

Store massive *N*-grams datasets in **compressed space** such that given a pattern, we can **return its value efficiently**.

frequency count (integer)

N-Gram values

probability/backoff weight (floating point)

For backoff-interpolated models, such as *Kneser-Ney*.

Store massive *N*-grams datasets in **compressed space** such that given a pattern, we can **return its value efficiently**.

N-Gram values

probability/backoff weight (floating point)

For backoff-interpolated models, such as *Kneser-Ney*.

Efficient map

Α	Α	Α	В	В	D	D	D
Α	В	D	В	С	Α	С	D

Α				Α						
Α	В	В	В	D	В	В	Α	Α	Α	D
В	Α	В	D	Α	Α	С	Α	В	D	Α

We need an encoder for integer sequences, supporting fast **random Access.**

We need an encoder for integer sequences, supporting fast **random Access.**

Take *range-wise* prefix sums on gram-ID sequences.

We need an encoder for integer sequences, supporting fast **random Access.**

Take *range-wise* prefix sums on gram-ID sequences.

We need an encoder for integer sequences, supporting fast **random Access.**

Take *range-wise* prefix sums on gram-ID sequences.

hash vocabulary D → D D → J C → J C → J J C → J J C →

Elias-Fano Tries

One NextGEQ per level Constant-time random Access

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

Observation: the number of words following a given context is **small**.

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a **funnel-**shaped distribution.

Observation: the number of words following a given context is **small**.

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a **funnel-**shaped distribution.

Observation: the number of words following a given context is **small**.

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a **funnel-**shaped distribution.

u/n by varying context-length k

	k	3-grams	4-grams	5-grams
Europarl	$0 \\ 1 \\ 2$	2404 213 (×11.28) 2404	2782 480 (×5.79) 48 (×57.95)	, ,
YahooV2	0 1 2	7350 753 (×9.76) 7350	7197	7417 1963 (×3.78)
GoogleV2	0 1 2	$\begin{array}{c} 4050 \\ 1025 (\times 3.95) \\ 4050 \end{array}$	$\begin{array}{c} 6631 \\ 2192 (\times 3.03) \\ 221 \ (\times 30.00) \end{array}$	6793 2772 (×2.45) 503 (×13.50)
Context-based ID Remapping

Observation: the number of words following a given context is **small**.

High-level idea: map a word ID to the **position** it takes within its *sibling* IDs (the IDs following a context of fixed length *k*).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a **funnel-**shaped distribution.

u/n by varying context-length k

	\boldsymbol{k}	3-grams	4-grams	5-grams
Europarl	0 1 2	$2404 \\ 213 \ (\times 11.28) \\ 2404$	$\begin{array}{c} 2782 \\ 480 \\ 480 \\ (\times 5.79) \\ 48 \\ (\times 57.95) \end{array}$	2920 646 (×4.52) 101 (×28.91)
YahooV2	0 1 2	7350 753 (×9.76) 7350	$\begin{array}{c} 7197 \\ 1461 \\ 104 \\ (\times 69.20) \end{array}$	$\begin{array}{c} 7417 \\ 1963 (\times 3.78) \\ 249 \ (\times 29.79) \end{array}$
GoogleV2	0 1 2	$\begin{array}{c} 4050 \\ 1025 (\times 3.95) \\ 4050 \end{array}$	$\begin{array}{c} 6631 \\ 2192 \\ 221 \\ (\times 30.00) \end{array}$	6793 2772 (×2.45) 503 (×13.50)

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304 579	3475482	24 357 349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828 223 677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation **gcc** 5.4.1 with the highest optimization setting

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24 357 349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828 223 677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation **gcc** 5.4.1 with the highest optimization setting

-	GoogleV2	YahooV2	Europarl	N
Intel Xeon	n	n	n	1.
	24 357 349	3475482	304579	1
193 GB (665752080	53844927	5192260	2
	7384478110	187639522	18908249	3
	1642783634	287562409	33862651	4
C++	1413870914	295701337	43160518	5
gcc 5.4	11 131 242 087	828 223 677	101428257	Total
opti	6.20	6.45	6.98	gzip bpg

Test machine ntel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation **gcc** 5.4.1 with the highest optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
EF PEF	1.97 1.87 (-4.99%)	1.28 1.35 (+5.93%)	2.17 1.91 (-12.03%)	1.60 1.73 (+8.00%)	$\begin{array}{c} \textbf{2.13} \\ \textbf{1.52} \ (-28.60\%) \end{array}$	2.09 1.91 (-8.79%)
REMAPPING REMAPPING = 2 $k = 1$ = 2 $k = 1$ = 1 = 1 = 1 = 1		$\begin{array}{c} \textbf{1.58} \\ \textbf{(+23.86\%)} \\ \textbf{1.61} \\ \textbf{(+25.89\%)} \end{array}$		$\begin{array}{c} \textbf{2.05} \scriptstyle{(+28.07\%)} \\ \textbf{2.16} \scriptstyle{(+35.22\%)} \end{array}$	$\begin{array}{c} \textbf{1.91} \ (-10.24\%) \\ \textbf{1.31} \ (-38.71\%) \end{array}$	3.03 (+44.61%) 2.30 (+9.88%)
CONTEXT-BASED ID REMAPPING k = 2 $k = 1k = 1$ $k = 1$		$\frac{1.60}{1.64}_{(+28.12\%)}$		$\begin{array}{c} \textbf{2.08} (+30.23\%) \\ \textbf{2.15} (+34.81\%) \end{array}$	_	

N	Europarl	YahooV2	GoogleV2	
	n	n	n	Intel
1	304579	3475482	24 357 349	
2	5192260	53844927	665752080	193
3	18908249	187639522	7384478110	
4	33862651	287562409	1642783634	
5	43160518	295701337	1413870914	
Total	101428257	828 223 677	11131242087	g
gzip bpg	6.98	6.45	6.20	_

ntel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits **C++** implementation

Test machine

jcc 5.4.1 with the highest optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
EF PEF	1.97 1.87 (-4.99%)	1.28 1.35 (+5.93%)	2.17 1.91 (-12.03%)	1.60 1.73 (+8.00%)	$\begin{array}{c} \textbf{2.13} \\ \textbf{1.52} \ (-28.60\%) \end{array}$	2.09 1.91 (-8.79%)
$\begin{array}{c} \text{T-BASED} \\ \text{APPING} \\ k = 1 \\ \text{APPING} \\ $	$\frac{1.67}{1.53}_{(-22.36\%)}$	$\begin{array}{c} \textbf{1.58} \\ \textbf{(+23.86\%)} \\ \textbf{1.61} \\ \textbf{(+25.89\%)} \end{array}$	$\frac{1.89}{1.63}_{(-24.91\%)}$	$\begin{array}{c} \textbf{2.05} \scriptstyle{(+28.07\%)} \\ \textbf{2.16} \scriptstyle{(+35.22\%)} \end{array}$	$\begin{array}{c} \textbf{1.91} \\ \textbf{(-10.24\%)} \\ \textbf{1.31} \\ \textbf{(-38.71\%)} \end{array}$	3.03 (+44.61%) 2.30 (+9.88%)
CONTEXT CONTEXT ID REMA k = 2 / EL k = 2 / EL	$\frac{1.46}{1.28}_{(-34.87\%)}$	$\frac{1.60}{1.64}_{(+28.12\%)}$	$\frac{1.68}{1.38}_{(-36.15\%)}^{(-22.32\%)}$	$\begin{array}{c} \textbf{2.08} (+30.23\%) \\ \textbf{2.15} (+34.81\%) \end{array}$	_	

N	Europarl	YahooV2	GoogleV2	Test machine
	n	n	n	Intel Xeon E5-2630 v3, 2.4 GHz
$\frac{1}{2}$	$\frac{304579}{5192260}$	$\frac{3475482}{53844927}$	$24357349\\665752080$	193 GB of RAM, Linux 64 bits
- 3 4	$\frac{18908249}{33862651}$	187 639 522 287 562 409	7384478110 1642783634	
5	43 160 518	295 701 337	1413870914	C++ implementation
Total	101428257	828 223 677	11131242087	gcc 5.4.1 with the highest
gzip bpg	6.98	6.45	6.20	optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
EF PEF	$\begin{array}{c} \textbf{1.97} \\ \textbf{1.87} & (-4.99\%) \end{array}$	1.28 1.35 (+5.93%)	2.17 1.91 (-12.03%)	1.60 1.73 (+8.00%)	$\begin{array}{c} \textbf{2.13} \\ \textbf{1.52} \ (-28.60\%) \end{array}$	2.09 1.91 (-8.79%)
$\begin{array}{c} \text{Prime} \\ \text{APPING} \\ \textbf{APPING} \\ \textbf{k} = 1 \\ \textbf{APING} \\ \textbf{APPING} \\ \textbf{APPING } \\ APPING $	$\frac{1.67}{1.53}_{(-22.36\%)}$	$\frac{1.58}{1.61}_{(+25.89\%)}$	$\frac{1.89}{1.63}_{(-24.91\%)}$		$\begin{array}{c} \textbf{1.91} \\ \textbf{(-10.24\%)} \\ \textbf{1.31} \\ \textbf{(-38.71\%)} \end{array}$	3.03 (+44.61%) 2.30 (+9.88%)
CONTEXT-BASED ID REMAPPING k = 2 $k = 1k = 1H$ H H H H H H H H H	$\frac{1.46}{1.28}_{(-34.87\%)}^{(-25.62\%)}$	$\frac{1.60}{1.64}_{(+28.12\%)}$	$\frac{1.68}{1.38}_{(-36.15\%)}^{(-22.32\%)}$	$\begin{array}{c} \textbf{2.08} (+30.23\%) \\ \textbf{2.15} (+34.81\%) \end{array}$	_	

Context-based ID Remapping

reduces space by more than 36% on average ----- you will notice this!

N	Europarl	YahooV2	GoogleV2	Test machine
	n	n	n	Intel Xeon E5-2630 v3, 2.4 GHz
$\frac{1}{2}$	$\frac{304579}{5192260}$	$\frac{3475482}{53844927}$	$24357349\\665752080$	193 GB of RAM, Linux 64 bits
3 4	$\frac{18908249}{33862651}$	187 639 522 287 562 409	7384478110 1642783634	
5	43 160 518	295 701 337	1 413 870 914	C++ implementation
Total	101428257	828 223 677	11131242087	gcc 5.4.1 with the highest
gzip bpg	6.98	6.45	6.20	optimization setting

YahooV2 GoogleV2 Europarl bpg bpg bpg $\mu s \times query$ $\mu s \times query$ $\mu s \times query$ EF 1.971.282.171.602.132.09PEF 1.73 (+8.00%) 1.87 (-4.99%)1.35 (+5.93%)1.91 (-12.03%)1.52 (-28.60%)1.91 (-8.79%) CONTEXT-BASED ID REMAPPING EF 1.67 (-15.30%)1.58 (+23.86%) 3.03 (+44.61%) 1.89(-12.92%)2.05 (+28.07%) $1.91_{(-10.24\%)}$ Ш PEF $1.53_{(-22.36\%)}$ 2.30 (+9.88%) $1.63_{(-24.91\%)}$ 1.61 (+25.89%) 2.16 (+35.22%) $1.31_{(-38.71\%)}$ 2 EF 1.60 (+25.17%) 1.46(-25.62%)1.68(-22.32%)2.08 (+30.23%) || % PEF 1.64 (+28.12%)2.15 (+34.81%) 1.28 (-34.87%) 1.38 (-36.15%)

Context-based ID Remapping

reduces space by more than 36% on average ----- you will notice this!

N	Europarl	YahooV2	GoogleV2	Test machine
	n	n	n	Intel Xeon E5-2630 v3, 2.4 GHz
$\frac{1}{2}$	$\frac{304579}{5192260}$	$\frac{3475482}{53844927}$	$24357349\\665752080$	193 GB of RAM, Linux 64 bits
- 3 4	18 908 249 33 862 651	187 639 522 287 562 409	7384478110 1642783634	
5	43 160 518	295 701 337	1 413 870 914	C++ implementation
Total	101428257	828 223 677	11131242087	gcc 5.4.1 with the highest
gzip bpg	6.98	6.45	6.20	optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
EF PEF	1.97 1.87 (-4.99%)	1.28 1.35 (+5.93%)	2.17 1.91 (-12.03%)	1.60 1.73 (+8.00%)	$\begin{array}{c} \textbf{2.13} \\ \textbf{1.52} \ (-28.60\%) \end{array}$	2.09 1.91 (-8.79%)
$\begin{array}{c} \text{Presed} \\ \text{APPING} \\ \textbf{k} = 1 \\ \textbf{APPING} \\ \textbf{APPING } \\ AP$	$\frac{1.67}{1.53}_{(-22.36\%)}$	$1.58_{(+23.86\%)} \\ 1.61_{(+25.89\%)}$	$\frac{1.89}{1.63}_{(-24.91\%)}$	$2.05_{(+28.07\%)}\\2.16_{(+35.22\%)}$	$\begin{array}{c} \textbf{1.91} \\ \textbf{(-10.24\%)} \\ \textbf{1.31} \\ \textbf{(-38.71\%)} \end{array}$	$3.03 \\ (+44.61\%) \\ 2.30 \\ (+9.88\%)$
CONTEXT-BASED ID REMAPPING k = 2 $k = 1k = 1k = 2$ $k = 1HHHHHHHHHH$	$\frac{1.46}{1.28}_{(-34.87\%)}$	$\frac{1.60}{1.64}_{(+28.12\%)}^{(+25.17\%)}$	$\frac{1.68}{1.38}_{(-36.15\%)}^{(-22.32\%)}$	$2.08 \scriptstyle{(+30.23\%)} \\ 2.15 \scriptstyle{(+34.81\%)}$	_	

Context-based ID Remapping

- reduces space by more than 36% on average
- brings approximately **30%** more time

- you will notice this!
- will you notice this?

	Euro	oparl	YahooV2		Goo	ogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	$1.35 \\ 1.64$	1.91 1.38	1.73 2.15	$1.52 \\ 1.31$	1.91 2.30
BerkeleyLM C.	1.70 (-8.89%) (+32.90%)	2.83 (+108.88%) (+72.70%)	1.69 (-11.41%) (+22.04%)	3.48 (+101.84%) (+61.70%)	1.45 (-4.87%) (+10.83%)	4.13 (+116.57%) (+79.76%)
BerkeleyLM H.3		0.97 (-28.46%) (-40.85%)		1.13 (-34.35%)	9.24 (+507.79%)	
BerkeleyLM H.50		0.97 (-28.49%) (-40.88%)		0.96 (-44.27%)		
Expgram	2.06 (+10.18%)	2.80 (+106.61%)	2.24 (+17.36%)	9.23 (+435.33%)	_	_
KenLM T.		$(+70.82\%) \\ 1.28 (-5.47\%) \\ (-21.04\%) $	3.44 (+80.39%)	(+328.87%) 1.94 (+12.32%)	_	_
Marisa		$(-21.84\%) \\ (+52.00\%) \\ (+25.67\%)$	3.81 (+99.60%)	(-10.01%) 3.24 (+87.96%) (+50.58%)		_
RandLM		4.39 (+224.20%) (+168.04%)		5.08 (+194.35%)	2.60 (+70.73%) (+98.90%)	9.25 (+384.54%) (+302.19%)

	Euro	oparl	YahooV2		Goo	ogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	$1.35 \\ 1.64$	1.91 1.38	1.73 2.15	$1.52 \\ 1.31$	1.91 2.30
BerkeleyLM C.	1.70 (-8.89%) (+32.90%)	2.83 (+108.88%) (+72.70%)	1.69 (-11.41%) (+22.04%)	3.48 (+101.84%) (+61.70%)	1.45 (-4.87%) (+10.83%)	4.13 (+116.57%) (+79.76%)
BerkeleyLM H.3	6.70 (+258.81%)	0.97 (-28.46%) (-40.85%)	7.82 (+310.38%)	1.13 (-34.35%) (-47.41%)	9.24 (+507.79%)	
BerkeleyLM H.50		0.97 (-28.49%) (-40.88%)		0.96 (-44.27%)		
Expgram		2.80 (+106.61%)	2.24 (+17.36%)	9.23 (+435.33%) (+328.87%)		—
KenLM T.		1.28 (-5.47%)	3.44 (+80.39%)	(+328.87%) 1.94 (+12.32%) (-10.01%)	_	—
Marisa	3.61 (+93.09%)	(-21.84%) 2.06 (+52.00%) (+25.67%)	3.81 (+99.60%)	(-10.01%) 3.24 (+87.96%) (+50.58%)		_
RandLM	1.81 (-3.06%)	4.39 (+224.20%) (+168.04%)	2.02 (+6.18%)	5.08 (+194.35%) (+135.82%)	2.60 (+70.73%) (+98.90%)	9.25 (+384.54%) (+302.19%)

	Euro	oparl	YahooV2		Goo	ogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	1.87 1.28	$1.35 \\ 1.64$	1.91 1.38	1.73 2.15	$1.52 \\ 1.31$	1.91 2.30
BerkeleyLM C.	1.70 (-8.89%) (+32.90%)	2.83 (+108.88%) (+72.70%)	1.69 (-11.41%) (+22.04%)	3.48 (+101.84%) (+61.70%)	1.45 (-4.87%) (+10.83%)	4.13 (+116.57%) (+79.76%)
BerkeleyLM H.3		0.97 (-28.46%) (-40.85%)		1.13 (-34.35%)	9.24 (+507.79%)	2.18 (+13.95%) (-5.42%)
BerkeleyLM H.50		0.97 (-28.49%) (-40.88%)		0.96 (-44.27%)		
Expgram		2.80 (+106.61%) (+70.82%)	2.24 (+17.36%)	9.23 (+435.33%) (+328.87%)		—
KenLM T.	2.99 (2.3X ⁶) (+133.56%)	1.28 (-5.47%) (-21.84%)	3.44 (28.55X ⁶) (+148.52%)	1.94 (+12.32%) (-10.01%)		—
Marisa		2.06 (+52.00%) (+25.67%)	3.81 (+99.60%)	3.24 (+87.96%) (+50.58%)		—
RandLM	1.81 (-3.06%) (+41.41%)	4.39 (+224.20%) (+168.04%)	2.02 (+6.18%) (+46.29%)	5.08 (+194.35%) (+135.82%)	2.60 (+70.73%) (+98.90%)	9.25 (+384.54%) (+302.19%)

	Eu	roparl	YahooV2		Goo	ogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	$\begin{array}{c} 1.35\\ 1.64 \end{array}$	$1.91 \\ 1.38$	$ \begin{array}{c} 1.73 \\ 2.15 \end{array} $	$1.52 \\ 1.31$	1.91 2.30
BerkeleyLM C.	1.70 (-8.89%) (+32.90%)	2.83 (+108.88%) (+72.70%)	1.69 (-11.41%) (+22.04%)	3.48 (+101.84%) (+61.70%)	1.45 (-4.87%) (+10.83%)	4.13 (+116.57%) (+79.76%)
BerkeleyLM H.3	· · · · · · · · · · · · · · · · · · ·	0.97 (-28.46%)		1.13 (-34.35%)	9.24 (+507.79%) (+608.07%)	2.18 (+13.95%)
BerkeleyLM H.50		0.97 (-28.49%)	9.37 (+391.32%) (+576.87%)	0.96 (-44.27%)		
Expgram	2.06 (+10.18%) (+60.73%)	2.80 (+106.61%)		9.23 (+435.33%)		
KenLM T.	2.99 (263X ⁶) (+133.56%)	1.28 (-5.47%)	3.44 2.5X	(+12.32%)		
Marisa	3.61 (+93.09%) (+181.66%)	2.06 (+52.00%)	3.81 (+99.60%) (+174.98%)	3.24 (+87.96%)	_	—
RandLM	1.81 (-3.06%) (+41.41%)	4.39 (+224.20%) (+168.04%)	2.02 (+6.18%) (+46.29%)		2.60 (+70.73%) (+98.90%)	9.25 (+384.54%) (+302.19%)

	Eu	roparl	YahooV2			GoogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	1.35 1.64	$1.91 \\ 1.38$	$\begin{array}{c} 1.73 \\ 2.15 \end{array}$	$1.52 \\ 1.31$	$1.91 \\ 2.30$
BerkeleyLM C.	1.70 (-8.89%) (+32.90%)	2.83 (+2 2X ^{8%}) (+72.70%)	1.69 (-11) (+22)	$\begin{array}{c} 41\%) \\ 04\%) \end{array} \begin{array}{c} 3.48 \ (+2 \times 4\%) \\ (+61.70\%) \end{array}$	1.45 (-4.8 (+10.8	
BerkeleyLM H.3	$6.70_{(+258.81\%)}_{(+255.51\%)}$		$7.82_{(+310)}_{(+305)}$	38%) 1.13 (-34.35%)	9.24 (+507.5	
BerkeleyLM H.50	7.96 (-522X) (+521.45%)	0.97 (-28.49%) (-40.88%)	9.37 (- 5 -8 (+576)		_	_
Expgram	2.06 (+10.18%) (+60.73%)		2.24 (+17) (+61)	3-3 A		
KenLM T.	2.99 (263X6) (+133.56%)	(-5.47%) (-21.84%)	3.44 280 (+148)		—	
Marisa	3.61 (1933,08%)	2.06 (+52.00%) (+25.67%)	^{3.81} (2.4)	$\overset{(+87.96\%)}{\overset{(+87.96\%)}{\overset{(+50.58\%)}{($		
RandLM	1.81 (-3.06%) (+41.41%)	Z. 3A		18%) 5.08 (2195 X%) (+135.82%)	2.60 (+70.7 (+98.9	JA

		Europarl	YahooV2			GoogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	$\begin{array}{c} 1.35 \\ 1.64 \end{array}$	$1.91 \\ 1.38$	$\begin{array}{c} 1.73 \\ 2.15 \end{array}$	$1.52 \\ 1.31$	1.91 2.30
BerkeleyLM C.	1.70 (-8.8 (+32.9		1.69 (-11) (+22)	$\begin{array}{c} (41\%) \\ (.41\%)$	1.45 (-4.8) (+10.8)	
BerkeleyLM H.3	6.70 (+258.8 (+ 25 5)	1%) 0.97 (-28.46%)	$7.82_{(+310)}_{(+305)}$	38%) 1.13 (-34.35%)	9.24 (+507 5	
BerkeleyLM H.50	7.96 (- 5 22) (+521.4	(-28.49%)	9.37 (- 5 -8 (+576	0.96 (-44.27%)	_	_
Expgram	2.06 (+10.1 (+60.7		2.24 (+17)	(+328.87%) 9.23		
KenLM T.	2.99 (263) (+133.5		3.44 280		—	
Marisa	3.61 (+938) (- 2.8		^{3.81} (2.4)	60%) 3.24 (+87.96%)	—	
RandLM	1.81 (-3.0 (+41.4	Z. 3A		18%) 5.08 (2195 X ^{%)} (+135.82%)	2.60 (+70.73 (+98.9)	JA

	E	Europarl		YahooV2		GoogleV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	$1.87 \\ 1.28$	$\begin{array}{c} 1.35\\ 1.64 \end{array}$	$1.91 \\ 1.38$	$\begin{array}{c} 1.73 \\ 2.15 \end{array}$	$1.52 \\ 1.31$	$1.91 \\ 2.30$
BerkeleyLM C.	1.70 (-8.89 (+32.90		1.69 (-11 (+22	$\begin{array}{c} (41\%) \\ (.41\%)$	1.45 (-4.8 (+10.8	
BerkeleyLM H.3	6.70 (+258.81 (+ 2 55.5	%) 0.97 (-28.46%)	7.82 (+310		9.24 (+507.5	
BerkeleyLM H.50	7.96 (4 5 2 2)	6) 0.97 (-28.49%)	9.37 (4 5)8	0.96 (-44.27%)	—	_
Expgram	2.06 (+10.18 (+60.73	(*) $2.80 (+126 \times 1\%)$	2.24 (+17		—	—
KenLM T.	2.99 (2.3) (+133.56	6) 1.28 (-5.47%)	3.44 (2.4)	(+12.32%)	—	—
Marisa	^{3.61} 2.8	$(\pm 52.00\%)$	$^{3.81}(2^{+99},4^{-99})$	60%) 3.24 (+87.96%)		
RandLM	1.81 (-3.06 (+41.41			18%) 5.08 (2 ¹⁹ 5.0%) (+135.82%)	2.60 (+70.7 (+98.9	JA

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but more than twice smaller.

Reversed Elias-Fano Tries

- Probabilities and backoffs are **quantized** (*binning* method) using any number of bits from 2 to 32
- Stateful scoring function

	Eu	roparl	YahooV2		
	bpg	$\mu s \times query$	bpg	$\mu s \times query$	
PEF-Trie PEF-RTrie	$3.48 \\ 2.91$	0.25 0.28	3.64 3.06	0.38 0.43	
BerkeleyLM C.	6.50 (+87.03%)	1.19 (+371.79%)	6.39 (+75.72%)	1.08 (+187.45%)	
BerkeleyLM H.3	(+123.47%) 9.36 (+169.17%)		$^{(+109.21\%)}_{(+140.41\%)}$	(+152.17%) 0.74 (+95.77%)	
BerkeleyLM H.50	(+221.61%) 12.31 (+254.00%)	(+198.58%) 0.35 (+39.00%)	(+186.23%) 12.01 (+230.05%)	(+71.75%) 0.30 (-19.39%)	
Expgram	(+322.97%) 4.15 (+19.33%)	(+24.39%) 3.83 (+1424.87%)	(+292.95%) 5.80 (+59.41%)	(-29.28%) 14.05 (+3637.90\%)	
KenLM T.	(+42.59%) 4.58 (+31.80%)	0.23 (-8.00%)	(+89.79%) 5.04 (+38.53%)	(+3179.16%) 0.39 (+4.57%)	
RandLM	(+57.48%) 4.01 (+15.42%)	(-17.66%) 6.48 (+2477.95%)	(+64.93%) 3.86 (+6.03%)	(-8.26%) 6.25 (+1561.20%)	
	(+37.90%)	(+2207.12%)	(+26.24%)	(+1357.33%)	

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Reversed Elias-Fano Tries

- Probabilities and backoffs are **quantized** (*binning* method) using any number of bits from 2 to 32
- Stateful scoring function

	Eu	roparl	Yal	nooV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	3.48 2.91	0.25 0.28	3.64 3.06	0.38 0.43
BerkeleyLM C.	6.50 (+87.03%) (+123.47%)	1.19 (+371.79%) (+322.22%)	6.39 (+75.72%) (+109.21%)	1.08 (+187.45%) (+152.17%)
BerkeleyLM H.3	9.36 (+169.17%)	0.84 (+233.63%)	8.75 (+140.41%) (+186.23%)	0.74 (+95.77%)
BerkeleyLM H.50	(+221.61%) 12.31 (+254.00%)	0.35 (+39.00%)	12.01 (+230.05%)	(+71.75%) 0.30 (-19.39%)
Expgram	(+322.97%) 4.15 (+19.33%)	3.83 (+1424.87%)	(+292.95%) 5.80 (+59.41%)	(-29.28%) 14.05 (+3637.90%)
KenLM T.	(+42.59%) 4.58 (+31.80%) (+57.48%)	0.23 (-8.00%)	(+89.79%) 5.04 (+38.53%) (+64.93%)	(+3179.16%) 0.39 (+4.57%) (-8.26%)
RandLM	4.01 (+15.42%) (+37.90%)	6.48 (+2477.95%) (+2207.12%)	3.86 (+6.03%) (+26.24%)	6.25 (+1561.20%) (+1357.33%)

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.

Reversed Elias-Fano Tries

- Probabilities and backoffs are **quantized** (*binning* method) using any number of bits from 2 to 32
- Stateful scoring function

	Eu	roparl	Yal	nooV2
	bpg	$\mu s \times query$	bpg	$\mu s \times query$
PEF-Trie PEF-RTrie	3.48 2.91	0.25 0.28	3.64 3.06	0.38 0.43
BerkeleyLM C.	6.50 (+87.03%) (+123.47%)	1.19 (+371.79%) (+322.22%)	6.39 (+75.72%) (+109.21%)	1.08 (+187.45%) (+152.17%)
BerkeleyLM H.3	9.36 (+169.17%) (+221.61%)		8.75 (+140.41%) (+186.23%)	0.74 (+95.77%)
BerkeleyLM H.50	12.31 (+254.00%)	0.35 (+39.00%)	12.01 (+230.05%)	(+71.75%) 0.30 (-19.39%)
Expgram	(+322.97%) 4.15 (+19.33%)	3.83 (+1424.87%)	(+292.95%) 5.80 (+59.41%)	(-29.28%) 14.05 (+3637.90%)
KenLM T.	$4.58 + 60\% \\ (+57.48\%)$	(+1264.67%) 0.23 (-8.00%) (-17.66%)	5.04 (+65%) (+64.93%)	(+3179.16%) 0.39 (+4.57%) (-8.26%)
RandLM	4.01 (+15.42%) (+37.90%)	6.48 (+2477.95%) (+2207.12%)	3.86 (+6.03%) (+26.24%)	6.25 (+1561.20%) (+1357.33%)

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.

Reversed Elias-Fano Tries

- Probabilities and backoffs are **quantized** (*binning* method) using any number of bits from 2 to 32
- Stateful scoring function

	Europarl			YahooV2
	bpg	$\mu s \times query$	bpg	$\mu s imes query$
PEF-Trie PEF-RTrie	$3.48 \\ 2.91$	$0.25 \\ 0.28$	$3.64 \\ 3.06$	$\begin{array}{c} 0.38\\ 0.43\end{array}$
BerkeleyLM C.	6.50 (+87.03		6.39 (+75.72	
BerkeleyLM H.3	(+123.47 9.36 (+169.17	7%) 0.84 (+233.63%)	(+109.2) 8.75 (+140.4)	0.74 (+95.77%)
BerkeleyLM H.50	(+221.6) 12.31 (+254.00	0%) 0.35 (+39.00%)	(+186.23 12.01 (+230.03	5%) 0.30 (-19.39%)
Expgram	4.15 (+19.33	3%) 3.83 (+1424.87%)	(+292.98 5.80 (+59.4)	14.05 (+3637.90%)
KenLM T.	4.58 +60 (+57.48	0.23 (-8.00%)	5.04 (+89.75 (+65) (+64.93	0.39 (+4.57%)
RandLM	4.01 (+15.42 (+37.90		3.86 (+6.03 (+26.24	, , , , , , , , , , , , , , , , , , , ,

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.

Reversed Elias-Fano Tries

- Probabilities and backoffs are **quantized** (*binning* method) using any number of bits from 2 to 32
- Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.

iermp / tongrams <> Code ① Issues ①	Pull requests 0 Projects 0	🗉 Wiki 🔅 Settings	O Unwatch → 1 Insights →	★ Star 6 % Fork 0
Massive N-Gram Datasets"	ing the compressed data structures o , by Giulio Ermanno Pibiri and Rossan Manage topics			
To 18 commits	្រៃ 1 branch	🟷 1 release		L contributor
Branch: master - New pull re	quest	Create new file	e Upload files	Find file Clone or download -
jermp added compiler versi	on to README			Latest commit b80e241 on Jun 21
🖻 emphf @ a18574f	added emphf submodule			3 months ago
sequences	added new select-in-word algorithm; C	MakeLists.txt updated; RE	ADME.md	2 months ago
sorters	code imported			3 months ago
test	code imported			3 months ago
test_data	code imported			3 months ago
utils	added new select-in-word algorithm; C	MakeLists.txt updated; RE	ADME.md	2 months ago
vectors	code imported			3 months ago

tongrams - Tons of N-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper *Efficient Data Structures for Massive N-Gram Datasets*, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map *N*-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which *N*-grams are assigned integer identifiers (IDs) and compressed with *Elias-Fano* (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The *context-based remapping* of such identifiers (Subsection 3.2 of [1]) permits to encode a word following a context of fixed length *k*, i.e., its preceding *k* words, with an integer whose value is bounded by the number of words that follow such context and *not* by the size of the whole vocabulary (number of uni-grams). Additionally to the trie data structure, the library allows to build models based on *minimal perfect hashing* (MPH), for constant-time retrieval (Section 4 of [1]).

When used to store frequency counts, the data structures support a lookup() operation that returns the number of occurrences of the specified *N*-gram. Differently, when used to store probabilities and backoffs, the data structures implement a score() function that, given a text as input, computes the perplexity score of the text.

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some examples.

Table of contents

- · Building the code
- Input data format
- Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

tongrams - Tons of N-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper *Efficient Data Structures for Massive N-Gram Datasets*, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map *N*-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The

context-based remapping of such identifiers (Subsection 3.2) fixed length k, i.e., its preceding k words, with an integer who such context and not by the size of the whole vocabulary (nur structure, the library allows to build models based on minimal (Section 4 of [1]).

When used to store frequency counts, the data structures sup occurrences of the specified *N*-gram. Differently, when used implement a score() function that, given a text as input, con

On-going work

- Parallel and scalable estimation of *Kneser-Ney* language models
- Python wrapper, installable through pip utility

This guide is meant to provide a brief overview of the library and to illustrate its functionalities through some examples.

Table of contents

- · Building the code
- Input data format
- · Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

tongrams - Tons of N-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper *Efficient Data Structures for Massive N-Gram Datasets*, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map *N*-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which *N*-grams are assigned integer identifiers (IDs) and compressed with *Elias-Fano* (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The

context-based remapping of such identifiers (Subsection 3.2) fixed length k, i.e., its preceding k words, with an integer who such context and not by the size of the whole vocabulary (nur structure, the library allows to build models based on minimal (Section 4 of [1]).

When used to store frequency counts, the data structures sup occurrences of the specified *N*-gram. Differently, when used implement a score() function that, given a text as input, con

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some examples.

Table of contents

- · Building the code
- Input data format
- Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

On-going work

- Parallel and scalable estimation of *Kneser-Ney* language models
- Python wrapper, installable through pip utility

Future work

- Optimal ID-assignment for Elias-Fano? (NP-hard problem)
- Make queries (especially perplexity) even faster

Proudly supported by a

Thanks for your attention, time, patience!

Any questions?