Efficient Data Structures

for Massive N-Gram Datasets

Giulio Ermanno Pibiri Rossano Venturini

University of Pisa and ISTI-CNR University of Pisa and ISTI-CNR
Pisa, Italy Pisa, ltaly
giulio.pibiri@di.unipi.it rossano.venturini@unipi.it

The 40-th ACM SIGIR Conference et
on Research and Development in Information Retrieval

Tokyo, Japan M

%IGIIR

TOKYOe*JAPAN

10/08/2017

1

http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=
mailto:rossano.venturini@unipi.it?subject=

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

— (Google Books

~ 6% of the books ever published

N-grams - Introduction

Strings of N words.

N typically ranges from 1 to 5.

Extracted from text using a sliding window approach.

i number of grams

24,359,473

1,415,355,596

(Google Books

~ 6% of the books ever published

More than 11
billion grams.

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

For backoft-interpolated
models, such as Kneser-Ney.

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

For backoft-interpolated
models, such as Kneser-Ney.

Efficient map

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

For backoft-interpolated
models, such as Kneser-Ney.

+ time
- space

hash

Efficient map

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

hash + lime
- space
Efficient map
wie T Space

- time

3

For backoft-interpolated
models, such as Kneser-Ney.

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

frequency count
(integer)
N-Gram values

probability/backoff
weight
(floating point)

For backoft-interpolated
models, such as Kneser-Ney.

: Active field of research
hash +time Many software libraries

- Space .
o « KenLM [Heafield, WMT 2011]
Efficient map - BerkeleyLM [Pauls and Klein, ACL 2011]
 ExpGram [Watanabe at el., [JCNLP 2009]
LS OCOSR . ooty i [Federico ot al.. ACL 2008]
- time * RandLM [Talbot and Osborne, ACL 2007]
+ SRILM [Stolcke, INTERSPEECH 2002]

trie

3

Trie Indexing

O)
=
X
Q
O
=
Q
e
-

A B | C D

A A A B B D D D

D B C/ | A C D

A

A /A A A A B B D D D D
A B B B/ D B B A/A A D
B|/A B D A|A C A B D A

Trie Indexing

B|/A B D A|A C A B D A

Trie Indexing

B|/A B D A|A C A B D A

Trie Indexing

> A 0
s
§B B 1
8 C 2
SEIED 3
Al B|C|D

B|/A B D A|A C A B D A

Trie Indexing

> A 0
s

§B B 1
8 C 2
SEIED 3
0O(1|2]| 3

B|/A B D A|A C A B D A

Trie Indexing

A B C

- o
DRI

> A 0

qv}

o
DBCACD 263 571
¢Q c 5 C 2
SEIED 3
‘.-. 0(/1| 2| 3

B|/A B D A|A C A B D A

Trie Indexing

A B C

- o
DRI

> A 0

qv}

o
DBCACD 263 571
¢e c 5 C 2
SEIED 3
‘.-. 0(/1| 2| 3

B|/A B D A|A C A B D A

O)
=
X
Q
O
=
Q
e
-

O ~~ N M

<< m OO

Ale|ngeooA
ysey

0

3

1

20|23

1

3

3100120

1

0

Trie Indexing

We need an encoder for integer

seguences, supporting fast

random Access. > A 0
£3 B 1
(U‘Q
8 C 2
S D 3
0Ol 1|1 2| 3

Trie Indexing

We need an encoder for integer

seguences, supporting fast

random Access. > A0
% 2 B 1
o] O
3 C 2
S D 3
Take range-wise prefix sums
on gram-ID sequences. 0|1[2]|3

Trie Indexing

We need an encoder for integer

seguences, supporting fast

random Access. > A0
% 2 B 1
o] O
3 C 2
S D— 3
Take range-wise prefix sums
on gram-ID sequences. — 0|13 |6

Trie Indexing

We need an encoder for integer

seguences, supporting fast

random Access. > A0
% 2 B 1
o] O
3 C 2
S D— 3
Take range-wise prefix sums
on gram-ID sequences. — 0|13 |6

Elias-Fano Tries

One NextGEQ per level 11121414146 |6]7]9)9
Constant-time random Access

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

mapper
levels

k+1

mapped

levels

N{-l

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

mapper

levels [—?[—?_ [—?

k+1

mapped
levels

N{-l

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

mapper

levels [—?[—?_ [—?

k+1

mapped
levels

N{-l

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

mapper

levels [—?[—?_ [—?

k+1

mapped
levels

N{-l

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

mapper

levels

k+1

mapped
levels

N{-l

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

e Millions of unigrams.
e Height 5: longer contexts.

e The number of siblings has a
funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

e Millions of unigrams.
e Height 5: longer contexts.

e The number of siblings has a
funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

* Millions of unigrams. u/n by varying context-length k

e Height 5: longer contexts.

k 3-grams 4-grams 5-grams
.. = 0 2404 2782 2920
* The number of siblings has a & 1 213 (w1128 480 (x5.79) 646 (xa.52)
funnel-shaped distribution. d 2 2404 48 (x57.95) 101 (x28.01)
g 0 7350 7197 7417
§ 1 753 X9.76 1461 (X4.93) 1963 (xX3.78)
1 S 2 7350 104 (x00.20) 249 (x20.70)
5 g 0 4050 6631 6793
L 1 1025 X 3.95 2192 (X 3.03) 2772 (xX2.45)
; S 2 4050 921 (v50.00) 503 (x15.50)
4

Context-based ID Remapping

Observation: the number of words following a given context is smaill.

High-level idea: map a word ID to the position it takes within its sibling |IDs
(the IDs following a context of fixed length k).

* Millions of unigrams. u/n by varying context-length k

e Height 5: longer contexts.

k 3-grams 4-grams 5-grams

. = 0 2404 2782 2920
* The number of siblings has a &1 218 (viioe 646 (s o
funnel-shaped distribution. g 2 2404 | 101 (x28.91)

g 0 7350 7197 7417
8 1 753 (xo7 1963 (x3.78)
1 > 2 7350 249 (x29.79)

5 g 0 4050
®» 1 1025 (x2.45)
S 2 4050 29,00}
3
4

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
n n
1 30457:; 3475482 24 357 349 Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844927 665 752 080 193 GB of RAM, Linux 64 bits
3 18908 249 187 639 522 7384478110
4 33862651 287 562 409 1642 783634 . .
5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
n n
1 30457:; 3475482 24 357 349 Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384478110
4 33862651 287 562 409 1642 783 634 . .
5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
n n n
. P P P Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384 478 110
4 33862651 287 562 409 1642 783 634 | .
5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
Europarl YahooV2 GoogleV2
bpg us X query bpg us X query bpg Us X query
EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1-87 (—4.99%) 1.35 [+5.93%) 1.91 (—12.03%) 1.73 (+8.00%) 1.52 (—28.60%) 1.91 (—8.79%)
é g 'l-l. EF 1-67 (—15.30%) 1.58 (+23.86%) 1.89 (—12.92%) 2.05 (+28.07T% :I 1.91 (—10.24%) 3.03 (+44.61%)
§ % « PEF 1.53 (-22.36%) 1.61 (+25.89%) 1.63 (-24.91%) 2.16 (+35.22%) 1.31 (-38.71%) 2.30 (+9.88%)
X s
E o ClT EF 1.46 (-25.62%) 1.60 (+25.17%) 1.68 (—22.329) 2.08 (+30.23%) — —_
g e , PEF 1.28 (—34.87%) 1.64 (428.12%) 1.38 (-36.15%) 2.15 (+34.81%) — —

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
1 30457:; 3475482 24357347; Inte| Xeon £5-2630 v3, 2.4 GHz
2 5192 260 53844927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384478110
4 33862651 287 562 409 1642 783634 | .
5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
Europarl YahooV2 GoogleV2
bpg us X query bpg us X query bpg Us X query
EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1-87 (—4.99%) 1.35 (+5.93%) 1.91 (—12.03%) 1.73 (+8.00%) 1.52 (—28.60%) 1.91 (—8.79%)
@; g 'I-ll EF 1.67 (—15.30% 1.58 (+23.86%) 1.89 \ 12.92%) 2.05 (+28.07%) 1.91 | 10.24%) 3.03 (+44.61%)
§ % K PEF 1.53 (—22.36% 1.61 (+25.89%) 1.63 (—24.91%) 2.16 (+35.22%) 1.31 (—38.71%) 2.30 (+9.88%)
E § CIT EF 1.46 (—25.62% 1.60 (+25.17%) 1.68 (—22.32% 2.08 (+30.23%) — —
g e , PEF 1.28 (—34.87%) 1.64 (+28.12%) 1.38 (—36.15%) 2.15 (+34.81%) S S

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
1 304577; 34754872l 24357347; Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844 927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384478110
4 33862651 287 562 409 1642 783634 | .
5 43160518 295 701 337 1413870914 C++ implementation
Total | 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
Europarl YahooV2 GoogleV2
bpg us X query bpg us X query bpg Us X query
EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1.87 (—4.99%) 1.35 (+5.93%) 1.91 (—12.03%) 1.73 (+8.00%) 1.52 (—28.60%) 1.91 (—8.79%)
é g !I-I. EF 1.67 (—15.30%) 1.58 (+23.86%) 1.89 1202 2.0D (+28.07%) 1.91 10.24% 3.03 (+44.61%)
§ % @ PEF 1.53 (—22.36%) 1.61 (+25.89%) 1.63 (—24.91% 2.16 (+35.22%) 1.31 (—38.71% 2.30 (+9.88%)
E é CI\I‘ EF 1.46 (—25.62%) 1.60 (+25.17%) 1.68 (—22.329%) 2.08 (+30.23%) - -
g e , PEF 1.28 (—34.87%) 1.64 (428.12%) 1.38 (—36.15%) 2.15 (+34.81%) o S

Context-based ID Remapping
e reduces space by more than 36% on average — you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
: 30457’; 347548’; - 35734’; Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844 927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384 478 110
4 33862651 287 562 409 1642 783634 | .
5 43160518 295 701 337 1413870914 C++ implementation
Total | 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
Europarl YahooV2 GoogleV2
bpg us X query bpg us X query bpg Us X query
EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1.87 (—4.99%) 1.35 (+5.93%) 1.91 (—12.03%) 1.73 (+8.00%) 1.52 (—28.60%) 1.91 (—8.79%)
é Lg’ 'I-I‘ EF 1.67 (—15.30%) 1.58/(+23.86%) 1.89 (—12.02%) 2.05 (+28.07%) 1.91 (—10.24%) 3.03 (+24.61%)
§ % « PEF 1.53 (—22.36%) 1.61 \(+25.80%) 1.63 (—24.91%) 2.16 (+35.22%) 1.31 (—38.71%) 2.30 | (+9.88%)
E é CI\I‘ EF 1.46 (—25.62%) 1.60/+25.17%) 1.68 (—22.32%) 2.08 (+30.23%) — —
g e , PEF 1.28 (—34.87%) 1.64 (+28.12%) 1.38 (—36.15%) 2.15 (+34.81%) — —

Context-based ID Remapping
e reduces space by more than 36% on average — you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N Europarl YahooV2 GoogleV2 Test machine
1 304577; 34754872l 2435734:; Intel Xeon E5-2630 v3, 2.4 GHz
2 5192 260 53844927 665 752 080 193 GB of RAM, Linux 64 bits
3 18 908 249 187 639 522 7384478110
4 33862651 287 562 409 1642 783634 | .
5 43160518 295 701 337 1413870914 C++ implementation
Total 101428257 828223 677 11131242087 gcc 5.4.1 with the highest
gzip bpg 6.98 6.45 6.20 optimization setting
Europarl YahooV2 GoogleV2
bpg us X query bpg us X query bpg Us X query
EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1.87 (—4.99%) 1.35 (+5.93%) 1.91 (—12.03%) 1.73 (+8.00%) 1.52 (—28.60%) 1.91 (—8.79%)
é g 'I-I. EF 1.67 (—15.30%) 1.58/(+23.86%) 1.89 (—12.92%) 2.05 (+28.07%) 1.91 (—10.24%) 3.03 (+44.61%)
§ % « PEF 1.53 (—22.36%) 1.61(+25.80%) 1.63 (—24.01%) 2.16 (+35.22%) 1.31 (-38.71%) 2.30 | (+9.88%)
E é CIT EF 1.46 (—25.62%) 1.60/+25.17%) 1.68 (—22.32%) 2.08 (+30.23%) — —
8 2 o PEF 1.28 (—34.87%) 1.64|(+28.12%) 1.38 (—36.15%) 2.1D (+34.81%) — m—

Context-based ID Remapping
e reduces space by more than 36% on average — you will notice this!

® brings approximately 30% more time — will you notice this?

Experimental Analysis - Overall comparison

PEF-Trie
PEF-RTrie

BerkeleyLM C.
BerkeleyLM H.3
BerkeleyLM H.50
Expgram

KenLM T.

Marisa

Europarl

bpg

1.87
1.28

1.70

6.70 |

2.06

2.99

3.61

(- 8.89%
(432.90%

- 268.81%

(4-423.40%
7.96 |

)
)
)
)
)
(4-521.45%)
)
)
)
)

+326.03%

(410.18%)
(460.73%)

(4-60.119%)

(4-133.56%)

(4-93.099%)

(4181.669%)

us X query

1.35
1.64

2.83 (4+108.88%)
(4+72.70%)
0.97 (—28.46%)
(—=40.85%)
0.97 (-28.49%)
(—40.88%)
280 (4106.61%)
(470.82%)
1.28 (-5.47%)
(—~21.84%)
2.06 (+52.00%)

{ IR RTO0LN
1 -3.} (,lu 7t

YahooV?2

bpg

1.91
1.38

1.69

7.82

2.24 (4
3.44 (.,

3.81 (4

11.41%

$.22.04%

+£310.38%

+465.36%

9.37 (1.

us X query

1.73
2.15

3.48 (+101.84%)
113 (s sm
0.96 (11275
0.93 (1 15 42t
1.94 (1 a0

3.24 (4+87.06%)

GoogleV2

bpg

1.52
1.31

1.45 (—4.87%
(4+10.83%

9.24 (4507.7T9%

(4+608.07"

us X query

1.91
2.30

4.13 116 4

2.18 (+13.95%

RandLM

1.81

(~3.06%)

(441.41%)

4'39 (4-224.20%)

(4168.04%)

2.02

5.08 (4194.356%)

(4135.82%)

9.25 (+384.54

Experimental Analysis - Overall comparison

PEF-Trie
PEF-RTrie

BerkeleyLM C.
BerkeleyLM H.3
BerkeleyLM H.50
Expgram

KenLM T.

Marisa

Europarl

bpg

1.87
1.28

1.70 (—s8.80%
(432.90%
6-70 (+4-2568.81%
(4423.40%
7-96 (4-326.03%

(4-521.45%

2.06 (410.18%

(4-60.73%

2.99 (460.11%)

(4-133.56%)

3.61 (4-93.09%

(4-181.66%

Us X query

1.35
1.64

2.83 (4+108.88%)
(4+72.70%)
0.97 (-28.46%)
(~40.85%)
0.97 (-28.49%)
(—40.88%)
2.80 (+106.61%)
(4-70.82%)
1.28 (-5.47%)
(—21.84%)
2.06 (+52.00%)

f = . OF 3
1 13-} (,’! 7

YahooV?2

bpg

1.91
1.38

1.69 (-11.41%
(4-22.04%
7-82 (4310.38%
(4465.36%
9-37 (4-391.32%

LT -~y
+07T0. 87K

2.24 (417.36%)
(461.68%)

3'44 (4-80.39%)
(4-148.52%)

3.81 (400.60%

(4174.98%)

us X query

1.73
2.15

3.48 (+101.84%)
(4+61.70%)

1.13 { 34.356%)
(—47.41%)

0.96 (-44.27%)
{ 55.356%)

9.23 (+435.33%)
(4328 .87%)

1.94 (4+12.32%)
(=10.01%)

3.24 (+87.96%)

(+50.58%)

o7

GoogleV2

bpg

1.52
1.31

1.45 (-a.87%
(4+10.83%

9.24 (4507.79%

(40608, '

Us X query

1.91
2.30

4.13 +116.5

2.18 (+13.95%

RandLM

1.81 (—~3.06%

(441.41%

4'39 (4-224.20%)

(4168.04%)

202 (4+6.18%)

(4-46.299%)

5.08 (4194.356%)

(4135.82%)

9.25 (+384.54

Experimental Analysis - Overall comparison

PEF-Trie
PEF-RTrie

BerkeleyLM C.
BerkeleyLM H.3
BerkeleyLM H.50
Expgram

KenLM T.

Marisa

Europarl

bpg

1.87
1.28

1.70 (-8.89%
(432.90%
6.70
(4423.40%
7.96 |

(4521 45%

-2068.81%

+320.03°

2-06 (410.18%)

(4-60.73%

)
)
)
)
vy
o)
)
)
)

2.99 [2(;(3X-.<)

(4-133.566%
361 (4-93.00%

(4-181.669%

Us X query

1.35
1.64

283 (4 108.889%)
(4-72.709%)

0.97 |. 28.46%)

(10.856%)

0.97 |

(10.88%)
280 (4106.61%)

(4-70.82%)

1.28

(~21.84%)

2.06

f - . b OF \
4 13-) (,l‘ 7

28.49%)

" \
5.47%)

+52.00%)

YahooV?2

bpg

1.91
1.38

1.69

7.82

9.37 .

11.41%

405

04 %

+310.38%

369

+301.32%

" 174
+07T0. 87K

2.24 (4

(4-61.68%

3.44

(4-148.52

3.81 (

17.369%)

Ve
4
Qr N
iy

|2: (5;‘)

+99.609%)

(4174.989%)

us X query

1.73
2.15

3.48

(461.70%)

1.13 |

{ 17.41%)
0.96 (11275
9.23 (4435 335%)

(4-328 . 87%9%)

1.94 (.

(=10.01%)

3.24 (4+87.96%)

+101.84%)

34.356%)

12.32%)

GoogleV2

bpg

1.52
1.31

1.45

us X query

1.91
2.30

4.13 (+116.57

(4+10.83% $79.7T6%

9.24 (}:.II,’ 7% 218 113 95

(4+608.07% . 42%

RandLM

1.81

(—=3.06%

(441.41%

4.39 (+224.20%)

(4-168.049%)

2.02

(46.189%)

146, 2¢

i

)%)

5.08 (4

(4135.82%

194.35%)

9.25 (+384.54

Experimental Analysis - Overall comparison

PEF-Trie
PEF-RTrie

BerkeleyLM C.
BerkeleyLM H.3
BerkeleyLM H.50
Expgram

KenLM T.

Marisa

Europarl

bpg

1.87
1.28

1.70

(—~8.80%
(432.90%
6.70

(4423.40%
7.96 |

(4-521.45%

{-268.81%

+326.03%

2.06 (410.18%)

(4-60.73%

2.99 (2(;(3Xr-.)

(4-133.56%)

3.61 (4-93.09%

(4-181.66%

Us X query

2.83 (4108.88%)
0.97 |j 28 .11;".’:

(—40.85%)

0.97 |

(10.889%)

2.80 (+106.61%)

(470.82%)
@ (~5.47%)

(=21.84%)
2.06 (+52.00%)

f = . OF 3
1 13-} (,’! 7

28.49%)

YahooV?2

bpg

1.91
1.38

1.69

11.41%
(422.04%
7-82 (4310.38%

(4465.36%
9-37 (4301.32%

LT -~y
+07T0. 87K

2.24 (4

(4-61.68%)

3.44 [28(5L

3.81 |

(4174.98%)

17.36%)

7
/"l’ }
(4-148.52%)

+99.609%)

us X query

3.48

(4+61.70%)
1.13 (-34.35%)
(—47.41%)
0.96 (-44.27%)

9.23

(4-328.87%)
@ (412.32%)

(=10.01%)
324 (4-87.96%)

(+50.58%)

+101.84%)

(4-435.33%)

o7

GoogleV2

bpg

1.52
1.31

1.45 (-a.87%

Us X query

1.91
2.30

4.13 +116.5

(4+10.83% +79.76%

9.24 (1507705 2.18 (415059

(4608.07% . 42%

RandLM

1.81

(441.41%

(—~3.06%

4'39 (4-224.20%)

(4168.04%)

2.02

(46.18%

(4-46.29%

5.08 (4194.356%)

(4135.82%)

9.25 (+384.54

Experimental Analysis - Overall comparison

Europarl YahooV2 GoogleV2

bpg ps X query bpg ps X query bpg ps X query
PEF-Trie 1.87 1.91 1.52 1.91
PEF-RTrie 1.28 1.38 1.31 2.30

BerkeleyLM C. 1.70 (-s.89%) 2.83 2X 169 (-11.11%) 3.48 2X 1.45 (-4.87% 4.13 2X

(432.90%) 72.7T0% (4-22.04%)

BerkeleyLM H.3 6.70 (12nes1) 0.97
2.9%
BerkeleyLM H.50 7.96 52X 0.97

61 ‘ (410.83"
28.46%) 7.82 (431038 1.13 (-34.35%) 9.24 (437 2.18 (4+13.95
10.85%) 3-1 + (17.41%) J 5'5X

28.49%) 9.37 58X 096 (—~44.27%)

10.889%)

Expgram 206 (+10.1%) 280 (1 iy 294 (117.96%) 9.23 3. 5X - .

(4-60.73%) (
KenLM T. 2.99 2rr3X @ 5.47%) 3.44 ,2\(51X ‘ +12.32%) e S

(4133.566%) (=21.84%) (4-148.52%) (~10.01%)

Marisa 3.6) 2.06 (4+52.00%) 3.8 3.24 (+87.96%) — —

| 2.8X (+25.67%) | 2.7X (+50.58%)

RandLM 1.81 (-3.06%) 4.39 2 5X 202 (4+6.18%) 5.08 2 5X 2.60 (4+70.73% 9.25 3X

(441.41 ((4-46.299%) 135.8% (4-98.90%

Experimental Analysis - Overall comparison

PEF-Trie
PEF-RTrie

BerkeleyLM C.
BerkeleyLM H.3
BerkeleyLM H.50
Expgram

KenLM T.

Marisa

Europarl

bpg Us X query

1.87
1.28
1.70 (-s.890%) 2.83 2X

(4+32.90%)
0 (+258.81%) 0.97
2.5+

7.96 52X 0.97
2.06 (4+10.18%) 2.80 (4 2X

(4-60.739%) (O 82%0)

2.99 |:2“[3X$) @ (=5.47%)
(4 133, 56%) (—~21.84%)

2.06 (+52.00%)

3.61 (k03097 Py
2'8X (4+25.67%)

6.7

28.46%)

(
(—~40.85%)
(—28.49%)
{

40.88%)

YahooV?2

bpg

1.91
1.38

Us X query

1.69

7.82

9.37

2.24

3.44

3.81

(=11.41%)

1.13 |

(422.049%)

3.1+
5_8X 0.96
2 35X
I2:'51X) @ (4+12.32%)

(4148.52%) (=10.01%)

3.24 (LRT7 OG%)

2.7X e

34.35%)

(
(—47.41%)
(—44.27%)
(

55.35%)

GoogleV2

1.52
1.31

us X query

1.91
2.30

1.45

9.24

(—4.87%) 413
(410.83%)

5.5X

2.18

2X

RandLM

181 (—~3.069%) 439 25X

(441.419%)

2.02

(46.189%)

5.08 25X

L 46.29%)

2.60

(4-98.90%

3X

Experimental Analysis - Overall comparison

Europarl YahooV2 GoogleV2
bpg ps X query bpg ps X query bpg ps X query
PEF-Trie 1.87 1.91 1.52 1.91
PEF-RTrie 1.28 1.38 1.31 2.30
BerkeleyLM C. 1.70 (- ss0%) 2.83 (1 g 1.69 (-11.41%) 3.48 ; 145 (-a87%) 4.13
(432.90%) 2X (422.04%) 2X (4+10.83%) 2X
BerkeleyLM H.3 6.70 (+258. 0.97 (-28.46%) 7.82 : 1.13 (-34.35%) 9.24 ' 2.18 (4+13.95
2-5+ (—40.85%) 3-1 + (—47.41%) 5'5X 12
BerkeleyLM H.50 7.96 52X 0.97 (-28.49%) 9.37 5:8X 0.96 (-44.27%)
21,4 (—40.88%) : (—55.35%)
Expgram 2.06 (+10.18%) 2.80 - 2.24 (+17.36%) 9.23 (i — —
(4-60.73%) 2X , (+61.68%) 3.5X
KenLM T. 2.99 |12f,1(3X~7) @ (~5.47%) 3.44 lf2H|5$ %) @ (412.32%) - -
(4-133.56%) (—~21.84%) (4-148.52%) (~10.01%)
Marisa 3.61 (Loay 2.06 (+52.00%) 3.81 (404 3.24 (4+87.96%) —_ —
2.8X (45,87 2.7X L 50.5896)
RandLM 1.81 (-3.06%) 4.39 (ey2p= 202 (+6.18%) .08 2.60 (+70.73%) 9.25
(441.41%) 2'5X (4-46.29%) 2'5X (+98.90% 3X

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but more than twice smaller.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function

Europarl YahooV2
bpg ps X query bpg ps X query
PEF-Trie 3.48 0.25 3.64 0.38
PEF-RTrie 2.91 0.28 3.06 0.43
BerkeleyLM C. 6.50 (+87.03%) 1.19 (4371.79%) 6.39 (+75.72%) 1.08 (4+187.45%
(4+123.47%) (4322.22%) (4+109.21%) +152.17%
BGI’kG'GYLM H.3 9.36 (+169.17%) 0.84 (4233.63%) 8.75 (+140.41% 0.74)5
(4221.61%) (4198.58%) (4+186.23%) !
BerkeleyLM H.50 12.31 (+254.00%) 0.35 (+39.00%) 12.01 (+230.05%) 0.30 9
(4322.97%) (424.39%) (4-292.95% (29.28
Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 9.80 (+59.41%) 14.05 (+3637.90
(4+42.59%) (41264.67%) (4+89.79%) (+3179.16%
KenLM T. 4.58 (4+31.80%) 0.23 (-8.00%) 0.04 (43ss3%) 039 (44.57%
(4+57.48%) (~17.66%) (+64.93%) (—8.26%
RandLM 4.01 (+15.42%) 6.48 (+2477.95%) 3.86 (+6.03%) 6.20 (+1561.20%
(+37.90%) (L2207, 12%) (126.249%) (11357 335

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function

Europarl YahooV2
bpg ps X query bpg ps X query
PEF-Trie 3.48 0.25 3.64 0.38
PEF-RTrie 2.91 0.28 3.06 0.43
BerkeleyLM C. 6.50 (+87.03%) 1.19 (4371.79%) 6.39 (+75.72%) 1.08 (+187.45%
(4123.47%) (4+322.22%) (4+109.21%) +152.17%
BGI’kG'GYLM H.3 9.36 (+169.17%) 0.84 (4233.63%) 8.75 (+140.41% 0.74)5
(4221.61%) (4+198.58%) (4186.23%) 71
BkaG'GYLM H50 12.31 (+254.00%) 0.35 (+439.00%) 12.01 (+230.05%) 0.30 i
(4322.97%) (424.39%) (4292.95% (—29.28
Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 0.80 (4+s0.41%) 14.05 (+3637.90
(4-42.599%) (4. 1264.679%) (489 799%) (43179 16%
KenLM T. 4.58 (+31.80%) 0.23 (—~8.00%) 9.04 (43s8.53%) 0.39 (4+4.57%
(4-67.48%) (~17.66%) (464.93%) (—8.26%
RandLM 4.01 (+15.42%) 6.48 (+2477.95%) 3.86 (+6.03%) 6.2 (+1561.20%
(4+37.90%) (42207 129%) (126 24%) (41357339

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function

Europarl YahooV2
bpg ps X query bpg ps X query
PEF-Trie 3.48 0.25 3.64 0.38
PEF-RTrie 2.91 0.28 3.06 0.43
BerkeleyLM C. 6.50 (+87.03%) 1.19 (4371.79%) 6.39 (+75.72% 1.08 (4+187.45%
(4123.47%) (4+322.22%) (+109.21% +152.17%
Bél’k&'ﬁ)’LM H.3 9.36 (+169.17%) 0.84 (4233.63%) 8.75 (+140.41% 0.74
(4+221.61%) (4+198.58%) (+186.23% +71.75%
BGfk&'GYLM H.50 12.31 (+254.00%) 0.35 (+39.00%) 12.01 (+230.05%) 0.30
(4322.97%) (424.39%) (4292.95% (—29.28
Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 9.80 (+59.41%) 14.05 (+3637.90
(442.59%) (41264.67%) (4-89.79%) (43179.16%
KenLM T. 4.58 +60% 0.23 (-s.00%) 5.04 +65% 039 (44.57%
(4567.48%) (—~17.669%) (4-64.93%) (~8.26%
RandLM 4.01 (4+15.42%) 6.48 (4+2477.95%) 3.86 +6.03%) 6.25 (+1561.20%
(437.90%) (42207.12%) (426.24%) (4+1357.33%

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function

Europarl YahooV2
bpg ps X query bpg ps X query
PEF-Trie 3.48 0.25 3.64 0.38
PEF-RTrie 2.91 0.28 3.06 0.43
BerkeleyLM C. 6.50 (+87.03%) 1.19 (4371.79%) 6.39 (+75.72%) 1.08 (+187.45%
(4123.47%) (4-322.22%) (4+109.21%) +1562.17%
BGI’kG'GYLM H.3 9.36 (+169.17%) 0.84 (4233.63%) 8.75 (+140.41% 0.74)5
(4221.61%) (4198.58%) (4+186.23%) !
BkaG'GYLM H.50 12.31 (4+254.00%) 0.35 (+39.00%) 12.01 (4230.05%) 0.30 9
(4322.97%) (424.39%) (4-292.95% (29.28%
Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 0.80 (4s0.41%) 14.05 (+3637.00%

(4+42.59%) (41264.67%) (4+89.79%) (4+3179.16%
KenLM T. 4.58 4;60«0/0 (—8.00%) 5.04 +650/° (4+4.57%
(4+57.48%) (464.93%)

(~17.66%) 64.93%) (~8.26

RandLM 4.01 (+15.42%) 6.48 (+2477.95%) 3.86 (+6.03%) 6.2 (+1561.20%

(437.90%) (4-2207.129%) (4-26.24%) (41357.33%

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

» Probabilities and backoffs are quantized (binning method) using
any number of bits from 2 to 32
« Stateful scoring function

Europarl YahooV2

bpg ps X query bpg ps X query
PEF-Trie 3.48 3.64 0.38
PEF-RTrie 2.91 3.06 0.43
BerkeleyLM C. 6.50 (i 1.19 6.39 1.08 (i
’ 2X 4X 2X 2.7X

BerkeleyLM H.3 9.36 \‘ 3X 0.84 3'3X 8.75 25X 0.74 X
BerkeleyLM H.50 12.31 4X 0.35 +25°/° 12.01 3_5X 0.30 (-19.30%

Expgram 4.15 +40% 3.83 1 5X 5.80 +80°/o 14.05 36X
e T a5 460% @) o 50i 4e5% ()
RandLM 101 agep 648 oBX 386 Lop% 5% 16X

¢ Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
e As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

https://aithub.com/jermp/tongrams

L] jermp / tongrams @uUnwatch~ 1 Star 6 YFork 0
<> Code ') Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights «
The C++ library implementing the compressed data structures described in the paper "Efficient Data Structures for Edit

Massive N-Gram Datasets", by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017.

trie elias-fano ngrams Manage topics
D 18 commits ¥ 1 branch © 1release A2 1 contributor

Branch: master « New pull request Create new file Upload files Find file Clone or download ~
:‘ jermp added compiler version to README Latest commit b80e241 on Jun 21
= emphf @ a18574f added emphf submodule 3 months ago
B sequences added new select-in-word algorithm; CMakeLists.txt updated; README.md... 2 months ago
Bl sorters code imported 3 months ago
B test code imported 3 months ago
Bl test_data code imported 3 months ago
BB utils added new select-in-word algorithm; CMakeLists.txt updated; README.md... 2 months ago

Bl vectors code imported 3 months ago

https://github.com/jermp/tongrams

https:/qgithub.com/jermp/ion

tongrams - Tons of N-Grams

tongrams is @ C++ library implementing the compressed data structures described in the paper Efficient Data
Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR
2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency
counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and
compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The
context-based remapping of such identifiers (Subsection 3.2 of [1]) permits to encode a word following a context of
fixed length k, i.e., its preceding k words, with an integer whose value is bounded by the number of words that follow
such context and not by the size of the whole vocabulary (number of uni-grams). Additionally to the trie data
structure, the library allows to build models based on minimal perfect hashing (MPH), for constant-time retrieval
(Section 4 of [1]).

When used to store frequency counts, the data structures support a lookup() operation that returns the number of
occurrences of the specified N-gram. Differently, when used to store probabilities and backoffs, the data structures
implement a score() function that, given a text as input, computes the perplexity score of the text.

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some
examples.

Table of contents

« Building the code

e |nput data format

« Building the data structures

e Tests

* Benchmarks

» Statistics

» Authors

« Bibliography 9

https://github.com/jermp/tongrams

https:/qgithub.com/jermp/ion

tongrams - Tons of N-Grams

tongrams is @ C++ library implementing the compressed data structures described in the paper Efficient Data
Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR
2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency
counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and

compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The
context-based remapping of such identifiers (Subsection 3.2 g
fixed length k, i.e., its preceding k words, with an integer who OI‘I-gOi ng WOI‘k
such context and not by the size of the whole vocabulary (nu
structure, the library allows to build models based on minima
(Section 4 of [1]).

e Parallel and scalable estimation of Kneser-Ney
When used to store frequency counts, the data structures suj |ang Uage models

occurrences of the specified N-gram. Differently, when used , . -
« Python wrapper, installable through pip utility

implement a score() function that, given a text as input, co

This guide is meant to provide a brief overview of the library and To ilflusirate s runtionalities through some
examples.

Table of contents

« Building the code

e |Input data format

« Building the data structures

e Tests

* Benchmarks

» Statistics

» Authors

« Bibliography 9

https://github.com/jermp/tongrams

https:/qgithub.com/jermp/ion

tongrams - Tons of N-Grams

tongrams is @ C++ library implementing the compressed data structures described in the paper Efficient Data
Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR
2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency
counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and
compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The
context-based remapping of such identifiers (Subsection 3.2 g
fixed length k, i.e., its preceding k words, with an integer who OI‘I-gOi ng WOI‘k
such context and not by the size of the whole vocabulary (nu
structure, the library allows to build models based on minima
(Section 4 of [1]).

e Parallel and scalable estimation of Kneser-Ney
When used to store frequency counts, the data structures suj |ang Uage mOdels

occurrences of the specified N-gram. Differently, when used , . -
« Python wrapper, installable through pip utility

implement a score() function that, given a text as input, co

This guide is meant to provide a brief overview of the library and o illusirate [{s Tuntionaliies throudl
examples.

Future work

Table of contents

» Building the code _ _ :
« Input data format e Optimal ID-assignment for Elias-Fano” (NP-hard

» Building the data structures prOblem)
» Tests Make queries (especially perplexity) even faster

* Benchmarks
» Statistics

» Authors

» Bibliography

https://github.com/jermp/tongrams

Proudly supported by a

S|G|R Student Travel Grant

ial Inter tG p
onlnf ooooooooooooooo

Thanks for your attention,

time, patience!

Any questions?

10

