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N typically ranges from 1 to 5.

2

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11 
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.
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Store massive N-grams datasets in compressed space such 
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N-grams - Challenge

Store massive N-grams datasets in compressed space such 
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count 
(integer)

Active field of research 
Many software libraries 

• KenLM [Heafield, WMT 2011] 
• BerkeleyLM [Pauls and Klein, ACL 2011] 
• ExpGram [Watanabe at el., IJCNLP 2009] 
• IRSTLM [Federico et al., ACL 2008] 
• RandLM [Talbot and Osborne, ACL 2007] 
• SRILM [Stolcke, INTERSPEECH 2002]

probability/backoff 
weight 

(floating point)

For backoff-interpolated 
models, such as Kneser-Ney.

hash + time 
   space-

trie + space 
   time-
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1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8
Elias-Fano Tries

One NextGEQ per level
Constant-time random Access

We need an encoder for integer 
sequences, supporting fast 

random Access.
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Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation 
gcc 5.4.1 with the highest 

optimization setting
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Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine 
Intel Xeon E5-2630 v3, 2.4 GHz  
193 GB of RAM, Linux 64 bits

C++ implementation 
gcc 5.4.1 with the highest 

optimization setting

will you notice this?• brings approximately 30% more time
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Experimental Analysis - Overall comparison

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X
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• Probabilities and backoffs are quantized (binning method) using 
any number of bits from 2 to 32 

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.
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Experimental Analysis - Perplexity

Reversed Elias-Fano Tries 

• Probabilities and backoffs are quantized (binning method) using 
any number of bits from 2 to 32 

• Stateful scoring function

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

+60% +65%

2X 2X4X 2.7X

+40% +80%15X 36X

+30% +20%25X 16X

3X 2.5X
4X 3.5X

3.3X 2X
+25%
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• Parallel and scalable estimation of Kneser-Ney 
language models 

• Python wrapper, installable through pip utility
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On-going work

• Parallel and scalable estimation of Kneser-Ney 
language models 

• Python wrapper, installable through pip utility

Future work

• Optimal ID-assignment for Elias-Fano? (NP-hard 
problem) 

• Make queries (especially perplexity) even faster

https://github.com/jermp/tongrams
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Thanks for your attention, 
time, patience!

Any questions?


