Efficient Data Structures for Massive N-Gram Datasets

Giulio Ermanno Pibiri
University of Pisa and ISTI-CNR
Pisa, Italy
giulio.pibiri@di.unipi.it

Rossano Venturini
University of Pisa and ISTI-CNR
Pisa, Italy
rossano.venturini@unipi.it

The 40-th ACM SIGIR Conference on Research and Development in Information Retrieval

Tokyo, Japan

10/08/2017

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

Google Books

$\approx 6 \%$ of the books ever published

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

Google Books

$\approx 6 \%$ of the books ever published

N	number of grams
1	$24,359,473$
2	$667,284,771$
3	$7,397,041,901$
4	$1,644,807,896$
5	$1,415,355,596$

More than 11 billion grams.

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values

N -grams - Challenge

Store massive N-grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
frequency count
(integer)

N -grams - Challenge

Store massive N-grams datasets in compressed space such that given a pattern, we can return its value efficiently.

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.

Efficient map

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
frequency count (integer)
probability/backoff weight (floating point)

$$
\begin{array}{ll}
\text { hash } & + \text { time } \\
& =\text { space }
\end{array}
$$

Efficient map

N -grams - Challenge

Store massive N-grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
probability/backoff weight (floating point) models, such as Kneser-Ney.

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.

N-Gram values

frequency count
(integer)
probability/backoff
weight
(floating point)
For backoff-interpolated models, such as Kneser-Ney.

Efficient map

> + time
> - space
trie

+ space
- time
- KenLM [Heafield, WMT 2011]
- BerkeleyLM [Pauls and Klein, ACL 2011]
- ExpGram [Watanabe at el., IJCNLP 2009]

Active field of research
Many software libraries

- IRSTLM [Federico et al., ACL 2008]
- RandLM [Talbot and Osborne, ACL 2007]
- SRILM [Stolcke, INTERSPEECH 2002]

Trie Indexing

Trie Indexing

$$
\begin{array}{l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array}
$$

A	A	A	B	B	D	D	D
A	B	D	B	C	A	C	D

A	A	A	A	A	B	B	D	D	D	D
A	B	B	B	D	B	B	A	A	A	D
B	A	B	D	A	A	C	A	B	D	A

Trie Indexing

Trie Indexing

\[

\]

\mathbf{B}	\mathbf{A}	\mathbf{B}	\mathbf{D}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{B}	\mathbf{D}	\mathbf{A}

Trie Indexing

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{D} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array}
\end{aligned}
$$

Trie Indexing

0							1

1	0	1	3	0	0	2	0	1	3	0

Trie Indexing

Trie Indexing

Trie Indexing

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Elias-Fano Tries

One NextGEQ per level

Constant-time random Access

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

u / n by varying context-length k

	k	3 -grams	4-grams	5-grams
	0	2404	2782	2920
	1	213 (×11.28)	480 ($\times 5.79$)	646 ($\times 4.52$)
	2	2404	48 (×57.95)	101 ($\times 28.91$)
	0	7350	7197	7417
	1	753 (×9.76)	1461 (×4.93)	1963 (×3.78)
	2	7350	104 (×69.20)	249 ($\times 29.79$)
$\begin{aligned} & \overline{\mathrm{N}} \\ & \text { Eion } \\ & \text { oio } \end{aligned}$	0	4050	6631	6793
	1	1025 (×3.95)	2192 (×3.03)	2772 ($\times 2.45$)
	2	4050	221 ($\times 30.00$)	503 ($\times 13.50$)

Context－based ID Remapping

Observation：the number of words following a given context is small． High－level idea：map a word ID to the position it takes within its sibling IDs （the IDs following a context of fixed length k ）．
－Millions of unigrams．
－Height 5：longer contexts．
－The number of siblings has a funnel－shaped distribution．

u / n by varying context－length k

	k	3 －grams	4－grams	5－grams
$\begin{aligned} & \text { 들 } \\ & \text { o⿳亠丷⿵冂⿱十口刂 } \end{aligned}$	0	2404	2782	2920
	1	213 （ $\times 11.28$ ）	480 （ $\times 5.79)$	646 （ $\times 4.52$ ）
	2	2404	48 （ $\times 57.95$ ）	101 （×28．91）
$\begin{aligned} & \text { N } \\ & \text { o } \\ & \stackrel{\circ}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	0	7350	7197	7417
	1	753 （×9．76）	1461 （x4．93）	1963 （×3．78）
	2	7350	$104(\times 69.20)$	249 （ $\times 29.79$ ）
	0	4050	6631	6793
	1	1025 （×3．95）	2192 （×3．03）	2772 （ $\times 2.45$ ）
	2	4050	221 （ $\times 30.00$ ）	503 （ $\times 13.50$ ）

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits
C++ implementation gcc 5.4.1 with the highest optimization setting

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits
C++ implementation gcc 5.4.1 with the highest optimization setting

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	$1.52{ }_{(-28.60 \%)}$	1.91 (-8.79\%)
令	1.67 (-15.30\%)	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	$2.05{ }_{(+28.07 \%)}$	1.91 (-10.24\%)	$3.03{ }_{(+44.61 \%)}$
	1.53 (-22.36\%)	$1.61{ }_{(+25.89 \%)}$	1.63 (-24.91\%)	2.16 (+35.22\%)	$1.31{ }_{(-38.71 \%)}$	2.30 (+9.88\%)
荌 $\sum_{\sim}^{\sim} \sim E F$	1.46 (-25.62\%)	$1.60{ }_{(+25.17 \%)}$	1.68 (-22.32\%)	2.08 (+30.23\%)	-	-
O- PEF	1.28 (-34.87\%)	$1.64{ }_{(+28.12 \%)}$	$1.38{ }_{(-36.15 \%)}$	$2.15{ }_{(+34.81 \%)}$	-	-

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	$1.52{ }_{(-28.60 \%)}$	1.91 (-8.79\%)
斶	$1.67{ }_{(-15.30 \%)}$	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	2.05 (+28.07\%)	1.91 (-10.24\%)	$3.03{ }_{(+44.61 \%)}$
	1.53 (-22.36\%)	1.61 (+25.89\%)	1.63 (-24.91\%)	2.16 (+35.22\%)	$1.31(-38.71 \%)$	2.30 (+9.88\%)
	$1.46{ }_{(-25.62 \%)}$	$1.60{ }_{(+25.17 \%)}$	$1.68{ }_{(-22.32 \%)}$	2.08 (+30.23\%)	-	-
O- PEF	1.28 (-34.87\%)	1.64 (+28.12\%)	$1.38{ }_{(-36.15 \%)}$	2.15 (+34.81\%)	-	-

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

		Europarl			YahooV2		GoogleV2	
		bpg		$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
	EF	1.97		1.28	2.17	1.60	2.13	2.09
	PEF	1.87	(-4.99\%)	1.35 (+5.93\%)	1.91 (-12.03\%)	1.73 (+8.00\%)	1.52 (-28.60\%)	1.91 (-8.79\%)
		1.67	(-15.30\%)	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	2.05 (+28.07\%)	1.91 (-10.24\%)	$3.03{ }_{(+44.61 \%)}$
	PEF	1.53	(-22.36\%)	1.61 (+25.89\%)	1.63 (-24.91\%)	2.16 (+35.22\%)	1.31 (-38.71\%)	2.30 (+9.88\%)
	EF	1.46	(-25.62\%)	$1.60{ }_{(+25.17 \%)}$	1.68 (-22.32\%)	$2.08{ }_{(+30.23 \%)}$	-	-
		1.28	(-34.87\%)	$1.64{ }_{(+28.12 \%)}$	1.38 (-36.15\%)	2.15 (+34.81\%)	-	-

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest optimization setting

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query			bpg	$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
	EF	1.97		1.28		2.1		1.60		2.13		2.09	
	PEF	1.87	(-4.99\%)	1.35	(+5.93\%)		$1{ }_{(-12.03 \%)}$	1.73	(+8.00\%)	1.52	(-28.60\%)	1.91	(-8.79\%)
		1.67	(-15.30\%)	1.58	(+23.86\%)		$9_{(-12.92 \%)}$	2.05	(+28.07\%)	1.91	(-10.24\%)	3.03	(+44.61\%)
	PEF	1.53	(-22.36\%)	1.61	(+25.89\%)		(-24.91\%)	2.16	(+35.22\%)	1.31	(-38.71\%)	2.30	(+9.88\%)
	EF	1.46	(-25.62\%)	1.60	(+25.17\%)		(-22.32\%)	2.08	(+30.23\%)	-		-	
	PEF	1.28	(-34.87\%)	1.64	(+28.12\%)		(-36.15\%)	2.15	(+34.81\%)	-		-	

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	1.52 (-28.60\%)	1.91 (-8.79\%)
嵒	$1.67{ }_{(-15.30 \%)}$	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	$2.05{ }_{(+28.07 \%)}$	$1.91{ }_{(-10.24 \%)}$	$3.03{ }^{(+44.61 \%)}$
¢ ${ }_{\text {¢ }}$	1.53 (-22.36\%)	1.61 (+25.89\%)	1.63 (-24.91\%)	$2.16{ }_{(+35.22 \%)}$	1.31 (-38.71\%)	$2.30{ }_{(+9.88 \%)}$
荌 $\sum_{\sim}^{\sim} \sim \mathrm{NF}$	$1.46{ }_{(-25.62 \%)}$	$1.60{ }_{(+25.17 \%)}$	$1.68{ }_{(-22.32 \%)}$	2.08 (+30.23\%)	-	-
O- PEF	1.28 (-34.87\%)	1.64 (+28.12\%)	1.38 (-36.15\%)	$2.15{ }_{(+34.81 \%)}$	-	-

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!
- brings approximately 30% more time
\longrightarrow will you notice this?

Experimental Analysis - Overall comparison

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		1.87		1.35		1.91		1.73		1.52		1.91	
		1.28		1.64		1.38		2.15		1.31		2.30	
BerkeleyLM	C.	1.70	(-8.89\%)	2.83	(+108.88\%)	1.69	(-11.41\%)	3.48	(+101.84\%)	1.45	(-4.87\%)	4.13	(+116.57\%)
			(+32.90\%)		(+72.70\%)		(+22.04\%)		(+61.70\%)		(+10.83\%)		(+79.76\%)
BerkeleyLM	H. 3	6.70	(+258.81\%)	0.97	(-28.46\%)	7.82	(+310.38\%)	1.13	(-34.35\%)	9.24	(+507.79\%)	2.18	(+13.95\%)
			(+423.40\%)		(-40.85\%)		(+465.36\%)		(-47.41\%)		(+608.07\%)		(-5.42\%)
BerkeleyLM	H. 50	7.96	(+326.03\%)	0.97	(-28.49\%)	9.37	(+391.32\%)	0.96	(-44.27\%)	-		-	
			(+521.45\%)		(-40.88\%)		(+576.87\%)		(-55.35\%)				
Expgram		2.06	(+10.18\%)	2.80	(+106.61\%)	2.24	(+17.36\%)	9.23	(+435.33\%)	-		-	
			(+60.73\%)		(+70.82\%)		(+61.68\%)		(+328.87\%)				
KenLM T.		2.99	(+60.11\%)	1.28	(-5.47\%)	3.44	(+80.39\%)	1.94	(+12.32\%)	-		-	
			(+133.56\%)		(-21.84\%)		(+148.52\%)		(-10.01\%)				
Marisa		3.61	(+93.09\%)	2.06	(+52.00\%)	3.81	(+99.60\%)	3.24	(+87.96\%)	-		-	
			(+181.66\%)		(+25.67\%)		(+174.98\%)		(+50.58\%)				
RandLM		1.81	(-3.06\%)	4.39	(+224.20\%)	2.02	(+6.18\%)	5.08	(+194.35\%)	2.60	(+70.73\%)	9.25	(+384.54\%)
			(+41.41\%)		(+168.04\%)		(+46.29\%)		(+135.82\%)		(+98.90\%)		(+302.19\%)

Experimental Analysis - Overall comparison

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		1.87		1.35		1.91		1.73		1.52		1.91	
		1.28		1.64		1.38		2.15		1.31		2.30	
BerkeleyLM	C.	1.70	(-8.89\%)	2.83	(+108.88\%)	1.69	(-11.41\%)	3.48	(+101.84\%)	1.45	(-4.87\%)	4.13	(+116.57\%)
			(+32.90\%)		(+72.70\%)		(+22.04\%)		(+61.70\%)		(+10.83\%)		(+79.76\%)
BerkeleyLM	H. 3	6.70	(+258.81\%)	0.97	(-28.46\%)	7.82	(+310.38\%)	1.13	(-34.35\%)	9.24	(+507.79\%)	2.18	(+13.95\%)
			(+423.40\%)		(-40.85\%)		(+465.36\%)		(-47.41\%)		(+608.07\%)		(-5.42\%)
BerkeleyLM	H. 50	7.96	(+326.03\%)	0.97	(-28.49\%)	9.37	(+391.32\%)	0.96	(-44.27\%)	-		-	
			($+521.45 \%$)		(-40.88\%)		(+576.87\%)		(-55.35\%)				
Expgram		2.06	(+10.18\%)	2.80	(+106.61\%)	2.24	(+17.36\%)	9.23	(+435.33\%)	-		-	
			($+60.73 \%$)		($+70.82 \%$)		($+61.68 \%$)		($+328.87 \%$)				
KenLM T.		2.99	($+60.11 \%$)	1.28	(-5.47\%)	3.44	($+80.39 \%$)	1.94	(+12.32\%)	-		-	
			($+133.56 \%$)		(-21.84\%)		(+148.52\%)		(-10.01\%)				
Marisa		3.61	(+93.09\%)	2.06	(+52.00\%)	3.81	(+99.60\%)	3.24	(+87.96\%)	-		-	
			($+181.66 \%$)		(+25.67\%)		(+174.98\%)		(+50.58\%)				
RandLM		1.81	(-3.06\%)	4.39	(+224.20\%)	2.02	(+6.18\%)	5.08	(+194.35\%)	2.60	(+70.73\%)	9.25	(+384.54\%)
			(+41.41\%)		(+168.04\%)		(+46.29\%)		(+135.82\%)		(+98.90\%)		(+302.19\%)

Experimental Analysis - Overall comparison

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		1.87		1.35		1.91		1.73		1.52		1.91	
		1.28		1.64		1.38		2.15		1.31		2.30	
BerkeleyLM	C.	1.70	(-8.89\%)	2.83	(+108.88\%)	1.69	(-11.41\%)	3.48	(+101.84\%)	1.45	(-4.87\%)	4.13	(+116.57\%)
			(+32.90\%)		(+72.70\%)		(+22.04\%)		(+61.70\%)		(+10.83\%)		(+79.76\%)
BerkeleyLM	H. 3	6.70	(+258.81\%)	0.97	(-28.46\%)	7.82	(+310.38\%)	1.13	(-34.35\%)	9.24	(+507.79\%)	2.18	(+13.95\%)
			(+423.40\%)		(-40.85\%)		(+465.36\%)		(-47.41\%)		(+608.07\%)		(-5.42\%)
BerkeleyLM	H. 50	7.96	(+326.03\%)	0.97	(-28.49\%)	9.37	(+391.32\%)	0.96	(-44.27\%)	-		-	
			($+521.45 \%$)		(-40.88\%)		(+576.87\%)		(-55.35\%)				
Expgram		2.06	(+10.18\%)	2.80	(+106.61\%)	2.24	(+17.36\%)	9.23	(+435.33\%)	-		-	
			($+60.73 \%$)		($+70.82 \%$)		($+61.68 \%$)		($+328.87 \%$)				
KenLM T.		2.99	2.3X	1.28	(-5.47\%)	3.44	2.5X	1.94	(+12.32\%)	-		-	
			($+133.56 \%$)		(-21.84\%)		(+148.52\%)		(-10.01\%)				
Marisa		3.61	(+93.09\%)	2.06	(+52.00\%)	3.81	(+99.60\%)	3.24	(+87.96\%)	-		-	
			($+181.66 \%$)		(+25.67\%)		(+174.98\%)		(+50.58\%)				
RandLM		1.81	(-3.06\%)	4.39	(+224.20\%)	2.02	(+6.18\%)	5.08	(+194.35\%)	2.60	(+70.73\%)	9.25	(+384.54\%)
			(+41.41\%)		(+168.04\%)		(+46.29\%)		(+135.82\%)		(+98.90\%)		(+302.19\%)

Experimental Analysis - Overall comparison

Experimental Analysis - Overall comparison

Experimental Analysis - Overall comparison

		Europarl		YahooV2			GoogleV2			
		bpg	$\mu \mathrm{s} \times$ query	bpg		$\mu \mathrm{s} \times$ query	bpg		$\mu \mathrm{s} \times$	query
PEF-Trie PEF-RTrie		$\begin{aligned} & 1.87 \\ & 1.28 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.64 \end{aligned}$	$\begin{aligned} & 1.91 \\ & 1.38 \end{aligned}$		$\left.\begin{array}{l} 1.73 \\ 2.15 \end{array}\right)$	$\begin{aligned} & 1.52 \\ & 1.31 \end{aligned}$		$\begin{aligned} & 1.91 \\ & 2.30 \end{aligned}$	
BerkeleyLM	C.	$\begin{array}{cc} 1.70 & (-8.89 \%) \\ & (+32.90 \%) \end{array}$	$\begin{array}{r} 2.83\left(+\underset{(+72.70 \%)}{2} \mathbf{X}^{8 \%)}\right. \end{array}$	1.69	$\begin{aligned} & \hline(-11.41 \%) \\ & (+22.04 \%) \end{aligned}$	$3.48{ }_{(+61.70 \%)}$	1.45	$\begin{array}{r} (-4.87 \%) \\ (+10.83 \%) \end{array}$	4.13	${ }^{(+1} \mathbf{2} \mathbf{X}^{(+7)}$
BerkeleyLM	H. 3	$6.70(\mathbf{2 . 5} \div$	$\begin{array}{r} 0.97 \\ (-28.46 \%) \\ (-40.85 \%) \end{array}$	7.82	$3.1 \div$	$1.13 \begin{gathered} (-34.35 \%) \\ (-47.41 \%) \end{gathered}$	9.24	$5.5 X$	2.18	$\begin{gathered} (+13.95 \%) \\ (-5.42 \%) \end{gathered}$
BerkeleyLM	H. 50	$7.96(\mathbf{5 . 2 X}$	$\begin{array}{rr} 0.97 & (-28.49 \%) \\ (-40.88 \%) \end{array}$		$5.8 X$	$\begin{array}{rr} 0.96 & (-44.27 \%) \\ (-55.35 \%) \end{array}$	-		-	
Expgram		2.06 (+10.18\%)	$2.80{ }^{(+1} \mathbf{X}^{\%)}$		(+17.36\%)	9.23 3.5X	-		-	
KenLM T.		$2.99 \underset{(+133.56 \%)}{\mathbf{2 . 3 X}}$	1.28		$2.5 X$	1.94 $(+12.32 \%)$ -10.01%	-		-	
Marisa		$3.61 \text { 2.8X }$	$2.06 \begin{array}{r} (+52.00 \%) \\ (+25.67 \%) \end{array}$	3.81	$2.7 X$	$3.24 \begin{array}{r} (+87.96 \%) \\ (+50.58 \%) \end{array}$	-		-	
RandLM		$1.81 \begin{aligned} & (-3.06 \%) \\ & \\ & (+41.41 \%) \end{aligned}$	$4.39\left(2.5 X^{2}\right.$		$\begin{array}{r} (+6.18 \%) \\ (+46.29 \%) \end{array}$	$5.08\left(\underset{\left(13.5 X^{2}\right.}{ }\right.$	2.60	$\begin{aligned} & (+70.73 \%) \\ & (+98.90 \%) \end{aligned}$	9.25	$3 X$

Experimental Analysis - Overall comparison

	Europar		YahooV2		GoogleV2		
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg		$\mu \mathrm{s} \times$ query
PEF-Trie PEF-RTrie	$\begin{aligned} & 1.87 \\ & 1.28 \end{aligned}$	1.35 1.64	$\begin{aligned} & 1.91 \\ & 1.38 \end{aligned}$	$\left(\begin{array}{l}1.73 \\ 2.15\end{array}\right.$	1.52 1.31		$\begin{aligned} & 1.91 \\ & 2.30 \end{aligned}$
BerkeleyLM C.	$\begin{array}{cc} 1.70 & (-8.89 \%) \\ & (+32.90 \%) \end{array}$	$\underbrace{2.83 \mathbf{X}^{3 \%)}}_{(+72.70 \%)}$	$1.69 \begin{aligned} &(-11.41 \%) \\ &(+22.04 \%) \end{aligned}$	$3.48\left(+\mathbf{2 X}^{4 \%}\right)$	1.45	$\begin{array}{r} (-4.87 \%) \\ (+10.83 \%) \end{array}$	$4.13{ }_{(+1} \mathbf{2} X^{\prime}$
BerkeleyLM H. 3	$6.70(\mathbf{2 5 8} 5$	$\begin{aligned} & 0.97(-28.46 \%) \\ &(-40.85 \%) \end{aligned}$		$1.13_{(-34.35 \%)}^{(-47.41 \%)}$		$5.5 X$	$2.18 \underset{(-5.42 \%)}{(+13.95 \%)}($
BerkeleyLM H. 50	$7.96 \underset{(+521.45 \%)}{5.2 X}$	$\begin{aligned} 0.97 & (-28.49 \%) \\ & (-40.88 \%) \end{aligned}$	$9.37(5.8 \mathbf{5}$	$\begin{array}{rr} 0.96 & (-44.27 \%) \\ (-55.35 \%) \end{array}$	-		-
Expgram	2.06 (+10.18\%)	$2.80{ }^{(+1} \mathbf{X}^{\%)}$	2.24 (+17.36\%)	9.23 3.5X	-		-
KenLM T.	$2.99 \underset{(+133.56 \%)}{\mathbf{2} .3 X}$	1.28	$3.44 \quad 2.5 X$	1.94 (-10.01%	-		-
Marisa	$3.61 \text { 2.8X }$	$2.06 \begin{array}{r} (+52.00 \%) \\ (+25.67 \%) \end{array}$	$3.81 \text { 2.7X }$	$\begin{aligned} 3.24 \underset{(+57.96 \%)}{(+50.58 \%)} \\ \end{aligned}$	-		-
RandLM	$\begin{array}{ll} 1.81 & (-3.06 \%) \\ & (+41.41 \%) \end{array}$	$4.39\left(2.5 X^{2}\right.$	$2.02 \begin{array}{r} (+6.18 \%) \\ \\ (+46.29 \%) \end{array}$	$5.08\left(\underset{\left(2.5 X^{\prime}\right.}{ }\right.$	2.60	$\begin{aligned} & (+70.73 \%) \\ & (+98.90 \%) \end{aligned}$	$\begin{gathered} \left.9.25_{(+302} \mathbf{X}^{\%}\right) \\ \hline(+3) \end{gathered}$

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but more than twice smaller.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

- Probabilities and backoffs are quantized (binning method) using any number of bits from 2 to 32
- Stateful scoring function

		Europarl				YahooV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		3.48		0.25		3.64		0.38	
		2.91		0.28		3.06		0.43	
BerkeleyLM	C.	6.50	(+87.03\%)	1.19	(+371.79\%)	6.39	(+75.72\%)	1.08	(+187.45\%)
			(+123.47\%)		(+322.22\%)		(+109.21\%)		(+152.17\%)
BerkeleyLM	H. 3	9.36	(+169.17\%)	0.84	(+233.63\%)	8.75	(+140.41\%)	0.74	(+95.77\%)
			(+221.61\%)		(+198.58\%)		(+186.23\%)		(+71.75\%)
BerkeleyLM	H. 50	12.31	(+254.00\%)	0.35	(+39.00\%)	12.01	(+230.05\%)	0.30	(-19.39\%)
			(+322.97\%)		(+24.39\%)		(+292.95\%)		(-29.28\%)
Expgram		4.15	(+19.33\%)	3.83	(+1424.87\%)	5.80	(+59.41\%)	14.05	(+3637.90\%)
			(+42.59\%)		(+1264.67\%)		(+89.79\%)		(+3179.16\%)
KenLM T.		4.58	(+31.80\%)	0.23	(-8.00\%)	5.04	(+38.53\%)	0.39	(+4.57\%)
			(+57.48\%)		(-17.66\%)		(+64.93\%)		(-8.26\%)
RandLM		4.01	(+15.42\%)	6.48	(+2477.95\%)	3.86	(+6.03\%)	6.25	(+1561.20\%)
			(+37.90\%)		(+2207.12\%)		(+26.24\%)		(+1357.33\%)

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

- Probabilities and backoffs are quantized (binning method) using any number of bits from 2 to 32
- Stateful scoring function

		Europarl				YahooV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		3.48		0.25		3.64		0.38	
		2.91		0.28		3.06		0.43	
BerkeleyLM	C.	6.50	(+87.03\%)	1.19	(+371.79\%)	6.39	(+75.72\%)	1.08	(+187.45\%)
			(+123.47\%)		(+322.22\%)		(+109.21\%)		(+152.17\%)
BerkeleyLM	H. 3	9.36	(+169.17\%)	0.84	(+233.63\%)	8.75	(+140.41\%)	0.74	(+95.77\%)
			(+221.61\%)		(+198.58\%)		(+186.23\%)		(+71.75\%)
BerkeleyLM	H. 50	12.31	(+254.00\%)	0.35	(+39.00\%)	12.01	(+230.05\%)	0.30	(-19.39\%)
			(+322.97\%)		(+24.39\%)		(+292.95\%)		(-29.28\%)
Expgram		4.15	(+19.33\%)	3.83	(+1424.87\%)	5.80	(+59.41\%)	14.05	(+3637.90\%)
KenLM T.			(+42.59\%)		($+1264.67 \%$)		($+8.89 .79 \%$)		($+3179.16 \%$)
		4.58	(+31.80\%)	0.23	(-8.00\%)	5.04	(+38.53\%)	0.39	($+4.57 \%$)
			(+57.48\%)		(-17.66\%)		(+64.93\%)		(-8.26\%)
RandLM		4.01	(+15.42\%)	6.48	(+2477.95\%)	3.86	(+6.03\%)	6.25	(+1561.20\%)
			(+37.90\%)		(+2207.12\%)		(+26.24\%)		(+1357.33\%)

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

- Probabilities and backoffs are quantized (binning method) using any number of bits from 2 to 32
- Stateful scoring function

	Europar				YahooV2			
	bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie	3.48		0.25		3.64		0.38	
PEF-RTrie	2.91		0.28		3.06		0.43	
BerkeleyLM	6.50	(+87.03\%)	1.19	9 (+371.79\%)	6.39	(+75.72\%)	1.08	(+187.45\%)
		(+123.47\%)		(+322.22\%)		(+109.21\%)		(+152.17\%)
BerkeleyLM	9.36	(+169.17\%)	0.84	(+233.63\%)	8.75	(+140.41\%)	0.74	(+95.77\%)
		(+221.61\%)		(+198.58\%)		(+186.23\%)		(+71.75\%)
BerkeleyLM	12.31	(+254.00\%)	0.35	(+39.00\%)	12.01	(+230.05\%)	0.30	(-19.39\%)
		${ }_{(+19.33 \%)}^{(+32.97 \%)}$		(+24.39\%)		(+292.95\%)		(-29.28\%)
Expgram	4.15		3.83	(+1424.87\%)	5.80	(+59.41\%)	14.05	(+3637.90\%)
KenLM T.	4.58	+42.59\%		264.67\%)		+89.79\%)		3179.16\%)
		$+60 \%$	0.23	(-8.00\%)	5.04	$+65 \%$	0.39	(+4.57\%)
				(-17.08\%)				(-8.26\%)
RandLM	4.01	$\begin{aligned} & (+15.42 \%) \\ & (+37.90 \%) \end{aligned}$	$\begin{gathered} 6.48_{(+2477.95 \%)}^{(+2207.12 \%)} \end{gathered}$		3.86	$\begin{gathered} (+6.03 \%) \\ (+26.24 \%) \end{gathered}$	$6.25_{(+1561.20 \%)}{ }_{(+1357.33 \%)}$	

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

- Probabilities and backoffs are quantized (binning method) using any number of bits from 2 to 32
- Stateful scoring function

	Europar				YahooV2					
	bpg	$\mu \mathrm{s} \times$ query			bpg	$\mu \mathrm{s} \times$ query				
PEF-Trie	3.48		0.25		3.64					
PEF-RTrie	2.91	0.28			3.06		(0.43)			
BerkeleyLM	6.50	(+87.03\%)	1.19	(+371.79\%)	6.39	${ }_{(+75.72 \%)}$		${ }^{(+187.45 \%)}$		
		(+123.47\%)		(+322.22\%)		(+109.21\%)	1.08			
BerkeleyLM	9.36	(+169.17\%)	0.84	(+233.63\%)	8.75	(+140.41\%)	0.74	${ }_{(+152.17 \%)}^{(+9577 \%)}$		
		(+221.61\%)		(+198.58\%)		(+186.23\%)		(+71.75\%)		
BerkeleyLM	12.31	(+254.00\%)	0.35	(+39.00\%)	12.01	(+230.05\%)	0.30	(-19.39\%)		
		$\stackrel{(+322.97 \%)}{(+193 \%)}$		(+24.39\%)		(+292.95\%)		$14.0{ }_{(+3637.90 \%)}^{(-29.28)}$		
Expgram	4.15		3.83	(+1424.87\%)	5.80	(+59.41\%)				
KenLM T.	4.58	(+42.59\%)$+60 \%$		${ }_{(-864.67 \%)}$	5.04	+65\%	0.39	(+4.57\%)		
				${ }_{(-17.66 \%)}^{(-8.00 \%)}$				$\begin{aligned} & (+4.57 \%) \\ & (-8.26) \end{aligned}$		
RandLM	4.01	$\begin{aligned} & (+15.42 \%) \\ & (+37.90 \%) \end{aligned}$	$\begin{gathered} 6.48_{(+2477.95 \%)}^{(+2207.12 \%)} \end{gathered}$		3.86	$\begin{gathered} (+6.03 \%) \\ (+26.24 \%) \end{gathered}$	$6.2_{\underset{(+1561.20 \%)}{(+1357.33 \%)}}$			

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

Experimental Analysis - Perplexity

Reversed Elias-Fano Tries

- Probabilities and backoffs are quantized (binning method) using any number of bits from 2 to 32
- Stateful scoring function

	Europarl	YahooV2	
	bpg $\quad \mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
PEF-Trie PEF-RTrie	3.48 0.25 2.91 0.28	$\begin{aligned} & 3.64 \\ & 3.06 \end{aligned}$	$\left(\begin{array}{l}0.38 \\ 0.43\end{array}\right.$
BerkeleyLM C.	$6.5{\left.\underset{(+12}{(+8} \mathbf{2} \mathbf{X}^{2}\right)}^{1.19} \underset{(+324}{(+37} \mathbf{4} \mathbf{X}^{\text {(}}$	$6.39{ }_{(+7)} \mathbf{2 X}$	$1.08 \quad 2.7 X$
BerkeleyLM H. 3	$\left.9.36_{(+16} \mathbf{3} \mathbf{X}\right) \quad 0.84 \quad \mathbf{3} \mathbf{3} \mathbf{X}^{(126)}$	8.75 2.5X	$0.74 \quad \begin{array}{ll} \\ & \mathbf{2 X} \\ & \mathbf{2 X} \end{array}$
BerkeleyLM H. 50	$12.31+{ }^{(+25} \mathbf{4 X} 0.35 \mathbf{+ 2 5 \%}$	12.01 3.5X	0.30 (-19.39\%)
Expgram	$4.15 \mathbf{+ 4 0 \%} 3.83$ (+15X	$5.80 \mathbf{+ 8 0 \%}$	$14.05+3 \mathbf{3 6 X}$
KenLM T.	$4.58+60 \%{ }_{(+57.48 \%)}^{(-8.00 \%)}(-17.66 \%)$	$5.04 \stackrel{(+89.79 \%)}{(+65 \%}$	$0.39)_{(-8.26 \%)}^{(+3179.16 \%)}$
RandLM	$4.01+\mathbf{3 0 \%} \quad 6.48$	$3.86+20 \%$	$6.25_{(+1357}^{(+1)}$

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but up to 65% more space-efficient.

https：／／github．com／jermp／tongrams

－jermp／tongrams

```
O Unwatch * 1 * Star 6 & Fork 0
```

く＞Code（1）Issues 0 \＆Pull requests 0 四 Projects 0 国 Wiki \＄Settings Insights～

The C＋＋library implementing the compressed data structures described in the paper＂Efficient Data Structures for Massive N－Gram Datasets＂，by Giulio Ermanno Pibiri and Rossano Venturini，published in ACM SIGIR 2017.

trie elias－fano	ngrams Manage					
（1） 18 commits		\＆ 1 branch	$\bigcirc 1$ release		211 contributor	
Branch：master	New pull request		Create new file	Upload files	Find file	Clone or download＞
jermp added compiler version to README					Latest commit b80e241 on Jun 21	
館emphf＠a18574	f added emphf submodule				3 months ago	
－sequences	added new select－in－word algorithm；CMakeLists．txt updated；README．md．．．				2 months ago	
－sorters	code imported				3 months ago	
－test	code imported				3 months ago	
－test＿data	code imported				3 months ago	
Eutils	added new select－in－word algorithm；CMakeLists．txt updated；README．md．．．				2 months ago	
－vectors	code imported				3 months ago	

https://github.com/jermp/tongrams

tongrams - Tons of \boldsymbol{N}-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper Efficient Data Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The context-based remapping of such identifiers (Subsection 3.2 of [1]) permits to encode a word following a context of fixed length k, i.e., its preceding k words, with an integer whose value is bounded by the number of words that follow such context and not by the size of the whole vocabulary (number of uni-grams). Additionally to the trie data structure, the library allows to build models based on minimal perfect hashing (MPH), for constant-time retrieval (Section 4 of [1]).

When used to store frequency counts, the data structures support a lookup() operation that returns the number of occurrences of the specified N -gram. Differently, when used to store probabilities and backoffs, the data structures implement a score() function that, given a text as input, computes the perplexity score of the text.

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some examples.

Table of contents

- Building the code
- Input data format
- Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

https://github.com/jermp/tongrams

tongrams - Tons of \boldsymbol{N}-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper Efficient Data Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The context-based remapping of such identifiers (Subsection 3.2 fixed length k, i.e., its preceding k words, with an integer who such context and not by the size of the whole vocabulary (nur structure, the library allows to build models based on minimal (Section 4 of [1]).

When used to store frequency counts, the data structures sui occurrences of the specified N-gram. Differently, when used implement a score() function that, given a text as input, con

- Parallel and scalable estimation of Kneser-Ney language models
- Python wrapper, installable through pip utility This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some examples.

Table of contents

- Building the code
- Input data format
- Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

https://github.com/jermp/tongrams

tongrams - Tons of \boldsymbol{N}-Grams

tongrams is a C++ library implementing the compressed data structures described in the paper Efficient Data Structures for Massive N-Gram Datasets, by Giulio Ermanno Pibiri and Rossano Venturini, published in ACM SIGIR 2017 [1]. The proposed data structures can be used to map N-grams to their corresponding (integer) frequency counts or to (floating point) probabilities and backoffs for backoff-interpolated Knenser-Ney models.

The library features a compressed trie data structure in which N-grams are assigned integer identifiers (IDs) and compressed with Elias-Fano (Subsection 3.1 of [1]) as to support efficient searches within compressed space. The context-based remapping of such identifiers (Subsection 3.2 fixed length k, i.e., its preceding k words, with an integer who such context and not by the size of the whole vocabulary (nur structure, the library allows to build models based on minimal (Section 4 of [1]).

When used to store frequency counts, the data structures sur occurrences of the specified N-gram. Differently, when used implement a score() function that, given a text as input, con

- Parallel and scalable estimation of Kneser-Ney language models
- Python wrapper, installable through pip utility

This guide is meant to provide a brief overview of the library and to illustrate its funtionalities through some examples.

Table of contents

- Building the code
- Input data format
- Building the data structures
- Tests
- Benchmarks
- Statistics
- Authors
- Bibliography

Proudly supported by a

Special Interest Group $\operatorname{Student~Travel~Grant~}$ on Information Retrieval

Thanks for your attention, time, patience!

Any questions?

