
Compressed Indexes for Fast Search 
of Semantic Data

Raffaele Perego 
ISTI-CNR 
Pisa, Italy

Giulio Ermanno Pibiri 
ISTI-CNR 
Pisa, Italy

Rossano Venturini 
The University of Pisa 

Pisa, Italy

The 10-th Italian Information Retrieval Workshop (IIR 2019) 
17/09/2019



Resource Description Framework (RDF)

“RDF is a standard model for data interchange on the Web.” 
Source: https://www.w3.org/RDF

Statements are encoded with triples: 
Subject (S) - Predicate (P) - Object (O)

https://www.w3.org/RDF/


Resource Description Framework (RDF)

“RDF is a standard model for data interchange on the Web.” 
Source: https://www.w3.org/RDF

Statements are encoded with triples: 
Subject (S) - Predicate (P) - Object (O)

<http://example.name#BobSmith12> <http://xmlns.com/foaf/0.1/knows> <http://example.name#JohnDoe34>

“Bob Smith knows John Doe.”

https://www.w3.org/RDF/


The problem

Huge datasets: billions of triples.

Storage space is an issue: 
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently?



The problem

Huge datasets: billions of triples.

Storage space is an issue: 
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently?

<Bob Smith> <knows> <???>

<???> <???> John Doe

<Bob Smith> <???> <Sara Parker>



The problem

Huge datasets: billions of triples.

Storage space is an issue: 
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently?

<Bob Smith> <knows> <???>

<???> <???> John Doe

<Bob Smith> <???> <Sara Parker>

1 wildcard: 
SP? 
S?O 
?PO

2 wildcards: 
S?? 
?P? 
??O

3 wildcards: 
???

0 wildcard: 
SPO



State-of-the-art solutions

Too costly in terms of space.

• Materialize all possible S-P-O permutations (6 separate indexes). 

• Do not use sophisticated compression techniques.  

• Expensive additional indexes to support retrieval.



The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements: 
we deal with datasets of integer triples.

S P O 
S P ? 
S ? ? 
? ? ? 

 
? P O 
? P ? 

S ? O 
? ? O 

Selection patterns



S-P-O order

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements: 
we deal with datasets of integer triples.

S P O 
S P ? 
S ? ? 
? ? ? 

 
? P O 
? P ? 

S ? O 
? ? O 

Selection patterns



P-O-S order

S-P-O order

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements: 
we deal with datasets of integer triples.

S P O 
S P ? 
S ? ? 
? ? ? 

 
? P O 
? P ? 

S ? O 
? ? O 

Selection patterns



O-S-P order

P-O-S order

S-P-O order

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements: 
we deal with datasets of integer triples.

S P O 
S P ? 
S ? ? 
? ? ? 

 
? P O 
? P ? 

S ? O 
? ? O 

Selection patterns



O-S-P order

P-O-S order

S-P-O order

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements: 
we deal with datasets of integer triples.

S P O 
S P ? 
S ? ? 
? ? ? 

 
? P O 
? P ? 

S ? O 
? ? O 

Selection patterns

Store an integer trie 
data structure 

for each permutation.



The Permuted Trie Index: organisation

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

Allows effective 
compression

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

Allows effective 
compression

Fast retrieval

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

Allows effective 
compression

Fast retrieval

(1, 2, ?)

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

Allows effective 
compression

Fast retrieval

(1, 2, ?)

0 1 2 3 4



The Permuted Trie Index: organisation

• Common prefixes are encoded once.  

• Two integer sequences per level (nodes and pointers). 

• Symmetrically support all selection patterns with 1 and 2 wildcards. 

• Cache-friendly memory layout.

Allows effective 
compression

Fast retrieval

(1, 2, ?)

0 1 2 3 4

(1, 2, 0)
(1, 2, 1)



Permutation Elimination

Cross Compression

The Permuted Trie Index: refinements

1

2



Cross Compression

Fact: the same triple appears three times, but in different permutations.



Cross Compression

Fact: the same triple appears three times, but in different permutations.

We can represent the subjects in trie 1 
by using the subjects in trie 2.



Cross Compression

Fact: the same triple appears three times, but in different permutations.

We can represent the subjects in trie 1 
by using the subjects in trie 2.

P

Oi

S1 Sn… Sj …

Oi

S1 Sn… Sj …



Cross Compression

Fact: the same triple appears three times, but in different permutations.

We can represent the subjects in trie 1 
by using the subjects in trie 2.

P

Oi

S1 Sn… Sj …

Oi

S1 Sn… Sj …

p

Represent Sj as its position p.



Cross Compression

Fact: the same triple appears three times, but in different permutations.

We can represent the subjects in trie 1 
by using the subjects in trie 2.

P

Oi

S1 Sn… Sj …

Oi

S1 Sn… Sj …

p

Represent Sj as its position p.

Why?

Number of children in Dbpedia.



Permutation Elimination

Fact: predicates are few, thus S?O returns only few matches.



Permutation Elimination

Fact: predicates are few, thus S?O returns only few matches.

We can pattern match S?O on the SPO trie, 
instead of the OSP trie. 

 
Given a (s,o) pair: for each child pi of s, 

check is o is a child of pi. If so, then (s,pi,o) is a match.



Permutation Elimination

Fact: predicates are few, thus S?O returns only few matches.

We can pattern match S?O on the SPO trie, 
instead of the OSP trie. 

 
Given a (s,o) pair: for each child pi of s, 

check is o is a child of pi. If so, then (s,pi,o) is a match.

Less than 6 checks are 
needed on average!

Number of children in Dbpedia.



Permutation Elimination

S P O 
S P ? 
S ? ? 
S ? O 
? ? ?

SPO trie

OR

+



Permutation Elimination

? P O 
? ? O 
? P ?

Object-based retrieval

OPS trie

S P O 
S P ? 
S ? ? 
S ? O 
? ? ?

SPO trie

OR

+



Permutation Elimination

? P O 
? ? O 
? P ?

Object-based retrieval

OPS trie

? P O 
? ? O 
? P ?

Predicate-based retrieval

POS trie

S P O 
S P ? 
S ? ? 
S ? O 
? ? ?

SPO trie

OR

+



Permutation Elimination

? P O 
? ? O 
? P ?

Object-based retrieval

OPS trie

? P O 
? ? O 
? P ?

Predicate-based retrieval

POS trie

S P O 
S P ? 
S ? ? 
S ? O 
? ? ?

SPO trie

OR

We can eliminate a permutation, thus saving 1/3 of the space of the index.

+



Experiments: setting

Compiler 
gcc 7.2.0 (with all optimizations)

Machine 
i7-7700 CPU (@3.6 GHz), 64 GB of RAM DDR3 (@2.133 GHz)  

Linux 4.4.0, 64 bits

Datasets



Experiments: C++ code

C++ code at https://github.com/jermp/rdf_indexes

https://github.com/jermp/rdf_indexes


Experiments: our solutions

Overall, 2Tp offers the best space/time tradeoff.



Our selected trade-off configuration substantially outperforms the tested 
competitors in both space and time.

Experiments: overall comparison



Conclusions

The triple indexing problem with pattern matching 
can be solved efficiently in both time and space regards.

Our solution — the permuted trie index — 
achieves substantial performance improvement 

against the best previous solutions.

Paper available at 
https://arxiv.org/abs/1904.07619

C++ code available at 
https://github.com/jermp/rdf_indexes

Cross-compression 
Permutation-elimination

https://arxiv.org/abs/1904.07619
https://github.com/jermp/rdf_indexes


Any questions?

Thanks for your attention,

time, patience!


