Compressed Indexes for Fast Search

of Semantic Data

Raffaele Perego Giulio Ermanno Pibiri Rossano Venturini
ISTI-CNR ISTI-CNR The University of Pisa
Pisa, Italy Pisa, Italy Pisa, Italy

\ /11
ISTITUTO DI SCIENZA E TECNOLOGIE ’ b

DELLINFORMAZIONE “A. FAEDO”

The 10-th [talian Information Retrieval Workshop (IR 2019)
17/09/2019

Resource Description Framework (RDF)

"RDF is a standard model for data interchange on the Web.”
Source: https://www.w3.org/RDE

Statements are encoded with triples:
Subject (S) - Predicate (P) - Object (O)

https://www.w3.org/RDF/

Resource Description Framework (RDF)

"RDF is a standard model for data interchange on the Web.”
Source: https://www.w3.org/RDE

Statements are encoded with triples:
Subject (S) - Predicate (P) - Object (O)

“Bob Smith knows John Doe.”

l

<http://example.name#BobSmithl2> <http://xmlns.com/foaf/0.1/knows> <http://example.name#JohnDoe34>

https://www.w3.org/RDF/

The problem

Huge datasets: billions of triples.

Storage space is an issue:
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently”

The problem

Huge datasets: billions of triples.

Storage space is an issue:
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently”

<Bob Smith> <knows> <?7?7>
<7P77> <7?7?7?7> John Doe

<Bob Smith> <??7?> <Sara Parker>

The problem

Huge datasets: billions of triples.

Storage space is an issue:
compression is mandatory.

How to support triple selection patterns (with wildcards) efficiently”

<Bob Smith> <knows> <???> 1 wildcard: 2 wildcards:

SP? S??
<?277> <?77> John Doe S?0 ?P?
2PO 220

<Bob Smith> <??7?> <Sara Parker>
3 wildcards: 0 wildcard:

?2?? SPO

State-of-the-art solutions

Too costly in terms of space.

® Materialize all possible S-P-O permutations (6 separate indexes).
® Do not use sophisticated compression techniques.

® Expensive additional indexes to support retrieval.

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements:
we deal with datasets of integer triples.

Selection patterns

SPO
SP?
S??
???

?PO
?2P?

S?0
??0

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements:
we deal with datasets of integer triples.

Selection patterns

SPO
9
2 I: ,, Emm— S-P-0 order

?2??

?PO
?2P?

S?0
??0

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements:
we deal with datasets of integer triples.

Selection patterns

SPO
9
2 I: ,, Emm— S-P-0 order

?2??

?2PO

2p 2 — P-0O-S order

S?0
??0

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements:
we deal with datasets of integer triples.

Selection patterns

SPO
SP?
S??
?2??

S-P-0 order

?2PO
?2P?

— P-0O-S order
S?0

220 — O-S-P order

The Permuted Trie Index: preliminaries

Map URI strings to integers to reduce space requirements:
we deal with datasets of integer triples.

Selection patterns

SPO
SP?
S??
?2??

?2PO
?2P?

—_—

S?0

??0

S-P-0 order

P-0O-S order

O-S-P order

Store an integer trie
data structure
for each permutation.

The Permuted Trie Index: organisation

levels[0] (01214161718)

-

...............

.......

- -

levels[1]

-

........

levels[2] (213101410111210111214)

The Permuted Trie Index: organisation

levels[0] (01214161718)

-
- - ... e
- - - .- -
- - - -
.----._ - . . aa. * -
* -

levels[1]

..........
..................
~~~~~

levels[2] (213101410111210111214)

® Common prefixes are encoded once.
® Two integer sequences per level (nodes and pointers).
e Symmetrically support all selection patterns with 1 and 2 wildcards.

® Cache-friendly memory layout.



The Permuted Trie Index: organisation

levels[0] (01214161718)

-
---------
...............
.......
* -

levels[1]

..........
___________________
.....

levels[2] (213101410111210111214)

® Common prefixes are encoded once. _
Allows effective

compression

® Two integer sequences per level (hodes and pointers).

e Symmetrically support all selection patterns with 1 and 2 wildcards.

® Cache-friendly memory layout.



The Permuted Trie Index: organisation

levels[0] (01214161718)

-
.........
..............
-------
-

levels[1]

-
- - - L
S . S . "-- .. e
- - -._ - -

levels[2] (213101410111210111214)

® Common prefixes are encoded once.

Allows effective

® [wo integer sequences per level (nodes and pointers). compression

e Symmetrically support all selection patterns with 1 and 2 wildcards.
Fast retrieval

® Cache-friendly memory layout.




The Permuted Trie Index: organisation

levels[0] (01214161718)

.........
..............
.......
* -

(1,2,?)

levels[1]

-
- - - e e eceoae
.. .'-- "'-- S ...

- - o - o

levels[2] (213101410111210111214)

® Common prefixes are encoded once.

Allows effective
compression

® Two integer sequences per level (hodes and pointers).

e Symmetrically support all selection patterns with 1 and 2 wildcards.
Fast retrieval

® Cache-friendly memory layout.




The Permuted Trie Index: organisation

levels[0] (0I214161718)

.........
..............
.......
* -

(1,2,?)

-
- - - e e eceoae
.. .'-- "'-- S ...

- - o - o

levels[2] (213101410111210111214)

® Common prefixes are encoded once.

Allows effective
compression

® Two integer sequences per level (hodes and pointers).

e Symmetrically support all selection patterns with 1 and 2 wildcards.
Fast retrieval

® Cache-friendly memory layout.




The Permuted Trie Index: organisation

levels[0] (0I214161718)

- ... e
- - - .- -
- - - - - -
- . e - - o

(1,2,?)
(1,2,1) anatnnd

- o - - . . ...
. - - o .- - - - -
- - -_~ - o -

levels[2] (213101410111210111214)

® Common prefixes are encoded once.

Allows effective
compression

® Two integer sequences per level (hodes and pointers).

e Symmetrically support all selection patterns with 1 and 2 wildcards.
Fast retrieval

® Cache-friendly memory layout.




The Permuted Trie Index: refinements

Cross Compression

Permutation Elimination




Cross Compression

Fact: the same triple appears three times, but in different permutations.



Cross Compression

Fact: the same triple appears three times, but in different permutations.

S P O . L
¥ We can represent the subjects in trie 1
g / (g / FS) v by using the subjects in trie 2.



Cross Compression

Fact: the same triple appears three times, but in different permutations.

TS P o] ! o
'/ ! We can represent the subjects in trie 1
g / (g / FS> g by using the subjects in trie 2.
0 1 2

P /Oi\

O S1 ... §; Snh



Cross Compression

Fact: the same triple appears three times, but in different permutations.

S P O . L
¥ We can represent the subjects in trie 1
g / (g / FS) v by using the subjects in trie 2.

Represent S;jas its position p.




Cross Compression

Fact: the same triple appears three times, but in different permutations.

- [S P o] ! .
'/ : We can represent the subjects in trie 1
7R / < / > M by using the subjects in trie 2.
O S P
0 1 2
Represent S;jas its position p.
Why?
P Oi
l / \ Trie Level Average Maximum
/0'\ S1 Sj Sn SPO ; gg; 8422
_  p 1 91578.32 21,219,244
St «.[§j oo Sn POS 2.59 10,141,311
1 2.70 10,141,327
OSF 1.13 10

Number of children in Dbpedia.



Permutation Elimination

Fact: predicates are few, thus S?0 returns only few matches.



Permutation Elimination

Fact: predicates are few, thus S?0 returns only few matches.

We can pattern match S?0 on the SPO trie,
instead of the OSP trie.

Given a (s,0) pair: for each child p; of s,
check is 0 is a child of pi. If so, then (s,p;,0) is a match.



Permutation Elimination

Fact: predicates are few, thus S?0 returns only few matches.

We can pattern match S?0 on the SPO trie,
instead of the OSP trie.

Given a (s,0) pair: for each child p; of s,
check is 0 is a child of pi. If so, then (s,p;,0) is a match.

Trie Level Average Maximum

1 5.54 52
PO 2.32 8489
pos 1 91,578.32 21,219,244 Less than 6 checks are
2 2.59 10,141,311 needed on average!
osp ! 2.70 10,141,327
1.13 10

Number of children in Dbpedia.



Permutation Elimination

SPO trie

SPO
SP?
S??

S?0
?22?

-+

77N



Permutation Elimination

SPO trie
SPO

SP?
S??

S$?0
?2?2?
+
VRN

OPS trie

?PO
29

—

Object-based retrieval



Permutation Elimination

SPO trie

SPO
SP?
S??

S?0
?22?

+
/ oF \
OPS trie POS trie
?PO

220] <«

?2P?

?PO
29

—

Object-based retrieval Predicate-based retrieval



Permutation Elimination

SPO trie

SPO
SP?
S??

S?0
?22?

-+

77N

OPS trie POS trie
?PO ?PO

22 270
2P ?

—

Object-based retrieval Predicate-based retrieval

We can eliminate a permutation, thus saving 1/3 of the space of the index.



Experiments: setting

Datasets
Dataset Triples
DBLP 88,150,324
Geonames 123,020,821
DBpedia 351,592,624

Freebase 2,067,068,154

Machine

I7-7700 CPU (@3.6 GHz), 64 GB of RAM DDR3 (@2.133 GHz)
Linux 4.4.0, 64 bits

Compiler
gcc 7.2.0 (with all optimizations)



Experiments: C++ code

C++ code at https://github.com/jermp/rdf indexes

README.md s

Indexes for RDF data

This is the C++ library used for the experiments in the paper Compressed Indexes for Fast Search of Semantic Data [1],
by Raffaele Perego, Giulio Ermanno Pibiri and Rossano Venturini.

This guide is meant to provide a brief overview of the library and to illustrate its functionalities through some examples.

Table of contents

1. Compiling the code

2. Input data format

3. Preparing the data for inedxing
4. Building an index

5. Querying an index

6. Statistics

7. Testing

8. Extending the software

9. Authors

10. References


https://github.com/jermp/rdf_indexes

Experiments: our solutions

Index DBLP Geonames DBpedia Freebase
bits/triple bits/triple bits/triple bits/triple
3T 75.24(+31%)  71.59 (+32%)  80.64(+33%)  74.20(+30%)
CcC 63.54(+18%)  67.04 (+27%)  66.91(+19%)  70.46(+26%)
2To 56.46 (+8%)  53.23 (+8%)  57.51 (+6%)  55.72 (+6%)
2Tp 51.99 48.98 54.14 52.17
ns/triple ns/triple ns/triple ns/triple
SPO all 203 221 353 521
SP? all 197 347 11 3
S?? all 28 40 10 3
??77? all 11 13 9 9
soo 3T.CC 2490 (5.6x) 3767 (7.7x) 1833 (2.6x) 6547 (1.8x)
' 2T0,2Tp 445 490 692 3736
2P0 3T,2To,2Tp 5 5 5 5
' CC 12 (2.4x) 15 (3.0%) 16 (3.2x) 14 (2.8X)
3T,CC 12 (2.4X) 12 (2.4%) 12 (2.4X) 10 (2.0x)
7?70 2To 5 5 5 5
2Tp 5 (1.0x) 5 (1.0%) 6 (1.2) 10 (2.0%)
3T,2Tp 9 8 6 6
?P? CC 21 (2.3%) 36 (4.5%) 30 (5.0%) 29 (4.8%)
2To 81 (9.0%) 138(17.2%) 22 (3.7X) 18 (3.0%)

Overall, 2Tp offers the best space/time tradeoftf.



Experiments: overall comparison

Index DBLP Geonames DBpedia Freebase
bits/triple bits/triple bits/triple bits/triple
2Tp 51.99 48.98 54.14 52.17
HDT-FoQ 76.89 (+32%) 88.73 (+45%) 76.66 (+29%) 83.11 (+37%)
TripleBit  125.10 (+58%)  120.03 (+59%)  130.07 (+58%) —
ns/triple ns/triple ns/triple ns/triple
2Tp 5 5 5 5
?PO HDT-FoQ 12 (2.4x) 13 (2.6X%) 14 (2.8x%) 13 (2.6X%)
TripleBit 15 (3.0x) 13 (2.6x) 14 (2.8x) —
2Tp 445 490 692 3736
S?0 HDT-FoQ 1789 (4.0x) 2097 (4.3%) 3010 (4.3x)  0.7x107 (2057x)
TripleBit  11872(26.7x) 13008 (26.5%) 18023 (26.0x%) —
2Tp 197 347 11 3
SP? HDT-FoQ 640 (3.2%) 897 (2.6x%) 30 (2.7x) 9 (3.0x)
TripleBit 1222 (6.2X) 927 (2.7x) 42 (3.8%) —
2Tp 28 40 10 3
S?? HDT-FoQ 110 (3.9%) 154 (3.9x) 29 (2.9%) 9 (3.0x)
TripleBit ~ 2275(81.2x) 3261(81.5x) 490 (49.0X) —
2Tp 9 8 6 4
?P? HDT-FoQ  108(12.0%) 173 (21.6X) 32 (5.3%) 41 (6.8x)
TripleBit 28 (3.1x) 28 (3.5X) 40 (6.7X) —
2Tp 5 5 6 10
??70 HDT-FoQ 17 (3.4%) 17 (3.4x) 18 (3.0x) 18 (1.8x%)
TripleBit 24 (4.8x) 60(12.0x%) 24 (4.0%) —

Our selected trade-off configuration substantially outperforms the tested

competitors in both space and time.



Conclusions

The triple indexing problem with pattern matching
can be solved efficiently in both time and space regards.

Our solution — the permuted trie index —
achieves substantial performance improvement
against the best previous solutions.

Cross-compression
Permutation-elimination

Paper available at C++ code available at
https://arxiv.org/abs/1904.07619  https://github.com/jermp/rdf indexes



https://arxiv.org/abs/1904.07619
https://github.com/jermp/rdf_indexes

Thanks for your attention,

time, patience!

Any guestions”?



