On Optimally Partitioning

Variable-Byte Index Data

Giulio Ermanno Pibiri Rossano Venturini
University of Pisa and ISTI-CNR University of Pisa and ISTI-CNR
Pisa, Italy Pisa, Italy

giulio.pibiri@di.unipi.it rossano.venturini@unipi.it

#® RMIT

UNIVERSITY

Melbourne, 17/05/2018

1

mailto:rossano.venturini@unipi.it?subject=
http://pages.di.unipi.it/pibiri
mailto:giulio.pibiri@di.unipi.it?subject=

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

red

IS
the always
house Y
- good
IS
red
the [:5
boy boy
— , IS
the IS

o0 hungry

house
IS
always

hungry

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

t4 to ts ty te tg ty tg
red .
h — I = {always, boy, good, house, hungry, is, red, the}
the
house aways
, good
IS
red the B
boy boy
- - IS
the IS

e hungry

house
IS
always

hungry

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

‘Iﬂl} t t ts ty ts ts t7 g

red .
e h S I = {always, boy, good, house, hungry, is, red, the}
the
oUSe always
, good
IS
red the B
boy boy
— : IS
the IS
60 hungry

house
IS
always

hungry

o

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

a t t ts ty ts ts t7 g

red i
e = I = {always, boy, good, house, hungry, is, red, the}
hcthze always
i: good |t = 1, 3]
o he LN e ?] !
b —ta L
the | blzy i(;y —t4::2’ 3]
house red nungry —t5::3’ O]
< =[1,2, 3, 4, 5]
always e —t7=:1, 2’ 4]
gy 6 =[2, 3, 5]

Context - Inverted Indexes

We focus on compression effectiveness
and retrieval speed in inverted indexes.

The inverted index Is the de-facto data structure
at the basis of every large-scale retrieval system.

red

|EI the

IS

house

always

good

red

I = {always, boy, good, house, hungry, is, red, the}

boy

the

house
IS
always

hungry

IS

red

hungry

N — — WN) = N

ty ts

L 99X

| I

WN N O1W
SRR

N

Sl

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in
which terms {ti,...,t} occur”.

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in

which terms {ti,...,t} occur”.

t t) ty ty ts g tr g

e r?sd ‘ I = {always, boy, good, house, hungry, is, red, the}
hctJ:ze always
- good —t1=;1, 3]
red e | t,= :4’ 5]
b —t3:-1]
e] —= 3 L=[2, 3]
the IS 4~ L
house red nungry —t5:-31 5]
S L .=[1, 2, 3, 4, 5]
. 5 L=[1,2,4)
— 6 | ,=[2, 3, 9]

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in

which terms {ti,...,t} occur”.

t t) ty ty ts g tr g

e r?sd ‘ I = {always, boy, good, house, hungry, is, red, the}
hctJ:ze always
- good —t1=:1, 3]
e the —{2= ?j 5] g = {boy, is, the}
b 3=
e] —= 3 L=[2, 3]
the IS 4~ L
house red nungry —t5:-31 5]
E L .=[1, 2, 3, 4, 5]
S 5 L=[1,2, 4]
— 6 | ,=[2, 3, 9]

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in
which terms {ti,...,t} occur”.

t t) ty ty ts g tr g

e r?sd ‘ I = {always, boy, good, house, hungry, is, red, the}
hctJ:ze by
s good Li,=[1, 3]
red the |_t2=[4, 5] q — {bOy, iS, the}
e boy 3=
the 3 bizy E | +,=[2, 3]
house red hungry _ :[3 5]
E (:i:j, 2,3, 4, 5])
halvr\:ai/s e Lt,= |- 2. ZI'
v O (L=[2.3.5

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in

which terms {ti,...,t} occur”.

t t) ty ty ts g tr g

e r?sd ‘ I = {always, boy, good, house, hungry, is, red, the}
hctJ:ze always
- good —t1=:1, 3]
e the —{2= ?j 5] g = {boy, is, the}
b 3=
e] —= 3 L=[2, 3]
the IS 4~ L
house red nungry —t5:-31 5]
E L .=[1, 2, 3, 4, 5]
S 5 L=[1,2, 4]
— 6 | ,=[2, 3, 9]

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in
which terms {ti,...,t} occur”.

|EI the

red

house

always

IS

good

red

the

house
IS
always

hungry

boy

IS

red

the

ty to

ty ty ts g tr g

I = {always, boy, good, house, hungry, is, red, the}

boy

IS

hungry

N = W N — N —

, 3]
j 5] q = {boy, is, the}
3] g = {good, hungry}
o]
2, 3,4, 5]
2, 4]
, 3, 5]

Context - Inverted Indexes

|EI the

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in
which terms {ti,...,t} occur”.

red |

house

always

IS

good

red

the

house

IS

always

hungry

boy

IS

red

the

boy

IS

hungry

4 to t t ts tg 17 tg
I = {always, boy, good, house, hungry, is, red, the}
L +,=[1, 3]
—to=[f]1:,| 5] q = {boy, is, the]
(_ti'z) q = {good, hungry}

Context - Inverted Indexes

Inverted Indexes owe their popularity to the efficient
resolution of queries, such as: “return all documents in
which terms {ti,...,t} occur”.

|EI the

red

house

always

IS

good

red

the

house
IS
always

hungry

boy

IS

red

the

ty to

ty ty ts g tr g

I = {always, boy, good, house, hungry, is, red, the}

boy

IS

hungry

N = W N — N —

, 3]
j 5] q = {boy, is, the}
3] g = {good, hungry}
o]
2, 3,4, 5]
2, 4]
, 3, 5]

Many solutions

Huge research corpora describing different space/time trade-offs.

* Elias gamma/delta * Optimized PForDelta
 Variable-Byte Elias-Fano

e Binary Interpolative Coding e Partitioned Elias-Fano
 Simple-9/16 o Clustered Elias-Fano

e PForDelta Asymmetric Numeral Systems

Many solutions

Huge research corpora describing different space/time trade-offs.

Elias gamma/delta
Variable-Byte

Binary Interpolative Coding
Simple-9/16

PForDelta

Space

Binary

Interpolative
Coding

~3X smaller

— Spectrum —,

Optimized PForDelta
Elias-Fano

Partitioned Elias-Fano
Clustered Elias-Fano
Asymmetric Numeral Systems

Time

Variable-Byte

(VByte)
Family

~4.5X faster

Our research question

Can we improve the space of a VByte-encoded sequence
and
preserve its query processing speed?

Variable-Byte Encoding

Simple idea: encode each number
using as few bytes as possible.

1byte: 0..27

0 > 10000110 2 bytes: 27...2"
» ;- 3 bytes: 214 ... 221
127 1111117 4 bit:; 221 228

128 > 1000000100000000
65790 > 100001001000000101111110

Variable-Byte Encoding

Simple idea: encode each number
using as few bytes as possible.

1byte: 0...27

6 > 10000110 2 bytes: 27 ... 2%
, ; - 3 bytes: 21 ... 221
127 11111117 4 bytes: 271 .. 2%
128 > 1000000100000000
65790 > 100001001000000101111110

Decoding is fast:
keep reading bytes until you hit a value smaller than 128.

SIMD (Single Instruction Multiple Data)

So...what’s “wrong” with VByte?

mam Dense

B Dense Bl Sparse
85.4% 90.7%

65.3%

55.8% ss 5% 560/

44 2%

93/
Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%
(a) Gov2 (b) ClueWeb09

The majority of values are small (very small indeed).
VByte needs at least 8 bits per integer (bpi).

So...what’s “wrong” with VByte?

mm Dense

B Dense B Sparse
85.4% 90.7%

65.3%

55.8% 555/ 560/

44 2%

93/

Short Medlum Long Short Medlum Long
3.5% 85.5% 11.0% 3.1% 63.9% 33.0%

(a) Gov2 (b) ClueWeb09

The majority of values are small (very small indeed).
VByte needs at least 8 bits per integer (bpi).

Sensibly far away from bit-level effectiveness.
BIC: 3.8 bpi on Gov2
PEF: 4.1 bpi on Gov2

v

High-level idea

1. Partition each inverted list into variable-length
partitions.

2. Encode dense partitions with thelir
characteristic bitvector.

3. Encode sparse partitions with VByte.

High-level idea

1. Partition each inverted list into variable-length
partitions.

2. Encode dense partitions with thelir
characteristic bitvector.

3. Encode sparse partitions with VByte.

[13, 15, 16, 17, 20, 21, 23, 24]

10111 0 011 0 11
13 14 15 16 17 18 19 20 21 22 23 24

24 - 13 -1 =12 bits VS 64 bits (5.33X)

Computing an optimal partition

1st level

2nd level | | | |

Computing an optimal partition

1 St |eve| <+— Gtores a fixed amount to bits, say F, for each partition.
2nd level | | | |

Computing an optimal partition

1 St |eve| <+— Gtores a fixed amount to bits, say F, for each partition.
2nd level | | | |
n
guarantee

Dynamic Programming (DP) Optimal

Computing an optimal partition

1 St |eve| <+— Gtores a fixed amount to bits, say F, for each partition.
2nd level | | | |
n
guarantee time Space

Optimal 60 o @

Computing an optimal partition

1 St |eve| <+— Gtores a fixed amount to bits, say F, for each partition.
2nd level | | | |
n
guarantee time Space

Dynamic Programming (DP) [@Te}ilgqP:\ O(n) O(n) @

DP Approximation e-Optimal O(nlog,,. 1/€) O(n) —

Computing an optimal partition

1 St |eve| <+— Gtores a fixed amount to bits, say F, for each partition.

2nd level | | | |

guarantee time Space

(Optimal O(alogs., 19 Of
9

Computing an optimal partition

Why is it so difficult?

10

Computing an optimal partition

Why is it so difficult?

18,9, 10, 11, 12, 36, 37, 38, 39, 40]

10

Computing an optimal partition

Why is it so difficult?

18,9, 10, 11, 12, 36, 37, 38, 39, 40]

splitting Elias-Fano VByte
[0,10) 4 bpi

[0,5)[5,10) @ [4][5] bpi

[0,6)[6,10) @ [5][2] bpi

10

Computing an optimal partition

Why is it so difficult?

18,9, 10, 11, 12, 36, 37, 38, 39, 40]

splitting Elias-Fano VByte
[0,10)

[0,5)[5,10)

[0,6)[6,10)

Different costs to

represent the same
integers! —> DP

10

Computing an optimal partition

Why is it so difficult?

18,9, 10, 11, 12, 36, 37, 38, 39, 40]

splitting Elias-Fano VByte
[0,10)

[0,5)[5,10)

[0,6)[6,10)

Different costs to

Costs do NOT change if
we consider different
splittings.

represent the same
integers! —> DP

10

Our solution - The intuition

VByte Bin

11

Our solution - The intuition

VByte Bin

11

Our solution - The intuition

PO 77 7
. — o | ; — If VByte is winning

over Bin, we do NOT
have to try any split.

VByte Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

N

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

N\

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

A

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

N

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

N

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

\/

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

/

11

Our solution - The intuition

| If VByte is winning

over Bin, we do NOT
have to try any split.

VByte T Bin

gain = VByte - Bin

Fhits We pay F bits for

each partition!

11

Our solution - The algorithm

C = current encoder gain = VByte - Bin

L .= last encoder
1. Encode first partition. \/\/\
2.1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g
3. Repeat step (2) until the end of the sequence.

4. Encode last partition.

12

Our solution - The algorithm

C := current encoder . .
L = Ial;t encoder gain = Vbyte - Bin
1. Encode first partition. \/\/\
2.1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g

3. Repeat step (2) until the end of the sequence.
4. Encode last partition.

All details (including proof of
optimality), here:
https://arxiv.org/abs/1804.10949

12

https://arxiv.org/abs/1804.10949

Our solution - The algorithm

C = current encoder gain = VByte - Bin

L .= last encoder
1. Encode first partition. \/\/\
2.1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g
3. Repeat step (2) until the end of the sequence.

4. Encode last partition.

All details (including proof of m

optimality), here:
https://arxiv.org/abs/1804.10949

12

https://arxiv.org/abs/1804.10949

Our solution - The algorithm

C = current encoder gain = VByte - Bin

L .= last encoder
1. Encode first partition. \/\/\
2. 1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g
3. Repeat step (2) until the end of the sequence.

4. Encode last partition.

All details (including proof of m

optimality), here: Valid for ANY point-wise encoder.
https://arxiv.org/abs/1804.10949

12

https://arxiv.org/abs/1804.10949

Our solution - The algorithm

C = current encoder gain = VByte - Bin

L .= last encoder
1. Encode first partition. \/\/\
2. 1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g
3. Repeat step (2) until the end of the sequence.

4. Encode last partition.

All details (including proof of m

optimality), here: Valid for ANY point-wise encoder.

https://arxiv.org/abs/1804.10949

12

https://arxiv.org/abs/1804.10949

Our solution - The algorithm

C = current encoder gain = VByte - Bin

L .= last encoder
1. Encode first partition. \/\/\
2. 1f|C - L|and g are > 2F, then encode

the current partition with Cand setC =L, L = C. g
3. Repeat step (2) until the end of the sequence.

4. Encode last partition.

All details (including proof of m

optimality), here: Valid for ANY point-wise encoder.

https://arxiv.org/abs/1804.10949

Linear time and constant space.

12

https://arxiv.org/abs/1804.10949

Experimental Results on Gov2 and ClueWeb09

C++14 implementation compiled with gcc 7.2.0 with
highest optimization setting.

Gov2 ClueWeb09

Documents 24622 347 50131015
Terms 35636425 92 094 694
Postings 5742630292 15857983641

Basic statistics for the tested collections.

Code will be available upon acceptance of the paper.

13

Partitioned VS. Unpartitioned: Space and Indexing Time

Gov2 ClueWeb09
space doc freq space doc freq
GB bpi bpi GB bpi bpi
VByte 12.64 (+122.74%) 9.53(+95.75%) 8.02(+163.92%) 35.63(+99.26%) 9.90(+51.52%) 8.01(+222.39%)

VByte uniform 6.26 (+10.22%) 5.41(+11.05%) 3.31 (+8.92%) 19.95(+11.58%) 7.37(+12.73%) 2.69 (+8.54%)
VByte e-optimal 5.73 (+0.93%) 4.93 (+1.21%) 3.05 (+0.49%) 18.15 (+1.53%) 6.66 (+1.84%) 2.50 (-+0.68%)

VByte optimal 5.68 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

14

Partitioned VS. Unpartitioned: Space and Indexing Time

Gov2 ClueWeb09
space doc freq space doc freq
GB 2X bpi bpi GB 2X bpi bpi
VByte 12.64 (+122.74%)) 9.53(+95.75%) 8.02(+163.92%) | 35.63(+99.26%)] 9.90(+51.52%) 8.01(+222.39%)

VByte uniform 6.26 (-10.2205) 5.41(+11.05%) 3.31 (+8.92%) 1005111000 7.37(+12.73%) 2.69 (+8.54%)
VByte e-optimal 5.73 (+0.93%) 4.93 (+1.21%) 3.05 (+0.49%) 18.15 (+1.53%) 6.66 (+1.84%) 2.50 (+0.68%)

VByte optimal 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

14

Partitioned VS. Unpartitioned: Space and Indexing Time

Gov2 ClueWeb09
space doc freq space doc freq
GB 2X bpi bpi GB 2X bpi bpi
VByte 12.64 (+122.74%)) 9.53(+95.75%) 8.02(+163.92%) | 35.63(+99.26%)] 9.90(+51.52%) 8.01(+222.39%)

VByte uniform 6.26 (-10.2205) 5.41(+11.05%) 3.31 (+8.92%) 1005111000 7.37(+12.73%) 2.69 (+8.54%)
VByte e-optimal 5.73 (+0.93%) 4.93 (+1.21%) 3.05 (+0.49%) 18.15 (+1.53%) 6.66 (+1.84%) 2.50 (+0.68%)

VByte optimal 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

Gov2 ClueWeb09

VByte 10.10 (-3.81%) 43.30 (+51.93%)
VByte uniform 11.30 (+7.62%) 29.30 (+2.81%)
VByte e-optimal 26.70 (+154.29%) 72.30 (+153.68%)

VByte optimal 10.50 28.50

Index building timings in minutes.

14

Partitioned VS. Unpartitioned: Space and Indexing Time

Gov2 ClueWeb09
space doc freq space doc freq
GB 2X bpi bpi GB 2X bpi bpi
VByte 12.64 (+122.74%)) 9.53(+95.75%) 8.02(+163.92%) | 35.63(+99.26%)] 9.90(+51.52%) 8.01(+222.39%)
VByte uniform 6.26 (+10.22%) 5.41(+11.05%) 3.31 (+8.92%) 10.05(11.08%) 7.37(+12.73%) 2.69 (+8.54%)
VByte e-optimal 5.73 (+0.93%) 4.93 (+1.21%) 3.05 (+0.49%) 18.15 (+1.53%) 6.66 (+1.84%) 2.50 (+0.68%)
VByte optimal 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

Gov2 ClueWeb09
VByte 10.10 (—3.81%) 43.30 (+51.93%)
VByte uniform 9 0 3(2. 81% 2.5X

| 4/ 0
26.70 (+154.29%)

VByte e-optimal
VByte optimal

Index building timings in minutes.

14

Partitioned VS. Unpartitioned: AND queries and decoding

Gov2 ClueWeb09

0 VByte 0.90 (+1.37%) 5.56 (—2.54%)
o VByte uniform 0.94 (+5.07%) 5.90 (+3.45%)
& VByte e-optimal 0.92 (+2.70%) 5.89 (+3.34%)

© VByte optimal 0.89 5.70

VByte 2.12 (+0.02%) 8.35 (—6.90%)
o VByte uniform 2.22 (+4.98%) 9.02 (+0.60%)
W VByte e-optimal 2.24 (+5.77%) 9.17 (+2.31%)

~ VByte optimal 2.12 8.96

(a) AND queries (ms/query)

Gov2 ClueWeb09

VByte 2.35 (—4.08%) 2.55(—8.93%)
VByte uniform 2.75 (+12.24%) 2.90 (+3.57%)
VByte e-optimal 2.60 (+6.12%) 2.80 (+0.00%)

VByte optimal 2.45 2.80
(b) decoding time (ns/int)

Timings for AND queries in milliseconds
(ms/query) and sequential decoding time in nanosec-
ond per integer (ns/int).

15

Partitioned VS. Unpartitioned: AND queries and decoding

Gov2 ClueWeb09

10 VByte 0.90 (+1.37%) 5.56 (—2.54%)
o VByte uniform 0.94 (+5.07%) 5.90 (+3.45%)
& VByte e-optimal 0.92 (+2.70%) 5.89 (+3.34%)

© VByte optimal 0.89 5.70

VByte 2.12 (+0.02%) 8.35 (—6.90%)
o VByte uniform 2.22 (+4.98%) 9.02 (+0.60%)
W VByte e-optimal 2.24 (+5.77%) 9.17 (+2.31%)

F VByte optimal 2.12 8.96

(a) AND queries (ms/query)

Gov2 ClueWeb09

VByte 2.35 (—4.08%) 2.55(—8.93%)
VByte uniform 2.75 (+12.24%) 2.90 (+3.57%)
VByte e-optimal 2.60 (+6.12%) 2.80 (+0.00%)

VByte optimal 2.45 2.80
(b) decoding time (ns/int)

Timings for AND queries in milliseconds
(ms/query) and sequential decoding time in nanosec-
ond per integer (ns/int).

Speed NOT affected by partitioning.

15

Partitioned VS. Unpartitioned: AND queries and decoding

Gov2 ClueWeb09
v VByte 0.90 (+1.37%) 5.56 (—2.54%) 96.54 & 1 1 1. 164.8 0« 11
SVByte uniform 0.94 (+5.07%) 5.90 (+3.45%) o VByte o ' VByte
W VByte e-optimal 0.92 (+2.70%) 5.89 (+3.34%) W 80.45 - — Binary - 4 137.3 - — Binary -
= : % 6436- FF - X 1009-— FF i
VByte optimal 0.89 5.70 9 o
VByte 2.12 (+0.02%) 8.35 (—6.90%) ¢ 48.27 - - w824+ -
O VByte uniform 2.22 (+4.98%) 9.02 (+0.60%) {0 32.18 - - & 54.9- -
"~ VByte optimal 2.12 8.96 0.00 I NN N 00 ="
0 3 5 8 11 0 3 5 8 11
(a) AND queries (ms/query) 2 22 , 22 2 22 _ 22
Jump size Jump size
Gov2 ClueWeb09 (a) Dense (b) Sparse

VByte 2.35 (—4.08%) 2.55(—8.93%)
VByte uniform 2.75 (+12.24%) 2.90 (+3.57%)
VByte e-optimal 2.60 (+6.12%) 2.80 (+0.00%)

VByte optimal 2.45 2.80
(b) decoding time (ns/int)

Timings for AND queries in milliseconds
(ms/query) and sequential decoding time in nanosec-
ond per integer (ns/int).

Speed NOT affected by partitioning.

15

Partitioned VS. Unpartitioned: AND queries and decoding

Gov2 ClueWeb09

0 VByte 0.90 (+1.37%) 5.56 (—2.54%)
u VByte uniform 0.94 (+5.07%) 5.90 (+3.45%)
& VByte e-optimal 0.92 (+2.70%) 5.89 (+3.34%)
= VByte optimal 0.89 5.70

VByte 2.12 (+0.02%) 8.35(—6.90%)
o VByte uniform 2.22 (+4.98%) 9.02 (+0.60%)
W VByte e-optimal 2.24 (+5.77%) 9.17 (+2.31%)
F VByte optimal 2.12 8.96

(a) AND queries (ms/query)

Gov2 ClueWeb09
VByte 2.35 (—4.08%) 2.55 (—8.93%)
VByte uniform 2.75 (+12.24%) 2.90 (+3.57%)
VByte e-optimal 2.60 (+6.12%) 2.80 (+0.00%)
VByte optimal 2.45 2.80

(b) decoding time (ns/int)

Timings for AND queries in milliseconds
(ms/query) and sequential decoding time in nanosec-
ond per integer (ns/int).

Speed NOT affected by partitioning.

nanosecs/NextGEQ

% of jJumps

15

06.54 gl !
VByte

80.45 - — Binary

64.36 - —

48.27 -

32.18 -

16.09 -

0.00 &/,

20 23 2% 2%
Jump size
(a) Dense
30.47 -

26.12 -
21.76 -
17.41 -
13.06 -
8.71 -
4.35 -
0.00 -

1648 - + + ' ' o0t b
lé)J 137.3 - — Binary -
% 100.9- — F -
P
5 82.4 - E
O
a 54.9 - -
e
@ 27.5- -
c

OO B L L EL L LR I
20 23 55 28 5ll
Jump size
(b) Sparse

| | | | |

B Gov2 TREC 05

Gov2 TREC 06
B ClueWeb09 TREC 05
o ClueWeb09 TREC 06

I

I

Jump size

Overall Comparison

Gov2 ClueWeb09

space doc freq space doc freq

GB bpi bpi GB bpi bpi
PEF e-optimal 4.65(—18.06%) 4.10(—15.69%) 2.38(—21.82%) 15.94(—10.84%) 5.85(—10.57%) 2.20(—11.56%)
OptPFD 4.96(—12.56%) 4.48 (—7.97%) 2.38(—21.76%) 17.15 (—4.11%) 6.18 (—5.43%) 2.41 (—2.86%)
BIC 4.30(—24.17%) 3.80(—22.00%) 2.14(—29.49%) 14.01 (—21.63%) 5.15(—21.28%) 1.87(—24.81%)
ANS 4.17(—26.53%) 3.96(—18.73%) 1.85(—39.01%) 14.47(—19.09%) 5.36(—18.02%) 1.94(—21.91%)
QMX 6.77(+19.20%) 6.00(+23.27%) 3.37(+10.76%) 23.44 (+31.12%) 8.01(+22.59%) 3.75(+51.19%)
VByte optimal 5.68 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

Gov2 ClueWeb09
PEF e-optimal 0.98 (+9.51%) 5.87 (+3.04%)
.3 OptPFD 1.28 (+43.35%) 8.04 (+40.99%)
o BIC 4.14 (+364.16%) 25.42 (+345.90%)
& ANS 4.21 (+372.16%) 25.98 (+355.74%)
= QMX 088 (—-0.96%) 530 (-7.01%)

VByte optimal 0.89

5.70

PEF e-optimal
S OptPFD
w BIC
& ANS
= QMX

2.19 (+3.60%)
3.00 (+41.58%)
9.93 (+369.29%)
9.48 (+347.86%)
211 (—0.52%)

9.59 (+6.95%)
11.95 (+33.33%)
37.87 (+322.48%)
38.07 (+324.68%)
8.07 (—9.99%)

VByte optimal 2.12

8.96

(a) AND queries (ms/query)

Gov2

ClueWeb09

PEF e-optimal
OptPFD

BIC

ANS

QMX

2.60 (+6.12%)
2.88 (+17.55%)
7.50 (+206.12%)
5.80 (+140.41%)

)

2.25 (—8.16%

3.18 (+13.57%)
3.50 (+25.00%)
9.80 (+250.00%)
9.34 (+233.57%)
2.40 (—14.29%)

VByte optimal

2.45

2.80

(b) decoding time (ns/int)

16

Overall Comparison

Gov2 ClueWeb09

space doc freq space doc freq

GB bpi bpi GB bpi bpi
PEF e-optimal | 4.65(—18.06%) 0 4.10(—15.69%) 2.38(—21.82%) | 15.94(—10.84%)f 5.85(—10.57%) 2.20(—11.56%)
OptPFD 4.96(—12.56%)0 4.48 (-7.97%) 2.38(—21.76%) |17.15 (—4.11%)} 6.18 (—5.43%) 2.41 (—2.86%)
BIC T.30 (—24.1700) 3.80(—22.00%) 2.14(—29.49%) 101 (—2L.0000) 5.15(—21.28%) 1.87(—24.81%)
ANS 4.17(—26.53%) 3.96(—18.73%) 1.85(—39.01%) 14.47(—19.09%) 5.36(—18.02%) 1.94(—21.91%)
QMX 6.77(+19.20%) 6.00(+23.27%) 3.37(+10.76%) 23.44(+31.12%) 8.01(+22.59%) 3.75(+51.19%)
VByte optimal 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

Gov2 ClueWeb09
PEF e-optimal 0.98 (+49.51%) 5.87 (+43.04%)
3 OptPFD 1.28 (+43.35%) 8.04 (+40.99%)
o BIC 4.14 (+364.16%) 25.42 (+345.90%)
& ANS 4.21 (+372.16%) 25.98 (+355.74%)
= QMX 088 (—-0.96%) 530 (-7.01%)

VByte optimal 0.89

5.70

PEF e-optimal
S OptPFD
w BIC
& ANS
= QMX

2.19 (+3.60%)
3.00 (+41.58%)
9.93 (+369.29%)
9.48 (+347.86%)
2.11 (—0.52%)

9.59 (+6.95%)
11.95 (+33.33%)
37.87 (+322.48%)
38.07 (+324.68%)
8.07 (—9.99%)

VByte optimal 2.12

8.96

(a) AND queries (ms/query)

Gov2

ClueWeb09

PEF e-optimal
OptPFD

BIC

ANS

QMX

2.60 (+6.12%)
2.88 (+17.55%)
7.50 (+206.12%)
5.89 (+140.41%)

)

2.25 (—8.16%

3.18 (+13.57%)
3.50 (+25.00%)
9.80 (+250.00%)
9.34 (+233.57%)
2.40 (—14.29%)

VByte optimal

2.45

2.80

(b) decoding time (ns/int)

16

Overall Comparison

Gov2 ClueWeb09

space doc freq space doc freq

GB bpi bpi GB bpi bpi
PEF e-optimal J| 4.65(—18.06%)§ 4.10(—15.69%) 2.38(—21.82%) 15.94(—10.84%)1 5.85(—10.57%) 2.20(—11.56%)
OptPFD 4.96(—12.56%)4 4.48 (—7.97%) 2.38(—21.76%) 17.15 (—4.11%)] 6.18 (—5.43%) 2.41 (—2.86%)
BIC 4, 17%) 3.80(—22.00%) 2.14(—29.49%) 4.01 (—21.63%) 5.15(—21.28%) 1.87(—24.81%)
ANS 4.17(—26.53%) 3.96(—18.73%) 1.85(—39.01%) 14.47(—19.09%) 5.36(—18.02%) 1.94(—21.91%)
QMX 6.77(+19.20%) 6.00(+23.27%) 3.37(+10.76%) 23.44 (+31.12%) 8.01(+22.59%) 3.75(+51.19%)

VByte optimal 4.87 3.04 17.88 6.54 2.48

Space in giga bytes (GB) and average number of bits (bpi) per document (doc) and frequency (freq).

Gov2 ClueWeb09
PEF e-optimal 0.98 (+9.51%) 5.87 (+3.04%)
w5 OptPFD 1.28 (+43.35%) 8.04 (+40.99%)
o BIC 4.14 (+364.16%) 25.42 (+345.90%) Gov2 ClueWeb09
‘ 20)R QARR 740
:.':_’ A';'ASX 3-21 ~‘72-(‘)‘?0/' 22, *3*"7’-"1*; PEF e-optimal 2.60 (+6.12%) 3.18 (+13.57%)
Q 88 (-0.96%) 530 (-7.01%) OptPFD 2.88 (+17.55%) 3.50 (+25.00%)
VByte optimal BIC 7.50 (+206.12%) 9.80 (+250.00%)
PEF e-optimal 2.19 (+3.60%) 9.59 (+6.95%)) o S A
g OptPFD 3.00 (+41.58%) 11.95 (+33.33%) 225 (-8.16%) 240 (-14.29%
A N 247 RA R () 294 AR
(0 4 . . .
~ QMX 11 (—0.52%) 8.07 (—9.99% (b) decoding time (ns/int)
VByte optimalj 2.12 8.96

(a) AND queries (ms/query)

16

Take-home messages

Just do not waste space with VByte:
partition the sequences!

Compression ratio is likely to improve a lot,
without affecting speed.

The partitioning algorithm is fast, optimal,
and makes indexing even more efticient.

17

Thanks for your attention,

time, patience!

Any questions?

18

Scale with the quantity of indexed data.
(Some people would say: “Big Data”.)

Dataset Uncompressed Compressed
Gov2 46GB 4GB (~11X)

ClueWeb09 128GB 14GB (~9X)

19

Scale with the quantity of indexed data.
(Some people would say: “Big Data”.)

Dataset Uncompressed Compressed
Gov2 46GB 4GB (~11X)
ClueWeb09 128GB 14GB (~9X)

Can we put everything on disk ? § Memory hierarchy!

19

Scale with the quantity of indexed data.
(Some people would say: “Big Data”.)

Dataset Uncompressed Compressed
Gov2 46GB 4GB (~11X)
ClueWeb09 128GB 14GB (~9X)

Can we put everything on disk ? § Memory hierarchy!

See, for example:

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/

19

Scale with the quantity of indexed data.
(Some people would say: “Big Data”.)

Dataset Uncompressed Compressed
Gov2 46GB 4GB (~11X)
ClueWeb09 128GB 14GB (~9X)

Can we put everything on disk ? § Memory hierarchy!

See, for example:

https://blogs!dropbcx!com/tech|/201 6/O9limproving—the—performance—of-fu|I—text—search/

19

