
Fast and Compact Set Intersection
through 

Recursive Universe Partitioning

Giulio Ermanno Pibiri
giulio.ermanno.pibiri@isti.cnr.it

http://pages.di.unipi.it/pibiri

IEEE Data Compression Conference (DCC)

March 2021

http://pages.di.unipi.it/pibiri
mailto:giulio.ermanno.pibiri@isti.cnr.it
http://pages.di.unipi.it/pibiri/

The Compressed Set Intersection Problem

Design a compressed representation for a sorted integer sequence
S[0..n) whose values are drawn from a universe of size u, so that

intersecting two such sequences is done efficiently.

Other queries of interest:

- Union

- random Access

- Contains

- Predecessor/Successor

Applications

Inverted indexes

Databases

Semantic data

Geospatial data

Graph compression

E-Commerce

Compressed Representations

Large research corpora describing different space/time trade-offs.

- Golomb
- Elias’ Gamma and Delta
- Elias-Fano
- Variable-Byte
- Binary Interpolative Coding
- Simple
- PForDelta
- QMX
- Quasi-Succinct
- Partitioned Elias-Fano
- SIMD-BP
- Clustered Elias-Fano
- Optimal Variable-Byte
- ANS-based
- DINT

~1960

present 
day

See a recent survey paper “Techniques for Inverted Index Compression”,

ACM CSUR 2020, by G. E. P. and Rossano Venturini

Partitioning by Cardinality

The problem is that the operations of interest 
are not natively supported: 

we can just decode sequentially.

Partitioning by Cardinality

The problem is that the operations of interest 
are not natively supported: 

we can just decode sequentially.

Compressed BlocksOffsetsUpperbounds

14 34 49 98Upperbounds

3 9 10 14 23 24 25 34 38 42 44 49 50 65 71 98

B

Partitioning by Universe

Partitioning by Universe

Intersection(lists):
 Intersect only the non-empty slices in common between the lists.

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 0

S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bitmaps

Good old data structure for storing dense sets: 
x-th bit is set if integer x is in the set.

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 0

S = {0,1,5,7,8,10,11,14,18,21,22,28,29,30}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Intersection: bitwise AND

Union: bitwise OR

Contains: testing a bit 
Successor/Predecessor: __builtin_ctzll 
Select: pdep + __builtin_popcnt 
Max: __builtin_clzll 
Min: __builtin_ctzll 
Decode: __builtin_ctzll 
Insertion: setting a bit 
Deletion: clearing a bit

216 216

…

216

…

u

Dense: cardinality > 216/2Sparse Dense Sparse

Dense slices are represented with bitmaps of 216 or 28 bits.

Sparse slices are represented with sorted-arrays of 8-bit integers.

S D

at most 216 slices of 216 values each

at most 28 slices of 28 values each

D S D

28 28 28 28 28

Dense: cardinality ≥ 31

Assume u = 232

Recursive Universe Partitioning (or Slicing)

…

…

Intersection

- Dense vs. Dense (Bitmap vs. Bitmap): 
Bitwise AND operations + (usually) automatic vectorization

 

- Dense vs. Sparse (Bitmap vs. Array): 
Given the array A, check if bit A[i] is set in the bitmap. 
 

- Sparse vs. Sparse (Array vs. Array): 
Vectorized processing using _mm_cmpestrm and 
_mm_shuffle_epi8 SIMD instructions.

Intersection between lists has to intersect only the

non-empty slices in common between the lists:

Experiments — Setting and Code

C++ code at https://github.com/jermp/s_indexes

Machine
Intel i9-9900 CPU @3.6GHz, 64 GiB RAM, Linux 5

Compiler
gcc 9.2.1 with all optimizations enabled: -march=native and -O3

Experiments — Methods and Datasets

Experiments — Compression Effectiveness and Decoding

CP-based methods, such as BIC and PEF, are best for space usage. 
Slicing (UP-based) stands in trade-off position.

UP-based methods, are as fast as the fastest (vectorized) CP-based methods.

Experiments — Intersections

UP-based methods outperform CP-based methods.

Future Work

- Investigate the use of more succinct encodings to
represent the sparse regions, without hurting efficiency.

- Support ranked retrieval instead of boolean by means
of a scoring function, such as BM25.

- Support for insertions/deletions.

Thank you for the attention!

