
Succinct Dynamic Ordered Sets with Random Access∗

GIULIO ERMANNO PIBIRI, ISTI-CNR, Italy
ROSSANO VENTURINI, University of Pisa, Italy

The representation of a dynamic ordered set of n integer keys drawn from a universe of sizem is a fundamental

data structuring problem. Many solutions to this problem achieve optimal time but take polynomial space,

therefore preserving time optimality in the compressed space regime is the problem we address in this work.

For a polynomial universem = nΘ(1), we give a solution that takes EF(n,m) + o(n) bits, where EF(n,m) ≤

n⌈log
2
(m/n)⌉ + 2n is the cost in bits of the Elias-Fano representation of the set, and supports random access

to the i-th smallest element in O(logn/log logn) time, updates and predecessor search in O(log logn) time.

These time bounds are optimal.

1 INTRODUCTION
The dynamic ordered set problem with integer keys is to represent a set S ⊆ [m] = {0, . . . ,m − 1},

with |S| = n, such that the following operations are supported: Search(x) determines whether

x ∈ S; Insert/Delete(x) inserts/deletes x in/from S; Predecessor/Successor(x) returns the next
smaller/larger element from S;Minimum/Maximum() returns the smallest/largest element from

S. This is among the most studied problems in Computer Science (see the introduction to parts III

and V of the book by Cormen et al. [6]). Many solutions to this problem are known to require an

optimal amount of time per operation within polynomial space. For example, under the comparison-

based model that allows only two keys to be compared in O(1) time, it is well-known that any

self-balancing search tree data structure, such as AVL or Red-Black, solves the problem optimally

in O(logn) worst-case time and O(n) words of space. (Unless otherwise specified, all logarithms

are binary throughout the article).

However, working with integer keys makes it possible to beat the O(logn)-time bound with a

RAM model having word sizew = Θ(logm) bits [10, 19, 21, 25]. In this scenario, classical solutions

include the van Emde Boas tree [21–23], x/y-fast trie [25] and the fusion tree [10] — historically the

first data structure that broke the barrier of Ω(logn), by exhibiting an improved running time of

O(logw n) = O(logn/log logm).

In this work, we are interested in preserving the asymptotic time optimality for the operations

under compressed space. A simple information-theoretic argument [15] shows that one needs at

least B(n,m) = ⌈log
(m
n

)
⌉ = n log(em/n) − Θ(n2/m) −O(logn) bits to represent S (e = 2.718 is the

base of the natural logarithm), because there are

(m
n

)
possible ways of selecting n integers out of

m. The meaning of this bound is that any solution solving the problem in optimal time but taking
polynomial space, i.e., O(nΘ(1) logm) bits, is actually Ω(n logn) bits larger than necessary.

Interestingly, the Elias-Fano representation [7, 8] of the ordered setS uses EF(n,m) ≤ n⌈log(m/n)⌉+
2n bits which is at most n log(m/n) + 3n bits. For n = o(

√
m), we have that B(n,m) ≈ n log(m/n) +

∗
A preliminary version of this work was published in the Proceedings of the 28-th Annual Symposium on Combinatorial

Pattern Matching (CPM 2017) [16], when the first author was a Ph.D. student at the University of Pisa, Italy.

Authors’ addresses: Giulio Ermanno Pibiri, ISTI-CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy; Rossano Venturini,

University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy, giulio.ermanno.pibiri@isti.cnr.it, rossano.venturini@unipi.it.

© 2020

2 G. E. Pibiri and R. Venturini

1.44n bits, showing that Elias-Fano takes B(n,m) + 1.56n bits. We conclude that Elias-Fano is at

most 1.56n bits away from the information-theoretic minimum [11]. We describe Elias-Fano in

Section 2.1.

Given the total order of S, it is natural to extend the problem by also considering the operation

Access that, given an index 0 ≤ i < n, returns the i-th smallest element from S. (This operation

is also known as Select.) It should also be noted that, for any key x , the operation Search(x) can
be implemented by running Successor(x) and checking whether the returned value is equal to x
or not. Furthermore, it is well-known that Predecessor and Successor have the same complexities

and are solved similarly, thus we only discuss Predecessor. Lastly, returning the smallest/largest

integer from S can be trivially done by storing these elements explicitly in O(logm) bits (which

is negligible compared to the space needed to represent S) and updating them as needed upon

insertions/deletions. For these reasons, the problem we consider in this article is formalized as

follows.

Problem 1. Dynamic ordered set with random access — Given a non-negative integer m,
represent an ordered set S ⊆ [m] with |S| = n, such that the following operations are supported for
any x and 0 ≤ i < n:

• Access(i) returns the i-th smallest element from S,
• Insert(x) sets S = S ∪ {x},
• Delete(x) sets S = S \ {x},
• Predecessor(x) = max{y ∈ S |y < x}.

Our contribution. In this article we describe a solution to Problem 1 whose space in bits is

expressed in terms of EF(n,m) — the cost of representing S with Elias-Fano — and achieves optimal

running times. We consider a unit-cost RAM model with word size w = Θ(logm) bit, allowing

multiplication. We study the asymptotic behaviour of the data structures, therefore we also assume,

without loss of generality, that n is larger than a sufficiently big constant [15].

For the important and practical case where the integers come from a polynomial universe of

size m = nΘ(1), we give a solution that uses EF(n,m) + o(n) bits, thus introducing a sublinear
redundancy with respect to EF(n,m), and supports: Access inO(logn/log logn) time, Insert, Delete
and Predecessor in O(log logn) time. The time bound for random access under updates matches a

lower bound given by Fredman and Saks [9] for dynamic selection. Dynamic predecessor search,

instead, matches a lower bound given by Pǎtraşcu and Thorup [17]. Our result significantly improves

the space of the best known solution by Pǎtraşcu and Thorup [19] which takes optimal time but

polynomial space, i.e., O(n logm) bits.

In Section 2 we discuss related work and preliminaries. The main result is described in Section 3.

In Section 4 we develop a solution that achieves a better update time under the assumption that we

can only add a key larger than the maximum in the set (and delete the maximum).

2 PRELIMINARIES
In this section we illustrate the context of our work, whose discussion is articulated in three parts.

We first describe the static Elias-Fano representation because it is a key ingredient of our solutions.

Then we discuss the results concerning the static predecessor and dynamic ordered set (and related)

problems, stressing what lower bounds apply to these problems. Recall that we use a RAM model

with word sizew = Θ(logm) bits.

Succinct Dynamic Ordered Sets with Random Access 3

Table 1. An example of Elias-Fano encoding.

S 3 4 7 13 14 15 21 25 36 38 54 62

high
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 0 0 1 0 1

low
0 1 1 1 1 1 1 0 1 1 1 1
1 0 1 0 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 1 0 0 0 0

H 1110 1110 10 10 110 0 10 10

L 011.100.111 101.110.111 101 001 100.110 110 110

2.1 Static Elias-Fano representation
Lemma 1. Elias-Fano [7, 8]. An ordered set S ⊆ [m], with |S| = n, can be represented in EF(n,m)+

o(n) bits such that Access is supported inO(1) and Predecessor inO(1+ log(m/n)), where EF(n,m) ≤

n⌈log(m/n)⌉ + 2n.

Space complexity. Let S[i] indicate the i-th smallest of S. We write each S[i] in binary using

⌈logm⌉ bits. The binary representation of each integer is then split into two parts: a low part

consisting in the right-most ℓ = ⌈log(m/n)⌉ bits that we call low bits and a high part consisting

in the remaining ⌈logm⌉ − ℓ bits that we similarly call high bits. Let us call ℓi and hi the values
of low and high bits of S[i] respectively. The integers L = [ℓ0, . . . , ℓn−1] are written explicitly in

n⌈log(m/n)⌉ bits and they represent the encoding of the low parts. Concerning the high bits, we

represent them in negated unary using a bitmap of n + 2 ⌊logn ⌋ ≤ 2n bits as follows. We start from a

0-valued bitmap H and set the bit in position hi + i , for i = 0, . . . ,n − 1. It is easy to see that the

k-th unary value of H , say nk , indicates that nk integers of S have high bits equal to k . For example,

if H is {1110, 1110, 10, 10, 110, 0, 10, 10} (as in Table 1), we have that H [1] = 1110, so we know
that there are 3 integers in S having high bits equal to 1.

Summing up the costs of high and low parts, we derive that Elias-Fano takes EF(n,m) ≤

n⌈log(m/n)⌉ + 2n bits. Although we can opt for an arbitrary split into high and low parts, ranging

from 0 to ⌈logm⌉, it can be shown that ℓ = ⌈log(m/n)⌉ minimizes the overall space of the encod-

ing [7]. As explained in Section 1, the space of Elias-Fano is related to the information-theoretic

minimum: it is at most 1.56n bits redundant.

Example. Table 1 shows a graphical example for the sorted set S = [3, 4, 7, 13, 14, 15, 21, 25, 36,

38, 54, 62]. The missing high bits embody the representation of the fact that using ⌊log
2
n⌋ bits to

represent the high part of an integer, we have at most 2 ⌊log2 n ⌋ distinct high parts because not all

of them could be present. In Table 1, we have ⌊log
2
12⌋ = 3 and we can form up to 8 distinct high

parts. Notice that, for example, no integer has high part equal to 101 which are, therefore, “missing”

high bits.

Random access. A remarkable property of Elias-Fano is that it can be indexed to support Access
in O(1) worst-case. The operation is implemented by building an auxiliary data structure on top

of H that answers Select1 queries. The answer to a Selectb (i) query over a bitmap is the position

of the i-th bit set to b. This auxiliary data structure is succinct in the sense that it is negligibly

small in asymptotic terms, compared to EF(n,m), requiring only o(n) additional bits [13, 24], hence
bringing the total space of the encoding to EF(n,m) + o(n) bits. For a given i ∈ [0,n), we proceed
as follows. The low bits ℓi are trivially retrieved as L[iℓ, (i + 1)ℓ). The retrieval of the high bits is,

4 G. E. Pibiri and R. Venturini

instead, more complicated. Since we write in negated unary how many integers share the same

high part, we have a 1 bit for every integer in S and a 0 for every distinct high part. Therefore, to

retrieve hi , we need to know how many 0s are present inH [0, Select1(i)). This quantity is evaluated
on H in O(1) as Select1(i) − i . Lastly, re-linking the high and low bits together is as simple as:

Access(i) = ((Select1(i)−i) << ℓ) | ℓi , where << indicates the left shift operator and | is the bitwise

OR.

Predecessor search. The query Predecessor(x) is supported inO(1+ log(m/n)) time as follows. Let

hx be the high bits of x . Then for hx > 0, i = Select0(hx)−hx +1 indicates that there are i integers in
S whose high bits are less than hx . On the other hand, j = Select0(hx + 1) −hx gives us the position

at which the elements having high bits larger than hx start. The corner case hx = 0 is handled by

setting i = 0. These two preliminary operations take O(1). Now we can conclude the search in

the range S[i, j], having skipped a potentially large range of elements that, otherwise, would have

required to be compared with x . The range may contain up to u/n integers that we search with

binary search. The time bound follows. In particular, it could be that Predecessor(x) < S[i]: in this

case S[i − 1] is the element to return if i > 0.

Partitioning the representation. In this article we will use extensively the following property of

Elias-Fano.

Property 1. Given an ordered set S ⊆ {0, . . . ,m}, with |S| = n, let EF(S[i, j)) indicate the Elias-
Fano representation of S[i, j), for any 0 ≤ i < j ≤ n. Then given an index k ∈ [1,n), we have that
EF(S[0,k)) + EF(S′[k,n)) ≤ EF(S[0,n)), where S′[l] = S[l] − S[k − 1] + 1, for l = k, . . . ,n − 1.

The property tells us that splitting the Elias-Fano encoding of S does not increase its space of

representation. This is possible because each segment can be encoded with a reduced universe, by
subtracting to each integer the last value of the preceding segment (the first segment is left as it is).

Informally, we say that a segment is “re-mapped” relatively to its own universe. The property can

be easily extended to work with an arbitrary number of splits. Let us now prove it.

Proof. We know that EF(S[0,n)) takes nϕ + n + ⌈m/2ϕ⌉ bits, where ϕ = ⌈log(m/n)⌉. Similarly,

EF(S[0,k)) = kϕ1+k+⌈m1/2
ϕ1⌉ and EF(S′[k, j)) = (n−k)ϕ2+(n−k)+⌈m2/2

ϕ2⌉, wherem1 = S[k−1]
andm2 = S[n − 1] −m1 + 1, are minimized by choosing ϕ1 = ⌈log(m1/k)⌉ and ϕ2 = ⌈log(m2/(n −

k))⌉. Any other choice of ϕ1 and ϕ2 yields a larger cost, therefore: EF(S[0,k)) + EF(S[k,n)) ≤
kϕ + (n − k)ϕ + k + (n − k) + ⌈m1/2

ϕ⌉ + ⌈m2/2
ϕ⌉ ≤ nϕ + n + ⌈m/2ϕ⌉ = EF(S[0,n)). □

An important consideration to make is that Property 1 needs the knowledge of the value S[k − 1]

to work — the pivoting element — which can be stored in O(logm) bits. This means that for small

values of n it can happen that the space reduction does not exceed O(logm) bits. Since we do not

deal with such values of n, we always assume that this is not the case.

2.2 The static predecessor problem
Simple solutions. There are two simple solutions to the static predecessor problem. The first uses

an array P[0..m) where we store the answers to all possible queries. In this case Predecessor(x) =
P[x] for any x < m (P[0] = −∞), thus the problem is solved in O(1) worst-case time andm⌈logm⌉

bits. The second solution stores S as a sorted array and answers the queries using binary search,

therefore taking n⌈logm⌉ bits and O(logn) worst-case time. Both solutions are unsatisfactory: the

first one because of its space; the second one because of its time.

Succinct Dynamic Ordered Sets with Random Access 5

Lower bounds. Ajtai [1] proved the firstω(1)-time lower bound for polynomial space, i.e.,O(nΘ(1))

memory words, claiming that ∀w , ∃n that gives Ω(
√
logw) query time. Miltersen [14] elaborated

on Ajtai’s result and also showed that ∀n, ∃w that gives Ω(3

√
logn) query time.

For the dense case ofm = n(logn)O (1)
, Pagh [15] gave a static data structure taking B + o(n) bits

and answering membership and predecessor queries in O(1) worst-case time. (We consider larger

universes in this article.)

Beame and Fich [3, 4] proved two strong bounds for any cell-probe data structure. They

proved that ∀w , ∃n that requires Ω(logw/log logw) query time and that ∀n, ∃w that requires

Ω(
√
logn/log logn) query time. They also gave a static data structure achieving

O(min{logw/log logw,
√
logn/log logn})

which is, therefore, optimal.

Building on a long line of research, Pǎtraşcu and Thorup [17, 18] finally proved the following

optimal (up to constant factors) space/time trade-off.

Theorem 1. Pǎtraşcu and Thorup [17, 18]. A static data structure representing n integer keys in z
bits, takes time

Θ
(
min

{
logn

logw
, log

w − logn

a
,

log(w/a)

log(a
logn log(w/a))

,
log(w/a)

log(log(w/a)/log
logn
a)

})
to answer a Predecessor query, where a = log(z/n).

This lower bound holds for cell-probe, RAM, trans-dichotomous RAM, external memory and

communication game models. The first branch of the trade-off indicates that, whenever one integer

fits in one memory word, fusion trees [10] are optimal as they have O(logn/logw) query time.

The second branch holds for polynomial universes, i.e., whenm = nγ , for any γ = Θ(1). In such

important case we have that w = Θ(logm) = Θ(logn), therefore y-fast tries [25] and van Emde

Boas trees [21–23] are optimal with query time O(log logn). The last two bounds of the trade-off,

instead, treat the case for super-polynomial universes and are out of scope for this work.

For example, given a space budget of O(n polylogn) words we have a = O(log logn), thus
implying that y-fast tries and van Emde Boas trees are optimal ifw = O(polylogn) and fusion trees

are optimal if logw = Ω(
√
logn · log logn).

Predecessor queries in succinct space. We are now interested in determining the optimal running

time of Predecessor given the Elias-Fano space bound of EF(n,m)+o(n) bits from Lemma 1, knowing

that the time for dynamic predecessor with logarithmic update time can not be better than that of

static predecessor (allowing polynomial space) [19].

We make the following observation.

Observation 1. Given any linear-space data structure supporting Predecessor in O(t) worst-cast
time, an ordered set S ⊆ [m] with |S| = n can be represented in EF(n,m) +O(n/2ct · logm) + o(n)
bits such that Access is supported in O(1) and Predecessor in O(t) worst-case time, for any constant
c > 1.

We represent S with Elias-Fano and (logically) divide it into ⌈n/2ct ⌉ blocks of 2ct integers each
(the last block may contain less integers). We can solve Predecessor queries in a block in O(t) time

by applying binary search, given that each access is performed in O(1) time. The first element of

each block (and its position inS) is also stored in the linear-space data structure solving Predecessor
in O(t) time. The space of such data structure is O(n/2ct · logm) bits.

6 G. E. Pibiri and R. Venturini

Corollary 1. An ordered set S ⊆ [m], with |S| = n and m = nΘ(1), can be represented in
EF(n,m) + o(n) bits such that Access is supported in O(1) and Predecessor in optimal O(min{1 +

log(m/n), log logn}) worst-case time.

The linear-space data structure in Observation 1 is chosen to be any-fast trie, whose t = log logn
query time is optimal for polynomial universes (second branch of Theorem 1). The space of the

y-fast trie is O(n/(logn)c−1) = o(n) bits.
Letm = nγ , for any γ = Θ(1). The boundO(log logn) only depends on n, whereas the plain Elias-

Fano bound ofO(1+ log(m/n)) depends on both n andm, thus varying γ only one of the two bounds

is optimal. In fact, we have that 1 + log(m/n) ≤ log logn wheneverm ≤ n
2
logn, i.e., when nγ−1 ≤

1

2
logn. From this last condition we derive that the plain Elias-Fano bound is less than log logn

when 1 ≤ γ ≤ 1+ log logn/logn. When, instead, γ > 1+ log logn/logn, the query timeO(log logn)
is optimal and exponentially better than Elias-Fano. Therefore, O(min{1 + log(m/n), log logn}) is
an accurate characterization of the Predecessor time bound with EF(n,m) + o(n) bits.

However for the rest of the discussion, we assume thatm is sufficiently large so that log logn <
1 + log(m/n), that ism > n

2
logn.

2.3 Dynamic problems
Ordered set problem. As far as the Access operation is not supported, the following results hold.

The van Emde Boas tree [21–23] is a recursive data structure that maintains S in O(m logm) bits

and O(logw) worst-case time. Willard [25] improved the space bound to O(n logm) bits with the

y-fast trie. (The bound for Insert/Delete is amortized rather than worst-case). When polynomial

universes are considered, Pǎtraşcu and Thorup [17] proved that van Emde Boas trees and y-fast
tries have an optimal query time for the dynamic predecessor problem too, that is O(log logn)
worst-case.

Fredman and Willard [10] solved that dynamic predecessor problem in O(logn/log logm) time

andO(n) space with the fusion tree. This data structure is a B-tree with branching factor B = wO (1)

that stores in each internal node a fusion node a small data structure able of answering predecessor

queries in O(1) for sets up to B integers.

Extending their result to the dynamic predecessor problem, Beame and Fich [3, 4] proved that

any cell-probe data structure using (logm)O (1)
bits per memory cell and nO (1)

worst-case time

for insertions, requires Ω(
√
logn/log logn) worst-case query time. They also proved that, under a

RAM model, the dynamic predecessor problem can be solved in O(min{log logn · logw/log logw ,√
logn/log logn}), using linear space. This bound was matched by Andersson and Thorup [2] with

the so-called exponential search tree. This data structure has an optimal bound ofO(
√
logn/log logn)

worst-case time for searching and updating S, using polynomial space.

Set problems with random access. The lower bound for the problem changes by considering the

Access operation because this operation is related to the partial sums problem that is, given an

integer array A[0..n), support Sum(i) returning the sum of the first i + 1 integers, Update(i,∆)
which sets A[i] to A[i] + ∆ and Search(x) which returns the index i ∈ [0,n) such that Sum(i) <
x ≤ Sum(i + 1). Fredman and Saks [9] proved a bound of Ω(logn/log logn) amortized time for this

problem (see also the extended version of the article by Pǎtraşcu and Thorup [19] — Section 5).

Therefore, this is the lower bound that applies to our problem as well. Bille et al. [5] extended the

problem as to also support dynamic changes to the array.

Fredman and Saks [9] also proved that Ω(logn/log logn) amortized is necessary for the list
representation problem, that is to support Access, Insert and Delete. However, this problem is

slightly different than the one tackled here, because one can specify the position of insertion of a

Succinct Dynamic Ordered Sets with Random Access 7

key. Likewise, the Delete operation specify the position of the key, rather than the key itself. Raman,

Raman, and Rao [20] also addressed the list representation problem (referred to as the dynamic
array problem) and provide two solutions. The first solution is given by the following lemma.

Lemma 2. Raman, Raman, and Rao [20]. A dynamic array containing n elements can be imple-
mented to support Access in O(1), Insert and Delete in O(nϵ) time using O(n1−ϵ) pointers, where ϵ is
any fixed positive constant.

The second solution supports all the three operations in O(logn/log logn) amortized time. Both

solutions take o(n) bits of redundancy (besides the space needed to store the array) and the time

bounds are optimal.

Since it takes,O(B4) time to construct and update a fusion node with B keys, Pǎtraşcu and Thorup

[19] showed that it is possible to “dynamize” the fusion node and obtained the following result.

Lemma 3. Pǎtraşcu and Thorup [19]. An ordered set S ⊆ [m], with |S| = n, can be represented in
O(n logm) bits and supporting Insert, Delete, Rank, Select and Predecessor in O(logn/log logm)

per operation.

The time bound of O(logn/log logm) is optimal, matching a lower bound by Fredman and Saks

[9] for dynamic ranking and selection, and that of predecessor queries for non-polynomial universes

(first branch of the trade-off from Theorem 1).

3 SUCCINCT DYNAMIC ORDERED SETS WITH RANDOM ACCESS
In this section we illustrate our main result for polynomial universes: a solution to Problem 1 that

uses EF(n,m)+o(n) bits and supports all operations in optimal time. From Section 2.3, we recall that

a bound of Ω(logn/log logn) applies to the Access operation under updates; Predecessor search
needs, instead, Ω(log logn) time as explained in Section 2.2.

Theorem 2. An ordered set S ⊆ [m], with |S| = n andm = nΘ(1), can be represented in EF(n,m) +

o(n) bits such that Access is supported in O(logn/log logn), Insert, Delete and Predecessor in
O(log logn) time.

We first show how to handle small sets of integers efficiently in Section 3.1. Then we use this

solution to give the final construction in Section 3.2.

3.1 Handling small sets
In this section, we give a solution to Problem 1 working for a small set of integers.

The following lemma is useful.

Lemma 4. Jansson et al. [12] Given a collection of k blocks, each of size O(b) bits, we can store it
usingO(k logk +b2) bits of redundancy to support Address inO(1) time and Realloc inO(b/w) time.

We say that the data structure of Lemma 4 has parameters (k,b). The operation Address(i)
returns a pointer to where the i-th block is stored in memory; the operation Realloc(i,b ′) changes
the length of the i-th block to b ′ bits.

Now we show the following theorem.

Theorem 3. Let S ⊆ [m] be an ordered set with |S| = n andm = nΘ(1). Then a subset S′ of S, with
|S′ | = n′ = Θ((logn · log logn)2) and S′ ⊆ [m′], can be represented with EF(n′,m′) +O((logn)2 ·
log logn) + o(n′) bits and supporting Access, Insert, Delete and Predecessor in O(log logn) time.

8 G. E. Pibiri and R. Venturini

Memory management. We divide the ordered elements of S′
into blocks of size Θ((log logn)2)

and represent each block with Elias-Fano. We have O((logn)2) blocks. Physically, the high and low

parts of the Elias-Fano representations are stored using two different data structures.

The high parts of all blocks are stored using the data structure of Lemma 4, with parameters

(O((logn)2),Θ((log logn)2)). For this choice of parameters, we support both Address and Realloc in
O(1) time and pay a redundancy of O((logn)2 · log logn + (log logn)4) = O((logn)2 · log logn) bits.
This allows to manipulate the high part of a block in O(1) time upon Access, Insert and Delete.

The low parts are stored in a collection of Θ((log logn)2) dynamic arrays, each being an instance

of the data structure of Lemma 2. We maintain an array A of Θ((log logn)2) pointers to such data

structures, taking O((log logn)2 · logn) = O((logn)2) bits. Each array stores O((logn)2) integers
and supports Access in O(1), Insert and Delete in O(log logn) as soon as ϵ < 1/6 in Lemma 2. The

redundancy to maintain the arrays is o(n′) bits.

Indexing. The blocks are indexed with a τ -ary tree T , with τ = (logn)σ and 0 < σ < 1. It follows

that the height of the tree is constant and equal to h = O(logτ (logn)
2) = O(1/σ). The tree operates

as a B-tree where internal nodes store Θ(τ) children. In particular, each node stores Θ(τ) counters,
telling how many integers are present in the leaves that descend from each child. These counters

are kept in prefix-sum fashion to enable binary search. Such counters takesO(τ log logn) = o(logn)
bits which fit in (less than) a machine word. This allows us to update such counters in O(1) time

upon insertions/deletions.

Each leaf node also stores two offsets per block, each taking O(log logn) bits. The first offset
is the position in A of the pointer to the dynamic array storing the low parts of the Elias-Fano

representation of the block. The second offset tells where the low parts of the block are stored inside

the dynamic array. Thus the overhead per block is O(log logn) bits. As usual, each internal node

also stores a pointer per child, thus maintaining the tree topology imposes an overhead per block

equal to O(logn/τ) = O((logn)1−σ) = O(log logn) bits as soon as σ ≥ 2/3. Since the overhead per

block is O(log logn) bits, it follows that the total space of T is = O((logn)2 · log logn) bits.

Operations. To support Access, we navigate the tree spending O(logτ) = O(σ log logn) per level
by binary searching the counters. The proper block is therefore identified in O(h × σ log logn) =
O(log logn) and the wanted integer is returned in O(1) time from it knowing the local offset of the

integer inside the block calculated during the traversal.

To support Insert, we need to identify the proper block where to insert the new integer. (The

Delete operation is symmetric.) Again, we use binary search on each level of the tree but searching

among the last values of the indexed blocks. We can retrieve the last value of a block inO(1), having
the pointer to the block and its size information from the counters. This is trivial at the leaves. In

the internal nodes, instead, if the upper bound of the i-th child is needed for comparison for some

1 ≤ i ≤ Θ(τ), we access the block storing such value by following the pointer to the right-most
block indexed in the sub-tree rooted in the i-th child. Accessing the right-most block takes O(1)
time. Having located the proper block, we insert the new integer in O(log logn) time, as explained

before. Updating the counters in each node of the tree along the root-to-leaf path takes O(1) time

as they fit in o(logn) bits. If a split or merge of a block happens, it is handled as in a B-tree and

solved in a constant number of O(1)-time operations.

During a Predecessor search we identify the proper block in O(log logn) time as explained for

Insert and return the predecessor by binary searching the block’s values. The total time of the

search is O(log logn).

Space complexity. We now analyze the space taken by the Elias-Fano representations of the

blocks. Our goal is to show that such space can be bounded by EF(n′,m′), that is the space of

Succinct Dynamic Ordered Sets with Random Access 9

encoding the set S′
with Elias-Fano. Since the universe of representation of a block could be as

large as m′
, storing the lower bounds of the blocks in order to use reduced universes — as for

Property 1 — would require O((logn)3) bits of redundancy. This is excessive because if the data
structure is replicated every n′ integers to represent a larger dynamic set S with |S| = n, then
these lower bounds would cost O(n/(log logn)2 · logn) bits, which is not sub-linear in n. We show

that this extra space can be avoided, observing that the number of bits used to represent the low

part of Elias-Fano remains the same for a sufficiently long sequence of p updates.

From Section 2.1 recall that Elias-Fano represents each low part with ⌈ϕ⌉ = ⌈log(m′/n′)⌉ bits.
Now, suppose that the low parts of the blocks are encoded using a sub-optimal value ⌈µ⌉ instead of

⌈ϕ⌉. After we perform p updates, ⌈µ⌉ = ⌈log(m′/(n′ ± p))⌉ is set to ⌈ϕ⌉ by rebuilding the blocks.

It is easy to see that n′ updates are required to let ⌈µ⌉ become ⌈ϕ⌉ ± 1, because ⌈log(·)⌉ changes

by +1 (−1) whenever its argument doubles (halves). Therefore we have ⌈µ⌉ = ⌈ϕ⌉ for any p < n′.
In our case n′ = Θ((logn · log logn)2). In order to guarantee an amortized cost for update equal

to O(log logn), we set p = O((logn)2 · log logn). Storing the current value of ⌈µ⌉ adds a global

redundancy of Θ(logn) bits which is negligible.

3.2 Final construction
Now we prove the final result – Theorem 2 – whose key ingredient is the data structure given in

Theorem 3.

Lower level. We divide the ordered elements of S into blocks of size Θ((logn · log logn)2) and
represents them using the tree data structure of Theorem 3. Therefore, we have a forest {Ti } of

k = Θ(n/(logn · log logn)2) such data structures.

Upper level. The first element of each block is (also) stored in the data structure of Lemma 3 that

is a dynamic fusion tree with out-degree Θ(logn), and in an y-fast trie. Let call these data structures
F and Y respectively. The i-th leaf of both F and Y holds a pointer to the data structure Ti .

Space and time complexity. The lower level costsO(k · (logn)2 · log logn)+o(n) =O(n/log logn)+
o(n) = o(n) bits. The total cost of the upper level is O(k · logn) = O(n/(logn · (log logn)2)) = o(n)
bits. Since each block is re-mapped relatively to its universe, Property 1 guarantees that the space

of representation is at most EF(n,m) bits. The space bound claimed in Theorem 2 follows.

A total running time of O(logn/log logn) for Access follows because the F data structure

operates in this time. For Insert, Delete and Predecessor, we use theY data structure, thus attaining

to O(log logn) time. (The bound for Insert and Delete is amortized rather than worst-case).

4 APPEND-ONLY
In this section we extend the result given in Corollary 1 to the case where the integers are inserted

in sorted order using an Append operation. In this case, we obtain an append-only representation.

Theorem 4. An ordered set S ⊆ [m], with |S| = n andm = nΘ(1), can be represented in EF(n,m) +

o(n) bits such that Append and Access are supported in O(1) time, Predecessor in O(log logn) time.

Data structure and space analysis. We maintain an array A[0..k) of size k = O((logn)c) where
integers are appended uncompressed, for any c > 1. The array is periodically encoded with Elias-

Fano in Θ(k) time and overwritten. Each compressed representation of the buffer is appended to

another array of blocks encoded with Elias-Fano. More precisely, when A is full we encode with

Elias-Fano its corresponding differential buffer, i.e., the buffer whose values are A[i] − A[0], for
0 ≤ i < k . Each time the array is compressed, we append in another array A′

the pair (base, low)
= (A[0], ⌈log(A[k − 1]/k)⌉), i.e., the buffer lower bound value (base) and the number of bits (low)
needed to encode the average gap of the Elias-Fano representation of the block.

10 G. E. Pibiri and R. Venturini

As discussed for Corollary 1, we store the buffer lower bounds an y-fast trie. More precisely,

it stores a buffer lower bound and the index of the Elias-Fano-encoded block to which the lower

bound belongs to. The space of this data structure is o(n) bits. Besides the space of the y-fast trie,
which is o(n) bits, and that of the Elias-Fano-encoded blocks, the redundancy of the data structure

is due to (1) O((k + 1) logn) bits for the array A and its (current) size; (2) O(n/k · logn) bits for
pointers to the Elias-Fano-encoded blocks; (3) O(n/k · logn) bits for the array A′

; and it sums up to

o(n) bits.
Lastly, Property 1 guarantees that the space taken by the blocks encoded with Elias-Fano can

be safely upper bounded by EF(n,m) so that the overall space of the data structure is at most

EF(n,m) + o(n) bits.

Operations. The operations are supported as follows. Since we compress the array A each time it

fills up (by takingΘ(k) time), Append is performed inO(1) amortized time. Appending new integers

in the buffer accumulates a credit of Θ(k) that (largely) pays the cost O(log logn) of appending a
value to they-fast trie. To Access the i-th integer, we retrieve the element x in position i−p×k from

the compressed block of index p = ⌊i/k⌋. This is done in O(1) worst-case time, since we know how

many low bits are required to perform Access by reading C[p].low. We finally return the integer

x +C[p].base. To solve Predecessor(x), we first resolve a partial Predecessor(x) query in the y-fast
trie to identify the index k of the compressed block where the predecessor is located. This takes

O(log logn) worst-case time. We returnC[p].base+Predecessor(x −C[p].base) by binary searching
the block of index p in O(log logn) worst-case time.

5 CONCLUSIONS
In this paper we have shown that Elias-Fano can be used to obtain a succinct dynamic data

structure with optimal update and query time, solving the dynamic ordered set with random access
problem. Our main result holds for polynomial universes and is a data structure using the same

asymptotic space of Elias-Fano — EF(n,m) + o(n) bits, where EF(n,m) ≤ n⌈log(m/n)⌉ + 2n — and

supporting Access in O(logn/log logn) time, Insert, Delete and Predecessor in O(log logn) time.

All time bounds are optimal. Note that the space of the solution can be rewritten in terms of

information-theoretic minimum B(n,m) = ⌈log
(m
n

)
⌉ since EF(n,m) = B(n,m) + 1.56n bits.

An interesting open problem is: Can the space be improved to B(n,m) + o(n) bits and preserving
the operational bounds?

Another question is: Can the result be extended to non-polynomial universes?

In this case, the lower bound for dynamic predecessor search is O(logw n) = O(logn/log logm)

that corresponds to the first branch of the time/space trade-off in Theorem 1, as well as the one

for Access, Insert and Delete [19]. It seems that a different solution than the one described here

has to be found since the data structure of Theorem 2 allows us to support all operations in time

O(log logm) when non-polynomial universes are considered. Therefore, we give the following

corollary that matches the asymptotic time bounds of y-fast tries and van Emde Boas trees (albeit

sub-optimal) but in almost optimally compressed space.

Corollary 2. An ordered set S ⊆ {0, . . . ,m}, with |S| = n, can be represented in EF(n,m) + o(n)
bits such that Access, Insert, Delete and Predecessor are all supported in O(log logm) time.

Succinct Dynamic Ordered Sets with Random Access 11

ACKNOWLEDGMENTS
This work was partially supported by the BIGDATAGRAPES project (grant agreement #780751,

European Union’s Horizon 2020 research and innovation programme) and MIUR-PRIN 2017 “Algo-

rithms, Data Structures and Combinatorics for Machine Learning”.

REFERENCES
[1] Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combinatorica, 8(3):235–247, 1988.

[2] Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees. Journal of the ACM (JACM),
54(3):13, 2007.

[3] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem. In Proceedings of Annual Symposium on
Theory of Computing (STOC), pages 295–304, 1999.

[4] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related problems. Journal of Computer
and System Sciences (JCSS), 65(1):38–72, 2002.

[5] Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel

Vildhøj, and Søren Vind. Dynamic relative compression, dynamic partial sums, and substring concatenation. Algorith-
mica, 80(11):3207–3224, 2018.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3-rd Edition).
MIT Press, 2009.

[7] Peter Elias. Efficient storage and retrieval by content and address of static files. Journal of the ACM (JACM), 21(2):
246–260, 1974.

[8] Robert Mario Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer
Structures Group, MIT, Cambridge, MA, 1971.

[9] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures. In Proceedings of the
21-st Annual Symposium on Theory of Computing (STOC), pages 345–354, 1989.

[10] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. Journal of
Computer and System Sciences (JCSS), 47(3):424–436, 1993.

[11] Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S Srinivasa Rao. More haste, less waste: Lowering the redundancy

in fully indexable dictionaries. In 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009,
pages 517–528. IBFI Schloss Dagstuhl, 2009.

[12] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. CRAM: Compressed random access memory. In Proceedings
of 39-th International Colloquium on Automata, Languages, and Programming (ICALP), pages 510–521, 2012.

[13] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theoretical Computer Science (TCS), 387
(3):332–347, 2007.

[14] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access machines. In Proceedings
of Annual Symposium on Theory of Computing (STOC), volume 94, pages 625–634, 1994.

[15] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal on Computing, 31(2):
353–363, 2001.

[16] Giulio Ermanno Pibiri and Rossano Venturini. Dynamic Elias-Fano representation. In Proceedings of the 28-th Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 30:1–30:14, 2017.

[17] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proceedings of the 38-th Annual
Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[18] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors. In Proceedings of the 18-th
Annual Symposium on Discrete Algorithms (SODA), pages 555–564, 2007.

[19] Mihai Pǎtraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and predecessor search. In

Proceedings of the 55-th Annual Symposium on Foundations of Computer Science (FOCS), pages 166–175, 2014.

[20] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data structures. In Proceedings of the 7-th
International Workshop on Algorithms and Data Structures (WADS), pages 426–437, 2001.

[21] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings of the 16-th Annual
Symposium on Foundations of Computer Science (FOCS), pages 75–84, 1975.

12 G. E. Pibiri and R. Venturini

[22] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Information Processing
Letters (IPL), 6(3):80–82, 1977.

[23] Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. Design and implementation of an efficient priority queue.

Mathematical Systems Theory (MST), 10:99–127, 1977.

[24] Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th International Conference on Web Search and Data
Mining (WSDM), pages 83–92, 2013.

[25] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ (n). Information Processing Letters
(IPL), 17(2):81–84, 1983.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Static Elias-Fano representation
	2.2 The static predecessor problem
	2.3 Dynamic problems

	3 Succinct Dynamic Ordered Sets with Random Access
	3.1 Handling small sets
	3.2 Final construction

	4 Append-only
	5 Conclusions
	Acknowledgments
	References

