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Abstract
The data structure at the core of nowadays large-scale search engines, social networks and storage
architectures is the inverted index, which can be regarded as being a collection of sorted integer
sequences called inverted lists. Because of the many documents indexed by search engines and
stringent performance requirements dictated by the heavy load of user queries, the inverted lists
often store several million (even billion) of integers and must be searched efficiently.
In this scenario, compressing the inverted lists of the index appears as a mandatory design phase
since it can introduce a twofold advantage over a non-compressed representation: feed faster
memory levels with more data in order to speed up the query processing algorithms and reduce
the number of storage machines needed to host the whole index.
The scope of the chapter is the one of surveying the most important encoding algorithms de-
veloped for efficient inverted index compression.

1 Introduction

The data structure at the core of nowadays large-scale search engines, social networks and storage
architectures is the inverted index. Given a collection of documents , consider for each distinct
term t appearing in the collection the integer sequence `t, listing in sorted order all the identifiers
of the documents (docIDs in the following) in which the term appears. The sequence `t is called
the inverted list or posting list of the term t. The inverted index is the collection of all such lists.

This simple, yet powerful, data structure owes its popularity to the efficient resolution of
queries, expressed as a set of terms {t1, . . . , tk} combined with a query operator. The simplest
operators are boolean AND and OR such that, for example, the query q = AND(ti, tj) means that
the index has to report all the docIDs of the documents containing term ti and term tj . This
operation ultimately boils down to intersecting the two inverted lists `ti and `tj . We can easily
generalize the above example to an arbitrary number of query terms, as well as with other query
operators.

Efficient list intersection relies on the operation NextGEQt(x), which returns the integer z ∈ `t

such that z ≥ x. This primitive is used because it permits to skip over the lists to be intersected.
Suppose we have to compute AND(ti, tj) = `ti ∩ `tj , where `ti is smaller than `tj . We search
for the first docID x of `ti in `tj by means of NextGEQtj

(x): if the docID z returned by the
search is equal to x then it is a member of the intersection and we can just repeat this search
step for the next docID of `ti

; otherwise z gives us the candidate docID to be searched next,
indeed allowing to skip the searches for all docIDs in between x and z. In fact, since we have
that z ≥ x, NextGEQtj

(y) will be equal to z also for all x < y < z, thus none of such docIDs can
be a member of the intersection.

Because of the many documents indexed by search engines and stringent performance require-
ments dictated by the heavy load of user queries, the inverted lists often store several million
(even billion) of integers and must be searched efficiently.

In this scenario, compressing the inverted lists of the index appears as a mandatory design
phase since it can introduce a twofold advantage over a non-compressed representation: feed
faster memory levels with more data in order to speed up the query processing algorithms and
reduce the number of storage machines needed to host the whole index. This has the potential
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of letting a query algorithm work in internal memory, which is faster than the external memory
system by several orders of magnitude.

For this reason, the scope of the chapter is the one of surveying the most important encoding
algorithms developed for efficient inverted index compression. Not surprisingly, a plethora of
different, practical, solutions have been proposed in the literature for representing in compressed
space sorted integer sequences, each with a different time/space trade-off.

Chapter organization and notation. The content of the chapter is organized in three main
sections dealing with encoding algorithms for representing, respectively: single integers (Sec-
tion 2); a sorted list of integers (Section 3); the whole inverted index (Section 4).

We fix here a couple of notation conventions that we will use in the chapter.
All logarithms are binary, i.e., log x = log2 x, x > 0. Let B(x) represent the binary repres-

entation of the integer x, and U(x) its unary representation, that is a run of x zeroes plus a
final one: 0x1. Given a binary string B, let |B| represent its length in bits. Given two binary
strings B1 and B2, let B1B2 be their concatenation. We indicate with S(n, u) a sequence of n
integers drawn from a universe of size u and with S[i, j] the sub-sequence starting at position i
and including endpoint S[j].

2 Integer Compressors

The compressors we consider in this section are used to represent a single integer. The most
classical solution is to assign each integer a self-delimiting (or uniquely-decodable) variable-length
code, so that the whole integer sequence is the result of the juxtaposition of the codes of all its
integers. Clearly, the aim of such encoders is to assign the smallest codeword as possible in order
to minimize the number of bits used to represent the sequence.

In particular, since we are dealing with inverted lists that are monotonically increasing by
construction, we can subtract from each element the previous one (the first integer is left as it
is), making the sequence be formed by integers greater than zero known as delta-gaps (or just
d-gaps). This popular delta encoding strategy helps in reducing the number of bits for the codes.
Most of the literature assumes this sequence form and, as a result, compressing such sequences
of d-gaps is a fundamental problem that has been studied for decades.

2.1 Elias’ Gamma and Delta
The two codes we now describe have been introduced by Elias [8] in the ’60. Given an integer
x > 0, γ(x) = 0|B(x)|−1B(x), where |B(x)| = dlog(x+ 1)e. Therefore, |γ(x)| = 2dlog(x+ 1)e − 1
bits. For example, γ(11) = 0001011 because the binary representation of 11, 1011, has length 4
bits, therefore we prefix it by 3 zeroes. Decoding γ(x) is simple: first count the number of zeroes
up to the one, say there are n of these, then read the following n+ 1 bits and interpret them as
x.

The key inefficiency of γ lies in the use of the unary code for the representation of |B(x)|− 1,
which may become very large for big integers. The δ code replaces the unary part 0|B(x)|−1 with
γ(|B(x)|), i.e., δ(x) = γ(|B(x)|)B(x). Notice that, since we are representing with γ the quantity
|B(x)| = dlog(x + 1)e which is guaranteed to be greater than zero, δ can represent value zero
too. The number of bits required by δ(x) is |γ(|B(x)|)|+ |B(x)|, which is 2dlog(d|B(x)|+ 1e)e+
dlog(x+ 1)e − 1.

As an example, consider δ(113) = 00110111001. The last part, 111001, is B(113) whose
length is 6. Therefore we prefix B(113) by γ(6) = 00110, which is the first part of the encoding.

The decoding of δ codes follows automatically from the one of γ codes.
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2.2 Golomb-Rice
Rice [21] introduced a parameter code that can better compress the integers in a sequence if these
are highly concentrated around some value. This code is actually a special case of the Golomb
code [11], hence its name.

The Rice code of x with parameter k, Rk(x), consists in two pieces: the quotient q = bx−1
2k c

and the remainder r = x− q× 2k− 1. The quotient is encoded in unary, i.e., with U(q), whereas
the remainder is written in binary with k bits. Therefore, |Rk(x)| = q + k + 1 bits. Clearly, the
closer 2k is to the value of x the smaller the value of q: this implies a better compression and
faster decoding speed. As an example, consider R5(113) = 000110000. Because b 112

25 c = 3, we
first write U(3) = 031. Then we write in binary the remainder 113 − 3 × 25 − 1 = 16, using 5
bits. If we would have adopted k = 6, then R6(113) = 01110000. Notice that we are saving one
bit with respect to R5(113) since 26 = 64 is closer to 113 than 25 = 32. In fact, the quotient in
this case is 1 rather than 3.

Given the parameter k and the constant 2k that is computed ahead, decoding Rice codes is
simple too: count the number of zeroes up to the one, say there are q of these, then multiply 2k

by q and finally add the remainder, by reading the next k bits. Finally, add one to the computed
result.

2.3 Variable-Byte
The codes described in the previous subsections are also called bit-aligned as they do not represent
an integer using a multiple of a fixed number of bits, e.g., a byte. The decoding speed can be
slowed down by the many operations needed to decode a single integer. This is a reason for
preferring byte-aligned or even word-aligned codes when decoding speed is the main concern.

Variable-Byte (VByte) [22] is the most popular and simplest byte-aligned code: the binary
representation of a non-negative integer is split into groups of 7 bits which are represented as
a sequence of bytes. In particular, the 7 least significant bits of each byte are reserved for the
data whereas the most significant (the 8-th), called the continuation bit, is equal to 1 to signal
continuation of the byte sequence. The last byte of the sequence has its 8-th bit set to 0 to
signal, instead, the termination of the byte sequence. The main advantage of VByte codes is
decoding speed: we just need to read one byte at a time until we found a value smaller than
128. Conversely, the number of bits to encode an integer cannot be less than 8, thus VByte is
only suitable for large numbers and its compression ratio may not be competitive with the one
of bit-aligned codes for small integers.

As an example, consider VByte(65 790) = 100001001000000101111110, where we underline
the control bits. Also notice the padding bits in the first byte starting from the left, inserted to
align the binary representation of the number to a multiple of 8 bits.

We now overview the various enhancements proposed in the literature for VByte to improve
its (sequential) decoding speed.

In order to reduce the probability of a branch misprediction that leads to higher throughput
and helps keeping the CPU pipeline fed with useful instructions, the control bits can be grouped
together. For example, if we assume that the largest represented integer fits into four bytes
(which is reasonable, given that we often represent d-gaps), we have to distinguish between only
four different lengths, thus two bits are sufficient. In this way, groups of four integers require
one control byte. This optimization was introduced in Google’s Group-Varint [4], which is much
faster than the original VByte format.

Working with byte-aligned codes also opens the possibility of exploiting the parallelism of
SIMD instructions (single-instruction-multiple-data) of modern processors to further enhance
decoding speed. This is the approach taken by the recent proposals VByte-G8UI [25], Masked-
VByte [20] and Stream-VByte [14].
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VByte-G8UI [25] uses a format similar to the one of Group-Varint: one control byte is used to
describe a variable number of integers in a data segment of exactly eight bytes, therefore each
group can contain between two and eight compressed integers. This data organization is suitable
for SIMD instructions: an improvement in sequential decoding speed of ×3 is observed with
respect to scalar VByte.

Masked-VByte [20] works, instead, directly on the original VByte format. The decoder first
gathers the most significant bits of consecutive bytes using a dedicated SIMD instruction. Then
using previously-built look-up tables and a shuffle instruction, the data bytes are permuted to
obtain the decoded integers.

Stream-VByte [14] outperforms the previous SIMD-ized VByte-G8UI in decoding speed (×2
improvement). The idea is to separate the encoding of the control bits from the data bits by
writing them into separate streams. This organization permits to decode multiple control bits
simultaneously and, therefore, reduce branch mispredictions that can stop the CPU pipeline
execution when decoding the data stream.

3 List Compressors

Differently from the compressors introduced in the previous section, the compressors we now
consider encode a whole integer list, instead of representing each single integer separately. Such
compressors often outperform the ones described before for sufficiently long inverted lists because
they take advantage of the fact that inverted lists often contain clusters of close docIDs, e.g.,
runs of consecutive integers, that are far more compressible with respect to highly scattered
sequences. The reason for the presence of such clusters is that the indexed documents themselves
tend to be clustered, i.e., there are subsets of documents sharing the very same set of terms. As a
meaningful example, consider all the Web pages belonging to a certain domain: since their topic
is likely to be the same, they are also likely to share a lot of terms. Therefore, not surprisingly,
list compressors greatly benefit from docID-reordering strategies that focus on re-assigning the
docIDs in order to form larger clusters of docIDs.

An amazingly simple strategy, but very effective, for Web pages is to assign identifiers to
documents according to the lexicographical order of their URLs [23]. A recent approach has
instead adopted a recursive graph bisection algorithm to find a suitable re-ordering of docIDs [6].
In this model, the input graph is a bipartite graph in which one set of vertices represents the terms
of the index and the other set represents the docIDs. A graph bisection identifies a permutation
of the docIDs and, thus, the goal is the one of finding, at each step of recursion, the bisection of
the graph which minimizes the size of the graph compressed using delta-encoding.

3.1 Block-based
A relatively simple approach to improve both compression ratio and decoding speed is to en-
code a block of contiguous integers. This line of work finds its origin in the so-called frame-of-
reference [10].

Once the sequence has been partitioned into blocks (of fixed or variable length), then each
block is encoded separately. An example of this approach is binary packing [2, 13], where blocks of
fixed length are used, e.g., 128 integers. Given a block S[i, j], we can simply represent its integers
using a universe of size dlog(S[j]− S[i] + 1)e bits by subtracting the lower bound S[i] from their
values. Plenty of variants of this simple approach has been proposed [24, 5, 13]. Recently, it has
also been shown [18] that using more than one compressors to represent the blocks, rather than
simply representing all blocks with the same compressor, can introduce significant improvements
in query time within the same space constraints. In such hybrid approach, the main idea is to
choose a more space-efficient compressor to represent rarely-accessed blocks and a more time-
efficient compressor for very frequently-accessed blocks.
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Among the simplest binary packing strategies, Simple-9 and Simple-16 [1, 28, 2] combine very
good compression ratio and high decompression speed. The key idea is to try to pack as many
integers as possible in a memory word (32 or 64 bits). As an example, Simple-9 uses 4 header bits
and 28 data bits. The header bits provide information on how many elements are packed in the
data segment using equally sized codewords. A header 0000 may correspond to 28 1-bit integers;
0001 to 14 2-bits integers; 0010 to 9 3-bits integers (1 bit unused), and so on. The four bits
distinguish from 9 possible configurations. Similarly, Simple-16 has 16 possible configurations.

3.2 PForDelta
The biggest limitation of block-based strategies is their space-inefficiency whenever a block con-
tains at least one large value, because this forces the compressor to use a universe of representa-
tion as large as this value. This has been the main motivation for the introduction of PForDelta
(PFD) [31]. The idea is to choose a proper value k for the universe of representation of the block,
such that a large fraction, e.g., 90%, of its integers can be written in k bits each. This strategy
is called patching. All integers that do not fit in k bits, are treated as exceptions and encoded
separately using another compressor.

More precisely, two configurable parameters are chosen: a b value (base) and a universe of
representation k, so that most of the values fall in the range [b, b+2k−1] and can be encoded with
k bits each by shifting (delta-encoding) them in the range [0, 2k−1]. To mark the presence of an
exception, we also need a special escape symbol, thus we have [0, 2k − 2] possible configurations
for the integers in the block.

As an example, consider the sequence [3, 4, 7, 21, 9, 12, 5, 16, 6, 2, 34]. By using b = 2 and
k = 4, we obtain the following transformed sequence:
[1, 2, 5, ∗, 7, 10, 3, ∗, 4, 0, ∗][21, 16, 34], where we use the special symbol ∗ to represent an exception
that is written in a separate sequence, reported to the right part of the example.

The variant OptPFD [28], which selects for each block the values of b and k that minimize its
space occupancy, has been demonstrated to be more space-efficient and only slightly slower than
the original PFD [28, 13].

3.3 Elias-Fano
The encoding we are about to describe was independently proposed by Elias [7] and Fano [9],
hence its name. Given a monotonically increasing sequence S(n, u) of n positive integers drawn
from a universe of size u (i.e., S[i − 1] ≤ S[i], for any 1 ≤ i < n, with S[n − 1] < u), we write
each S[i] in binary using dlog ue bits. The binary representation of each integer is then split into
two parts: a low part consisting in the right-most ` = dlog u

ne bits that we call low bits and a
high part consisting in the remaining dlog ue − ` bits that we similarly call high bits. Let us call
`i and hi the values of low and high bits of S[i] respectively. The Elias-Fano representation of S
is given by the encoding of the high and low parts.

The array L = [`0, . . . , `n−1] is written explicitly in ndlog u
ne bits and represents the encoding

of the low parts. Concerning the high bits, we represent them in negated unary1 using a bit vector
of n + 2blog nc ≤ 2n bits as follows. We start from a 0-valued bit vector H and set the bit in
position hi+i, for all i ∈ [0, n). The effect is that now the k-th unary integerm ofH indicates that
m integers of S have high bits equal to k, 0 ≤ k ≤ blognc. Finally the Elias-Fano representation
of S is given by the concatenation of H and L and overall takes EF(S(n, u)) ≤ ndlog u

ne + 2n

1 The negated unary representation of an integer x, is the bitwise NOT of its unary representation U(x).
An example: U(5) = 000001 and NOT(U(5)) = 111110.
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1110 10 101110 110 0 10 10
001100111 101110111 101 001 100110 110 110

Figure 1 Elias-Fano encoding example for the sequence [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62].
Different colors mark the distinction between high bits (in blue), low bits (in green) and missing
high bits (in red).

bits2.
While we can opt for an arbitrary split into high and low parts, ranging from 0 to dlog ue, it

can be shown that ` = dlog u
neminimizes the overall space occupancy of the encoding [7]. Figure 1

shows an example of encoding for the sequence S(12, 62) = [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62].
In Figure 1 the “missing high bits” embody a graphical representation of the fact that using

blognc bits to represent the high part of an integer, we have at most 2blog nc distinct high parts
because not all of them could be present. In Figure 1, we have blog 12c = 3 and we can form up
to 8 distinct high parts. Notice that, for example, no integer has high part equal to 101 which
are, therefore, “missing” high bits.

As the information theoretic lower bound for a monotone sequence of n elements drawn from
a universe of size u is dlog

(
u+n

n

)
e ≈ n log u+n

n + n log e bits, it can be shown that less than half
a bit is wasted per element by the Elias-Fano space bound [7]. Since we set a bit for every
i ∈ [0, n) in H and each hi is extracted in O(1) time from S[i], it follows that S gets encoded
with Elias-Fano in Θ(n) time.

Despite its simplicity, it is possible to randomly access an integer from a sequence en-
coded with Elias-Fano without decompressing the whole sequence. We refer to this operation
as Access(i), which returns S[i]. The operation is supported using an auxiliary data structure
that is built on bit vector H, able to efficiently answer Select1(i) queries, that return the position
in H of the i-th 1 bit. This auxiliary data structure is succinct in the sense that it is negligibly
small in asymptotic terms, compared to EF(S(n, u)), requiring only o(n) additional bits [16, 26].

Using the Select1 primitive, it is possible to implement Access(i), which returns S[i] for any
i ∈ [0, n), in O(1). We basically have to re-link together the high and low bits of an integer,
previously split up during the encoding phase. The low bits `i are trivial to retrieve as we need
to read the range of bits L[i`, (i+ 1)`). The retrieval of the high bits deserve, instead, a bit more
care. Since we write in negated unary how many integers share the same high part, we have a bit
set for every integer of S and a zero for every distinct high part. Therefore, to retrieve the high
bits of the i-th integer, we need to know how many zeros are present in H[0, Select1(i)). This
quantity is evaluated on H in O(1) as Rank0(Select1(i)) = Select1(i)− i (notice that the succinct
rank/select data structure does not have to support Rank). Finally, linking the high and low bits
is as simple as: Access(i) = ((Select1(i)− i)� `) | `i, where � is the left shift operator and | is
the bitwise OR.

The query NextGEQ(x) is supported in O(1 + log u
n ) time3, as follows. Let hx be the high

2 Using the same choice of Elias for ceilings and floors, we arrive at the slightly different bound of at
most nblog u

n c + 3n bits.
3 We report the bound as O(1 + log u

n ), instead of O(log u
n ), to cope with the case n = u.
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bits of x. Then for hx > 0, i = Select0(hx)−hx + 1 indicates that there are i integers in S whose
high bits are less than hx. On the other hand, j = Select0(hx + 1)− hx gives us the position at
which the elements having high bits greater than hx start. The corner case hx = 0 is handled
by setting i = 0. These two preliminary operations take O(1). Now we have to conclude our
search in the range S[i, j], having skipped a potentially large range of elements that, otherwise,
would have required to be compared with x. We finally determine the successor of x by binary
searching in this range which may contain up to u/n integers. The time bound follows.

As an example, consider NextGEQ(30). Since h30 = 3, we have i = Select0(3) − 3 + 1 = 7
and j = Select0(4) − 3 = 8. Therefore we conclude our search in the range S[7, 8] by returning
S[8] = 36.

3.3.1 Partitioned Elias-Fano
One of the most relevant characteristics of Elias-Fano is that it only depends on two parameters,
i.e., the length and universe of the sequence that poorly describe the sequence itself. As inverted
lists often present groups of close identifiers, Elias-Fano fails to exploit such natural clusters.
Partitioning the sequence into chunks to better exploit such regions of close docIDs is the key
idea of the two-level Elias-Fano representation devised in [17].

The core idea is as follows. The sequence S(n, u) is partitioned into n/b chunks, each of b
integers. First level L is made up of the last elements of each chunk, i.e., L = [S[b − 1], S[2b −
1], . . . , S[n − 1]]. This level is encoded with Elias-Fano. The second level is represented by the
chunks themselves, which can be again encoded with Elias-Fano. The main reason for introducing
this two-level representation, is that now the elements of the i-th chunk are encoded with a
smaller universe, i.e., L[i] − L[i − 1] − 1, i > 0. This is a uniform-partition strategy that may
be suboptimal, since we cannot expect clusters of docIDs be aligned to such boundaries. As the
problem of choosing the best partition is posed, an algorithm based on dynamic programming
is presented which, in O(n) time, yields a partition whose cost (i.e., the space taken by the
partitioned encoded sequence) is at most (1 + ε) away from the optimal one, for any 0 < ε < 1.
To support variable-size partitions, another sequence E is maintained in the first level of the
representation, which encodes with Elias-Fano the lengths of the chunks in the second level.

This inverted list organization introduces a level of indirection when resolving NextGEQ quer-
ies. However, this indirection only causes a very small time overhead compared to plain Elias-Fano
on most of the queries [17]. On the other hand, partitioning the sequence greatly improves the
space-efficiency of its Elias-Fano representation.

3.4 Binary Interpolative
Binary Interpolative coding (BIC) [15] is another approach that, like Elias-Fano, directly com-
presses a monotonically increasing integer sequence without a first delta encoding step. In short,
BIC is a recursive algorithm that first encodes the middle element of the current range and then
applies this encoding step to both halves. At each step of recursion, the algorithm knows the
reduced ranges that will be used to write the middle elements in fewer bits during the next
recursive calls.

More precisely, consider the range S[i, j]. The encoding step writes the quantity S[m]− low−
m+ i using dlog(hi− low− j+ i)e bits, where: S[m] is the range middle element, i.e., the integer
at position m = (i+ j)/2; low and hi are respectively the lower bound and upper bound of the
range S[i, j], i.e., two quantities such that low ≤ S[i] and hi ≥ S[j]. The algorithm proceeds
recursively, by applying the same encoding step to both halves: [i,m] and [m + 1, j] by setting
hi = S[m] − 1 for the left half and low = S[m] + 1 for the right half. At the beginning, the
encoding algorithm starts with i = 0, j = n− 1, low = S[0] and hi = S[n− 1]. These quantities
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3 4 7 13 14 15 21 3825 36 54 62
(7,48)

21 3825 36 54 62
(18,41)
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1
6

Figure 2 Binary Interpolative coding example for the sequence
[3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62]. In red boxes we highlight the middle element cur-
rently encoded: above each element we report a pair, in blue, where the first value indicates the
element actually encoded and the second value the universe of representation. The green elements
indicate, instead, current lower and upper bound of the ranges: notice that such elements can
belong to the sequence itself.

must be also known at the beginning of the decoding phase. Apart from the initial lower and
upper bound, all the other values of low and hi are computed on-the-fly by the algorithm.

Figure 2 shows an encoding example for the same sequence of Figure 1. We can interpret the
encoding as a pre-order visit of the binary tree formed by the recursive calls the algorithm per-
forms. The encoded elements in the example are, in order: [7, 2, 0, 0, 18, 5, 3, 16, 1, 7]. Moreover,
notice that whenever the algorithm works on a range S[i, j] of consecutive integers, such as the
range S[3, 4] = {13, 14} in the example, i.e., the ones for which the condition S[j]− S[i] = j − i
holds, it stops the recursion by emitting no bits at all. The condition is again detected at de-
coding time and the algorithm implicitly decodes the run S[i], S[i] + 1, S[i] + 2, . . . , S[j]. This
property makes BIC extremely space-efficient whenever the encoded sequences feature clusters of
very close integers [27, 28, 24], which is the typical case for inverted lists. The key inefficiency
of BIC is, however, the decoding speed which is highly affected by the recursive nature of the
algorithm.

4 Index Compressors

This concluding section is devoted to recent approaches that encode many inverted lists together
to obtain higher compression ratios. This is possible because the inverted index naturally presents
some amount of redundancy, caused by the fact that many docIDs are shared between its lists.
In fact, as already motivated at the beginning of Section 3, the identifiers of similar documents
will be stored in the inverted lists of the terms they share.

Pibiri and Venturini [19] proposed a clustered index representation. The inverted lists are
divided into clusters of similar lists, i.e., the ones sharing as many docIDs as possible. Then for
each cluster, a reference list is synthesized with respect to which all lists in the cluster are encoded.
In particular, the intersection between the cluster reference list and a cluster list is encoded more
efficiently: all the docIDs are implicitly represented as the positions they occupy within the
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reference list. This makes a big improvement for the cluster space, since each intersection can
be re-written in a much smaller universe. Although any list compressor supporting NextGEQ
can be used to represent the (rank-encoded) intersection and the residual segment of each list,
the paper adopted partitioned Elias-Fano (see 3.3.1). With an extensive experimental analysis,
the proposed clustered representation is shown to be superior to partitioned Elias-Fano and also
Binary Interpolative coding for index space usage. By varying the size of the reference lists,
different time/space trade-offs can be obtained.

Reducing the redundancy in highly repetitive collections has also been advocated in the work
by Claude, Fariña, Martínez-Prieto, and Navarro [3]. The described approach first transforms the
inverted lists into lists of d-gaps and then applies a general, i.e., universal, compression algorithm
to the sequence formed by the concatenation of all the lists. The compressed representation is also
enriched with pointers to mark where each individual list begins. The paper experiments with Re-
Pair compression [12], VByte, LZMA (http://www.7-zip.org/) that is an improved version of the
classic LZ77 [30] and Run-Length-Encoding. The experimental analysis reveals that significant
reduction in space is possible on highly repetitive collections, e.g., versions of Wikipedia, with
respect to encoders tailored for inverted indexes while only introducing moderate slowdowns.

An approach based on generating a context-free grammar from the inverted index has been
proposed by Zhang, Tong, Huang, Liang, Li, Stones, Wang, and Liu [29]. The core idea is to
identify common patterns, i.e., repeated sub-sequences of docIDs, and substitute them with sym-
bols belonging to the generated grammar. Although the reorganized inverted lists and grammar
can be suitable for different encoding schemes, the authors adopted OptPFD [28]. The experi-
mental analysis indicates that good space reductions are possible compared to state-of-the-art
encoding strategies with competitive query processing performance. By exploiting the fact that
the identified common patterns can be placed directly in the final result set, the query processing
performance can also be improved.
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