
A

Clustered Elias-Fano Indexes

GIULIO ERMANNO PIBIRI and ROSSANO VENTURINI, University of Pisa

State-of-the-art encoders for inverted indexes compress each posting list individually. Encoding clusters of
posting lists offers the possibility of reducing the redundancy of the lists while maintaining a noticeable
query processing speed.

In this paper we propose a new index representation based on clustering the collection of posting lists
and, for each created cluster, building an ad-hoc reference list with respect to which all lists in the cluster
are encoded with Elias-Fano. We describe a posting lists clustering algorithm tailored for our encoder and
two methods for building the reference list for a cluster. Both approaches are heuristic and differ in the way
postings are added to the reference list: or according to their frequency in the cluster or according to the
number of bits necessary for their representation.

The extensive experimental analysis indicates that significant space reductions are indeed possible, beat-
ing the best state-of-the-art encoders.

CCS Concepts: •Information systems→ Data compression; Retrieval efficiency; Clustering;

Additional Key Words and Phrases: Elias-Fano Encoding, Inverted Indexes, Performance

ACM Reference Format:
Giulio E. Pibiri and Rossano Venturini, 2016. Clustered Elias-Fano Indexes. ACM Trans. Inf. Syst. V, N,
Article A (January YYYY), 34 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The incredibly fast growth of hardware and software technologies in the past few
decades have radically changed the way data is processed. To cope with the huge
amount of information processed on a daily basis, the design of efficient data struc-
tures plays a fundamental role. In all practical applications, space-efficiency and fast
access to data are key driving-parameters in the design of possible solutions. As a no-
ticeable example, it would be unfeasible to retrieve the set of documents containing a
given term in a large textual collection, without the use of the so-called inverted index.

The inverted index can be regarded as being a collection of sorted integer sequences
(posting lists), each associated to a term in the corpus dictionary [Büttcher et al. 2010;
Manning et al. 2008; Zobel and Moffat 2006]. For each term, the corresponding se-
quence stores the identifiers of the documents containing the term. This is the data
structure at the heart of modern web search engines, (semi-)structured data bases and
graph search engines in social networks [Curtiss et al. 2013], just to name a few practi-
cal scenarios. Despite its simple nature, the inverted index is a popular data structure
because it permits the efficient resolution of queries, such as: return all documents in
the collection containing a given set of terms.

Because of the size of such textual corpora and stringent query efficiency require-
ments, representing the posting lists of document identifiers in compressed space while

Author’s addresses: Giulio Ermanno Pibiri, Department of Computer Science, University of Pisa, email:
giulio.pibiri@di.unipi.it; Rossano Venturini, Department of Computer Science, University of Pisa, email:
rossano.venturini@unipi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1046-8188/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 G. E. Pibiri and R. Venturini

Fig. 1. Top-300 docId frequency counts for 1, 066 posting lists from the dataset Gov2, plotted along a Hilbert
curve in order to help highlighting the regions of redundant postings. The color scale on the right indicates
the level of frequency of postings: the darker the color the higher the frequency of a posting.

attaining to high query throughput is a fundamental research topic. Achieving both
objectives is generally hard, since they are conflicting in nature: a great deal of com-
pression usually sacrifices fast retrieval; on the contrary, high speed algorithms bene-
fit from an augmented index representation [Broder et al. 2003; Büttcher and Clarke
2007]. A vast amount of literature describes different space/time trade-offs [Lemire
and Boytsov 2013; Moffat and Stuiver 2000; Ottaviano and Venturini 2014; Salomon
2007; Stepanov et al. 2011; Yan et al. 2009].

Most encoders fall into the block-based family, such as OptPForDelta [Yan et al. 2009]
and Varint-G8IU [Stepanov et al. 2011], in which sequential decoding is allowed for
fast processing speed. The sequence is divided into blocks of consecutive identifiers, in
order to avoid decompressing the entire sequence. However, it is also possible to en-
code directly an entire sequence without dividing it into blocks. This is the approach
taken by Binary Interpolative Coding (BIC) [Moffat and Stuiver 2000] and very re-
cent works [Ottaviano and Venturini 2014; Vigna 2013] that have demonstrated how
the Elias-Fano representation [Elias 1974; Fano 1971] of monotonically increasing se-
quences combines strong theoretical guarantees with excellent practical performance,
placing Elias-Fano indexes as dominant in the space/time trade-off curve.

We notice that every of the aforementioned encoders represents each sequence indi-
vidually and, thus, none of those techniques exploits the redundancy that may exist
between two or more posting lists. Indeed the space efficiency of such encoders would
be better if clusters of posting lists were encoded together instead of separately since
this offers the possibility of reducing the redundancy of the lists. Understanding how
to reduce such redundancy to save index space and, at the same time, achieve very fast
retrieval time is the issue addressed in this paper.

As a matter of fact, inverted indexes naturally present some amount of redundancy.
The reason is that the document identifiers (docIds in the following) of “similar” docu-
ments, i.e., documents sharing a lot of terms, will be stored in the posting lists of the
terms they share. More precisely, consider a document having docId d in which terms
t1 and t2 co-occur. Then the posting lists of both t1 and t2 will contain d. Figure 1 gives
a graphical evidence of this fact. The picture shows how many times the top-300 docIds

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:3

appear in an example cluster of 1, 066 posting lists belonging to Gov2, one of the two
test collections we used for our experiments. Values are plotted along a Hilbert curve
to better highlight the regions of postings having similar frequencies. The intensity of
the color represents the degree of repetitiveness of a docId. Hilbert curves are space-
filling fractals that can be used to draw a one dimensional set into two dimensions. The
key characteristic of Hilbert curves is that they mostly maintain locality, i.e., clusters
in two dimensions are likely to be close together if represented in one dimension.

Now generalizing to an arbitrary number of terms and documents, consider a set
of terms {t1, . . . , tk} that occurs in m documents having identifiers {d1, . . . , dm}. If
the k terms always co-occur in the considered documents, then the set of integers
{d1, . . . , dm} would be present in each of the posting lists of {t1, . . . , tk}. In this spe-
cial case, reducing the redundancy of the lists has an obvious solution: the redundant
set {d1, . . . , dm} is encoded just once and each posting list stores a reference to it.

Unfortunately, it is very unlikely that the k terms appear in all documents. In gen-
eral there would be: very few terms co-occurring in all documents and several subsets
of terms co-occurring in subsets of documents. Indeed notice that only few squares in
Figure 1 are much darker than others, meaning that relatively few docIds appear in all
lists of the cluster. Most docIds have, instead, intermediate frequencies and constitute,
therefore, the fundamental data source to be represented effectively, i.e., for which a
space-efficient solution should be designed.

In this scenario, the problem of reducing the redundancy of the posting lists is much
more difficult, due to two different aspects.

— We do not know which and how many terms should be clustered together in order
to maximise the number of co-occuring terms.

— It is not obvious how to compactly represent the redundant docIds shared by the
clustered posting lists to save index space.

Now suppose we build a meta-list R by selecting a subset of docIds belonging to the
lists in a cluster C. Then the integers belonging to the intersection of list S ∈ C with
R can be rewritten as the positions they occupy in R (see also Figure 3). R will be the
cluster reference list. If u denotes the last element of S, each docId in the intersection
is now drawn from a universe of size |R| instead of u, i.e., the number of bits necessary
to represent each docId is now dlg |R|e instead of dlg ue. If R is chosen such that the
condition |R| � u holds, the universe of the intersection is highly reduced and can
be, therefore, encoded with much fewer bits. The representation of each list is finally
compressed using a state-of-the-art encoder to save index space.

Most encoders for posting lists take advantage of universe reduction techniques as
they reduce the amount of bits necessary to represent each element [Moffat and Stu-
iver 2000; Ottaviano and Venturini 2014].

Therefore, we are interested in the problem of determining the partition of the set
of posting lists into clusters and the choice of each cluster reference list such that the
overall encoding cost is minimum. This is a difficult optimisation problem. Indeed we
show that the problem of selecting docIds to build the reference list such that the en-
coding cost of the cluster is minimised is NP-hard, already when considering a special
case of the problem.

We present two heuristic approaches for building the reference list for a cluster that
we validate with an extensive experimental analysis. The encoder we used to com-
press the representation of a posting list is Elias-Fano and, in particular, the par-
titioned variant devised by Ottaviano and Venturini [2014]. We perform several ex-
periments on two large datasets, namely Gov2 and ClueWeb09 (Category B), and test
different query algorithms such as AND, and top-k retrieval algorithms Ranked AND
and WAND [Broder et al. 2003].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. E. Pibiri and R. Venturini

We compare the performance of our indexes against several encoding strategies,
namely: partitioned Elias-Fano (PEF) [Ottaviano and Venturini 2014], Binary Inter-
polative Coding (BIC) [Moffat and Stuiver 2000] and SIMD-optimized Variable Byte
(Varint-G8IU) [Stepanov et al. 2011], which are representative of best compression ra-
tio/query processing trade-off, compression ratio and highest speed in the literature,
respectively. Although partitioned Elias-Fano has proven to offer a better compression
ratio/query processing trade-off than the popular PForDelta [Zukowski et al. 2006],
we also compare against the optimized PForDelta implementation OptPFD [Yan et al.
2009], for completeness.

Our contributions. We list here our main contributions.

(1) We introduce a novel list representation designed to exploit the redundancy of in-
verted indexes by encoding a portion of a list with respect to a carefully built refer-
ence list. The representation is fully compressed using partitioned Elias-Fano, as to
support very fast random access and search operations.

(2) We describe an algorithm to cluster posting lists which is tailored for the introduced
list representation. Moreover, we show how the optimisation problem of selecting
the proper reference meta-list for each cluster can be solved by two distinct heuristic
approaches: the first selects postings by frequency within their cluster and helps
controlling index building time; the second selects postings on the basis of their
contributions to the overall encoding space cost reduction.

(3) We present an extensive experimental analysis, showing that our index represen-
tation is always more compact and only slightly slower than the already highly
optimised partitioned Elias-Fano; very close in space or even better but much faster
than Interpolative. In particular, our index is smaller by up to 11% on Gov2 and
6.25% on ClueWeb09 with respect to partitioned Elias-Fano. On Gov2 the index is
also smaller than Interpolative by 5.63%, while on ClueWeb09 Interpolative is still
the smallest but we halve the discrepancy between partitioned Elias-Fano e In-
terpolative, passing from 11.115% to 5.56%. We also show how to obtain inter-
esting trade-offs by varying the size of the reference list: for smaller values our
encoding is slightly more compact than partitioned Elias-Fano and Interpolative
while being much faster than Interpolative (by 103% on average) and with only
a small time overhead with respect to partitioned Elias-Fano (23% on average);
for larger values we substantially improve over the space taken by the two com-
petitors while being 50% faster than Interpolative but also 50% slower than par-
titioned Elias-Fano. As the speed of OptPFD is practically the same as the one of
partitioned Elias-Fano, the above query processing considerations also apply to the
comparison between our proposal and OptPFD. Our clustered representation is 55%
slower than Varint-G8IU. However, our clustered indexes dominates both OptPFD
and Varint-G8IU for space usage. Against the former we retain 24% of space less on
Gov2 and 14.5% on ClueWeb09. Against the latter, our representation is more than
3.5 times smaller on Gov2 and more than 2.15 times on ClueWeb09.

The paper is organized as follows. Section 2 introduces background and related work.
Section 3 describes our novel posting list organization and finally Section 4 presents
the extensive experimental analysis validating our implementation.

2. BACKGROUND AND RELATED WORK
Given a collection D of documents, the posting list of a term t is the list of all document
identifiers (docIds in short), that contain the term t. The inverted index of D is the
collection L of all posting lists. The set of the terms T is usually called the collection
dictionary or lexicon. This simple, yet powerful, organization allows fast processing of

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:5

queries such as: return all documents in which terms t1, . . . , tk appear. This kind of
queries is among the most common on modern search engines and its resolution boils
down to posting lists intersection. There is a huge amount of literature describing dif-
ferent query processing algorithms as well as augmented posting list representations.
Postings lists can store additional information about each document, such as the set
of positions in which the term appears in the document (in positional indexes) and the
number of occurrences of the term in the document (term frequency) [Büttcher et al.
2010; Manning et al. 2008; Zobel and Moffat 2006].

In this paper we consider the docId-sorted version of the inverted index, in which all
posting lists are monotonically increasing lists, as similarly done in recent works [Otta-
viano et al. 2015; Ottaviano and Venturini 2014; Vigna 2013]. Furthermore, we ignore
additional information about each document except the term frequencies, which are
stored in separate lists. This makes possible fast query processing and efficient index
compression.

2.1. Inverted index compression
Given a monotonically increasing integer sequence we can subtract from each element
the previous one (the first integer is left as it is), making the sequence be formed
by positive integers. This popular strategy is called delta encoding and most of the
literature assumes this sequence form. Compressing such sequences of d-gaps is a
fundamental problem that has been studied for decades. One of the most classical
solution is to assign to each d-gap a self-delimiting (or uniquely-decodable) variable-
length code. Classical examples include the unary code and more sophisticated ones
such as Elias δ and γ or Golomb/Rice codes. The interested reader can find an in-depth
discussion in the book by Salomon [2007].

The codes mentioned are also called bit-aligned as they do not represent an integer
using a multiple of a fixed number of bits, e.g., a byte. This may result in an inefficiency
at decoding time since they require many bitwise operations to decode an integer. This
is the reason for preferring byte-aligned or word-aligned codes when decoding speed
is the main concern. Variable byte (VByte) [Salomon 2007] is the most popular and
simple byte-aligned code: the binary representation of a non-negative integer is split
into groups of 7 bits which are represented as a sequence of bytes. In particular, the
first 7 bits of each byte are reserved for the data while the last one (the 8-th), called the
continuation bit, is equal to 1 only for the last byte of the sequence. Recent work has
exploited the parallelism of SIMD instructions in modern processor to further enhance
decoding speed of VByte [Stepanov et al. 2011].

Another approach to improve both compression ratio and decoding speed is to encode
a block of contiguous integers. This line of work finds its origin in the so-called frame-
of-reference (For) [Goldstein et al. 1998]. Once the sequence has been partitioned in
blocks of fixed or variable length, then each block is encoded separately. The integers
in each block are encoded using codewords of fixed length. An example of this approach
is binary packing [Anh and Moffat 2010; Lemire and Boytsov 2013], where blocks are of
fixed length, e.g., 128 integers. Given a block [`, r], we can simply represent its integers
in u = dlg(r − ` + 1)e bits subtracting the lower bound ` from their values. Plenty
of variants of this simple approach has been proposed [Delbru et al. 2012; Lemire
and Boytsov 2013; Silvestri and Venturini 2010]. Among these, Simple-9 and Simple-
16 [Anh and Moffat 2005, 2010; Yan et al. 2009] combine very good compression ratio
and high decompression speed. The key idea is to try to pack as many integers as
possible in a 32-bit word. As an example, Simple-9 uses 4 header bits and 28 data
bits. The header bits provide information on how many elements are packed in the
data segment using equal-size codewords. A header 0000 may correspond to 28 1-bit

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. E. Pibiri and R. Venturini

integers; 0001 to 14 2-bits integers; 0010 to 9 3-bits integers (1 bit unused), and so on.
The four bits distinguish from 9 possible configurations.

For may suffer from a key space inefficiency since the presence of few large values
in a block forces the algorithm to encode all its integers with a large universe u. This
has been the main motivation for the introduction of PForDelta (PFD) [Zukowski et al.
2006]. The idea is to choose a proper value of u such that u bits are sufficient to encode
a large fraction, e.g., 90% of the integers in the block. This strategy is called patching.
All integers that are unable to fit within u bits, are treated as exceptions and encoded
separately with a different encoder. As the problem of choosing the best value for u
is posed, Yan et al. introduced the OptPFD variant [Yan et al. 2009], which selects for
each block the value of u that minimises its space occupancy. Extensive experimental
analysis has demonstrated that OptPFD is more space-efficient and only slightly slower
than the original PFD [Lemire and Boytsov 2013; Yan et al. 2009].

It is possible, however, to directly compress the monotonically increasing integer
sequence without a first delta-encoding step. Binary Interpolative Coding (BIC) [Mof-
fat and Stuiver 2000] encodes the middle element of the sequence and recursively
apply this step to the two halves. At each recursive step the algorithm works with
reduced ranges that permit to encode the middle element with fewer bits. Though
experiments [Silvestri and Venturini 2010; Witten et al. 1999; Yan et al. 2009] have
shown that BIC is the best encoding method for highly clustered sequence of integers,
the price to pay is a slow decoding algorithm.

Another approach that directly encodes monotonically increasing sequences was re-
cently proposed by Vigna [2013]. He introduced quasi-succinct indexes that are based
on the Elias-Fano representation of monotone sequences [Elias 1974; Fano 1971],
which we discuss in the next paragraph in details. The partitioned variant by Ot-
taviano and Venturini [2014] greatly improves on the space taken by the Elias-Fano
representation of such sequences while introducing only a negligible overhead at query
time.

Encoders greatly benefit from docIds-reordering strategies that are focused on find-
ing a suitable reordering of docIds such that a posting lists result more clustered and,
consequently, more compressible. An amazingly simple, but very effective strategy for
web pages is to assign identifiers to the documents in D according to the lexicograph-
ical order of their URLs. This technique was introduced by Silvestri [2007] and is the
one we have used for our test collections.

Lam, Perego, Quan, and Silvestri [2009] has explored the possibility of exploiting
the redundancy of inverted indexes by encoding two lists together. Their work proposes
two encoding schemes: Mixed Union (MU) and Separated Union (SU). MU stores the
union of two posting lists with two additional bits per posting, indicating whether the
posting belong to the first posting list (10), to the second (01) or to both (11). SU splits
the representation of the union in three segments: the intersection between the two
lists and the two residual parts. The terms that should be paired together are chosen
by solving a Maximum Weight Matching problem on the graph G = (V,E) built as
follows. Each node of V is a term; edge (ti, tj) ∈ E is labeled with a value indicating
how many bits would be saved with the pairing of terms ti and tj .

Another multi-term indexing strategy appeared in the work by Chaudhuri, Church,
König, and Sui [2007]. Their solution builds, beside the traditional inverted index, a
multi-term inverted index where each entry is composed by terms co-occurring fre-
quently in query logs. As they observed that the distribution of terms is highly skewed
in query logs, the aim of their proposal is to boost query processing speed at the price
of the extra space needed to deal with another index.

Very recently, an approach based on generating a context-free grammar from the in-
verted index has been proposed [Zhang et al. 2016]. The core idea is to identify common

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:7

patterns, i.e., repeated sub-sequences of docIds, and substitute them with symbols be-
longing to the generated context-free grammar. Although the reorganized posting lists
and grammar can be suitable to different encoding schemes, the authors preferred
OptPFD [Yan et al. 2009]. The experimental analysis indicates that significant space
reductions are possible (by up to 8.8%) compared to state-of-the-art encoding strategies
with competitive query processing performance. By exploiting the fact that the identi-
fied common patterns can be directly placed in the final result set, decoding speed can
also be improved by up to 14%.

2.2. Query processing
Inverted indexes owe their popularity to the efficient resolution of user queries. A
query is formulated as a multiset of terms. For each term in the query, the corre-
sponding posting list is accessed and combined with the ones of the other terms. The
way posting lists are combined depends on query operators: the most common ones are
boolean operators such as AND and OR. In many applications, it is preferable to asso-
ciate to each document matching the user query a score indicating the relevance of the
document to the query. This score is typically computed as a function of term frequency
in the document and few other statistics. A common relevance score is BM25 [Robert-
son and Jones 1976], which we have used in our experiments. To limit the number
of query results, only the k documents scoring better are returned (top-k retrieval). A
priority queue of length k is used to collect the result set.

Two query processing strategies have gained popularity: Term-at-a-Time (TAAT)
and Document-at-a-Time (DAAT). The former scans the posting list of each query term
separately to build the result set, while the latter scans them concurrently, keeping
them aligned by docId. We will focus on the DAAT strategy as it is the most natural
for docId-sorted indexes.

The alignment of the lists during DAAT scanning can be achieved by means of the
NextGEQt(x) operator, which returns the smallest docId in the list of t that is greater
than or equal to x. An efficient implementation of this operation is, therefore, crucial
for query processing. To avoid scanning the whole lists, a common solution resorts to
skipping. The idea is simple: we divide each list in blocks and store some additional
information for every block, e.g., the maximum docId or the maximum score. The list
scanning process involves a two-level query algorithm: first the additional information
is searched to identify a block, then search continues inside the block.

WAND [Broder et al. 2003] is a popular strategy that augments the index by storing
for each term its maximum impact to the score. More precisely, WAND processes a
query in phases by maintaining a priority queue storing the top-k documents seen so
far along with a cursor for each term in the query scanning the corresponding posting
list. In each phase, WAND estimates an upper bound to the scores that can be reached
by the documents currently pointed by the cursors. In this way, it is able to either
determine a new candidate to be inserted in the priority queue or move forward one
cursor, potentially skipping several documents in its posting list. We use this algorithm
in our experiments for top-k retrieval.

2.3. Clustering algorithms
The classical categorization of clustering algorithms divides them into two broad
classes, dual in nature: partitioning and agglomerative. Partitioning algorithms work
by partitioning the whole set of objects S according to an objective function f , until the
desired number of clusters is reached or a stopping criterion is satisfied. On the con-
trary, agglomerative algorithms start by considering as many initial singleton clusters
as the number of objects in S. Then two or more clusters are merged together accord-

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. E. Pibiri and R. Venturini

ing to f . This process produces a hierarchy of clusters that may be subject to further
refinement.

Among the first class, k-means [Aggarwal and Reddy 2013] is the most popular and
used clustering algorithm. In its simplest formulation [Lloyd 1982]: (1) k objects are
drawn at random from S and considered as centroids; (2) all other objects are assigned
to the closest centroid, according to a distance function D; (3) centroids are updated
to be the mean of all objects in their clusters. The last two steps are repeated until
the k centroids remain almost the same. Common hierarchical clustering algorithms
include Single-Link, Average-Link and Complete-Link. We point the reader to the sur-
vey by Xu and Wunsch [2005] for an exhaustive overview on the subject. Although
such algorithms are supposed to produce superior clusters in terms of cluster qual-
ity [Steinbach et al. 2000], their quadratic complexity often prevents from practical
use. This has been the main reason of the success of k-means which is elegant, simple
and fast [Arthur and Vassilvitskii 2007; Pelleg and Moore 2000; Steinbach et al. 2000]:
its complexity is O(kd|S|i), where d is the dimensionality of the clustered objects and
i is the number of needed iterations to converge. Since usually k and d are much less
than |S|, its complexity is very appealing in practice.

Many variants of the regular k-means algorithm have been proposed in the liter-
ature [Arthur and Vassilvitskii 2007; Pelleg and Moore 2000; Steinbach et al. 2000].
Steinbach, Karypis, and Kumar [2000] introduced a bisecting variant of regular k-
means that computes two initial clusters and recurse on them until k clusters are
formed. They proved bisecting k-means performs even better than the classical one,
because it produces relatively uniformly sized clusters. We will use this approach in
our own clustering algorithm. Pelleg and Moore [2000] improved on the classical for-
mulation that needs the user to provide the number of clusters. Instead of a single
value for k, their algorithm takes as input a possible range of values. In essence, the
algorithm starts with k equal to the lower bound of the provided range and keep adding
centroids until the upper bound is attained. Adding a new centroid implies splitting
an existing one in two: the decision on which centroid to split is based on the Bayesian
Information Criterion. During the whole process, the centroid set that achieves the
highest score is stored and finally output.

As the question regarding which seeds to choose for the initialization step of k-
means is posed, Arthur and Vassilvitskii [2007] proposed to select k seeds at ran-
dom, one at a time, from a non-uniform distribution. Specifically, the first centroid
c is picked uniformly at random, then the probability that x becomes the next centroid
is D(x, c)2/

∑
y∈S\{x}D(y, c)2. The process is repeated until k seeds are chosen. The key

drawback of such approach lies in its inner sequential nature, since the k seeds must
be chosen sequentially thus requiring k passes over the data. This issue was tackled
by Bahmani, Moseley, Vattani, Kumar, and Vassilvitskii [2012], providing an efficient
parallel implementation of the above procedure. As clear from the above formula, the
greater the distance of an object to the just chosen centroid, the higher the probability
of selecting that object. The intuition, confirmed by their experimental analysis, is that
a “good” initial choice of centroids will place them far apart from each other. We will
use this initialisation procedure in our own algorithm.

2.4. Elias-Fano sequences
The encoding we are about to describe was independently proposed by Peter
Elias [1974] and Robert Mario Fano [1971], hence its name. Given a monotonically
increasing sequence S[0, n) of positive integers (i.e., S[i] ≤ S[i + 1],∀i ∈ [0, n)) with
u = S[n− 1], we write each S[i] in binary using dlg ue bits. Each binary representation
is then split into two parts: a high part consisting in the first dlg ne most significant

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:9

H

3 4 7 13 14 15 21 38

high

low

1
1
1
1
1
0

1
1
0
1
1
0

L

25 36 54 62

10 1110 100 10 0 0110 0 110 0 0 0 10 10
11 0011 011011 01 01 0010 10 10

1
0
0
1
0
0

0
1
1
0
0
1

0
1
0
1
0
1

0
0
1
1
1
0

0
0
0
0
1
1

0
1
0
0

0
0
0
1
1
1

1
0
0
0

1
0
1
0

1
0
0
1
1
0

0
0
1
1
0
1

0
0
1
1
1
1

0
1
1
1

1
0
1
1

1
1
0
0

0
0
1
0

0
0
0
1
0
0

Fig. 2. Elias-Fano encoding example for the sequence [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62]. Different colors
mark the distinction between high bits (in blue), low bits (in green) and missing high bits (in red).

bits that we call high bits and a low part consisting in the other ` = blg u
nc bits that

we similarly call low bits. Let us call hi and `i the values of high and low bits of S[i]
respectively. The Elias-Fano representation of S is given by the encoding of the high
and low parts. The array L = [`0, . . . , `n−1] is stored in fixed width and represents the
encoding of the low parts. Concerning the high bits, we represent them in negated
unary1 using a bit vector of n+ u/2` ≤ 2n bits as follows. We start from a 0-valued bit
vector H and we set the bit in position hi + i, ∀i ∈ [0, n). The effect is that now the k-th
unary integer m of H indicates that m integers of S have high bits equal to k. Finally
the Elias-Fano representation of S is given by the concatenation of H and L and takes,
overall, EF (S[0, n)) = ndlg(u/n)e+ 2n bits. Figure 2 shows an example of encoding for
the sequence S = [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62].

While we can opt for an arbitrary split into high and low parts, ranging from 0
to dlg ue, it can be shown that the value ` = blg(u/n)c minimises the overall space
occupancy of the encoding.

In Figure 2 the “missing high bits” embody a graphical representation of the fact
that using dlg ne bits to represent the high part of an integer with Elias-Fano, we have
at most 2dlgne distinct high parts. Not all of them could be present. In the exemplar
Figure 2, we have dlg ne = 4 and we can form 16 distinct high parts. Notice that, for
example, no integer has high part equal to 0010, which are, therefore, “missing”.

Despite its simplicity, it is possible to support powerful search operations on
EF (S[0, n)). Of particular interests for our purposes are:

— Access(i) which returns S[i] for any i ∈ [0, n);
— NextGEQ(x) which returns the integer of S that is greater than or equal to x.

Both operations are supported using an auxiliary data structure that is built on bit
vector H, able to efficiently answer the Select0/1(i) query, which returns the position
in H of the i-th 0/1 bit. This auxiliary Rank & Select data structure is succinct in the
sense that it is negligibly small compared to the encoding of S, requiring only o(n)
additional bits [Clark 1996].

Using the Select1 primitive, it is possible to implement Access(i) in O(1). We basically
have to re-link together the high and low bits of an integer, previously split up during
the encoding phase. While the low bits `i are trivial to retrieve as we need to read the
range of bits [i`, (i + 1)`) from L, the high bits deserve a bit more care. Since we write
in negated unary how many integers share the same high part, we have a bit set for
every integer of S and a zero for every distinct high part. Therefore, to retrieve the high

1If U(x) indicates the unary representation of the integer x, its negated unary representation is the bit-wise
NOT of U(x). A simple example: if x = 5, then U(5) = 000001 and its negated unary is 111110.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. E. Pibiri and R. Venturini

bits of the i-th integer, we need to know how many zeros are present in H[0,Select1(i)).
This quantity is evaluated on H in O(1) as Rank0(Select1(i)) = Select1(i) − i. Notice,
therefore, that we only need to support Select1 queries on bitvector H.
Linking the high and low bits is as simple as a shift followed by a bitwise OR:
Access(i) = ((Select1(i) − i) � `)|`i, where � is the left shift operator and | the bit-
wise OR.
NextGEQ(x) is resolved as follows. Since the quantity p = Select0(hx)−hx is the num-

ber of elements of S whose higher bits are smaller than hx, we can start our search
scanning S from position p, skipping a potentially large range of elements that, other-
wise, would have required to be compared with x.

As the Select0/1 primitive is so fundamental for the efficient implementation of Access
and NextGEQ, we briefly discuss how it can be supported on bitvector H using little
space. See the paper by Vigna [2013] and references therein for an in-depth discussion.
While there exists a large body of research on selection that has developed optimal,
i.e., constant-time, algorithms requiring tiny space [Clark 1996], such solutions are
rather complicated and not practically appealing for their high constant costs. The
idea we describe here is, instead, very simple and of practical use. It actually dates
back to the original work by [Elias 1974]. We have seen that the crucial step of decoding
an integer, and consequently the most time-consuming one, is the reading of its high
bits which are coded in negated unary. To speed up this reading, we can write the
position of the next bit we would reach after reading kq, k ≥ 0, unary codes, where
q is a fixed quantum. These b2dlgne/qc sampled positions are called forward pointers
and are stored in fixed-width (as they require at most lg n + 1 bits each) before the
representation of the high bits. Now Select1(i) will first fetch the pointer p in position
bi/qc and than completes exhaustively reading i mod q unary codes in H starting from
position p. The very same technique can be used to store skipping pointers to speed up
Select0 queries too, which enable very fast NextGEQ operations. Clearly, smaller values
of q permit less reads but use more space.

To enable fast query processing, we implement a cursor that iterates over the en-
coded sequence by means of the described operations. The cursor implementation is
stateful, in order to exploit locality of access by optimizing short forward skips, which
are very frequent in posting lists processing. Besides NextGEQ, another convenient
cursor operation is Next, which advances the cursor by one position.

As a final note, notice that while docId-sequences are immediately compressible with
Elias-Fano, frequency lists are not, as they could not be monotonically increasing. How-
ever, they can be turned into strictly monotone sequences by computing their prefix
sums2. Since Elias-Fano only requires weak monotonicity, we can also subtract i to
the value of the i-th frequency. Unfortunately, this trick cannot be applied to docId-
sequences [Vigna 2013], since it makes impossible the efficient implementation of
NextGEQ as previously described. At query processing, the i-th frequency can be re-
covered as Access(i)− Access(i− 1) + 1.

2.5. Partitioned Elias-Fano
One of the most relevant characteristic of Elias-Fano is that it only depends on two
parameters, i.e., the length and universe of the sequence that poorly describe the se-
quence itself. As docId-sequences often present groups of close identifiers, Elias-Fano
fails to exploit such natural clusters. Partitioning the sequence into chunks to better
exploit such regions of close docIds is the key idea of the two-level Elias-Fano repre-
sentation devised by Ottaviano and Venturini [2014].

2Given a sequence S of n integers, the k-th prefix sum of S is defined as Sk =
∑k

i=1 S[i], i.e., the sum of the
first k elements of S (prefix of length k).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:11

The core idea is as follows. They partition a sequence S of length n and universe u
into n/b chunks, each of b integers. First level L is made up of the last elements of each
chunk, i.e., L = [S[b− 1], S[2b− 1], . . . , S[n − 1]]. This level is encoded with Elias-Fano.
The second level is represented by the chunks themselves, which can be encoded using
three different strategies, that we discuss next. The main reason for introducing this
two-level representation, is that now the elements of the j-th chunk are encoded with
a smaller universe, i.e., L[j]−L[j−1]−1. This is a uniform-partition strategy that may
be suboptimal, since we cannot expect clusters of docIds be aligned to such boundaries.
As the problem of choosing the best partition is posed, an algorithm based on dynamic
programming is presented which, in O(n) time, yields a partition whose cost (i.e., the
space taken by the partitioned encoded sequence) is at most (1 + ε) away from the
optimal one, for any ε ∈ (0, 1). To support variable-size partitions, another sequence E
is maintained in the first level of the representation, which encodes with Elias-Fano
the lengths of the chunks in the second level.

This two-level organisation introduces a level of indirection when resolving queries.
However, this indirection only causes a very small time overhead compared to plain
Elias-Fano on most of the queries.

As anticipated above, each chunk in the second level is encoded with one among
three different strategies. One of them is, not surprisingly, Elias-Fano. The other two
additional encodings come into play to overcome the space inefficiencies of Elias-Fano
in representing dense chunks. We describe here the optimisation as it plays a key
role in our list representation, as we are going to see next. Let us examine the j-
th chunk of a list. Call b and uj its length and universe respectively. Vigna [2013]
first observed that as b approaches uj the space bound bdlg(uj/b)e + 2b bits becomes
close to 2uj bits. However, we can always represent the chunk with uj bits by writing
the characteristic vector of the set of its elements as a bit vector. The more b is close
to uj , the denser the chunk. The additional used encodings are chosen according on
the relation between uj and b. The first one addresses the extreme case in which the
chunk covers the whole universe, i.e., whenever uj and b are the same: in such case,
the first level of the representation suffices to recover each element of the chuck which
is, therefore, encoded with 0 bits. The second encoding is used whenever the size of the
Elias-Fano representation of the chunk is larger than uj bits: doing the math it is not
difficult to see that this happens whenever b > uj/4. In this case we can encode the set
of elements in the chunk by writing its characteristic vector in uj bits.

For completeness, we also describe the dynamic programming algorithm. The prob-
lem of determining the partition of minimum encoding cost can be seen as the problem
of determining the path of minimum cost (shortest) in a complete, weighted and di-
rected acyclic graph (DAG) G. This DAG has n vertices, one for each integer of S, and
Θ(n2) edges where the cost w(i, j) of edge (i, j) represents the number of bits needed
to represent S[i, j]. Each edge cost w(i, j) is computed in O(1) by just knowing the
universe and size of the chunk S[i, j], as explained above.

Since the DAG is complete, a simple shortest path algorithm is inefficient already
for medium sized inputs. However, it could be used on a pruned DAG Gε, which is
obtained from G and has the following crucial properties: (1) the number of edges is
O(n log1+ε

U
F) for any given ε ∈ (0, 1); (2) its shortest path distance is at most (1 + ε)

times the one of the original DAG G. U represents the encoding cost of S when no
partitioning is performed; F represents the fixed cost that we pay for each partition.
Precisely, for each partition we have to write its universe of representation, its size
and a pointer to its second-level Elias-Fano representation. F can be, therefore, safely
upper bounded with 2 lg u+ lg n.

The pruning step retains all the edges (i, j) from G that satisfy the following two
properties for any i = 0, . . . , n − 1, j > i: (1) there exists an integer h ≥ 0 such that

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. E. Pibiri and R. Venturini

2 13

12 15 21 31 12 15 21 31

5 11 26
0 1 2 3 4

5 11
0 1 2 3 4 5 6

reference

list

42
5

26 42
7

1
0

2 4
1 2 4 5 6 7

map residual

encoded list
5
3

Fig. 3. List representation example: shaded boxes mark the integers falling in the intersection between list
and reference; all others form the residual part.

w(i, j) ≤ (1 + ε)hF < w(i, j + 1); (2) (i, j) is the last edge outgoing from node i, i.e.,
j = n. The edges is Gε are the ones that better approximate the value (1 + ε)hF from
below because the edge costs are monotone. Such edges are called (1 + ε)-maximal
edges. Since for each h ≥ 0 it must be (1 + ε)hF ≤ U , there are at most log1+ε

U
F edges

outgoing from each node of Gε, thus in conclusion Gε has O(n log1+ε
U
F) edges. Now

the dynamic programming recurrence can be solved in Gε in O(n log1+ε
U
F) admitting

a solution whose cost is at most (1 + ε) times larger than the optimal one [Ferragina
et al. 2011].

We can further reduce this complexity to O(n log1+ε
1
ε) conserving the same approx-

imation guarantee as follows. Let ε1 ∈ [0, 1) and ε2 ∈ [0, 1) two approximation param-
eters. We first retain from G all the edges whose cost is no more than L = F

ε1
, then

we apply the pruning strategy as described above with approximation parameter ε2.
The obtained graph has now O(n log1+ε2

L
F) = O(n log1+ε2

1
ε1

) edges, which is O(n) as
soon as ε1 and ε2 are fixed. Ottaviano and Venturini [2014] proved that the shortest
path distance is no more than (1 + ε1)(1 + ε2) ≤ (1 + ε) times the one in G by set-
ting ε1 = ε2 = ε

3 . These two parameters deeply affect index construction time, as they
directly control the number of edges considered by the algorithm.

To generate the pruned DAG from G we employ q = O(log1+ε
1
ε) windows W1, . . . ,Wq,

one for each possible exponent h ≥ 0 such that (1 + ε)hF ≤ L. Each sliding window cov-
ers a different portion of S and it slides over the sequence. We generate the q maximal
edges outgoing from node i on-the-fly as soon as the shortest path algorithm visit this
node. Initially all windows start and end at position 0. Every time the algorithm visits
the next node i, we advance the starting position of each window by one position and
the ending position j until w(i, j) exceeds the value (1 + ε)jF .

3. REPRESENTATION OF A SET OF POSTING LISTS
In this Section we introduce our novel index representation for a set of posting lists.
The key idea is to exploit the implicit redundancy of the docId-lists to reduce space,
via a universe reduction technique.

Let R be a list not necessarily belonging to L and C ⊆ L a set of lists. Then the
integers belonging to the intersection of list S ∈ C with R can be rewritten as the
positions they occupy in R. If u denotes the universe of S, the intersection is now
encoded with a universe of size m = |R| instead of u. If R is chosen such that the
condition m� u holds, we are greatly reducing the universe of the intersection which
can be, therefore, encoded with much fewer bits. R will be called the reference list for
set C. Figure 3 shows an encoding example.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:13

This strategy introduces a partition of each list into two segments: a map part made
up of all rewritten integers falling in the intersection with the reference, and a residual
part consisting in all other integers. Our list representation is the juxtaposition of
these two segments.

Specifically, suppose S and R share k integers. Using the space bound of plain Elias-
Fano, the space taken by S in this new representation is

k
⌈

lg
m

k

⌉
+ (n− k)

⌈
lg

u

n− k
⌉

+ 2n+ o(n) bits. (1)

Not surprisingly, the greater the number of integers shared by S and R, the better
the space of our encoding. Notice that, though the average gap blg(u/(n − k))c will
become larger, the overall residual cost will decrease too, since (n − k)dlg(u/(n − k))e
is monotonically decreasing for reasonably large values of u, as it is likely to be in
practice. For example, substituting m = u/8 and k = n/2 in Equation 1, the resulting
space is ndlg(u/n)e+ 2n+ o(n)− n/2 bits, thus saving 0.5 bits per integer with respect
to plain Elias-Fano.

Notice that this is a general scheme that allows for different encoding strategies
to be applied on reference, map and residual lists. In our implementation we adopt
partitioned Elias-Fano, hereafter indicated with PEF, to encode both map and resid-
ual segments of each list, as well as references. Furthermore, observe that nothing
prevents from recursively applying the very same encoding strategy to the residual
segment of each list. However, implementing such a recursive encoder is much more
complicated and may prevent from practicality.

The cursor operations, NextGEQ and Next, can be efficiently implemented by means
of the same operations performed by three cursors, each operating on map, residual
and reference list separately. To answer a NextGEQ query on our list organisation, a
naı̈ve implementation will first perform a NextGEQ on the residual followed by an-
other one on the map to finally return the minimum of the two. Given an integer x,
notice that the map may only contain its position px within the reference. Therefore
a NextGEQ(x) operation on the map actually involves a first rx = NextGEQ(x) on the
reference followed by NextGEQ(px) on the map. This second NextGEQ(px) is necessary
to verify if the searched element px is actually contained in the map. If it is, then rx is
the value to return, otherwise a final random-access operation must be performed on
the reference to retrieve R[NextGEQ(px)].

The outlined algorithm will always execute three NextGEQs. We argue that this com-
plexity can be alleviated if we cache a state in our cursor implementation. In particular,
we save the last accessed values in map and residual: call them ym and yr respectively.
Depending on the relationship between the given lower bound x, ym and yr, it is pos-
sible to write the algorithm such that we do not always need three but just two, one or
even no NextGEQ. Figure 4 offers a pictorial representation of such relations. In the fol-
lowing description we show in brackets the number of NextGEQs performed. If x > ym
then a NextGEQ on the map is performed (2). At this point we also check if x > yr. If so,
a NextGEQ on the residual is performed and we return the minimum of the two values
(3). If x ≤ ym instead, we can directly check if x > yr. If so a NextGEQ on residual is
performed (1). Eventually, if both previous conditions are not satisfied, i.e., x ≤ ym and
x ≤ yr, then no NextGEQ are needed and we can just return the minimum between ym
and yr (0). This completes the description on the NextGEQ algorithm operating on the
new list representation. The Next procedure can be implemented similarly.

At this point it is clear that the reference length is a crucial parameter for our en-
coder. As already mentioned, the larger the number of integers shared by the reference
and a list, the better the space usage but, conversely, the greater the number of inte-
gers that need to be unmapped during a search operation (two NextGEQs and one Access

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. E. Pibiri and R. Venturini

map
residual
cached state

x x

x x

3 2

1 0

Fig. 4. NextGEQ algorithm operating on the clustered list representation. Depending on the relation be-
tween the searched value x and the cached state of our cursor, the algorithm may perform 3, 2, 1 or even 0
NextGEQs. Below each case, we report the number of performed operations.

in the worst case), affecting the retrieval efficiency. We will stress this evident trade-off
in Section 4 with an extensive experimental analysis.

Frequency lists need to reflect the partition into map and residual segments too:
first we store all frequencies for the map, then all frequencies for the residual. When
resolving an x′ = NextGEQ(x) query we need to know the frequency of the term in
document x′, we access the corresponding frequency list at position k + jr if x′ falls
into the residual or at position jm if it falls into the map, where jm and jr denote the
position of cursors operating on map and residual respectively.

We argue that two intuitive, yet fundamental, problems naturally arise from the
given representation.

— Which lists to group together in set C under the same reference. Since the greater
the intersection of a list with its reference the better our encoding, we would like
to collect together lists sharing a lot of integers so that a given reference is able to
“cover” a greater portion of the lists in C. This problem reduces to the problem of
clustering the index posting lists to maximise the number of integers shared by the
lists in a cluster.

— Choosing which integers to put into the reference list reduces to an optimisation
problem. Indeed, our goal is that of selecting the reference list for a given set C such
that the space taken by the encoding of C is minimized.

These two considerations allow us to formally state the problem we are considering.
Let CPEF(Li, Ri) be the cost, in bits, of our encoding applied to the lists in set Li, using
reference Ri. We want to solve the following optimisation problem.

PROBLEM 1. Determine the partition of L in c clusters, i.e., {L1, . . . ,Lc} subject to
L = ∪ci=1Li, Li ∩Lj = ∅ ∀i 6= j and each Li non-empty, and the choice of Ri, |Ri| > 0, for
each cluster Li, such that

c∑
i=1

CPEF(Li, Ri) (2)

is minimum.

This problem is difficult. In fact, suppose to have already computed the partition
{L1, . . . ,Lc}. Now consider a cluster Li and the problem of choosing a reference of

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:15

size k such that the encoding cost of Li is minimum when each list is encoded with
plain Elias-Fano. This is a k-reference selection problem (RSPk). Even in this simplified
setting, the following theorem holds.

THEOREM 3.1. RSPk is NP-hard.

PROOF. We use the hardness of the k-Clique Problem (CPk) [Garey and Johnson
1979], in which the input is an undirected graph G = (V,E) and the output is a clique
of k nodes (if one exists). In particular, the variant of CPk for which we are asked to
find, for a given 0 < ε < 1, a clique of size ε|V | is NP-complete for any choice of ε [Garey
and Johnson 1979]. In our reduction we are interested in the variant where k equals
n/4, i.e., ε = 1/4.

Consider an instance G = (V,E) of CPk. V is the set of n vertices that, without loss
of generality, we can indicate with 1, . . . , n. E is the set of m undirected edges. The
instance of RSPk is obtained from G by letting vertices in V be the set of postings and
by including in C the m posting lists, one for each edge (u, v) ∈ E, formed by the two
postings u and v.

Call R the optimal solution for RSPk on C. The encoding of each posting list with
respect to R has only the following three possible costs

(1) 2dlg(k/2)e+ 4 bits when both postings are in R;
(2) 2dlg(n/2)e+ 4 bits when both postings are not in R;
(3) dlg ke+ dlg ne+ 4 bits when one posting is in R and the other is not.

Since k is n/4, the costs in (2) and (3) coincide and (1) is always the smallest encoding
cost. Thus, R must be such that the number of posting lists whose encoding cost is (1)
is maximized. This is equivalent of saying that R is such that it maximizes the number
of edges that have both vertices in R, by the one-to-one correspondence between edges
of G and posting lists in C. Thus, if G has a k-clique, R is formed by the vertices of this
k-clique.

As it is not obvious which is the strategy that selects the best clusters and references
so that the encoding of the clusters is minimum, it is convenient to consider a three-
step modeling, in which the first two steps are solved by a heuristic approach.

(1) Clustering L into {L1, . . . ,Lc}, where c is unknown, to group together lists sharing
as many docIds as possible.

(2) For each cluster Li select the reference Ri, |Ri| > 0, such that CPEF(Li, Ri) is mini-
mum. We will illustrate two heuristic algorithms for this problem.

(3) Encode each Lk ∈ {L1, . . . ,Lc} with PEF.

In what follows, we deeply discuss each of these three steps. Though the three steps
are strictly correlated and, therefore, cannot be completely separated from each other,
this modeling yields an efficient algorithm for an approximate solution to the original
problem.

3.1. Clustering
We use a modified version of k-means [Aggarwal and Reddy 2013] as our posting list
clustering algorithm. We adopt a k-means-based approach because it is the only able
to scale to the dimensions we are dealing with (see Table I for some basic statistics of
the tested datasets). More precisely, although other clustering approaches, e.g., Single-
Link, Average-Link and Complete-Link [Xu and Wunsch 2005] may produce superior
clusters in terms of cluster quality [Steinbach et al. 2000], their quadratic complexity
often prevents from practical use. As the posting lists length ranges from tens of thou-
sands to millions, either an approximate distance metric could be used either we need

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 G. E. Pibiri and R. Venturini

a lower-complexity algorithm. This has been the main reason of the success of k-means
and, indeed, the reason for its choice as our clustering framework.

We start with a high-level overview of the algorithm. In order to avoid to supply the
a-priori number of k clusters to the algorithm, we use the bisecting approach by Stein-
bach, Karypis, and Kumar [2000]: we execute an instance of 2-means and recurse on
the two children clusters. More specifically, we maintain a deque Q of clusters to be
split, initially containing the fictitious cluster formed by the entire dataset. At each
step of recursion a cluster is picked from Q and an instance of 2-means is executed on
it. Each of the two children is then inserted in Q if it needs refinement. Whenever a
cluster does not need any further splitting, it is inserted in a list L of “final” clusters.
When Q is empty, the algorithm stops. The number of created clusters is the length of
list L. This skeleton describes a divisive hierarchical clustering algorithm.

Now we discuss some details. Instead of recurring on the largest of the two chil-
dren [Steinbach et al. 2000], we adopt an ad-hoc criterion that meets the requirement
of the encoding phase that will follow the clustering step. Since the cost of our encod-
ing comprises the cost for the reference lists as well, we intuitively would like to create
as few clusters as possible. The problem is that, in general, the bigger the cluster,
the longer the reference. However, encoding lists with respect to a very long reference
will produce a negligible universe reduction, thus dwarfing the quality of our encoder.
Therefore, we decide that a cluster needs further splitting if its current reference is
greater than a user-defined threshold. This threshold defines the maximum length of
the reference that the algorithm builds for each cluster. The current reference size of
a cluster is estimated using a fast, heuristic approach that we will describe in Sec-
tion 3.2. The number of documents U in the collection clearly represents an upper
bound on the possible values of this threshold. The experiments regarding how the
cluster quality varies for different values of the threshold are presented and discussed
in Section 4. In particular, we will determine the best choice of maximum reference
size in terms of encoding cost, i.e., the number of bits per posting.

The other meaningful point to describe is the choice of the two seeds. We use the
randomised approach described by Arthur and Vassilvitskii [2007]: the first seed c is
drawn uniformly at random from the set S of approximately equal-sized posting lists,
then another list x is chosen as centroid with probability D(x, c)2/

∑
y∈S\{x}D(y, c)2.

We follow this approach since we want the two clusters to be well far-apart from each
other. Notice that a single pass over the cluster lists suffices for this task.

The last detail we would like to describe is how the distance of a list from a cluster
centroid is computed. It seems natural to use a similarity measure that accounts for
how many integers of a sequence S are shared with centroid C. Using set notation, a
modified Jaccard coefficient SIM = |S ∩ C|/|S| ∈ [0, 1] provides us this quantity. We
argue that this similarity measure suffers from several problems.

First of all, not all postings should be considered for intersection but only a subset
of S. This is a direct consequence of the fact that we are using PEF to encode map and
residual segments in our list representation. Recall that the j-th chunk of b docIds can
be encoded in three different ways according to the relation between b and its universe
uj . In particular whenever a chunk is encoded with its characteristic bit vector or
with 0 bits, it is never advantageous to represent some of its elements with respect to
the reference because the chunk will be broken in pieces, each encoded with a larger
number of bits. This implies that we have to exclude from S all docIds except the ones
belonging to chunks encoded with Elias-Fano.

The other problem is that |S ∩ C|/|S| completely ignores the distribution of docIds
in the posting lists. In fact, |S ∩ C| could be large just because of docIds: (1) that are
shared between S and C but not with all other lists in the cluster; (2) occurring very

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:17

frequently in the whole collection and, therefore, in almost each list. These issues are
tackled by maintaining two counts maintained for each posting: a local count keeping
track of how many times the posting occurs in the lists of the cluster and a global
count that weights each posting for its own frequency in the whole collection. Notice
that the combination of local and global measures is the same solution adopted by the
so-called vector-space model [Büttcher et al. 2010; Manning et al. 2008]. If we provide
analogous definitions of term-frequency (tf) and inverse-document-frequency (idf) in
the inverse domain, which is made up of all posting lists of the document collection D,
then we can treat each posting list as a vector of reals. More precisely, we define as
document-frequency df(x, S) the frequency of docId x in inverted list S. This measure
corresponds to the tf count in the documents’ domain. This count depends on how the
posting lists are built. In our case each df is just 1, but it could be greater depending
on the occurrences of a docId in a posting list. A real-life example of this scenario is
the Twitter inverted index: a docId is appended multiple times to the posting list of a
term if that term occurs multiple times in the indexed tweet [Busch et al. 2012].

The corresponding of the idf count in the inverse domain is the inverse-term-
frequency (itf), which accounts for how many times x is appearing in whole collection:
itf(x) = lg(|T |/|{S ∈ L : x ∈ S}|), where T is the collection lexicon.

Now each posting list S is seen as a vector s of U components, the i-th one being equal
to si = itf(i) if integer i belongs to S or 0 otherwise. In what follows, we implicitly refer
to a list S by means of its itf vector s. As distance function we useD = 1−cos(s, c), where
cos(s, c) =

∑U
i=1(sici)/

√
‖s‖2‖c‖2 is the cosine similarity between centroid c and list s.

Whenever a list is added to its closest cluster, we immediately update the centroid to
be the sum of the newly added list and the centroid itself. In this way, the centroid c of
each cluster takes into account the number of times posting i occurs within the cluster
(local count), which is exactly ci/itf(i) times.

3.2. Reference selection
Consider cluster Li and the optimisation problem of synthesizing the reference Ri such
that CPEF(Li, Ri) is minimum. We have shown in Theorem 3.1 that the simplified
RSPk is NP-hard. If m is the number of integers in Li, i.e., the sum of the lengths its
posting lists, and n the number of its distinct integers, then an optimal solution can
be computed in Θ(m2n) time and O(n) space. In fact, for each sorted subset Ri of the
distinct integers of Li we should keep track of arg minRi

CPEF(Li, Ri). Since there are∑n
k=1

(
n
k

)
= 2n − 1 possible ways of choosing Ri and encoding takes linear time in the

number of postings, the time complexity follows. This is clearly unfeasible.
We describe two heuristic methods for reference selection: frequency-based and

space-based. Before the description, we fix some common concepts.
A weight is assigned to each postings and its meaning is different for the two pro-

posed reference selection methods: the frequency-based strategy considers as weights
the frequencies of occurrence of the postings, the space-based strategy the number of
bits by which the total encoding cost is decreased. This general framework is captured
by Figure 5, in which heavier postings are represented in darker shades. Both methods
select postings that will end up in the reference from a set that we call the set of candi-
date postings. Let c indicate the cardinality of this set. As already noted in Section 3.1,
only postings belonging to blocks encoded with Elias-Fano should be considered as pos-
sible candidates, otherwise there is the risk of “breaking” a block encoded with much
fewer bits.

Frequency-based selection. An effective method to select the postings for the refer-
ence is based on their frequencies within the cluster, i.e., how many times they occur
in the posting lists belonging to the cluster. We just need to sort the set of candidate

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. E. Pibiri and R. Venturini

reference
po

st
in

g
lis

ts

...

Fig. 5. Reference selection framework. The reference for a cluster of posting lists is made up of the postings
having the heaviest weights, represented in the Figure with darker shades. The two proposed reference
selection algorithms differ in the notion of a posting weight.

postings according to their frequencies and add to the reference the top-k most fre-
quent postings, where k is the reference wanted dimension. The intuition behind this
heuristic is that if the reference is composed by postings occurring in most lists, then
it should have a good “coverage” property. On the other hand, including postings oc-
curring only a few times, would be beneficial for few lists too while, at the same time,
be detrimental for all other lists: the reference will grow, therefore expanding the uni-
verse of the representation of each map.

As the experimental Section 4 will show next, this heuristic performs well in practice
especially for larger values of reference size. Its most important advantage is its speed:
a single pass over the lists suffices to build frequency counts that are used as the sort-
criterion. Time and space complexities are, respectively, O(m) and O(c).

Space-based selection. The high-level idea of the approach is to estimate the contri-
bution ∆x in bits of each posting x to the reduction of the overall encoding cost of Li
and to incrementally build Ri adding postings for decreasing values of ∆. At the begin-
ning of the algorithm all residuals coincide with their corresponding posting lists and
the reference list is empty. With a little abuse of notation, in what follows we indicate
with Ri the reference built so far by the algorithm. Since each ∆x depends on Ri, we
should update each ∆x whenever a posting is added toRi. This will ruin any attempt to
keep complexity manageable. Instead, we define an epoch as t consecutive postings ad-
ditions to Ri. Within an epoch, each ∆x is considered as static and whenever a posting
is added to Ri it is then removed from the set of candidates. At the end of an epoch, we
recompute {∆x} for the set of remaining candidates and update the current encoding
cost. Updating the current cost corresponds to computing CPEF(Li, Ri). If the updated
cost results lower than the previous one, then we save the current reference, thus re-
quiring O(c) space. Then we keep executing epochs until there are no more candidates
to consider.

We now discuss how to compute ∆x. Intuitively, ∆x will result from the sum of the
costs of all lists where x is present. Therefore, we first define ∆S

x as the contribution of
x to the cost of list S. Since we know S and the endpoints E representing its partition,
we first binary search x on S to retrieve rankx, i.e., the position of x within S, then
we binary search rankx on E to retrieve the chunk endpoints where x falls in. Now
that we know the chunk of x, we can estimate in O(1) the cost contribution of x as the
difference between current chunk cost and the old one. Let Sm and Sr be the map and
residual segments of list S respectively. Evaluating ∆x is done as follows.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:19

(1) ∆x = −∆Ri
x . Call mx the position of x in Ri.

(2) For every sequence S in which x occurs:
∆x = ∆x −∆Sm

mx
+ ∆Sr

x .

To speed up step (2), we maintain the correspondence between candidates and their
block ids in the lists where they occur. The complexity of computing ∆x during the j-th
epoch is O(lg(j− 1)t+m/n(1 + lg(j− 1)t)), since m/n represents the average frequency
of each posting and during epoch j, Ri contains (j − 1)t postings.

Approximating lg n! using the Stirling approximation lg n! ∼ n lg n − O(n) + lg n/2,
the overall complexity of the algorithm is O(c

2

t (mn +1) lg c+m c
t) and it uses O(m) space.

As it is clear, by varying t we can obtain different time/accuracy trade-offs, as we are
going to illustrate in Section 4.

3.3. Encoding
Each cluster Li gets encoded with respect to its reference list Ri according to the rep-
resentation we have detailed at the beginning of Section 3.

In particular, only postings belonging to Elias-Fano encoded blocks are considered
for intersection with the reference, all others form the residual part. Recall from Sec-
tion 2.5 that a block in PEF is encoded with one among three different representations,
according to the relation between its universe and size: (1) Elias-Fano; (2) the block’s
characteristic bit vector; (3) not encoded at all, thus taking 0 bits. Since we can calcu-
late the Elias-Fano partitions of a sequence in linear time using the dynamic program-
ming algorithm by Ottaviano and Venturini [2014] and determine in O(1) which is the
type of encoder used for each block, map and residual segments are computed in time
proportional to the length of the sequence.

Considering all clusters, the overall complexity of the encoding step is, therefore,
linear in the number of postings in the inverted index.

3.4. Index Structure
We now describe our index organisation, starting with a high-level picture: our index
is made up of three large bit vectors, that we call document, frequency and reference bit
streams. They represent the index posting, frequency and reference lists respectively.

Each bit stream results from the concatenation of the bit vectors that individually
represent posting, frequency and reference lists. The three bit streams are aligned:
the i-th frequency list is associated to the i-th document list. Document lists are stored
according to cluster-identifier order, i.e., the first lists in the documents stream are
the ones belonging to the first cluster, then the ones belonging to the second cluster
follow and so on. Except for frequency lists, each list representation in the stream
is enriched with a metadata information storing the size of the list. First we write
in γ code the number of bits necessary to represent the size, then the size value is
written uncompressed using this number of bits. Notice that since lists are non-empty
we can subtract 1 to the γ encoding of the size (γ non-zero). Since we use PEF to
encode both map and residual segments of our posting list organisation, we store list
sizes in order to distinguish the different metadata sections of the partitioned Elias-
Fano representation that we discuss later. Finally, in order to be able to access each
sequence, we store the positions of the bit stream at which sequences end in an Elias-
Fano encoded list of endpoints. In this way, as random access operations are supported
efficiently with Elias-Fano, we can access each sequence in O(1) within compressed
space. Figure 6a shows how each bit stream is organised. Now we discuss how a single
list is represented.

Our posting list organisation contains a metadata header section before the actual
representation of its map and residual segments. This metadata section is structured

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. E. Pibiri and R. Venturini

size bits s size

metadata

� non-zero

list
representation

bitss

…

first list second list

EF

endpoints

(a) Bit stream and endpoints

reference id lg m + 1 map length m

lg m + 1 bits

map endpoint

32 bits
��

map residual

metadata

PEF PEF

(b) Clustered Elias-Fano sequence

of
partitions p

endpoint bits
e sizes upper bounds

�

metadata

� non-zero EFEF

b0 b1 bp�1…

bitse(p � 1)

endpoints

(c) Partitioned Elias-Fano sequence

Fig. 6. Bit stream; clustered and partitioned Elias-Fano sequence organisations. Below each block we report
how it is encoded: γ, fixed-width, Elias-Fano (EF), partitioned Elias-Fano (PEF). In picture (b), m represents
the length of the map segment; in picture (c), p indicates the number of partitions whereas e the number of
bits needed to encode a pointer to a block.

as follows. First of all, we need to store the identifier of the reference list with respect
to which the list is encoded. Such identifier ranges from 0 to the number of possible
clusters minus 1 and is represented in γ. Then we need to record the length of the map
segment, say m. We first store the quantity lgm+ 1 in γ, then m using lgm+ 1 bits. We
finally need to know where the first stored segment (the map) ends to be able to dis-
tinguish between the two segments. The last metadata information is, therefore, the
number of bits of the map segment written uncompressed in 32 bits. Map and residual
segments are stored one after the other, both encoded as a partitioned Elias-Fano se-
quence that we describe next. Figure 6b shows our clustered sequence organisation. In
this case, the size of the whole list in the stream is necessary to derive the size of the
two segments, which are needed to correctly search their PEF representation.

As to be able to encode the frequency lists using Elias-Fano, each of them is trans-
formed into a monotonically increasing integer sequence by computing its prefix sums.
Since we only need to randomly access such lists, we can subtract i to the i-th frequency
value and save space. Notice that we do not need to store the size of each frequency
list in the bit stream, given that frequency and document streams are aligned: the size
of the i-th frequency list will be the size of the i-th list of the stream.

We conclude this Section by explaining the partitioned Elias-Fano list representa-
tion. Refer to Figure 6c. As usual a metadata section precedes the representation of
the blocks {b0, . . . , bp−1}. We first write the number of partitions using γ non-zero. Then

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:21

we write the number of bits for each block endpoint: if m is the length of the bitvector
resulting from the concatenation of all blocks, then we need e = lgm+1 bits. Two Elias-
Fano encoded blocks follow, representing blocks’ sizes and upper bounds respectively.
The Elias-Fano representation of a sequence is self-delimiting because we can compute
exactly the number of bits of the representation if we only know the length and uni-
verse of the sequence [Vigna 2013]. In this case, both sizes and upper bounds blocks
have length equal to the number of partitions; the universe of sizes is the length of the
sequence whereas the universe of upper bounds is just the number of documents in the
collection. The endpoints are just stored in fixed-width fashion. The concatenation of
all encoded blocks terminates the list representation.

4. EXPERIMENTS
We performed our experiments on the following two datasets.

— ClueWeb09 is the ClueWeb 2009 TREC Category B test collection, consisting of 50
million English web pages crawled between January and February 2009.

— Gov2 is the TREC 2004 Terabyte Track test collection, consisting of 25 million .gov
sites crawled in early 2004; the documents are truncated to 256 KB.

Table I. Basic statistics for the test collections.

Documents Terms Postings

ClueWeb09 50, 131, 015 92, 094, 694 15, 857, 983, 641
Gov2 24, 622, 347 35, 636, 425 5, 742, 630, 292

Standard text preprocessing was performed on the collections. For each document,
the body text was extracted using Apache Tika3, and the words lowercased and
stemmed using the Porter2 stemmer. The docIds were assigned according to the lexi-
cographic order of their URLs [Silvestri 2007]. Table I reports the basic statistics for
the two collections.

Experimental setup. Since we use partitioned Elias-Fano as building-block of our
own encoder, we use the approximation parameters ε1 = 0.03 and ε2 = 0.3 as chosen
in the work by Ottaviano and Venturini [2014], to tradeoff between index space and
construction time as explained in Section 2.5.

To test the speed of the indexes, we use a random sampling of 1000 queries, respec-
tively from TREC 2005 and 2006 Efficiency Track topics, selecting only queries whose
terms are all in the collection dictionary. In order to smooth the effect of fluctuations
during measurements, we repeat each experiment three times and consider the mean.
All query algorithms were run on a single core and query times are reported in mil-
liseconds.

All posting lists representations expose the same interface, i.e., the Access,
NextGEQ, and Next operations described in Section 3. All the algorithms were imple-
mented in standard C++11 and compiled with gcc 5.3.0 with the highest optimization
settings. We have preferred template specialization over inheritance to avoid virtual
method call overhead, which can be disruptive for very fine-grained operations, such
as the ones we consider in the following. Except for the instructions to count the num-
ber of bits set in a word and to find the position of the least significant bit, no special
processor feature was used. We did not add any SIMD (Single Instruction Multiple
Data) instruction to our code.

3http://tika.apache.org

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://tika.apache.org

A:22 G. E. Pibiri and R. Venturini

All tests have been performed on a machine with 16 Intel Xeon E5-2630 v3 cores (32
threads) clocked at 2.4 Ghz, with 64 GB RAM, running Linux 3.13.0, 64 bits. Hardware
caches have the following sizes: 32 KB (L1), 256 KB (L2) and 20 MB (L3). Levels L1 and
L2 are private of each core, while L3 is shared among all the 8 cores on one socket. In
addition, we have repeated all the experiments on a second machine equipped with 4
Intel i7-4790K cores (8 threads) clocked at 4 Ghz, with 32 GB RAM, running Linux
4.2.0, 64 bits to confirm the results. This second machine has the same cache sizes of
the other, except for the last shared level (L3) which is 8 MB.

The data structures were saved to disk after construction, and memory-mapped to
perform the queries.

The source code is available at: https://github.com/jermp/clustered elias fano indexes.

4.1. Clustering
For the clustering step, instead of considering only the posting lists containing more
than a given number of postings [Dhulipala et al. 2016], we sort the lists by length
in descending order and we discard the k smallest lists such that the sum of their
lengths is approximately 10% of the postings of the original collections. Table II shows
the modified statistics of the clustered test collections. The posting lists excluded from
clustering are encoded with PEF.

Table II. Basic statistics for the clustered test collections.

Terms Postings Avg ; Min ; Max
posting list size

ClueWeb09 36, 985 14, 390, 169, 181 389, 081 ; 16, 618 ; 45, 857, 055
Gov2 17, 401 5, 161, 774, 821 296, 637 ; 14, 182 ; 20, 839, 863

This simple pruning strategy allows us to significantly reduce the number of pro-
cessed terms from millions to tens of thousands while concentrating our effort on most
of the postings, because the distribution of terms occurrences is highly skewed: rela-
tively few lists are very long while the majority being very short.

Table III shows the number of created clusters, clustering time in minutes and the
number of bits per posting by varying the reference size threshold. We recall from
Subsection 3.1 that this threshold is the free parameter of our clustering algorithm
and represents the maximum length of the reference that is built for each cluster.
This threshold is expressed as the ratio between the universe collection U (number
of documents) and a constant ranging from 1 to 32. As we can see, the smaller the
reference a cluster can synthesize, the greater the number of iterations performed
by the algorithm and, consequently, the number of clusters and clustering time. In
particular, clustering time for ClueWeb09 is approximately four times the one of Gov2
since ClueWeb09 has roughly two times the number of posting lists and universe of
Gov2. In the next Section we discuss how the number of bits per posting has been
derived.

4.2. Space/time trade-offs by varying the reference size
In this Section we present a detailed analysis on how and why varying the reference
size of the encoder can yield interesting space/time trade-offs. During the analysis we
also experimentally determine the algorithm to prefer between frequency-based and
space-based for building our clustered indexes and the values of reference size that
give the best trade-offs.

As already pointed out in Section 3, the reference selection step for each cluster
deeply affects the quality of the representation in terms of both space usage and speed,

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

https://github.com/jermp/clustered_elias_fano_indexes

Clustered Elias-Fano Indexes A:23

Table III. Number of clusters, clustering time in minutes and number of bits per posting by
varying the reference size threshold.

Reference size threshold U U/2 U/4 U/8 U/16 U/32

Gov2
Number of clusters 2 5 25 70 150 264
Minutes 5 10 23 32 34 37
Bits per posting 2.70 2.67 2.67 2.65 2.71 2.79

ClueWeb09
Number of clusters 2 31 88 174 302 461
Minutes 24 105 127 138 153 170
Bits per posting 4.60 4.62 4.54 4.52 4.75 4.87

as we are going to motivate next. Dealing with small references implies that the frac-
tion of remapped postings is small too on average and this is less beneficial for index
space. Conversely, as references grow in dimension, space is gradually reduced but
accessing the representation of the references becomes the major bottleneck at query
time. The introduced trade-off is evident: smaller references yield faster but bigger
indexes while longer ones slower but smaller indexes.

To test this impact, we build several indexes for the two test collections, varying the
reference size from 50,000 to 1,600,000 for Gov2 and to 6,400,000 for ClueWeb09, doubling
its size each time. These sizes represent the maximum reference sizes that our encoder
is permitted to build.

Now, before concentrating the analysis on the mentioned space/time trade-off, we
choose the clustering that yields the smallest encoding cost in terms of bits per posting.
To help our decision we consider Table III. The reported number of bits per posting has
been obtained by encoding each cluster with the largest reference size, i.e., 1,600,000
for Gov2 and 6,400,000 for ClueWeb09. For both datasets, a value of threshold equal to
U/8 yields the most compact indexes. Therefore, in what follows, all experiments have
been done using such value for the clustering algorithm.

Figure 7 illustrates the number of bits per posting by varying the reference size, of
both frequency-based and space-based algorithms. These plots have to be read together
with the ones in Figure 8, which show mean query times for AND queries, performed
on ClueWeb09 collection using the TREC 2006 sampling. Since plots for all query algo-
rithms exhibit this kind of shape, we have chosen to show the ones for AND queries
as meaningful representatives. The two pictures together confirm the trade-off intro-
duced above: as references grow in size, the number of bits per posting decreases, but
the mean query time increases as well.

By looking at Figure 7, we notice that the space-based algorithm described in Sec-
tion 3.2 gives constantly better results with respect to the frequency-based one, espe-
cially for smaller reference sizes. In particular, space-based is up to 4.21% smaller for
references of 200,000 postings on Gov2 and up to 2.04% smaller for reference of 400,000
postings on ClueWeb09. For both datasets, the advantage of space-based over frequency-
based gradually reduces as references grow in size, reaching 1.05% and 0.19% for Gov2
and ClueWeb09 respectively. The reason is that the smaller the reference, the more
accurately postings have to be selected. Moreover Figure 8 suggests that, not sur-
prisingly, there is no difference in speed between clustered indexes built using the
frequency-based and the space-based strategy. These two reasons together place the
space-based algorithm in net advantage over the frequency-based. In order to conclude
the comparison between the two, finally consider Figure 9 that reports index building
times in minutes for Gov2 and ClueWeb09 by varying the reference size. The picture
clearly shows the effectiveness of the heuristic of selecting by posting frequency for

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. E. Pibiri and R. Venturini

50K
100K

200K
400K

800K
1,600K

Reference size

2.65

2.70

2.75

2.80

2.85

2.90

B
it

s
pe

r
po

st
in

g

CPEF space-based
CPEF frequency-based

(a) Gov2

50K
100K

200K
400K

800K
1,600K

3,200K
6,400K

Reference size

4.55

4.60

4.65

4.70

4.75

4.80

B
it

s
pe

r
po

st
in

g

CPEF space-based
CPEF frequency-based

(b) ClueWeb09

Fig. 7. Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

50K
100K

200K
400K

800K
1,600K

Reference size

8

9

10

11

12

13

M
ill

is
ec

on
ds

CPEF space-based
CPEF frequency-based

(a) Gov2

50K
100K

200K
400K

800K
1,600K

3,200K
6,400K

Reference size

20

25

30

35

M
ill

is
ec

on
ds

CPEF space-based
CPEF frequency-based

(b) ClueWeb09

Fig. 8. Timings for AND queries by varying the reference size on Gov2 and ClueWeb09, using the query set
TREC 06.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:25

index building time. As we can see, the frequency-based algorithm is practically insen-
sitive to the reference size: it is a direct consequence of the linear complexity in the
number of postings, as shown in Section 3.2. On the contrary, the space-based algo-
rithm actually starts to pay a noticeable CPU cost for mid-sized references (e.g., for
800,000). This is due to the higher number of iterations performed by the algorithm to
build the reference of specified size.

We also mentioned in Subsection 3.2 that by varying the size of an epoch, i.e., how
many postings could be added to the reference under construction before evaluating
the objective function, we obtain different time/accuracy trade-offs. Figures 10 and 11
illustrate the trade-off for two exemplar clusters of Gov2 and ClueWeb09 during the se-
lection of a reference of size 200,000. The plots clearly show that shrinking the size of
an epoch only results in a negligible contribution to the overall accuracy, while increas-
ing by a significant amount the CPU cost. For this reason, it is convenient to choose a
large value of epoch size, e.g., defined to be the number of candidate postings c divided
by a constant. In our implementation we use c/10 for both datasets. As the number of
candidate postings for ClueWeb09 is greater then the one for Gov2 on average, we choose
different divisive constants for the plots of the two datasets as to have approximately
the same epoch size.

50K
100K

200K
400K

800K
1,600K

Reference size

50

100

150

200

M
in

ut
es

CPEF space-based
CPEF frequency-based

(a) Gov2

50K
100K

200K
400K

800K
1,600K

3,200K
6,400K

Reference size

100

200

300

400

500

600

700

M
in

ut
es

CPEF space-based
CPEF frequency-based

(b) ClueWeb09

Fig. 9. Index building times in minutes by varying the reference size on Gov2 and ClueWeb09.

As a conclusion, the only advantage of the frequency-based approach over the other
lies in its speed during the index construction phase. Unless index building time is
the main concern, we should prefer the space-based algorithm which yields more com-
pact indexes with no slowdown in query processing speed. Therefore from now on, we
focus our attention on the space-based approach, that we indicate with CPEF in the
following.

We now determine three values of reference size as representatives of the different
space/time trade-offs we can obtain, in order to concentrate our analysis on these se-

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 G. E. Pibiri and R. Venturini

213 214 215 216 217 218

Epoch size

11.3

11.4

11.5

11.6

11.7

11.8

11.9

C
om

pr
es

si
on

ga
in

[%
]

(a) Gov2

212 213 214 215 216 217 218 219

Epoch size

2.990

2.995

3.000

3.005

3.010

3.015

3.020

3.025

C
om

pr
es

si
on

ga
in

[%
]

(b) ClueWeb09

Fig. 10. Compression gain in percentage against PEF for the space-based algorithm by varying epoch size,
during the selection of a reference of size 200,000 from two exemplar clusters.

213 214 215 216 217 218

Epoch size

0

50

100

150

200

250

Se
co

nd
s

(a) Gov2

212 213 214 215 216 217 218 219

Epoch size

0

200

400

600

800

1000

Se
co

nd
s

(b) ClueWeb09

Fig. 11. Time in seconds for the space-based algorithm by varying epoch size, during the selection of a
reference of size 200,000 from two exemplar clusters.

Table IV. Space and time percentages of CPEF with respect to the value at reference size 50,000, on Gov2 and
ClueWeb09.

100K 200K 400K 800K 1, 600K 3, 200K 6, 400K

Gov2
space −1.71% −3.82% −5.53% −6.45% −6.52% — —
time +7.15% +20.07% +35.69% +52.92% +57.18% — —

ClueWeb09
space −0.71% −1.58% −2.48% −3.40% −4.21% −4.56% −4.56%
time +4.38% +11.79% +22.76% +38.50% +61.12% +75.28% +76.03%

lected points. To help our decision, consider Table IV. The table reports the percentages
of space and time with respect to the values in correspondence of reference size 50,000.

For both datasets, a value of reference size equal to 100,000 looses a negligible fac-
tor in query processing speed but space reductions are very poor too. Therefore, we
choose this value of reference size as representative of the faster query time with re-
spect to the other trade-off points we are going to choose. On the other hand, larger
values of reference size optimise space sacrificing query processing speed. For Gov2 val-
ues of 800,000 and 1,600,000 offer practically the same space reduction but the former
achieves better speed. The same holds for ClueWeb09 as well but for values 3,200,000
and 6,400,000. Values that fall in between these two extreme points tradeoff between
space and time. We now select our trade-off points such that two of them optimise
either space or time, the third one tries to grab the best from both. From the above dis-
cussion, we choose the following points for ClueWeb09: MIN = 100,000; MID = 400,000;
MAX = 3,200,000. For Gov2 we choose instead: MIN = 100,000; MID = 200,000;
MAX = 800,000. For the rest of the experimental analysis, we concentrate on these
selected trade-off points.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:27

Table V. Cache misses at the three cache levels; average posting lists intersection with reference;
references space and mean query time for AND queries on ClueWeb09 using the query set TREC 06.

L1 L2 L3 Reference Reference Mean
32 KB 256 KB 20 MB intersection space query time

PEF 173.6 M 35.9 M 24.9 M — — 17.7
CPEF@ MIN 216.2 M 46.7 M 30.9 M 9.78% 19.3/19.7 MB 21.2
CPEF@ MID 266.5 M 58.2 M 39.3 M 18.93% 62.8/63.8 MB 25.0
CPEF@ MAX 443.6 M 88.5 M 54.4 M 44.37% 259.6/262.7 MB 35.6

The concluding part of this Section shows why the reference size sensibly affects
the query processing speed of our proposal. As argued at the beginning of the Section,
clustering the index inevitably brings a penalty at query time. The penalty comes pre-
cisely from the cache misses induced by accessing the references. The reason is that as
references grow in dimension the number of integers that have been encoded with re-
spect to them grows as well, therefore needing more reference accesses to be decoded.
In particular, cache misses are spent in the first level of the partitioned Elias-Fano
representation and are due to chunk-switching operations, i.e., whenever the distance
from two consecutive searched values (jump entity) exceeds the current chunk size.

To quantify the impact of reference cache misses, we list in Table V the number of
misses in million (M) for AND queries on ClueWeb09, using the query set TREC 06.
Fourth column of the table reports the average intersection of posting lists with the
reference while fifth column reports the sum of the space of the references accessed
during the queries over the total space of the references. Cache misses have been col-
lected with the perf Linux tool, version 3.13.11-ckt35. Levels L1 and L2 are private
while L3 is shared among all the 8 cores on one socket.

As evident, we increase the number of misses at all levels going from MIN to MAX,
confirming the shape of Figure 8. Most importantly, the average percentages of refer-
ence intersection reported in the fourth column are proportional to the cache misses
at L3 as claimed before. From MIN to MID we have an increase of cache misses at L3 of
27.18% which corresponds to an increase of reference intersection of about 1.93 times.
Instead, from MIN to MAX the increase of reference intersection is 4.54 times, therefore
we should expect a corresponding increasing of cache misses of about 63.94% which is
53.9 million of cache misses, practically the same as the value reported at MAX.

We have repeated the test for the second machine, having the same data cache di-
mensions except for last level which is 8 MB, again shared among all cores. Results
were practically the same. The reason is that all query algorithms have no temporal
locality: even though some reference cached blocks could be reused for other queries,
they will be inevitably deallocated and refetched when needed. Therefore, having a big-
ger cache will not bring a performance improvement at query time, unless we explicitly
decide to keep in cache as many reference blocks as possible. Notice that, however, for
the illustrated example, this would only be possible for the MIN point for which the
cache is able to contain the whole reference working set as reported in the fifth column
of Table V.

The last column of the table reports the mean query time. Again, we confirm that
query processing speed sensibly depends on the number of cache misses. By the values
reported in the third column, we should expect to have a slowdown, with respect to
PEF, of roughly 24%, 57.8% and 118.5% for MIN, MID and MAX respectively. Indeed
mean query times report slowdown factors of 19.7%, 41.2% and 101.2%.

As discussed in Section 3, our posting list organisation may require up to three
NextGEQ operations, each operating on the map, residual and reference sequences. We
argue that, while this case arises in practice, it is very pessimistic and not the most
frequent one. In order to avoid confusion, let us call partial a NextGEQ resolved on

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 G. E. Pibiri and R. Venturini

map, residual or reference and full the NextGEQ on the whole clustered list. Beside the
worst case, a full NextGEQ may need 2, only 1 or even 0 partial NextGEQ. In Table VI
we report the mean number of partial NextGEQ operations, where pk represents the
probability of performing k partial NextGEQs, k = 1, 2, 3 (the probability of performing
no NextGEQ, i.e., k = 0, is minimal and does not contribute to the calculation of the
mean value).

Table VI. Mean number of partial NextGEQ operations and corre-
sponding empirical frequencies pk for AND queries on ClueWeb09
using the query set TREC 06.

p1 p2 p3 Mean number of Mean
partial NextGEQs query time

MIN 0.85 0.04 0.11 1.26 21.2
MID 0.61 0.09 0.29 1.66 25.0
MAX 0.32 0.23 0.45 2.13 35.6

The mean number of partial NextGEQs clearly increases for growing values of refer-
ence size. More precisely, we notice an increment proportional to the values presented
in Table V. In fact, the mean number of extra partial NextGEQs performed in the three
points is 25%, 68% and 113% respectively, while the number of cache misses in excess
are 24%, 57.8% and 118.5%. Finally notice that these values are also confirmed by mean
query time values that report slowdown factors of 19.7%, 41.2% and 101.2%.

Moreover, it is interesting to notice how each pi changes in relation to the reference
size. In particular, p1 is decreasing because as the reference grows, map segments grow
as well thus reducing the entity of residuals and, consequently, the number of partial
NextGEQs performed on them.

The crucial parameter affecting the query processing speed is, therefore, the mean
number of accessed reference lists per query. Intuitively, if all the terms of a query
belong to the same cluster, the number of accessed reference lists is just one. To give a
practical evidence of this fact, we conduct the following experiment. For each query we
evaluate the ratio between the number of terms and the number of distinct clusters.
Doing the average of these quantities among all queries gives us the mean number
of terms per cluster within a query, indicated with r in the following. If ρ is the mean
number of terms per query in a query set, then r ∈ [1, ρ]: when r = 1, it means that,
for each query, all terms belong to distinct clusters; on the other hand, when r = ρ
then all terms belong to the same cluster. We test the speed of AND queries on three
sampling of 1000 queries from TREC 06, having respectively r equal to 1.07, 1.48 and
2.01. Table VII illustrates the result. As we can see, when r increases the number of
reference lists accessed per query decreases and so does the mean query time. For
the other query sets, i.e., TREC 06 for ClueWeb09 and TREC 05 for both Gov2 and
ClueWeb09, it is not possible to obtain sufficiently diversified values for r because it is
concentrated in the interval [1.06, 1.09].

4.3. Overall comparison
In this Section we compare our proposal in the selected trade-off points against
several index compression strategies: partitioned Elias-Fano (PEF) [Ottaviano and
Venturini 2014], Binary Interpolative Coding (BIC) [Moffat and Stuiver 2000], op-
timized PForDelta (OptPFD) [Yan et al. 2009] and SIMD-based Variable Byte
(Varint-G8IU) [Stepanov et al. 2011]. The competitors PEF, BIC and Varint-G8IU were
chosen as they are representative of best compression ratio/processing speed trade-off,

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:29

Table VII. Timings for AND
queries by varying terms per
cluster ratio on ClueWeb09 us-
ing the query set TREC 06.

r 1.07 1.48 2.01

MIN 21.2 19.5 14.1
MID 25.0 23.3 17.4
MAX 35.6 33.5 25.2

best compression ratio and highest speed in the literature, respectively. Although PEF
has proven to offer a better space/time trade-off, we also report the space usage and
query time of OptPFD for completeness.

We first analyse the space usage of the encoders; then we discuss their speed using
different query algorithms, namely AND, top-k Ranked AND and WAND [Broder et al.
2003].

Space. Table VIII reports the number of bits per posting of CPEF in the selected
trade-off points in comparison with the ones taken by the tested competitors. We show
in parentheses the relative percentage against CPEF. These numbers are consistent
with the ones presented in the work by Dhulipala, Kabiljo, Karrer, Ottaviano, Pupyrev,
and Shalita [2016], where only posting lists having more than 4096 elements are con-
sidered.

Table VIII. Bits per posting in selected trade-off points. In parentheses we show the relative percentage against CPEF.

MIN MID MAX

PEF 2.94 (+5.60%) 2.94 (+7.91%) 2.94 (+10.95%)

CPEF 2.78 2.72 2.65
BIC 2.80 (+0.53%) 2.80 (+2.74%) 2.80 (+5.63%)

OptPFD 3.46 (+24.54%) 3.46 (+27.27%) 3.46 (+30.85%)

Varint-G8IU 9.76 (+251.02%) 9.76 (+258.72%) 9.76 (+268.82%)

(a) Gov2

MIN MID MAX

PEF 4.80 (+2.13%) 4.80 (+3.98%) 4.80 (+6.25%)

CPEF 4.70 4.62 4.52
BIC 4.27 (−9.22%) 4.27 (−7.58%) 4.27 (−5.56%)

OptPFD 5.29 (+12.39%) 5.29 (+14.42%) 5.29 (+16.92%)

Varint-G8IU 10.1 (+115.14%) 10.1 (+119.04%) 10.1 (+123.81%)

(b) ClueWeb09

In particular, for both datasets, our clustered representation is always better than
PEF, by up to 11% on Gov2 and 6.25% on ClueWeb09. On Gov2, already with a reference
of size 100,000 the clustered index is slightly better than BIC and becomes up to 5.63%
smaller using longer references. On the other hand, on ClueWeb09 collection, BIC is still
the smallest but clustering the index is able to halve the discrepancy between PEF and
BIC, passing from 11.12% to 5.56%.

Regarding OptPFD, our clustered representation is on average 24% smaller on Gov2
and 14.5% smaller on ClueWeb09. As Variable Byte schemes are optimized for very fast
decoding speed, not surprisingly our representation is more than 3.5 times smaller
than Varint-G8IU on Gov2 and more than 2.15 times on ClueWeb09.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 G. E. Pibiri and R. Venturini

Table IX. Timings in milliseconds for AND queries on ClueWeb09 and Gov2, using query sets TREC 05 and TREC 05. In
parentheses we show the relative percentage against CPEF.

MIN MID MAX

TR
E

C
05

PEF 14.6 (−17.5%) 14.6 (−29.0%) 14.6 (−49.7%)

CPEF 17.7 20.6 29.1
BIC 41.1 (+131.9%) 41.1 (+99.5%) 41.1 (+41.3%)

OptPFD 14.2 (−20.2%) 14.2 (−31.4%) 14.2 (−51.4%)

Varint-G8IU 8.9 (−49.9%) 8.9 (−56.9%) 8.9 (−69.5%)

TR
E

C
06

PEF 17.7 (−16.6%) 17.7 (−29.1%) 17.7 (−50.3%)

CPEF 21.2 25.0 35.6
BIC 55.1 (+159.7%) 55.1 (+120.8%) 55.1 (+54.7%)

OptPFD 18.4 (−13.2%) 18.4 (−26.2%) 18.4 (−48.3%)

Varint-G8IU 11.4 (−46.3%) 11.4 (−54.3%) 11.4 (−68.0%)

(a) ClueWeb09

MIN MID MAX

TR
E

C
05

PEF 3.7 (−30.4%) 3.7 (−37.5%) 3.7 (−52.1%)

CPEF 5.3 5.9 7.8
BIC 10.5 (+96.2%) 10.5 (+76.2%) 10.5 (+35.0%)

OptPFD 3.5 (−34.2%) 3.5 (−40.9%) 3.5 (−54.7%)

Varint-G8IU 2.4 (−55.4%) 2.4 (−60.0%) 2.4 (−69.3%)

TR
E

C
06

PEF 6.1 (−27.4%) 6.1 (−35.2%) 6.1 (−49.1%)

CPEF 8.3 9.3 11.9
BIC 18.5 (+122.6%) 18.5 (+98.6%) 18.5 (+56.0%)

OptPFD 6.1 (−27.1%) 6.1 (−35.0%) 6.1 (−49.0%)

Varint-G8IU 4.1 (−51.1%) 4.1 (−56.4%) 4.1 (−65.8%)

(b) Gov2

Table X. Timings in milliseconds for AND top-10 BM25 queries on ClueWeb09 and Gov2, using query sets TREC 05 and
TREC 05. In parentheses we show the relative percentage against CPEF.

MIN MID MAX

TR
E

C
05

PEF 30.0 (−18.4%) 30.0 (−31.4%) 30.0 (−50.9%)

CPEF 36.8 43.7 61.1
BIC 71.3 (+93.7%) 71.3 (+63.0%) 71.3 (+16.6%)

OptPFD 23.2 (−37.1%) 23.2 (−47.0%) 23.2 (−62.1%)

Varint-G8IU 15.0 (−59.2%) 15.0 (−65.7%) 15.0 (−75.5%)

TR
E

C
06

PEF 29.6 (−17.1%) 29.6 (−30.0%) 29.6 (−49.5%)

CPEF 35.8 42.4 58.7
BIC 88.9 (+148.5%) 88.9 (+109.9%) 88.9 (+51.6%)

OptPFD 26.0 (−27.3%) 26.0 (−38.6%) 26.0 (−55.7%)

Varint-G8IU 15.8 (−55.9%) 15.8 (−62.8%) 15.8 (−73.1%)

(a) ClueWeb09

MIN MID MAX
TR

E
C

05

PEF 8.6 (−32.1%) 8.6 (−38.8%) 8.6 (−49.0%)

CPEF 12.6 14.0 16.8
BIC 19.2 (+51.6%) 19.2 (+36.8%) 19.2 (+13.9%)

OptPFD 6.0 (−52.4%) 6.0 (−57.0%) 6.0 (−64.2%)

Varint-G8IU 4.2 (−66.9%) 4.2 (−70.2%) 4.2 (−75.1%)

TR
E

C
06

PEF 11.9 (−29.1%) 11.9 (−35.8%) 11.9 (−45.8%)

CPEF 16.8 18.5 21.9
BIC 32.7 (+94.8%) 32.7 (+76.5%) 32.7 (+48.9%)

OptPFD 9.3 (−44.6%) 9.3 (−49.8%) 9.3 (−57.7%)

Varint-G8IU 5.8 (−65.1%) 5.8 (−68.4%) 5.8 (−73.3%)

(b) Gov2

Table XI. Timings in milliseconds for WAND top-10 BM25 queries on ClueWeb09 and Gov2, using query sets TREC 05 and
TREC 05. In parentheses we show the relative percentage against CPEF.

MIN MID MAX

TR
E

C
05

PEF 38.9 (−14.6%) 38.9 (−28.1%) 38.9 (−47.0%)

CPEF 45.5 54.0 73.3
BIC 86.9 (+91.0%) 86.9 (+60.9%) 86.9 (+18.6%)

OptPFD 32.8 (−27.9%) 32.8 (−39.3%) 32.8 (−55.3%)

Varint-G8IU 22.5 (−50.6%) 22.5 (−58.4%) 22.5 (−69.3%)

TR
E

C
06

PEF 44.0 (−15.0%) 44.0 (−26.8%) 44.0 (−46.1%)

CPEF 51.8 60.1 81.7
BIC 123.3 (+138.3%) 123.3 (+105.1%) 123.3 (+51.0%)

OptPFD 41.6 (−19.6%) 41.6 (−30.8%) 41.6 (−49.0%)

Varint-G8IU 27.0 (−47.9%) 27.0 (−55.1%) 27.0 (−67.0%)

(a) ClueWeb09

MIN MID MAX

TR
E

C
05

PEF 12.6 (−27.4%) 12.6 (−33.9%) 12.6 (−44.5%)

CPEF 17.3 19.1 22.7
BIC 26.6 (+53.2%) 26.6 (+39.4%) 26.6 (+17.1%)

OptPFD 10.1 (−41.9%) 10.1 (−47.1%) 10.1 (−55.6%)

Varint-G8IU 7.3 (−58.0%) 7.3 (−61.8%) 7.3 (−67.9%)

TR
E

C
06

PEF 17.4 (−25.5%) 17.4 (−32.5%) 17.4 (−41.4%)

CPEF 23.3 25.7 29.6
BIC 43.2 (+85.3%) 43.2 (+67.8%) 43.2 (+45.8%)

OptPFD 14.5 (−37.7%) 14.5 (−43.5%) 14.5 (−50.9%)

Varint-G8IU 9.7 (−58.2%) 9.7 (−62.1%) 9.7 (−67.1%)

(b) Gov2

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:31

Queries. As a general overview, all query algorithms confirm the following behavior.
On the ClueWeb09 test collection and for MIN points, CPEF indexes are 2.3 times faster
on average (up to 2.6 times on TREC 06 for AND queries) than BIC and less than 17%
on average slower than PEF indexes. On Gov2 results are slightly different: for MIN
points, CPEF indexes are 84% faster on average (up to more than 2.2 times on TREC
06 for AND queries) than BIC and less than 29% on average slower than PEF indexes.
Considering the MAX point, we notice the difference between the two TREC query sets,
as already pointed out by Ottaviano and Venturini [2014]. While on TREC 06, we gain
50% over BIC, but loose approximately the same over PEF, on TREC 05 the advantage
over BIC is reduced, ranging from 16.6% to 41.3%. This behavior is confirmed for MID
points too: on TREC 06, CPEF still goes more than twice as fast as BIC, while being 29%
on average worse than PEF; on TREC 05 the advantage over BIC is 77% on average.
Very similar consideration holds for Gov2 too.

The comparison between CPEF and OptPFD is practically the same as the one be-
tween CPEF and PEF given that PEF is as fast as OptPFD [Ottaviano and Venturini
2014]. As already pointed out, the Varint-G8IU scheme is not competitive with all the
other approaches regarding space usage, but is faster than our proposal by 55% on av-
erage. Since these considerations are valid independently of the experimented query
algorithms, in what follows we treat each query algorithm separately comparing CPEF
against PEF and BIC.

Table IX reports all timings in milliseconds for AND queries. In particular, on Gov2
collection, our clustered representation is twice as fast as BIC already for MIN point
(retaining slightly better space too). Choosing MAX, we have a significantly reduced
the space with respect to PEF, improved over BIC as the best state-of-the-art encoding
for space usage, while maintaining a noticeable advantage in speed (more than 50% on
TREC 06).

Accessing frequencies has an impact at query time. To measure this, we record the
timings for computing the top-10 results for AND and WAND [Broder et al. 2003],
using the relevance score function BM25 [Robertson and Jones 1976]. Average per-
centages are indeed very similar for the two query algorithms and are reported in
Table X and XI respectively.

To further confirm the difference between the two query sets, consider MAX point.
As an example, for top-10 AND, we notice that the clustered representation is slightly
better than BIC on TREC 05 (16.6% and 13.9% respectively for ClueWeb09 and Gov2),
while on TREC 06 we gain the usual 50% on average. Very similar considerations hold
for the WAND algorithm as well.

5. CONCLUSIONS AND FUTURE WORK
We explored the possibility of encoding clusters of posting lists so that the redundancy
of docIds is exploited for better index compression. We introduced a novel posting list
organisation consisting in two segments, both encoded with partitioned Elias-Fano.
One segment is rewritten with respect to the cluster reference list and, therefore, en-
coded with a highly reduced universe. We developed an ad-hoc clustering algorithm
for posting lists and show two possible algorithms for building the reference list: one
selects postings according to their frequencies within the cluster (frequency-based se-
lection); the other selects postings according to their contribution to the overall space
cost reduction (space-based selection). The space-based approach yields smaller in-
dexes with respect to the frequency-based one especially for smaller reference sizes, at
the expense of a higher index building time. Varying the reference size of the represen-
tation, we have shown different space/time trade-offs. At the two edges of the spectrum
of the obtainable trade-offs, we could either prefer: (1) save 6.25% up to 11% of space
over partitioned Elias-Fano and 5.63% over Binary Interpolative; (2) keep a noticeable

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 G. E. Pibiri and R. Venturini

speed improvement (103% on average) over Binary Interpolative and a very small time
overhead compared to partitioned Elias-Fano (23% on average), while retaining even
less space. As the speed of the optimized PForDelta implementation (OptPFD) by [Yan
et al. 2009] is practically the same as the one of partitioned Elias-Fano, the above
query processing considerations also apply to the comparison between our proposal
and OptPFD. Our clustered representation is 55% slower than the SIMD-optimized
Variable Byte implementation (Varint-G8IU) by [Stepanov et al. 2011]. However, our
clustered indexes dominates both OptPFD and Varint-G8IU for space usage. Against
the former we retain 24% of space less on Gov2 and 14.5% on ClueWeb09. Against the
latter, our representation is more than 3.5 times smaller on Gov2 and more than 2.15
times on ClueWeb09.

An interesting future direction could focus on designing an approximation algorithm
for the reference selection problem with strong guarantees on the quality of the com-
puted result. Moreover, selecting the clusters such that the query time is minimized is
an interesting future research problem.

ACKNOWLEDGMENTS

This work was partially supported by the EU H2020 Program under the scheme INFRAIA-1-2014-2015:
Research Infrastructures, grant agreement #654024 SoBigData: Social Mining & Big Data Ecosystem and
by the Pegaso Project, POR FSE 2014-2020.

REFERENCES

Charu Aggarwal and Chandan Reddy. 2013. Data Clustering: Algorithms and Appli-
cations (1st ed.). Chapman and Hall/CRC.

Vo Ngoc Anh and Alistair Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval Journal 8, 1 (2005), 151–166.

Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words. Soft-
ware: Practice and Experience 40, 2 (2010), 131–147.

David Arthur and Sergei Vassilvitskii. 2007. K-means++: the advantages of careful
seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). 1027–1035.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vas-
silvitskii. 2012. Scalable K-means++. In Proceedings of the Very Large Database
Endowment (PVLDB), Vol. 5. 622–633.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Y. Zien.
2003. Efficient query evaluation using a two-level retrieval process. In Proceedings of
the 12th ACM International Conference on Information and Knowledge Management
(CIKM). 426–434.

Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and
Jimmy Lin. 2012. Earlybird: Real-time search at twitter. In 2012 IEEE 28th Inter-
national Conference on Data Engineering. IEEE, 1360–1369.

Stefan Büttcher and Charles Clarke. 2007. Index compression is good, especially for
random access. In Proceedings of the 16th ACM International Conference on Infor-
mation and Knowledge Management (CIKM). 761–770.

Stefan Büttcher, Charles Clarke, and Gordon Cormack. 2010. Information retrieval:
implementing and evaluating search engines. MIT Press.

Surajit Chaudhuri, Kenneth Church, Arnd Christian König, and Liying Sui. 2007.
Heavy-Tailed Distributions and Multi-Keyword Queries. In Proceedings of the 30th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). 663–670.

David Clark. 1996. Compact Pat Trees. Ph.D. Dissertation. University of Waterloo.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Clustered Elias-Fano Indexes A:33

Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu,
Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar,
Guanghao Shen, Gintaras Woss, Chao Yang, and Ning Zhang. 2013. Unicorn: A
System for Searching the Social Graph. In Proceedings of the Very Large Database
Endowment (PVLDB), Vol. 6. 1150–1161.

Renaud Delbru, Stéphane Campinas, and Giovanni Tummarello. 2012. Searching web
data: An entity retrieval and high-performance indexing model. Journal of Web
Semantics 10 (2012), 33–58.

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev,
and Alon Shalita. 2016. Compressing Graphs and Indexes with Recursive Graph
Bisection. In Proceedings of the 22nd ACM Conference on Knowledge Discovery and
Data Mining (KDD).

Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static
Files. Journal of the ACM (JACM) 21, 2 (1974), 246–260.

Robert Mario Fano. 1971. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2011. On optimally partitioning a
text to improve its compression. Algorithmica 61, 1 (2011), 51–74.

Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company.

Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing Re-
lations and Indexes. In Proceedings of the 14th International Conference on Data
Engineering (ICDE). 370–379.

Hoang Thanh Lam, Raffaele Perego, Nguyen Thoi Minh Quan, and Fabrizio Silvestri.
2009. Entry Pairing in Inverted File. In Proceedings of the 10th International Con-
ference Web Information Systems Engineering (WISE). 511–522.

Daniel Lemire and Leonid Boytsov. 2013. Decoding billions of integers per second
through vectorization. Software: Practice and Experience (2013), 1–29.

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory (IT) 28 (1982), 129–137.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction
to Information Retrieval. Cambridge University Press.

Alistair Moffat and Lang Stuiver. 2000. Binary Interpolative Coding for Effective
Index Compression. Information Retrieval Journal 3, 1 (2000), 25–47.

Giuseppe Ottaviano, Nicola Tonellotto, and Rossano Venturini. 2015. Optimal Space-
time Tradeoffs for Inverted Indexes. In Proceedings of the 8th Annual International
ACM Conference on Web Search and Data Mining (WSDM). 47–56.

Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes.
In Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR). 273–282.

Dan Pelleg and Andrew Moore. 2000. X-means: Extending K-means with Efficient
Estimation of the Number of Clusters. In Proceedings of the 17th International Con-
ference on Machine Learning (ICML). 727–734.

Stephen Robertson and Sparck Jones. 1976. Relevance weighting of search terms.
Journal of the American Society for Information Science 27, 3 (1976), 129–146.

David Salomon. 2007. Variable-length Codes for Data Compression. Springer.
Fabrizio Silvestri. 2007. Sorting Out the Document Identifier Assignment Problem. In

Proceedings of the 29th European Conference on IR Research (ECIR). 101–112.
Fabrizio Silvestri and Rossano Venturini. 2010. VSEncoding: Efficient Coding and

Fast Decoding of Integer Lists via Dynamic Programming. In Proceedings of the 19th
ACM International Conference on Information and Knowledge Management (CIKM).
1219–1228.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 G. E. Pibiri and R. Venturini

Michael Steinbach, George Karypis, and Vipin Kumar. 2000. A comparison of docu-
ment clustering techniques. In 6th Annual Conference on Knowledge Discovery and
Data Mining (KDD), Workshop on Text Mining. 109–111.

Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit Oberoi.
2011. SIMD-based decoding of posting lists. In Proceedings of the 20th ACM Inter-
national Conference on Information and Knowledge Management (CIKM). 317–326.

Sebastiano Vigna. 2013. Quasi-succinct indices. In Proceedings of the 6th ACM Inter-
national Conference on Web Search and Data Mining (WSDM). 83–92.

Ian Witten, Alistair Moffat, and Timothy Bell. 1999. Managing gigabytes: compressing
and indexing documents and images (2nd ed.). Morgan Kaufmann.

Rui Xu and Donald Wunsch. 2005. Survey of Clustering Algorithms. IEEE Transac-
tions on Neural Networks (NN) 16, 3 (2005), 645–678.

Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression and query
processing with optimized document ordering. In Proceedings of the 18th Interna-
tional Conference on World Wide Web (WWW). 401–410.

Zhaohua Zhang, Jiancong Tong, Haibing Huang, Jin Liang, Tianlong Li, Rebecca J.
Stones, Gang Wang, and Xiaoguang Liu. 2016. Leveraging Context-Free Grammar
for Efficient Inverted Index Compression. In Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval (SI-
GIR). 275–284.

Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
Computing Surveys (CSUR) 38, 2 (2006), 1–56.

Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2006. Super-Scalar
RAM-CPU Cache Compression. In Proceedings of the 22nd International Conference
on Data Engineering (ICDE). 59–70.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Background and related work
	Inverted index compression
	Query processing
	Clustering algorithms
	Elias-Fano sequences
	Partitioned Elias-Fano

	Representation of a set of posting lists
	Clustering
	Reference selection
	Encoding
	Index Structure

	Experiments
	Clustering
	Space/time trade-offs by varying the reference size
	Overall comparison

	Conclusions and future work

