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Abstract—The ubiquitous Variable-Byte encoding is one of the fastest compressed representation for integer sequences. However, its
compression ratio is usually not competitive with other more sophisticated encoders, especially when the integers to be compressed
are small that is the typical case for inverted indexes. This paper shows that the compression ratio of Variable-Byte can be improved by
2x by adopting a partitioned representation of the inverted lists. This makes Variable-Byte surprisingly competitive in space with the
best bit-aligned encoders, hence disproving the folklore belief that Variable-Byte is space-inefficient for inverted index compression.
Despite the significant space savings, we show that our optimization almost comes for free, given that: we introduce an optimal
partitioning algorithm that does not affect indexing time because of its linear-time complexity; we show that the query processing speed
of Variable-Byte is preserved, with an extensive experimental analysis and comparison with several other state-of-the-art encoders.

Index Terms—Inverted Index Compression, Variable-Byte Encoding, Performance Evaluation

1 INTRODUCTION

THE inverted index is the core data structure at the basis
of large-scale search engines, database architectures and
social networks [1], [2], [3], [4], [5]. In its simplicity, the
inverted index can be regarded as a collection of sorted inte-
ger sequences, called inverted or posting lists. For example,
when the inverted index is used to support full-text search
in databases, each list is associated to a vocabulary term and
stores the sequence of integer identifiers of the documents
(docIDs) that contain such term [2]. Then, identifying a set of
documents containing all the terms in a user query reduces
to the problem of intersecting the inverted lists associated
to the terms in the query. Likewise, an inverted list can be
associated to a user in a social network (e.g., Facebook) and
stores the sequence of all the friend identifiers of the user [4].
Database systems based on SQL often precompute the list of
row identifiers matching a specific frequent predicate over
a large table, in order to speed up the execution of a query
involving the conjunction of (possibly) many predicates [6],
[7]. Also, finding all occurrences of twig patterns in XML
databases can be done efficiently by resorting on an inverted
index [8]. A common feature of key-value storage architec-
tures like Apache Ignite and Redis, is the organization of
data elements falling into the same bucket due to a hash
collision: the list of all such elements is materialized that is,
essentially, an inverted list [9].

Because of the huge quantity of data processed on a
daily basis by the mentioned systems, compressing the in-
verted index is indispensable since it can introduce a two-
fold advantage over a non-compressed representation: feed
faster memory levels with more data and, hence, speed up
the query processing algorithms. As a result, the design of
algorithms that compress the index effectively and maintain
a noticeable decoding speed is an old problem in Computer
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Science, that dates back to more than 50 years ago, and still
a very active field of research. Many representation for in-
verted lists are known, each exposing a different space/time
trade-off [10].

Among these, Variable-Byte [11], [12] (henceforth, VByte)
is the most popular and used byte-aligned code. In partic-
ular, VByte owes its popularity to its sequential decoding
speed and, indeed, it is one of the fastest representation for
integer sequences. For this reason, it is widely adopted by
well-known companies as a key tool to enable fast search
of records. We mention some noticeable examples. Google
uses VByte extensively: for compressing the posting lists
of inverted indexes [13] and as a binary wire format for
its protocol buffers [14]. IBM DB2 employs VByte to store
the differences between successive record identifiers [15].
Amazon patented an encoding scheme, based on VByte and
called Varint-G8IU, which uses SIMD (Single Instruction
Multiple Data) instructions to perform decoding faster [16].
Many other storage architectures rely on VByte, such as
Redis [17], UpscaleDB [18] and Dropbox [19].

We now quickly review how the VByte encoding works.
It was first described by Thiel and Heaps [11]]. The binary
representation of a non-negative integer is divided into
groups of 7 bits which are represented as a sequence of
bytes. In particular, the 7 least significant bits of each byte
are reserved for the data whereas the most significant (the
8-th), called the continuation bit, is equal to 1 to signal
continuation of the byte sequence. The last byte of the
sequence has its 8-th bit set to 0 to signal, instead, the
termination of the byte sequence. As an example, the integer
65,790 is represented as 10000100 10000001 01111110 (with
control bits underlined.) Also, notice the padding bits, in
the first byte starting from the left, inserted to align the
binary representation of the number to a multiple of 8 bits.
In particular, VByte uses [%ﬁm] x 8 bits to represent
an integer x > 0. Decoding is simple: we just need to read
one byte at a time until we find a value smaller than 2.
As already mentioned, the format is also suitable for SIMD
instructions for speeding up sequential decoding.

The main drawback of VBYyte lies in its byte-aligned na-
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Fig. 1. Percentage of integers belonging to dense and sparse regions of the inverted lists for the tested datasets. The inverted lists have been
clustered by size into three categories: short (size < 10K); medium (10K < size < 7M); long (size > 7M). Below each category we also indicate

the percentage of integers belonging to its inverted lists.

ture, which means that the number of bits needed to encode
an integer cannot be less than 8. For this reason, VByte is
only suitable for large numbers. However, the inverted lists
are notably known to exhibit a clustering effect, i.e., these
contain regions of (very) close identifiers that are far more
compressible than highly scattered regions [10], [20], [21].
Such natural clusters are present because the indexed data
itself tend to be very similar. As a simple example, consider
all the Web pages belonging to the same domain: these are
likely to share a lot of terms. Also, the values stored in the
columns of databases typically exhibit high locality and that
is why column-oriented databases can achieve very good
compression and high query throughput [22].

The key point is that effective inverted index compres-
sion should exploit as much as possible the clustering effect
of the inverted lists. VByte currently fails to do so and,
as a consequence, it is believed to be space-inefficient for
inverted indexes, because its space occupancy can be up to
3x larger than bit-aligned compressors [21], [23], [24], [25].

The motivating experiment. As an illustrative example,
consider the following two sequences: (1,2,3,4,5) and
(127,254, 318,408, 533). To reduce the values of the inte-
gers, VByte compresses the differences between successive
values, known as delta-gaps or d-gaps, i.e., the sequences
(1,1,1,1,1) and (127, 127,64, 90, 125) respectively (the first
integer is left as it is). Now, it is easy to see that VByte will
use 5 bytes to encode both sequences, but the first one can
be compressed much better, with just ~logs 5 bits. To better
highlight how this behavior can deeply affect compression
effectiveness, we consider the statistic shown in Fig.
This statistic reports the percentage of integers belonging
to dense and sparse regions of the lists for the datasets
Gov2, ClueWeb09 and CCNews. More precisely, the plot
originated from the following experiment: we divided each
inverted list into blocks of 128 integers and we considered as
sparse a block where VByte yielded a better space occupancy
with respect to the characteristic bit-vector representation of
the block (if u is the last element in the block, we have the
i-th bit set in a bitmap of size u for all integers i belonging
to the block), regarded to as the dense case. We also clustered
the inverted lists by their sizes, in order to show where
dense and sparse regions are most likely to be present.

The experiment clearly shows that we have a majority of

dense regions, thus explaining why in this case VByte is not
competitive with respect to bit-aligned encoders and, thus,
motivating the need for introducing a better encoding strat-
egy that adapts to such distribution. We can also conclude
that such optimization is likely to pay off because almost
the entirety of integers concentrate in the lists of medium
and long size (thanks to the Zipfian distribution of words
in text), where indeed the majority of them belong to dense
chunks.

Our contributions. We list here our main contributions.

1) We disprove the folklore belief that VByte is too large
to be considered space-efficient for representing inverted
indexes, by exhibiting an improved compression ratio of
2x on standard datasets consisting in several billions of
integers, such as Gov2, ClueWeb09 and CCNews.

The result is achieved by partitioning the inverted lists
into blocks and representing each block with the most
suitable encoder, chosen among VByte and its characteristic
bit-vector representation. Partitioning the lists has the
potential of adapting compression to the distribution of the
integers in the lists, such as the one shown in Fig. [1} i.e.
using VByte for the sparse regions where larger d-gaps are
likely to be present.

2) Since we cannot expect the dense regions of the lists be
always aligned with uniform boundaries, we consider the
problem of minimizing the space of representation of an
inverted list of size n by representing it with variable-length
partitions. By exploiting the fact that VByte is a point-wise
encoder, i.e., the number of bits to represent an integer solely
depends on the wvalue of the integer itself and not on the
universe and size of the block to which it belongs to, we
introduce an algorithm that finds an optimal partitioning in
O(n) time and O(1) space.

We remark that an algorithm based on dynamic
programming [21] can be used as well to find a (1 + ¢)-
optimal solution to the problem, by taking O(nlog, . %)
time and O(n) space for any € € (0,1). Apart from being
approximated rather than exact, this solution is generally
applicable to any encoder whose size in bits can be
computed (or estimated) in constant time on a block and
does not rely on the fact that VByte is point-wise. As a



consequence, it is also noticeably slower than the algorithm
we introduce in this work. Lastly, we also remark that,
although we use VByte in the experiments, our approach
can be applied to any point-wise encoder.

3) We conduct an extensive experimental analysis to demon-
strate the effectiveness of our approach on standard large
datasets, such as Gov2, ClueWeb09 and CCNews. More pre-
cisely, when compared to the un-partitioned VByte indexes,
the optimally-partitioned counterparts are: (1) significantly
smaller, by 2x on average; (2) not slower at computing
boolean conjunctions; (3) even faster to build on large
datasets thanks to the introduced fast partitioning algorithm
and improved compression ratio.

We compare the performance of partitioned VByte in-
dexes against several state-of-the-art encoders, such as: par-
titioned Elias-Fano (PEF) [21], Binary Interpolative coding
(BIC) [20], the optimized PForDelta (OptPFD) [26], an index
organization [25] based on Asymmetric Numeral Systems
(ANS) [27] and the QMX mechanism [28]. The partitioned
VByte representation reduces the gap between the space of
VByte and the one of the best bit-aligned compressors, such
as PEF and BIC, by passing from an average original gap of
138% to only 11% with respect to PEF; from 174% to only
22% with respect to BIC. Moreover, it does not introduce
any query processing overhead: only QMX is slightly faster
on ClueWeb09 by 1 = 10%, but also 30% larger.

2 PROBLEM STATEMENT AND RELATED WORK ON
PARTITIONING ALGORITHMS

In this paper we study the problem of partitioning a sorted
integer sequence S of size n to improve its compression,
by adopting a 2-level representation. This representation
stores S as a sequence of partitions Ly[S1, ..., Sk] that are
concatenated in the second level Ls. The first level L, stores,
instead, a fixed amount of bits, say F', for each partition
Si, needed to describe its size n; and largest element wu;.
Clearly, F' can be safely upper bounded by O(logu) bits.
This representation has several important advantages over
a shallow representation:

1) it permits to choose the most suitable encoder for
each partition, given its size and upper bound, hence
improving the overall space;

2) each partition S; can be represented in a smaller uni-
verse, i.e., u; —u;—1 —1, by subtracting to all its elements
the “base” value u;_; + 1, thus contributing to further
reduction in space;

3) it allows a faster access to the individual elements of
S, since we can first locate the partition to which an
element belongs to and, then, conclude the search in
that partition only.

The problem. Now, the natural arising problem is how to
choose the lengths and encoders for each partition in order
to minimize the space of S. As already noted, the problem
is not trivial since we cannot expect dense regions of the
lists being always aligned with fix-sized partitions. While
a dynamic programming recurrence computes an optimal
solution to this problem in ©(n?) time and O(n) space by
(trivially) considering the cost of all possible splittings, this
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approach is clearly unfeasible already for modest sizes of
the input. Therefore, we need smarter methods such as the
ones we describe in the following.

2.1 Partitioning algorithms

The simplest partitioning strategy chooses the length b of
every partition, e.g., b = 128 integers, and splits the list
into [n/b] blocks (the last partition can be possibly smaller
than b integers). We call this partitioning strategy, uniform.
The advantage of this representation is simplicity, since no
expensive calculation is needed prior to encoding. However,
we cannot expect this strategy to yield the most compact
indexes because the highly clustered regions of inverted lists
could likely be broken by such fix-sized partitions.

This is the main motivation for introducing optimization
algorithms that try to find the best partitioning of the list,
thus minimizing its space of representation. Silvestri and
Venturini [29] obtain a O(hxn) construction time, where h is
the size of the longest allowed partition. Ferragina et al. [30]
improve the result by Buchsbaum et al. [31] by computing
a partitioning whose cost is guaranteed to be at most (1 +
€) times away from the optimal one, for any € € (0,1), in
O(nlog, . n) time. Their approach can be applied to any
encoder E whose cost in bits can be computed (o1, at least,
estimated) in constant time for any portion of the input.

Dynamic programming: slow and approximated. Otta-
viano and Venturini [21]] resort to similar ideas to the ones
presented by Ferragina et al. [30] to obtain a running time of
O(nlog, . 1), and yet, preserving the same approximation
guarantees. Note that the complexity is ©(n) as soon as € is
constant. The core idea of this approach is to not consider all
possible splittings, but only the ones whose cost is able of
amortizing the fix cost F'. We quickly review their approach.

The problem of determining the partitioning of mini-
mum cost can be modeled as the problem of finding a path
of minimum cost (shortest) in a complete, weighted and
directed acyclic graph (DAG) G. This DAG has n vertices,
one for each position of S, and it is complete, i.e., it has
©(n?) edges where the cost C(i, j) of edge (i, ;) represents
the number of bits needed to represent S[i, j]. Since the
DAG is complete, a simple shortest path algorithm will not
suffice to compute an optimal solution efficiently. Thus, we
proceed by sparsification of G, as follows. We first consider
a new DAG §G., which is obtained from G and has the fol-
lowing properties: (1) the number of edges is O(nlog, . %)
for any given ¢ € (0,1); (2) its shortest path distance is at
most (1 + €) times the one of the original DAG G, where
U represents the encoding cost of S when no partitioning is
performed. It can be proven that the shortest path algorithm
on G, finds a solution which is at most (1 + €) times larger
than an optimal one, in time O(nlog,, Y), because G.
has O(nlog;, . %) edges [30]. To further reduce the com-
plexity by preserving the same approximation guarantees,
we define two approximation parameters: ; € [0,1) and
€2 € [0, 1). We first retain from G all the edges whose cost is
no more than L = g, then we apply the pruning strategy
described above with €3 as approximation parameter. The
obtained graph has now O(nlog,, ., %) = O(nlog, ., i)
edges, which is ©(n) as soon as €; and ey are constant.



Again, it can be proven that the shortest path distance is
no more than (1 + €1)(1 + e2) < (1 + €) times the one in G
by setting €; = €2 = £ [21].

Despite the theoretical linear-time complexity for a con-
stant ¢, the main drawback of the algorithm lies in the
high constant factor. For example, even by setting ¢ = 0.03
we obtain a hidden constant of log;, ¢ o3 ﬁ ~ 118.63,
which results in a noticeable cost in practice. Although
enlarging e can reduce the constant at the price of reducing
the compression efficacy, this remains the bottleneck for the
building step of large inverted indexes.

3 OPTIMAL PARTITIONING IN LINEAR TIME: FAST
AND EXACT

The interesting research question we now pose is whether
there exist an algorithm that finds an exact solution, rather
than approximated, in linear time and with low constant
factors. This section answers positively to this question by
showing that if the cost function of the chosen encoder
is point-wise, i.e., the number of bits need to represent an
integer solely depends on the value of such integer and
not on the universe and size of the partition it belongs to,
the problem of determining and optimal partition admits an
exact solution in O(n) time and O(1) space.

In the following, we first overview and discuss our
solution by explaining the intuition that lies at its core,
then we give the full technical details along with a proof
of optimality and the relative pseudocode.

3.1 Overview

We are interested in computing the partitioning of S whose
encoding cost is minimum by using two different encoders
that take into account the relation between the size and
universe of each partition. We already motivated the poten-
tial of this strategy by commenting on Fig. |1} which shows
the distribution of the integers in dense and sparse regions
of the inverted lists. Let us consider the partition S|, j),
0 <i < j <mn,of relative universe u = S[j —1] - S[i—1]—1
and size b = j—i. Intuitively, when b gets closer to u the par-
tition becomes denser; vice versa, it becomes sparser when-
ever b diverges from u. Thus the encoding cost C'(S]i, 7))
is chosen to be the minimum between B(S[¢, j)) = u bits
(dense case) and E(S[i, 7)) bits (sparse case), where B is the
characteristic bit-vector representation of S[i, j) and E is the
chosen point-wise encoder for sparse regions.

Examples of point-wise encoders are VByte [11], Elias’
v-0 [32] and Golomb [33]. Other encoders, such as Elias-
Fano [34], [35], Binary Interpolative coding [20] and PFor-
Delta [26] are not point-wise, since a different number of bits
could be used to represent the same integer when belonging
to partitions having different characteristics, namely differ-
ent size and universe. To clarify what we mean, consider the
following example sequence:

$[0,10) = (8,9,10, 11,12, 36, 37, 38, 39, 40).

Let us now compare the behavior of Elias-Fano (non point-
wise) and VByte (point-wise). By performing no splitting,
Elias-Fano will use [log,(40/10)] 4+ 2 = 4 bits to represent
each integer. By performing the splitting [0,5)[5,10), the
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first five values will be represented with 4 bits each, but the
next five values with [log,((40—12—1)/5)]+2 = 5 bits each.
Instead, by performing the splitting [0, 6)[6, 10), the first six
values will use 5 bits each, while the next four only 2 bits
each. Thus, performing different splittings changes the cost
of representation of the same postings for a non point-wise
encoder, such as Elias-Fano. Instead, it is immediate to see
that VByte will encode each element with 8 bits, regardless
of any partitioning.

The intuition. The above example gives us an intuitive
explanation of why it is possible to design a light-weight
approach for a point-wise encoder E: we can compute the
number of bits needed to represent a partition of S with
E by just scanning its elements and summing up their
costs, knowing that performing a splitting will not change their
cost of representation nor, therefore, the one of the partition.
This means that as long as the cost E(S]0, 7)), for some
0 < j < n,is less than B(S[0,5)) we know that S[0, j)
will be better represented with E rather than with B. There-
fore, we can safely keep scanning the sequence until the
difference in cost between E(.S]0, j)) and B(S[0, j)) becomes
more than F' bits. At this point, it means that E is wasting
more than F bits with respect to B, thus we should stop
encoding with E the current partition because we can afford
to pay the fix cost I and continue the encoding with B. Now,
the crucial question is: at which position k£ < j should we
stop encoding with E and switch to B? The answer is simple:
we should stop at the position £ < j at which we saw the
maximum difference between the costs of E and B, because
splitting in any other point will yield a larger encoding cost.
In other words, k represents the position at which E gains the
most with respect to B, so we will be wasting bits by splitting
before or after position k. Observe that we must also require
such gain be more than F' bits, otherwise switching encoder
actually causes a waste of bits. In other terms, we say that
in such case the gain would not be sufficient to amortize the
fixed cost of the partition, meaning that we should not split
the sequence yet.

In conclusion, we encode S|0, k) with E and know that
the elements S[k, j) will now be better represented with B,
rather than with E. Fig. 2| offers a pictorial representation
of how the difference between the encoding costs of E and
B, referred to as the gain function, changes during the scan
of S. When the function is decreasing, it means that E is
winning over B, i.e., its encoding cost is less; conversely,
when B is more effective than E, the function is increasing.

After encoding the first partition S0, k), the process
repeats: (1) we keep scanning S until B loses more than
2F bits with respect to E; at that point (2) we encode with
B the elements in S[k, k') if the maximum gain of B with
respect to E, seen at position £/, is greater than 2F bits. We
keep alternating compressors until the end of the sequence.

Before sketching a compact pseudocode of our algo-
rithm, we first express some considerations. First of all
note that, for all partitions except the first, we need to
amortize twice the fix cost, because we could potentially
merge the last formed partition with the current one, thus,
in order to be beneficial, the difference in the cost of the
two encoders must be larger than 2F bits. Again, refer to



Fig. 2. In case (a), we should split [z, j) in k* because there the gain
is the minimum among all points whose gain is below 2F from i and
j; in case (b) we should not split the sequence because, although an
increase in gain of F' bits follows, we do not have a sufficiently high gain
up to position n to amortize the cost of the splitting.

Fig.|2a|for an example. Also, for illustrative purposes, in the
above discussion we have assumed that the first partition is
encoded with E: clearly, B could be better at the beginning
but the algorithm will work in the very same way.

The algorithm. In the most general terms, call L the encoder

used to represent the last encoded partition and C the current
one. These will be either E or B. We also indicate with the
same letters the costs in bits of their representation of the
current partition. Finally, let g* indicate the best gain of
C with respect to L. At a high level, the skeleton of our
algorithm looks as follows.

1) Encode the first partition.

2) Until the end of the sequence: if |C — L| and g* are
greater than 2F bits, encode the current partition with
C and swap the roles of C and L.

3) Encode the last partition.

In the above pseudocode, the encoding of the first and last
partitions its treated separately because these must amortize
a fix cost of F’ bits instead of 2F bits: in fact, we do not have
any partition before and after, respectively (see Fig. 2b).

It is immediate to see that the described approach can
be implemented by using O(1) space because we only need
to keep the difference between the costs of E and B (plus
some cursor variables), and that it runs in ©(n) time because
we calculate the cost in bits of each integer exactly once.
We have, therefore, eliminated the linear-space complexity
of any dynamic programming approach because we do not
need to maintain the costs of the shortest path ending in
each position of S. Moreover, the introduced algorithm has
very low constant factors in the time complexity, since it just
performs few comparisons and updates of some variables
for each integer of S.

3.2 Technical discussion

Let S be a sorted integer sequence of size n. In order to
describe the properties of our solution, we first need the
following definitions.

Definition 1. Let g : NU {0} — Z be the gain function,
defined as

0 P —
g(z‘){ . =0 M)

0<i<n’
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Definition 2. Given the interval [i,j) with 0 < i < j < m,
the position k* is dominating [i, j) for the encoder E, if

k* = argmin g(k) such that g(i) — g(k*) > T, (2
i<k<j
where T' = F'if : = 0 or 2F otherwise, and j satisfies one of
the following:

9(j) — g(k*) > 2F, or ©)
g(z) —g(k*) > F, forall z > j. 4)

Notice that the dominating point could not exist for any
interval [i, ), but if it exists and E(z) # B(z) for any = €
Sli, 7), it must be unique. The definition of dominating point
for encoder B is symmetric to Definition [2}

The definition of dominating point explains that we
can always improve the cost of representation of S[i,j) by
splitting [¢, j) in the dominating point if it exists, otherwise
we should not split [i, 7). It is easy to see that the point
dominating [, j) is the point in which the difference of the
costs between the two compressors is maximized, thus it
will be only beneficial to split in this point rather than any
other point, as we explained in the previous paragraph. It is
also easy to see why we should search the point dominating
[i,j) among the ones whose gain is at least T bits less
than ¢(i). The threshold T is set to the minimum amount
of bits needed to amortize the cost of switching from one
compressor to the other. Consider Fig. [2al and suppose we
are encoding with B before position i and after k*. If we
compress with E the partition S[i, k*), we are switching
encoder twice, thus the gain in k£* must be at least 2F
bits less than g(i) to be able of amortizing the cost for two
switches. In Fig. instead, we have no partition before
position 0, thus we strive to amortize the cost for a single
switch.

Our strategy consists in splitting the sequence in the domi-
nating points. More precisely, the solution P = [p1,...,Pm],
m > 1, output by this strategy can be described by the
following recursive equation.

0 1=0
pi=1{n i=m 6)
dominating [p;—1, pi+1) otherwise

In other words, any position in P, except for the first and the
last, is the dominating point of the interval whose endpoints
are dominating points as well.

Notice that, by definition, there cannot be two adjacent
dominating points that are relative to the same encoder, but
they must be relative to different encoders. In fact, suppose
we have a dominating point £* for E. It means that we
have seen an increase in gain of 2F after k*, therefore:
either the gain will then decrease sufficiently to find a
dominating point for B, or the gain will never does so,
thus, a dominating point after £* if not found. This means
that P alternates the choice of compressors, i.e., a partition
encoded with E is delimited by two partitions encoded with
B and viceversa (except for the first and last). We call such
behavior, alternating.

In particular, our strategy will encode with compressor
E all partitions ending with a dominating point for E (and



Fig. 3. Path of minimum cost till position j (thick black line) and its
representation in terms of gain function; u is the point dominating [z, ).

starting with a dominating point for B, since P alternates
the compressors). Symmetrically, the same holds for B. As
already pointed out, the only exception is made for the last
partition, because the position n cannot be dominating by
definition (no increase or decrease in gain is possible after
the end of the sequence). In this case, the strategy selects
the compressor that yields the minimum cost over the last
partition.

Since a feasible solution to the problem is just either a
singleton partition or consists in any sequence of strictly
increasing positions, we argue that P is a feasible solution.
This follows automatically by the definition of dominating
point because such points are different from each other and,
therefore, strictly increasing. If no dominating points exist,
then P will only contain position n (one-past the end): itis a
feasible solution too and indicates that .S should not be cut
(singleton partition). We now show the following lemma.

Lemma 1. P is optimal.

Proof. As already noted in Section an optimal solution
to the problem can be thought as a path of minimum cost in
the DAG whose vertices are the positions of the integers of
Sand C(i,5) = C(S[i, j]) for any edge (4, j). Thus, suppose
that P is not a shortest path and let P* = [p},...,p}] be
the shortest path sharing the longest common prefix with P.
Refer to Fig.|3|for a graphical representation: i is the largest
position shared by P* and P. We want to show that we can
replace the edge (4,v), v € P*, with the path (¢,u)(u,v),
u € P, without changing the cost of P*, therefore extending
the longest common prefix up to node u < v (the case for
u > v is symmetric). We argue that this is only possible
if P is optimal, otherwise it would mean that P* is not
a shortest path sharing a common longest prefix with P,
which is absurd by assumption.

First note that both edges (i,v) and (%, u) must be en-
coded with the same compressor. In fact, suppose that these
are not, for example (4, v) is encoded with B and (%, u) with
E. Since v € P*, we know that it is optimal to encode with B
until v. However, the fact that u is a dominating point for E
implies that B(¢, w) > E(4, u), which is absurd because u < v
and B is optimal until v. Therefore, both edges use the same
encode. Assume that it is E (the case for B is symmetric).

The fact that v belongs to the optimal solution P* means
that if we split the edge into two (or more) pieces, we
cannot decrease the cost, i.e., E(i,v) < E(i, k) + B(k,v) + F,
Vi < k < w. Since E is point-wise, we have E(i,v) —
E(i, k) = E(k,v) and thus, by imposing k = u, we obtain (1)
E(u,v) < B(u,v)+F. Vice versa, the fact that u is a dominat-
ing point for E means that from u to v the cost is higher if we
keep the same encoder, i.e., E(i,v) > E(i,u) + B(u,v) + F.

optimal_partitioning(5[0, n))

1
2 P=o

3 T=F

5 min = max = 0

6 fork=0k<nk=k+1

7 g =g+ E(SK) —B(S[k)

8 if ¢ is non-decreasing

9 if ¢ > max

10 | max=g,i=k+1

11 if min < =T and min — g < —2F
12 L update(min, max, j, i)

13 else

14 if ¢ < min

15 | min=g,j=k+1

16 if max > T and max — g > 2F

17 L update(max, min, i, j)
18 close()

19 return P

Fig. 4. The optimal_partitioning algorithm.

Again, by exploiting the fact that E is point-wise, we have
(2) E(u,v) > B(u,v) + F. Conditions (1) and (2) together
imply that it must be E(u, v) = B(u,v)+ F, thus we have no
change in the cost of P* by performing the exchange, which
contradicts our assumption that P was not optimal. O

1 update(s,, g1, Py, P1)

2 append p, to P
3 | T=2F

1 | pp=k+1

5 1 88 &0

6 8 =20

7 L8178

Fig. 5. The update algorithm.

1 close()

2 if max > Fand max — g > F

3 L update(max, min, i, j)

4 if min < —F and min — g < —F
5 L update(min, max, j, i)

6 | ifg>0

7 | update(max, min, n, j)

8 else

9 L update(min, max, n, i)

Fig. 6. The close algorithm.

We are now left to present a detailed algorithm that
computes P, ie., that iteratively finds all the dominating
points of S according to Equation [5; We argue that the
function optimal_partitioning coded in Fig. E] does the job.



Before proving that the algorithm is correct, let us explain
the meaning of the variables used in the pseudocode.

Call ¢ the last added position to P. Variables i and j keep
track of the positions of the points dominating the interval
S[¢, k) for, respectively, B and E encoders. Likewise, max =
g(i) and min = ¢(j) according to Definition [I} with g being
the gain at step k.

Lemma 2. The algorithm in Fig. [ is correct.

Proof. We want to show that the array P returned by the
function optimal_partitioning contains all the positions of the
dominating points, as recursively described by Equation
We proceed by induction on the elements of P.

The main loop in lines 6-17:

1) computes the gain g at step k (line 7);

2) updates the variables i, max (lines 9-10) and j, min (lines

14-15);

3) add new positions to P (lines 11-12 and 16-17).
Correctness of 1) and 2) is immediate: the crucial point to
explain is the third.

The if statements in lines 11 and 16 check whether posi-
tions i and j are dominating [(, k), i.e., whether S[i] and S|j]
satisfy Definition [2} Since the if statements are symmetric,
we proved the correctness of the first one for non-decreasing
values of g (line 11).

We first check whether the min gain, as seen so far, is
sufficient to be the one of a dominating point for E as
required by Equation [2| At the beginning of the algorithm,
the current interval starts at i = 0 and T = F, therefore
g(0) = 0 in Equation [2| and the test min < —T is correct.
If min < —T is true, then we also check if we have
a sufficiently large increase in gain at the current step k
with respect to the previously seen min gain according to
Condition Again, it is immediate to see that the test
min — g < —2F checks such condition and, therefore, it
is correct. If both previous conditions are satisfied, then j
is the position of the dominating point for E in the first
interval S[0,k) by Definition | If so, we can execute the
update code, shown in Fig. |5, which adds j to P and sets T'
to 2F" according to Definition 2| Moreover, it updates the
gain g to maintain the invariant that its value is always
relative to the current interval, which now begins at position
j. In fact: since we have seen an increase of 2I bits, the max
gain in S[j,k) must be the current gain g, whereas the min
gain is 0 because g is non-decreasing. Thus, the first point is
computed correctly.

Now, assume that we have added h points to P and that
the last added is for encoder E. We want to show that the
next point will be dominating for encoder B. As explained
before, whenever we add a dominating point for E to P,
it means that we have seen an increase of 2F bits with
respect to the last added position, i.e., position k -+ 1 satisfies
Equation [2] for encoder B. Therefore the (h + 1)-th point
added to P will be dominating for B.

To conclude, we have to explain what happens at the
end of the algorithm. Refer to the close function, coded
in Fig. [ Lines 2-3 (4-5) check Condition [ if successful,
then max (min) is the next dominating point for B (E) and,
since compressors must alternate each other, we close the
encoding of the sequence with the other compressor in lines

TABLE 1
Basic statistics for the tested collections.

Gov2 ClueWeb09 CCNews
Documents 24,622,347 50,131,015 43,530,315
Terms 35,636,425 92,094,694 43,844,574
Postings 5,742,630,292  15,857,983,641  20,150,335,440

6-9, that is E (B); if both unsuccessful, i.e., no dominating
point is found, then it means that the remaining part of the
sequence should not be cut and, thus, encoded with a single
compressor in lines 6-9. O

In conclusion, since we consider each element of S once
and use a constant number of variables, Lemma [1] and [2]
imply the following result.

Theorem 1. A sorted integer sequence of size n can be par-
titioned optimally in ©(n) time and O(1) space, whenever
its partitions are represented with a point-wise encoder and
characteristic bit-vectors.

4 EXPERIMENTAL EVALUATION

The aim of this section is the one of measuring the space
improvement, indexing time and query processing speed
of indexes that are optimally-partitioned by the algorithm
described in Section 3l

Datasets. We perform our experiments on the following
standard datasets, whose statistics are summarized in Ta-
ble[dl

o Gov2 is the TREC 2004 Terabyte Track test collection,
consisting in roughly 25 million .gov sites crawled in
early 2004. Documents are truncated to 256KB.

o ClueWeb09 is the ClueWeb 2009 TREC Category B test
collection, consisting in roughly 50 million English web
pages crawled between January and February 2009.

o CCNews is an English subset of the freely avail-
able news from CommonCrawﬂ consisting of articles
crawled from 09/01/16 to 30/03/18.

Identifiers were assigned to documents (docIDs) by follow-
ing the lexicographic order of their URLs [36].

Experimental setting and methodology. All the experi-
ments were run on a machine with 4 Intel i7-4790K CPUs
(8 threads) clocked at 4.00 GHz and with 32 GB of RAM
DDR3, running Linux 4.13.0 (Ubuntu 17.10), 64 bits. The
implementation of our partitioned indexes is in standard
C++14 and it is a flexible template library allowing any
point-wise encoder to be used, provided that its interface
exposes a method to compute the cost in bits of a single
integer in constant time. We based our implementation
on the popular dsZﬂ project. The source code, available
at https:/ /github.com/jermp/opt_vbyte to favour further
research and reproducibility of results, was compiled with
gcc 7.2.0 using the highest optimization setting (compilation
flags -march=native and -03).

1. http:/ /commoncrawl.org/2016/10/news-dataset-available
2. https:/ / github.com/ot/ds2i
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The performance of the Variable-Byte family.

TABLE 2

Gov2 ClueWeb09 CCNews
docs fregs building AND query docs fregs building AND query docs fregs building AND query
[opi]  [opi]  [min] [ms] [opi] [opi]  [min] [ms] [opi] [bpi]  [min] [ms]
Varint-GB 11.15 9.77 10.60 0.88 11.43 9.80 46.50 5.32 11.12 10.01 58.40 7.38
Varint-G8IU 10.43 9.00 18.00 0.84 10.84 8.99 65.80 5.10 10.23  8.93 60.60 6.93
Masked-VByte 9.53 8.02 10.50 0.90 9.91 8.01 45.50 5.52 9.42 8.00 60.40 7.06
Stream-VByte 11.15 9.77 10.60 0.86 11.43 9.80 46.50 5.30 11.12 10.01 58.40 7.06

To test the building time of the indexes we measure the
time needed to perform the whole end-to-end process, that
is: (1) fetch the inverted lists from disk to main memory; (2)
encode them in main memory; (3) save the whole index data
structure back to a file on disk. Since the process is mostly
I/0 bound, we make sure to avoid disk caching effects by
clearing the disk cache before building the indexes.

To test the query processing speed of the indexes, we
memory map the index data structures on disk and compute
boolean conjunctions over a set of random queries drawn
from TREC-05 and TREC-06 Efficiency Track topics. We
repeat each experiment three times to smooth fluctuations
in the measurements and report the average. The query
algorithm runs on a single core and timings are reported
in milliseconds per query.

In all the experiments, we used the value F' = 64 bits for
partitioning the inverted lists for both VByte and partitioned
Elias-Fano (henceforth, PEF).

Organization of the experiments. Since we adopt VByte
as example point-wise encoder, the next section compares
the performance of all the encoders in the VByte family
in order to choose the most convenient for the subsequent
experiments. Then, we measure the benefits of applying
our optimization algorithm on the chosen VByte encoder,
by comparing the corresponding partitioned index against
the un-partitioned counterpart. Finally, we compare our
proposal with many other inverted index representations.

4.1 The Variable-Byte family

Several VByte variants have been proposed in the literature,
each with a different stream organization. We now discuss
them and inspect their performance.

By assuming that the largest represented integer fits
into 4 bytes, two bits are sufficient to describe the proper
number of bytes needed to represent an integer. In this way,
groups of four integers require one control byte that has
to be read once as a header information. This optimization
was introduced in Google’s Varint-GB [13] and reduces the
probability of a branch misprediction which, in turn, leads
to higher instruction throughput. As already mentioned in
Section (1} working with byte-aligned codes also opens the
possibility of exploiting the parallelism of SIMD (Single In-
struction Multiple Data) instructions of modern processors
to further enhance the decoding speed. This is the line of
research taken by the recent proposals that we overview
below.

Varint-G8IU [16]] uses a similar idea to the one of Varint-
GB but it fixes the number of compressed bytes rather

than the number of integers: one control byte is used to
describe a variable number of integers in a data segment of
exactly 8 bytes, therefore each group can contain between
two and eight compressed integers. Masked-VByte [37] di-
rectly works on the original VByte format. The decoder first
gathers the most significant bits of consecutive bytes using
a dedicated SIMD instruction. Then, using previously-built
lookup tables and a shuffle instruction, the data bytes are
permuted to obtain the original integers. Stream-VByte [38],
instead, separates the encoding of the control bytes from
the data bytes, by writing them into separate streams. This
organization permits to decode multiple control bytes si-
multaneously and, therefore, reduce branch mispredictions
that can stop the CPU pipeline execution when decoding
the data stream.

The performance. To help us in deciding which VByte
encoder to choose for our subsequent analysis, we consider
the Table [2| The data reported in the table illustrates how
different VByte stream organizations actually impact index
space. Since Varint-GB and Stream-VByte take exactly the
same space, given that Stream-VByte stores the very same
control and data bytes but concatenated in separate streams,
in the following we refer to both versions as Varint-GB.
As we can see, the original VByte format (referred to as
Masked-VByte in Table 2] because it uses this algorithm to
perform decoding) is the most space-efficient among the
family. This is no surprise given the distribution plotted in
Fig. [1} it means that the majority of the encoded d-gaps falls
in the interval [0,27), otherwise the compression ratio of
VByte would have been worse than the one of Varint-GB and
Varint-G8IU. As an example, consider the sequence of d-gaps
(132,233,246, 178). VByte uses 8 bytes to represent such
sequence, whereas Varint-GB uses 1 control byte and 4 data
bytes, thus 5 bytes in total. When all values are in [0,27),
VByte uses 4 bytes instead of 5 as needed by Varint-GB. For
this reason, the space usage for Varint-GB and Varint-G8IU is
larger than the one of VByte: it is 16 <+ 18% larger for Varint-
GB; 10% larger for Varint-G8IU. The control byte of Varint-
G8IU stores a bit for every of the 8 data bytes: a 0 bit means
that the corresponding byte completes a decoded integer,
whereas a 1 bit means that the byte is part of a decoded
integer or it is wasted. Thus, Varint-G8IU compress worse
than plain VByte due to the wasted bytes. Finally notice that
Varint-GB is slightly worse than Varint-G8IU because it uses
10 bits per integer instead of 9 for all integers in [0, 2%). In
fact, the difference between these two encoders in less than
1 bit on the tested datasets.

The speed of the encoders is actually very similar for



TABLE 3
Space in average number of bits (bpi) per document (docs) and frequency (fregs).

Gov2 ClueWeb09 CCNews
docs freqgs docs fregs docs fregs
[opi] [opi] [opi] [opi] [opi] [opi]
VByte 9.53(+95.7%) 8.02(+163.9%) 9.90 (+51.5%) 8.01(+222.4%) .42 (4+37.4%) 8.00 (+234.8%)
VByte unif.  5.41(+11.1%) 3.31 (+8.9%) 7.37(+12.7%) 2.69 (+8.5%) 7.27 (+6.1%) 2.55 (+6.5%)
VByte e-opt.  4.93 (+1.2%) 3.05 (+0.5%) 6.66 (+1.8%) 2.50 (+0.7%) 6.92 (+1.0%) 241 (+1.0%)
VByte opt. 4.87 3.04 6.54 2.48 6.85 2.39
all alternatives. We used the TREC-05 querylog to com- ~ TABLE4
pute boolean conjunctions. The spread between the fastest Index building timings in minutes.
(Varint-G8IU) and the slowest alternative (Masked-VByte) is
as little as 6 + 10%. The same holds true for the building Gov2 ClueWeb09 CCNews
of the indexes where, as expected, the plain VByte is the VByte 101 (—4%) 43.3 (+52%) 60.4(+-70%)
fastest and Varint-G8IU is slower (by up to 40% on Gov2 VByte unif. 11.3  (+8%) 29.3 (+3%) 34.9 (—2%)
and ClueWeb09). VByte e-opt. 26.7 (+154%) 72.3 (+154%) 59.8 (+68%)
. . . VB . 10. 28. .
In conclusion, for the reasons discussed above, i.e., better yteopt. 105 85 355
space occupancy, better index building time and competitive
speed, we adopt the original VByte stream organization TABLE 5

and the Masked-VByte algorithm by Plaisance, Kurz and
Lemire [37] to perform sequential decoding.

4.2 Optimized Variable-Byte indexes

In this section, we evaluate the impact of our solution by
comparing the optimally-partitioned VByte indexes against
the un-partitioned indexes and the ones obtained by using
other partitioning strategies, like uniform and the e-optimal
based on dynamic programming (see Section [2.1).

As a high-level overview, the result of the comparison
shows that our optimally-partitioned VByte indexes are 2x
smaller than the original, un-partitioned, counterparts; can
be built 2x faster without resorting on dynamic program-
ming and offer the strongest guarantee, i.e., an exact so-
lution rather than an approximation; despite the significant
space savings, these are as fast as the original VByte indexes.

Index space. Table [3| shows the results concerning the
space of the indexes. Compared to the case of un-partitioned
indexes, we observe gains ranging from 37% up to 235%,
with a net factor of 2x improvement with respect to the
original VByte format.

For the uniform partitioning we used partitions of 128
integers, for both documents and frequencies. As we can see,
this simple strategy already produces significant space sav-
ings: it is 43%, 26% and 23% better on the docs sequences
for Gov2, ClueWeb09 and CCNews respectively; 59%, 66%
and 70% better on the fregs sequences. This is because most
d-gaps are actually very small but any un-partitioned VByte
encoder needs at least 8 bits per d-gap. In fact, notice how
the average bits per integer on both docs and fregs becomes
sensibly less than 8.

We recall that the e-optimal algorithm based on dynamic
programming and reviewed in Section was originally
proposed for Elias-Fano [21], whose cost in bits can be
computed in O(1): we adapt the dynamic programming
recurrence in order to use it for VByte too. As approximation
parameters we used the same values as used in the exper-
iments of the original work [21], i.e., we set ¢; = 0.03 and

Timings for AND queries in milliseconds.

Gov2 ClueWeb09 CCNews

19 VByte 0.90 (+1%) 5.56 (—3%) 7.06 (+10%)
5 VByteunif.  0.94 (+5%) 5.90 (+3%) 7.20 (+13%)
0 VByte e-opt. 0.92 (+3%) 5.89 (+3%) 6.52 (+2%)
T VByte opt.  0.89 5.70 6.39

Q VByte 212 (+0%) 8.35(—7%) 9.36 (+12%)
& VByteunif.  2.22 (+5%)  9.02 (+1%) 9.58 (+14%)
W VByte e-opt. 2.24 (+6%) 9.17 (+2%) 8.56 (+2%)
C vByte opt.  2.12 8.96 8.38

€2 = 0.3. The computed approximation could be possibly
made large by enlarging such parameters, whereas our
algorithm finds an exact solution. However, we notice that
the approximation is good and our optimal solution is only
slightly better (by 1 + 1.8%). Compared to uniform, the
optimal partitioning pays off: indeed it produces a further
saving of 10% on average, thus confirming the need for an
optimization algorithm.

Index building time. Although the un-partitioned variant
would be the fastest to build in internal memory because
the inverted lists are compressed in the same pass in
which these are read from disk, the serialization of the
data structure imposes a considerable overhead because
of the high memory footprint of the un-partitioned index.
Notice how this factor becomes dramatic for the (larger)
dataset ClueWeb09 and CCNews, resulting in an end-to-
end overhead of 50 + 70%. Because of this, also observe that
there is no appreciable difference between the indexing time
of the simple uniform strategy and the optimal one. Despite
the linear-time complexity as soon as € is constant, the e-
optimal solution has a noticeable CPU cost due to the high
constant factor, as we motivated in Section The optimal
solutions has instead low constant factors and, as a result,
is faster than the dynamic programming approach by more
than 2.6x on average on both Gov2 and ClueWeb09; by
1.7x on CCNews.



TABLE 6

Space in average number of bits (bpi) per document (docs) and frequency (fregs).
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Gov2 ClueWeb09 CCNews
docs freqgs docs fregs docs freqs
[bpi] [bpi] [bpi] [bpi] [bpi] [bpi]

PEF c-opt.  4.10(—15.7%) 2.38(—21.8%) 5.85(—10.6%) 2.20(—11.6%) 5.84(—14.8%) 2.18 (—8.9%)

OptPFD 4.48 (—8.0%) 2.38(—21.8%) 6.18 (—5.4%) 2.41 (—2.9%) 6.41 (—6.5%) 2.53 (+5.9%)

BIC 3.80(—22.0%) 2.14(—29. r(/) 5.15(—21. 3(/) 1.87(—24.8%) 5.37(—21. 7‘/) 1.98(—17.3%)

ANS 3.96 (—18.7%) 1.85(—39.0%) 5.36 (—18.0%) 1.94(—21.9%) 5. 76( 16.0%) 2.01(—15.8%)

QMX 6.00 (+23.3%) 3.37(+10.8%) 8.01(+22. o‘/) 3.75(+51.2%) 7.31 (+6.6%) 3.72(+55.5%)

VByte opt.  4.87 3.04 6.54 2.48 6.85 2.39
the core operation needed to perform fast intersection [10].
96.54 4 Lot 164.8- 'ttt g The timings reported in Fig. [7| are relative to a sequence of
Q 80.45 - os ;ﬁ‘):; Q 1373 -0 \éﬁ,):; B} one million integers and with an average gap between the
% 6436 A EF % 1099 A EF ) integers of: (a) 2.5, as a dense case and (b) 1850 as a sparse
2 4827 2 64 case. These values mimic the ones for the Gov2 dataset, that
g g are 2.13 and 1852 respectively. The ones for the ClueWeb09
§ 32.18 - § 54.9 - - dataset are 2.14 and 963, thus the plots have a similar shape.
g 16.09 gy © 27.5- - As the dense case illustrates, the binary vector repre-
0.00 =5 . 0.0 27" sentation is as fast as VByte for all jumps of entity less
5 11 5 11

20 27 2 _ 2° 2 20 27 2 _ 2° 2 then or equal to 8, and becomes actually faster for longer
Jump size Jump size jumps. Moreover, the distribution of the jump sizes plotted
(a) Dense (b) Sparse in Fig. |8 indicates that, whenever executing AND queries,

Fig. 7. Average nanoseconds spent per NextGEQ query for (a) Dense
and (b) Sparse sequences of one million integers.
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Jump size

Fig. 8. When the difference between two consecutively accessed posi-
tions is d, NextGEQ is said to make a jump of size d. The distribution
of the jump sizes is divided into buckets of exponential size: all sizes
between 2¢—1 and 2¢ belong to bucket d. The plot shows the jumps
distribution, in percentage, for the querylogs used in the experiments,
when performing AND queries.

Index speed. Table [5| illustrates the results. The striking
result of the experiment is that, despite the significant space
reduction (2x improvement, see Table , the partitioned
indexes are as fast as the un-partitioned ones on all datasets.

Therefore, it is important to provide a careful expla-
nation of such result. The answer is provided by under-
standing the plots in Fig. [} along with the ones in Fig.
and [8] that we generate for Gov2 and ClueWeb09 since
we obtained even better timing results for CCNews (see
Table[B). In particular, Fig. [7]illustrates the average nanosec-
onds spent per NextGEQ (Next Greater-than or EQual-to)
query by VByte, the binary vector representation and Elias-
Fano (EF). The NextGEQ:(x) query returns the smallest
integer z > x from the inverted list of the term ¢ and it is

the number of jumps of size less than 16 accounts for
~90% of the jumps performed by NextGEQ. Furthermore,
the distribution plotted in Fig. [1| tells us that the majority
of blocks are actually encoded with their characteristic bit-
vector, thus explaining why the partitioned indexes exhibit
no penalty against the un-partitioned counterparts.

However, VByte tends to be slower on longer jumps
because of its block-wise organization: since a posting list is
split into blocks of 128 postings that are encoded separately,
a block must be completely decoded even for accessing a
single integer, which is not uncommon for boolean con-
junctions. Moreover, since d-gaps values are encoded, we
need to access the elements by a linear scan of the block
after decoding in order to compute their prefix sums. When
the accessed elements per block are very few, even using
SIMD instructions to perform decoding results in a slower
query execution. Conversely and as expected, the binary
vector representation is inefficient for the sparse regions
since potentially many bits need to be scanned to perform
a query, but still faster than VByte whenever the jump size
becomes larger than 64 because it allows skipping over the
bit stream by keeping samples of the bit set positions.

4.3 Overall comparison

In this section we compare the optimally-partitioned VByte
indexes against several competitors:

o the e-optimal partitioned Elias-Fano method (PEF) by
Ottaviano and Venturini [21];

o the Binary Interpolative coding (BIC) by Moffat and
Stuiver [20];

o the optimized PForDelta (OptPDF) by Yan ef al. [26];

o the ANS-based index by Moffat and Petri [25];

o the QMX mechanism by Trotman [28].

For all competitors, we used the C++ code from the
original authors, compiled with gcc 7.2.0 using the highest



TABLE 7
Index building timings in minutes.

Gov2 ClueWeb09 CCNews
PEF e-opt. 41.3(+293%) 125.5(+340%) 852 (+140%)
OptPFD 8.2 (—22%) 25.8 ( 9%) 36.7 (+3%)
BIC 7.0 (—33%) 20.5 (—28%) 28.3 (—20%)
ANS 12.6 (+20%) 35.7 (+z)</) 551 (+55%>
QMX 7.0 (-33%) 18.0 (—37%) 31.1 (—12%)
VByte opt. 10.5 28.5 35.5

optimization setting as we did for our own code to ensure a
fair comparison.

Index space and building time. Table [f| shows the results
concerning the space of the indexes. Clearly, the space usage
of the VByte optimal indexes is higher than the one of the
bit-aligned encoders: this was expected since VByte is byte-
aligned. However, the important result is that its space is
not so high as it used to be before. In fact, comparing the
results reported in Table [3| with the ones in Table [} we see
that, without partitioning, VByte was 172% larger than PEF
and 194% larger than BIC on Gov2; 123% larger than PEF
and 154% larger than BIC on ClueWeb09; 117% larger than
PEF and 137% larger than BIC on CCNews. Now, thanks
to our optimization strategy, this gap is reduced to 20% on
average. In particular, notice that it is less than 11% larger
than PEF on the docs sequences of ClueWeb09, while it
is generally less effective on the freqs sequences. This is
because the within-document frequencies are made up of
integers smaller than docIDs. Very similar considerations
hold for the other alternatives, such as OptPFD and ANS.
In particular, we notice that on the ClueWeb09 dataset, the
difference between VByte optimal and OptPDF is very small
(only 4% overall); BIC is (as usual) generally better than
other methods on the both docs and fregs; the byte-aligned
QMX is, instead, significantly larger, by 19 < 31%.

We now consider the time needed to build the indexes.
Refer to Table[7] As already noted in the previous subsec-
tion, the dynamic programming approach used for PEF
imposes a severe penalty with respect to VByte optimal of
4x on average. The penalty is due to not only the difference
in speed between dynamic programming and the algorithm
devised in Section |3} but also to the fact that Elias-Fano,
being bit-aligned, is slower to encode with respect to VByte.
Except for the ANS indexes which are slower to build, by
33% on average, because of the two-pass process of first col-
lecting symbol occurrence counts and, then, encoding [25],
the building timings for the other competitors are, instead,
competitive: our optimization algorithm only takes a couple
of minutes more overall the whole building process. Only
BIC and QMX took less indexing time (33% faster on av-
erage on Gov2 and ClueWeb09, but only 16% more on the
largest CCNews dataset).

Index speed. Table |8 shows the query processing speed of
the indexes. Compared to PEF, the results are indeed very
similar to the ones obtained by Ottaviano and Venturini [21],
i.e., there is only a marginal gap between the speed of PEF
and VByte when computing boolean conjunctions. The rea-

TABLE 8
Timings for AND queries in milliseconds.
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Gov2 ClueWeb09 CCNews

PEF e-opt. 0.98 (+10%) 5.87 (+3%) 8.64 (+35%)
0 OptPFD  1.28 (+43%)  8.04 (+41%) 8.92 (+40%)
1) BIC 4.14 (+364%) 25.42 (+ ;1()‘/) 63.50 (+894%)
w ANS 4.21 (+372%)  25.98 (+356%) 27.49 (+330%)
£ aQmx 0.88 (—1%) 5.30 (ﬂ‘/) 7.09 (+11%)

VByte opt. 0.89 5.70 6.39

PEF e-opt. 2.19  (+4%) 959 (+7%) 11.77 (+40%)
© OptPFD  3.00 (+42%) 11.95 (+33%) 11.73 (+40%)
& BIC 9.93 (+369%) 37.87 (+322%) 81.52 (+873%)
L ANS 9.48 (+348%) 38.07 (+325%) 35.48 (+323%)
= QMX 211 (—1%) 8.07 (—10%) 9.44 (+13%)

VByte opt. 2.12 8.96 8.38

son has to be found, again, in the plot illustrated in Fig.

As we can see, for all the jump sizes less than 32, VByte is
2x faster than Elias-Fano, while this advantage vanishes for
the longer jumps thanks to the powerful skipping abilities
of Elias-Fano [10]], [21], [39]. However, we know that this
advantage is shrunk because jumps larger than 32 are not
very frequent on the tested query logs, as depicted by the
distribution of Fig.

Compared to the other approaches, we can see signifi-
cant gains with respect to OptPDF (by 40% on Gov2 and
21% on ClueWeb09), BIC and ANS (4x faster on average)
and only a slight penalty with respect to QMX (by 7 <+ 10%)
on ClueWeb09. On the largest CCNews dataset, our pro-
posal is consistently the fastest approach.

5 CONCLUSIONS

We have presented an optimization algorithm for point-wise
encoders that splits a sorted integer sequence into variable-
sized partitions to improve its compression and has a linear-
time/constant-space complexity. We have also proved that
the algorithm is optimal, i.e., it finds the partitioning that
minimizes the space of the representation. For point-wise
encoders, this is sensibly better than approaches based on
dynamic-programming on all aspects: time/space complex-
ity and practical performance.

By applying our technique to the ubiquitous Variable-
Byte encoding, we have exhibited a 2x-better compression
ratio and build optimally-partitioned indexes 2x faster than
the linear-time dynamic programming approach. Despite
the significant space savings, the partitioned representation
does not introduce penalties at query processing time com-
pared to the un-partitioned case.

As a last note, we mention the possibility of introducing
another encoder for representing the runs of the posting lists.
Obviously, a run of consecutive integers can be described
with just the information stored in the first level of repre-
sentation, i.e., the size of the run. Although our framework
can be extended to include this case, the algorithm and its
analysis become much more complicated. This additional
complexity may not pay off, because space improved by
less than 5% on the tested datasets.
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