
On Slicing Sorted Integer Sequences

GIULIO ERMANNO PIBIRI, ISTI-CNR

Representing sorted integer sequences in small space is a central problem for large-scale retrieval systems
such as Web search engines. Efficient query resolution, e.g., intersection or random access, is achieved by
carefully partitioning the sequences.

In this work we describe and compare two different partitioning paradigms: partitioning by cardinality
and partitioning by universe. Although the ideas behind such paradigms have been known in the coding and
algorithmic community since many years, inverted index compression has extensively adopted the former
paradigm, whereas the latter has received only little attention. As a result, an experimental comparison
between these two is missing for the setting of inverted index compression.

We also propose and implement a solution that recursively slices the universe of representation of a
sequence to achieve compact storage and attain to fast query execution. Albeit larger than some state-of-the-
art representations, this slicing approach substantially improves the performance of list intersections and
unions while operating in compressed space, thus offering an excellent space/time trade-off for the problem.

1 INTRODUCTION
Large-scale retrieval systems employ a simple, yet ingenious, data structure to support text search
– the inverted index [4, 17, 42, 45]. In its simplest incarnation, the inverted index is a collection
of sorted integer sequences, called inverted lists. For each distinct term appearing in the textual
collection, the corresponding inverted list represents the list of the identifiers of the documents
where the term appears. Then, resolving a user query such as, for example, “return all documents
where terms t1 and t2 appear” reduces to the problem of intersecting the inverted lists of t1 and t2.
Other query operators are possible and several pruning techniques have been developed [3, 16] for
the case of ranked retrieval, i.e., when the returned documents have to be ranked according to a
scoring function [31]. Zobel and Moffat [45] provide general background on inverted indexes.

Literature on the representation of integers and integer sequences is vast. Many solutions
are known, each of them exposing a different space/time trade-off, including: Elias’ gamma and
delta [9], Golomb [11], Elias-Fano [8, 10, 40], partitioned Elias-Fano [23], clustered Elias-Fano [26],
Interpolative [21, 22], PForDelta [12, 43, 46], Simple [1, 2, 44], Variable-Byte [7, 14, 29, 30, 33, 35, 36],
QMX [37], ANS-based [19, 20], DINT [25]. We point the reader to the surveys by Zobel and Moffat
[45], by Moffat [18] and by Pibiri and Venturini [28] for a review of many techniques.

More precisely, the problem we take into account is the one of introducing a compressed
representation for a sorted integer sequence S(n,u) of size n whose values are drawn from a
universe u ≥ S[n − 1], here assumed to be strictly increasing, i.e., S[i] > S[i − 1] for 0 < i < n, so
that the following operations have to be supported efficiently.
• S.decode(output): decodes S sequentially to the output buffer of 32-bit integers;
• AND/OR(S1, S2, output): performs the intersection/union between S1 and S2, materializing
the result into the output buffer of 32-bit integers and returning the size of the result;

• S.access(i): returns the integer S[i];
• S.nextGEQ(x ): returns the integer greater-than or equal-to x (this operations is more classically
known as successor), that is the smallest integer z ≥ x . If x is larger than the largest element of
S, a default value is returned, here assumed to be called limit and such that limit ≥ u.

Author’s address: Giulio Ermanno Pibiri, ISTI-CNR, Pisa, Italy, giulio.ermanno.pibiri@isti.cnr.it.

ar
X

iv
:1

90
7.

01
03

2v
2 

 [
cs

.I
R

] 
 2

0 
Ju

l 2
01

9



2 Giulio Ermanno Pibiri

19 35 44 550

(a) partitioning by cardinality – PC

6 22 31 39 47 550

(b) partitioning by universe – PU

Fig. 1. Example of a sequence of 32 values drawn from a universe of size 56 as partitioned by cardinality (a)
and by universe (b), using partitions of 8 integers. We also mark the maximum integer in each partition.

Except for the operations decode andOR that need to sequentially scan the sequence, an efficient
implementation of the aforementioned operations relies on partitioning the sequence because of
the following simple observation:

When we ask whether the integer x is present or not in the sequence S, we can safely skip all
partitions of S whose maximum integer is less than x because S is sorted, thus none of the integers
less than x should be considered.

Classically, integer sequences have been partitioned by cardinality, i.e., consecutive elements are
grouped together into fixed-size or variable-size partitions. However, partitioning a sequence by
universe is also possible. In a simple implementation of the approach, a universe span s is chosen
and all integers falling into the k-th bucket [sk, s(k + 1)) are compressed into the same partition.

Fig. 1 shows an example of such paradigms applied to an example sequence S(32, 55) = ⟨0, 1, 4,
5, 6, 17, 18, 19, 20, 21, 22, 24, 27, 31, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55⟩,
for partitions of size 8. In Fig. 1a, 8 consecutive integers are packed together, thus the following
32/8 = 4 partitions are defined ⟨0, 1, 4, 5, 6, 17, 18, 19⟩ ⟨20, 21, 22, 24, 27, 31, 34, 35⟩ ⟨37, 38, 39, 40,
41, 42, 43, 44⟩ ⟨45, 46, 47, 50, 52, 53, 54, 55⟩. In Fig. 1b, 8 consecutive universe values are packed
together, thus the following ⌈55/8⌉ = 7 partitions are defined ⟨0, 1, 4, 5, 6⟩ ⟨⟩ ⟨17, 18, 19, 20, 21, 22⟩
⟨24, 27, 31⟩ ⟨34, 35, 37, 38, 39⟩ ⟨40, 41, 42, 43, 44, 45, 46, 47⟩ ⟨50, 52, 53, 54, 55⟩. Notice how, in this
latter example, partitions may have different cardinalities and that some of them may be empty
indeed as it happens for the second one spanning the universe slice [8, 16).

The key point is that literature on inverted index compression has extensively adopted the
partitioning-by-cardinality paradigm (PC), where little attention has been given to the other
paradigm (PU). As a result of this: (1) no experimental comparison between such paradigms have
been assessed in the setting of inverted index compression (to the best of our knowledge, only one
prior work [41] takes a similar issue into account); (2) few solutions for the PU paradigm have been
designed.

Therefore, after a detailed description of the two paradigms (Section 2), we: first, design a simple
PU solution that is tailored for the exploitation of the clustering property of inverted lists (Section 3),
namely the fact that inverted lists are notably known to feature clusters of very close document
identifiers that can be compressed very well; then, experimentally compare the advantages and
disadvantages of both paradigms in terms of achieved compression effectiveness and the efficiency
of the operations introduced before (Section 4). We finally summarize the experimental findings
and sketch some promising future directions (Section 5).



On Slicing Sorted Integer Sequences 3

1 AND(S1, S2, output)
2 size = 0
3 candidate = S1.access(0)
4 k = 2
5 while candidate < limit
6 for ; k ≤ 2; k = k + 1
7 z = Sk .nextGEQ(candidate)
8 if z != candidate
9 candidate = z

10 k = 1
11 break

12 if k == 2
13 output[size] = candidate
14 size = size + 1
15 candidate = S1.next()
16 k = 2

17 return size

(a)

1 AND(S1, S2, output)
2 size = 0
3 l = S1.begin()
4 r = S2.begin()
5 while l != S1.end() and r != S2.end()
6 idl = l.id()
7 idr = r .id()
8 if idl == idr
9 n = AND(l, r, output)

10 size = size + n
11 l.next()
12 r .next()
13 else if idl < idr
14 l.advance(idr )
15 else
16 r .advance(idl )

17 return size

(b)

Fig. 2. Two different intersection algorithms, respectively suitable for sequences that are partitioned by
cardinality (a) and by universe (b). In the pseudo code (a), the function S.next() returns the integer that
follows the last returned during a sequential scan of S. In pseudo code (b): S.begin() and S.end() returns
iterators over the partitions of S, respectively at the beginning and at the end; it .id() returns the identifier
of the partition; it .next() advances iterator it to the next partition; it .advance(id) advances iterator it to
the first partition whose identifier compares greater-than or equal-to id ; the function n = AND(l, r, output)
intersects the partitions pointed to by the iterators l and r , writing the result in output and returning the size
n of the intersection.

2 PARADIGMS
As already introduced, we individuate two different paradigms that partition a sequence to achieve
efficient query resolution, as exemplified in Fig. 1 and described in the following: partitioning by
cardinality (PC) and partitioning by universe (PU).

2.1 Partitioning by cardinality
Traditionally, an inverted list is partitioned by cardinality, i.e., consecutive integers of the list are
grouped together into a partition until a given cardinality is not reached. The cardinality can be
fixed for every partition (besides the last one which may contain less integers), e.g., 128 integers, or
can vary according to the actual values of the integers being compressed, e.g., in order to achieve a
more compact representation [23, 29].

The list also stores the (sorted) sequence formed by the maximum values of every partition. The
values in such sequence are usually called skip pointers. Skip pointers add a small space overhead
to the list representation itself for reasonably-large cardinality values, but allow skipping over
the inverted list’s values. Such list organization relies on the operation S.nextGEQ(x) to support
efficient list intersection. We can implement z = S.nextGEQ(x) by first searching x within the
skip pointers to individuate the partition where the wanted value z lies in and, then, conclude the
search for it in that partition only. The operation is efficient because the set of skip pointers is small



4 Giulio Ermanno Pibiri

and searching a value in a single partition is faster than searching it in the whole list without any
positional restriction.

Let us now consider how list intersection can be achieved through the nextGEQ primitive.
Suppose we have to compute the intersection between the inverted lists associated to terms t1 and
t2, i.e., AND(t1, t2) = S1 ∩ S2, where S1 is shorter than S2. We search for the first value x of S1 in
S2 with S2.nextGEQ(x): if the value z returned by the operation is equal to x then it is a member
of the intersection and we can just repeat this search step for the next value of S1; otherwise z
gives us a candidate value to be searched next, indeed allowing to skip the searches for all values
between x and z. In fact, since we have that z ≥ x , S2.nextGEQ(y) will be equal to z also for all
values y such that x < y < z, thus none of such integers can be a member of the intersection. Fig. 2a
illustrates such procedure.

2.2 Partitioning by universe
Another strategy is partitioning an inverted list by universe, i.e., all integers a ≤ x < b belong to the
same universe-aligned partition [a,b). For example, given S(n,u) we may choose a universe span
of s integers, so that the following universe-aligned partitions are defined: [0, s) [s, 2s) [2s, 3s) · · ·
[⌊u/s⌋,u). Note that such partitions do not depend on the actual size n of the list, but only on its
universe of representation. All integers less than s are grouped into the first partition; all integers
less than 2s and larger than or equal to s are grouped into the second partition; and so on. In general,
if the k-th partition containsm integers, i.e., there arem integers x such that sk ≤ x < s(k + 1), we
say that the partition has cardinality equal tom ≤ s .
Also this strategy permits to skip over the list values because only partitions relative to the

same universe have to be intersected. Now the skip pointers are represented by enumerating the
non-empty partitions, rather than being actual list values. Therefore, list intersection proceeds
by identifying all common partitions, and, for each of them, by resolving a smaller intersection
of at most s integers. Depending on the actual cardinality of a partition, different compression
strategies AND/OR intersection algorithms can be adopted, thus not necessarily relying on the
nextGEQ primitive. Fig. 2b illustrates this other approach.
On the other hand, the overhead represented by the skip pointers may be excessive for very

sparse inverted lists, because the partitions do not depend on the value of n. In fact, in the worst
case, we could be maintaining a pointer for each integer in the list (each partition is a singleton).

As already claimed, this paradigm has been used in the coding and (theoretical) data structure
design areas. We briefly discuss some old, but yet very meaningful, examples: the Elias-Fano
encoding algorithm [8, 10] and the van Emde Boas data structure [38, 39].

Elias-Fano represents a sequence S(n,u) in at most nϕ +n + ⌈u/2ϕ⌉ bits. It can be shown [8] that
choosing ϕ = ⌊log2 u

n ⌋ minimizes the number of bits. In other words, the values of S are partitioned
by universe into chunks containing at most 2ϕ integers each. We refer to this split as parametric,
because it is dependent on the value of u and n, thus making the intersection algorithm shown
in Fig. 2b not directly applicable because sequences having different sizes partition the integers
differently.

But a non-parametric split is possible as well. For example, assuming a universe of size u = 232,
we could partition u into

√
u = 216 chunks, i.e., ϕ = 16. In this way, each chunk contains all integers

sharing the same 16 most significant bits. This is reminiscent of the van Emde Boas data structure:
a recursive tree layout solving the well-known dictionary problem (see the introduction to parts



On Slicing Sorted Integer Sequences 5

III and V of the book by Cormen et al. [6]) in O(log logu) time per operation and O(u) words of
space1. In such data structure, the universe u is recursively partitioned into

√
u chunks.

A similar fixed-universe partitioning approach as been recently adopted by Roaring [5, 13, 15],
a practical data structure that has been shown to outperform all previously proposed bitmap
indexes [5, 41] and it is widely used in commercial applications. Specifically, Roaring partitions
u into chunks of 216 integers and represents all the integers falling into a chunk in two different
ways according to the cardinality of the chunk: if a chunk contains less than 4096 elements, then it
is represented as a sorted array of 16-bit integers; otherwise it is represented as a bitmap of 216
bits. Finally, extremely dense chunks can also be represented with runs. For example, the two runs
(13, 42)(60, 115) mean that all the integers 13 ≤ x ≤ 13 + 42 and 60 ≤ x ≤ 60 + 115 belong to the
chunk.

3 THE SLICING APPROACH
In this section we design a solution that applies a recursive universe slicing approach to achieve
compact storage and good practical performance for the operations introduced in Section 1.

Let us consider a strictly increasing sequence S(n,u) whose elements are drawn from a universe
of size u ≤ 232. At a high-level point of view, we represent S using a tree of height 3 (at most),
where the root has fanout s1 and its children have fanout s2. Refer to Fig. 3a. We now detail how
the data structure is concretely implemented and operations supported.

3.1 Data structure
The root of the tree logically corresponds to the interval [0,u) that is partitioned into slices spanning
s1 integers each (except, possibly, the last slice which may contain less integers). In what follows,
we refer to such s1-long slices as chunks. A header arrayH1 is used to classify chunks into 4 different
types according to their cardinality: full, dense, sparse and empty. Full chunks, i.e., containing
exactly s1 integers, and empty chunks (containing no integers at all) are represented implicitly by
their types. A dense chunk spanning the k-th universe slice [s1k, s1(k + 1)) is represented with a
bitmap of s1 bits by setting the i-th bit if the integer i − s1k belongs to the slice. In particular, we
regard a chunk to be dense if its cardinality is at least s1/2. Doing so guarantees that the average
number of bits spent for each integer belonging to a dense chunk is at most 2. Therefore, full,
empty and dense chunks have no children. Instead, sparse chunks are encoded by re-applying
the same strategy: since every sparse chunk now logically corresponds to a (smaller) universe
slice of size s1, the interval [0, s1) is partitioned into slices spanning s2 integers each (again, except
possibly the last one). We refer to such s2-long slices as blocks. As before, a header array H2 is used
to distinguish between different block types. However, given the smaller universe slice, we only
distinguish between two block types, namely dense and sparse, in order to better amortize the cost
of H2. In particular, a dense block is encoded with a bitmap of s2 bits; a sparse block is represented
with a sorted array of ⌈log2 s2⌉-bit integers.

We choose s1 = 216 and s2 = 28. Since we consider the case when u ≤ 232 and for our choice of
s1 = 216, the number of chunks is always at most 216, thus we encode this quantity into 16 bits.
Similarly, it follows that each sparse chunk is sliced into at most 28 blocks. With this choice of s1
and s2, a dense chunk is a bitmap of 1024 bytes; a dense block is a bitmap of 32 bytes; a sparse block
whose cardinality is c is a sorted array of 8-bit integers, hence taking c bytes overall.

For each non-empty block [k28, (k + 1)28), the array H2 stores its identifier k and its cardinality.
Both quantities are always at most 28, thus they take one byte each. Knowing the cardinality
1Actually, the space can be improved toO (n) words using bucketing. See this blog post by Mihai Pǎtraşcu: http://infoweekly.
blogspot.com/2007/09/love-thy-predecessor-iii-van-emde-boas.html.

http://infoweekly.blogspot.com/2007/09/love-thy-predecessor-iii-van-emde-boas.html
http://infoweekly.blogspot.com/2007/09/love-thy-predecessor-iii-van-emde-boas.html


6 Giulio Ermanno Pibiri

s1

s2 s2

…

… …

u

…

(a) tree-like view

1024B 1024B

B1 B2 B3 B4

|B1|B2B 2B 2B 2B

H2

|B3|B32B 32B

B1 B3

|B2|B2B 2B 2B 32B

B2

H2

32B

C2 C3 C4 C5C1

8B 8B 8B 8B 8B

H1

(b) array-like view

Fig. 3. The upper part (a) of the picture shows the recursive slicing of the universe u made by the data
structure, here viewed as a tree. In the lower part (b), we show how the data structure is concretely laid out
in memory, for an example sequence made up of chunks C1..C5. In this example, chunksC2 and C3 are dense,
hence represented with bitmaps of 1024 bytes (B); C1 and C4 are sparse, thus recursively decomposed; lastly,
C5 is full, hence implicitly represented. Below each box – corresponding to a universe slice – we indicate the
number of bytes taken by its encoding. Dashed lines help to graphically translate the array-like view into the
tree-like view.

0 < c ≤ 28 of a block we derive the number of bytes needed by its representation. If c < 28/8−1 = 31,
the block is considered to be sparse, thus it takes c bytes; otherwise it is dense and takes 32 bytes.
Therefore, a sparse block consumes at most (28/8 − 2) × 8 + 8 = 248 bits. Note that we do not set
the sparseness threshold to 28/8 = 32 because otherwise a sparse block would consume at most
256 bits that is equal to the cost of a dense block and a bitmap would suffice.

For each non-empty chunk [k216, (k +1)216), the arrayH1 stores, instead, the following quantities:
its identifier k , its cardinality, and the number of bytes needed by its encoding. Similarly to the case
of a sparse block, we require the encoding of a sparse chunk to take less than 216 bits, otherwise a
bitmap of 216 bits would suffice. Therefore, each of these 3 quantities easily fits into a 16-bit integer.
Although we could derive the type of a chunk from its cardinality as done for a block, we also

store the type explicitly using 16 bits. When a chunk is sparse, we need to know the number of its
blocks, i.e., the number of non-empty 28-size slices. This number is the size of the corresponding
header H2. Therefore, we write this quantity in 8 bits and interleaved with the 16 bits dedicated to
the type information. In conclusion, we spend a 64-bit overhead per chunk.

Fig. 3b shows an example of such organization and how all the different data quantities (headers,
bitmaps and arrays) are laid out inmemory. In practice, the logical tree shown in Fig. 3a is “linearized”
into an array of bytes.



On Slicing Sorted Integer Sequences 7

The data structure described here has similarities with some previous approaches. As already
discussed, the universe is exponentially reduced like in a van Emde Boas tree, i.e., 232 → 216 → 28.
Partitioning the universe recursively has the potential of adapting to the distribution of the integers
being encoded, a crucial design choice for clustered integer sequences such as inverted lists. The
choice of bitmaps to represents dense sets is a widely adopted technique, employed by, for example,
partitioned Elias-Fano [23], hybrid Variable-Byte schemes [29] and Roaring [13]. However, as we are
going to show, the use of bitmaps joint with universe-aligned partitions is particularly effective for
fast query execution because operations can be implemented via inexpensive bitwise instructions,
hence exploiting word-level parallelism, and are suitable for even more advanced instructions, such
as SIMD AVX.

The description above also opens the possibility for better compression. For example, we could
use a different representation for sparse blocks, e.g., bit-aligned universal codes. Whatever repre-
sentation we use, that will give birth to interesting time/space trade-offs. The choice adopted here
of s1 = 216, s2 = 28 and the use of 8-bit integer arrays clearly favours time efficiency given that both
bitmaps and packed arrays are aligned to byte boundaries.

3.2 Operations
We now describe how the operations are supported by the data structure.

Decoding. The S.decode(output) operation decodes S sequentially to the output buffer of 32-
bit integers. We loop through each chunk and, depending on its type, we decode it accordingly
appending the result into the output buffer. This permits to write different specialized functions to
handle a slice differently based on its type.

Bitmaps can be efficiently decoded using the built-in function ctzll which counts the number
of trailing zero into a 64-bit word [13] (we also tested a SIMD algorithm to decode larger bitmaps
but got almost no speed improvement).

The sorted arrays encoding sparse blocks contain at most 28/8 − 2 integers, each value taking 8
bits. Therefore, we can use the SIMD instruction _mm256_cvtepu8_epi32, that zero extend packed
(unsigned) 8-bit integers to 32-bit integers. Doing so, we can efficiently decode 8 values at a time.
We also observed that this approach is even more efficient when paired with loop unrolling, thus
we apply the instruction either 2 or 4 times after a single test on the block cardinality.

Intersection. The operation AND(S1, S2, output) performs the intersection between S1 and S2,
materializing the result into the output buffer of 32-bit integers and returning the size of the result.
We use the algorithm illustrated in Fig. 2b, thus we loop through the header arrays of the sequences,
intersecting only chunks/blocks that are shared by the two (line 8). Therefore, we reduce the
problem of list intersection to the smaller instance of performing intersections between (1) two
bitmaps, or (2) two arrays, or a (3) bitmap and an array (line 9).
Case (1) – the intersection between two bitmaps – translates into a sequence of inexpensive

bitwise AND instructions between 64-bit words with (usually) automatic compiler vectorization.
Case (2) has to intersect tiny 8-bit sorted arrays. While a scalar textbook intersection algorithm

between uncompressed arrays would suffice, we can accelerate the process using a variation of the
vectorized approach by Schlegel, Willhalm, and Lehner [32]. In short, the algorithm uses the SIMD
instruction _mm_cmpestrm to compare strings of bytes. In our case we can, therefore, execute an
all-versus-all comparison in parallel between sets of 16 × 8-bit integers. Matching integers, i.e.,
integers in common between the two sets, are marked with a 32-bit bitmap returned as the result of
the comparison. We can use this 32-bit value as an index in a pre-computed universal tableT of 1024
× 1024 bytes to obtain a permutation of bytes indexes, indicating how the matching integers should



8 Giulio Ermanno Pibiri

#define INIT \
__m256i base_v = _mm256_set1_epi32(base); \
__m128i v_l = _mm_lddqu_si128((__m128i const*)l); \
__m128i v_r = _mm_lddqu_si128((__m128i const*)r); \
__m256i converted_v; \
__m128i shuf, p, res; \
int mask, matched;

#define INTERSECT \
res = \

_mm_cmpestrm(v_l, c_l, v_r, c_r, \
_SIDD_UBYTE_OPS | \
_SIDD_CMP_EQUAL_ANY | \
_SIDD_BIT_MASK); \

mask = _mm_extract_epi32(res, 0); \
matched = _mm_popcnt_u32(mask); \
size += matched; \
shuf = _mm_load_si128((__m128i const*)T + mask); \
p = _mm_shuffle_epi8(v_r, shuf); \
converted_v = _mm256_cvtepu8_epi32(p); \
converted_v = _mm256_add_epi32(base_v, converted_v); \
_mm256_storeu_si256((__m256i*)out, converted_v); \
if (matched > 8) { \

p = _mm_bsrli_si128(p, 8); \
converted_v = _mm256_cvtepu8_epi32(p); \
converted_v = _mm256_add_epi32(base_v, converted_v); \
_mm256_storeu_si256((__m256i*)(out + 8), converted_v); \

}

#define ADVANCE(ptr) \
out += size; \
ptr += 16; \
v_##ptr = _mm_lddqu_si128((__m128i const*)ptr); \
c_##ptr -= 16;

Fig. 4. C++ macros to support the vectorized implementation of the intersection between small sorted arrays.
These macros are used by the code shown in Fig. 5.

be permuted to collate them to the beginning of a 128-bit register. Such permutation is applied
with the dedicated _mm_shuffle_epi8 SIMD instruction. The C++ macro INTERSECT shown in
Fig. 4 illustrates this approach. Let cl and cr be the cardinality of the two sets respectively. Since
in our case we have that both cl and cr are less than 32, we can directly enumerate the following
3 different cases: (1) cl ≤ 16 and cr ≤ 16, then we need only 1 string comparison; (2) cl ≤ 16 and
cr > 16 (or cr ≤ 16 and cl > 16), then we need 2 string comparisons; (3) cl > 16 and cr > 16, then
we would need 4 string comparisons but we determined that the simple scalar version is more
efficient. The C++ function sparse_blocks_and coded in Fig. 5 shows these cases and, along with
the code in Fig. 4, completes our intersection algorithm for small sets.

For detailed descriptions of SIMD instructions, refer to the excellent Intel guide at https://software.
intel.com/sites/landingpage/IntrinsicsGuide.

https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide


On Slicing Sorted Integer Sequences 9

size_t sparse_blocks_and(uint8_t const* l, uint8_t const* r,
int c_l, int c_r,
uint32_t base, uint32_t* out) {

size_t size = 0;
if (c_l <= 16 and c_r <= 16) {

INIT INTERSECT return size; // 1 cmpestr
}
if (c_l <= 16 and c_r > 16) {

INIT INTERSECT ADVANCE(r) INTERSECT return size; // 2 cmpestr
}
if (c_r <= 16 and c_l > 16) {

INIT INTERSECT ADVANCE(l) INTERSECT return size; // 2 cmpestr
}
/* scalar code goes here */

}

Fig. 5. The C++ skeleton of the vectorized implementation of the intersection between small sorted arrays. The
macros INIT, INTERSECT and ADVANCE are shown in Fig. 4. In the code c_l and c_r indicate the cardinalities
of the two arrays respectively; the value base is equal to k1216 + k228 if we are intersecting the k2-th 28-long
slices of the k1-th 216-long slice.

Case (3) – the intersection between a bitmap and an array – is implemented by checking if the
values of the array correspond to bits set in the bitmap, using the bit-test assembler instruction.

Union. The operation OR(S1, S2, output) performs the union between S1 and S2, materializing the
result into the output buffer of 32-bit integers and returning the size of the result. The algorithm
follows the same skeleton described for the intersection, albeit we do not rely on specific SIMD
optimizations: bitmaps are merged using bitwise OR within 64-bit words; sorted arrays using scalar
code; the case with a bitmap and an array is handled by first converting the sorted array into a
bitmap, then using the parallelism of bitwise OR.

Random access. The operation S.access(i) returns the integer S[i]. We scan the header array of
the data structure to take into account for the cardinality of each chunk covering a universe of size
216 in order to locate the chunk containing the i-th integer. To make this search faster, we build
cumulative cardinality counts for groups of a non-empty universe chunks, thus skipping a chunks
if the sum of their cardinalities is less than i . The parameter a is an associativity value that in our
implementation we set to 32. Then we proceed recursively at the block-level if a chunk is sparse
(but we do not build cumulative counts at the block level).

In particular, whenever we encounter a bitmap, we rely on efficiency of the built-in instruction
popcountll to locate the 64-bit word where the wanted integer lies in. This instruction returns
the number of bits set in a 64-bit word. Now that we have reduced the problem to a word of 64
bits, we can use the parallel-bit deposit assembler instruction pdep to perform a fast select-in-word
operation [24].

nextGEQ. The operation S.nextGEQ(x ) returns the integer greater-than or equal-to x , that is the
smallest integer z ≥ x . Since our data structure is partitioned by universe, we can directly identify
the chunk comprising z because this is the one having identifier x/216, i.e., we consider the 16
most significant bits of the key x . The wanted value z lies in such partition or, if x is larger than



10 Giulio Ermanno Pibiri

Method Shorthand Strategy

Variable-Byte V PC; fixed-sized partitions of 128 integers; byte-aligned
Elias-Fano EF PC; fixed-sized partitions of 128 integers; bit-aligned
Interpolative BIC PC; fixed-sized partitions of 128 integers; bit-aligned
Elias-Fano ϵ-opt. PEF PC; variable-sized partitions; bit-aligned
Roaring without run opt. R2 PU; single-span; 2 container types; byte-aligned
Roaring with run opt. R3 PU; single-span; 3 container types; byte-aligned
Slicing S PU; multi-span; byte-aligned

Table 1. The different tested configurations.

the maximum value in the partition, it is the minimum (first) value in the partition that follows.
Observe that this operation is actually faster than access for universe-aligned methods, because it
does not need to search for the wanted partition.

4 EXPERIMENTS
The aim of this section is twofold: establishing a solid experimental comparison between the two
different paradigms described in Section 2 in order to assess the achievable space/time trade-offs
and reporting on the effectiveness/efficiency of the Slicing approach introduced in Section 3.

Tested configurations.We compare the configurations summarized in Table 1 for the following
reasons. For the paradigm partitioning by cardinality with fixed-sized partitions of 128 integers,
we test: Variable-Byte [36] with the SIMD-ized decoding algorithm devised by Plaisance et al.
[30]; Interpolative [22] and Elias-Fano [23] as representative of, respectively, highest speed, best
compression effectiveness and best space/time trade-off in the literature. As representative of the
paradigm partitioning by cardinality with variable-sized partitions, we test the ϵ-optimal Elias-Fano
mechanism [23]. For all such representation, we use the C++ implementation provided in the ds2i
library, available at https://github.com/ot/ds2i.

Concerning the paradigm partitioning by universe, we test three solutions. The first two solutions
are represented by Roaring [13] (see Section 2.2). We test the solution without the run-container
optimization, thus using two container types (bitmap and sorted array), and with the optimization,
thus using three container types (bitmap, sorted array and run). We use the dedicated library
written in C and available at https://github.com/RoaringBitmap/CRoaring.

The third solution is the Slicing approach described in Section 3. Our C++ implementation of the
mechanism is freely available at https://github.com/jermp/s_indexes.

Datasets. We perform the experiments on the following standard test collections.
• Gov2 is the TREC 2004 Terabyte Track test collection, consisting in roughly 25 million .gov
sites crawled in early 2004. The documents are truncated to 256 KB.

• CW09 is the ClueWeb 2009 TREC Category B test collection, consisting in roughly 50 million
English web pages crawled between January and February 2009.

• CCNews is a dataset of news freely available from CommonCrawl: http://commoncrawl.org/
2016/10/news-dataset-available. Precisely, the datasets consists of the news appeared from
09/01/16 to 30/03/18.

Identifiers were assigned to documents according to the lexicographic order of their URLs [34].
Table 2 reports the basic statistics for the collections. We choose three different levels of list density
d , i.e., the ratio between the size of a list and its maximum integer, and compress all lists whose

https://github.com/ot/ds2i
https://github.com/RoaringBitmap/CRoaring
https://github.com/jermp/s_indexes
http://commoncrawl.org/2016/10/news-dataset-available
http://commoncrawl.org/2016/10/news-dataset-available


On Slicing Sorted Integer Sequences 11

Statistic Gov2 CW09 CCNews

Sequences 35,636,425 92,094,694 43,844,574
Universe 24,622,347 50,131,015 43,530,315
Integers 5,742,630,292 15,857,983,641 20,150,335,440

Table 2. Basic statistics for the test collections.

Density Statistic Gov2 CW09 CCNews

10−2
Sequences 3513 5802 5930
Integers 4,347,653,438 11,676,154,022 16,677,342,102
% 76 74 83

10−3
Sequences 13,276 21,924 23,085
Integers 5,066,748,826 13,864,451,283 18,969,946,075
% 88 87 94

10−4
Sequences 85,893 99,227 79,954
Integers 5,390,038,277 14,805,194,135 19,681,352,639
% 94 93 98

Table 3. Dataset statistics for three levels of density. We also indicate the percentage of integers retained
from the original collections shown in Table 2.

density exceeds d . By varying the density, we highlight how compression effectiveness changes
for the two different partitioning paradigms used, still focusing on most of the integers in the
collections. Refer to Table 3.

Experimental setting, methodology and testing details. The experiments are performed on
a machine with 4 Intel i7-4790K CPUs clocked at 4.00 GHz, with 32 GB of RAM DDR3 and run-
ning Linux 4.13.0. All the code is compiled with gcc 7.2.0 using the highest optimization setting
(compilation flags -march=native and -O3).

For the CRoaring library, we compile the code as recommended in the documentation for best
performance, i.e., with full support for vectorization. The run-container optimization is enabled by
calling the run_optimize function. The implementations of Elias-Fano (both with fixed and variable
partitions) and Interpolative do not use explicit vectorization; the implementation of Variable-Byte
makes use of the vectorized algorithm devised by Plaisance et al. [30], called Masked-VByte.

We build the indexes in internal memory and write the corresponding data structure to a file on
disk. To perform the queries, the data structure is memory mapped from the file (for CRoaring, by
using the frozen_view function) and a warming-up run is executed to fetch the necessary pages
from disk.

To sequentially decode the indexes, the kernel is also instructed to access the memory mapped
area sequentially using posix_madvice with flag POSIX_MADV_SEQUENTIAL. To test the speed of
list queries, namely AND/OR, we generated 1000 random pairs of integers and execute the queries
with the corresponding lists. For point queries, namely access and nextGEQ , we similarly execute
1000 random queries for each list of the index. In particular, the 1000 random positions for the
access query are not sorted. The input integers for nextGEQ are not sorted either and less then the
maximum integer in the sequence (thus, the result is always well determined).



12 Giulio Ermanno Pibiri

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 8.60 8.72 8.66 8.72 9.00 9.08 8.85 9.19 9.28
EF 2.72 4.44 4.72 3.25 5.14 5.37 3.65 5.56 5.66
BIC 2.33 3.59 4.37 2.72 4.11 4.97 3.02 4.41 5.24
PEF 2.37 4.01 4.52 2.85 4.62 5.16 3.20 4.96 5.45
R2 6.00 8.88 8.25 7.03 9.99 9.21 7.60 10.47 9.53
R3 5.33 8.49 8.22 6.25 9.40 9.17 6.75 9.75 9.48
S 3.23 5.44 5.98 3.91 6.39 7.18 4.46 7.00 7.77

Table 4. Space in bits per integer by varying density d .

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 0.51 0.61 0.53 0.55 0.66 0.59 0.58 0.71 0.62
EF 0.87 1.29 1.36 0.94 1.34 1.41 0.98 1.36 1.42
BIC 5.26 6.73 7.71 5.54 6.95 7.86 5.70 7.01 7.90
PEF 0.78 1.15 1.34 0.86 1.22 1.48 0.91 1.25 1.53
R2 0.53 0.72 0.68 0.53 0.70 0.69 0.54 0.71 0.69
R3 0.55 0.76 0.70 0.55 0.76 0.69 0.57 0.78 0.70
S 0.56 0.67 0.65 0.57 0.69 0.67 0.60 0.73 0.71

Table 5. Average nanoseconds per decoded integer by varying density d .

Each run of queries is repeated 10 times to smooth fluctuations during measurements. The time
reported is the average among these runs.

Organization.We organize the experiments in three subsections. At the whole index level (Sec-
tion 4.1), we are interested in the number of bits spent per represented integer and the time spent
per decoded integer when decoding sequentially every list in the index. At the list level (Section 4.2),
we report the time needed to compute pair-wise conjunctions (i.e., intersections or boolean AND
queries) and pair-wise disjunctions (i.e., unions or boolean OR queries). Finally, at the single integer
level (Section 4.3), we evaluate the time needed to decode an integer at a random position and
resolve a nextGEQ query.

4.1 Index space and decoding time
Table 4 reports the average number of bits per integer spent by the different methods. Clearly,
the bit rate is increasing for decreasing values of density: the sparser a list is, the less clustered
it is, thus more bits are needed to represent the values. In general, across all density levels, the
bit-aligned methods EF, PEF and BIC offer the best compression effectiveness, with the latter being
the most space-efficient of all. Adapting the sizes of the partitions to the distribution of the integers
being compressed pays off: PEF is always more effective than EF. The byte-aligned methods V,
R2 and R3 are always the largest, with R2 and R3 being always more effective than V on Gov2
but less effective on the other datasets CW09 and CCNews. The use of run containers for the R3
mechanism pays off on the more clustered Gov2, but has a smaller impact on CW09 and CCNews.



On Slicing Sorted Integer Sequences 13

0.01 0.001 0.0001

25.2
21.8 20.518.9 17.4 16.4

40.0 39.6 39.0

15.9
21.2 24.1

FC DC DB SB

(a) integers (%) – Gov2

0.01 0.001 0.0001

0.24 0.41
0.63

0.32 0.30 0.28

1.23 1.21 1.19
1.43

1.99
2.35

H DC DB SB

(b) bits per integer – Gov2

0.01 0.001 0.0001
0.4 0.3 0.3

23.0
19.4 18.2

44.6 41.8 40.7

32.0
38.5 40.8

FC DC DB SB

(c) integers (%) – CW09

0.01 0.001 0.0001

0.47
0.80

1.15
0.47 0.40 0.37

1.58 1.46 1.42

2.91

3.73
4.07

H DC DB SB

(d) bits per integer – CW09

0.01 0.001 0.0001
0.0 0.0 0.0

41.4
36.4 35.1

22.1 19.9 19.2

36.6
43.7 45.7

FC DC DB SB

(e) integers (%) – CCNews

0.01 0.001 0.0001

0.45
0.90 1.201.20 1.05 1.021.04 0.94 0.91

3.29

4.29
4.64

H DC DB SB

(f) bits per integer – CCNews

Fig. 6. Plots (a), (c) and (e) show the percentage of integers covered by the full chunks (FC), dense chunks
(DC), dense blocks (DB) and sparse blocks (SB) of the Slicing approach. Plots (b), (d), (f) show, instead, how
the bits per integer rate of Slicing is fractioned among headers (H), dense chunks, dense blocks and sparse
blocks. For all plots, we show how the breakdowns change by varying density.

In general, between the most effective methods and the least effective ones there is a factor of ≈2
in space consumption.
Lastly, the S solution stands in a middle position between these two classes, costing roughly

0.9 ÷ 2 bits per integer more than the most effective methods. In Fig. 6 we report the detailed
breakdown of how the integers of the test collections are covered by the different universe slices
and how the bits per integer rate is fractioned among them. Not surprisingly, most of the space is
spent in the representation of the sparse slices of size 28 that roughly cover (an average of) the 20%,
37% and 42% of the integers of Gov2, CW09 and CCNews respectively. Another meaningful thing
to notice is that more than 20% of the integers of Gov2 are just covered by runs of 216 elements and,
thus, represented implicitly (dense chunks), whereas this does not happen on the less clustered
CW09 and CCNews.



14 Giulio Ermanno Pibiri

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 3648 6671 16954 710 1591 3732 40 214 523
EF 4652 8356 22818 856 1700 4455 40 192 530
BIC 12169 23608 58349 2649 6377 14765 160 905 2323
PEF 4380 7920 21710 826 1640 4185 40 190 490
R2 377 598 1138 99 232 353 10 57 98
R3 503 962 1338 128 331 395 13 75 115
S 507 1080 2370 135 378 820 11 60 159

Table 6. Average microseconds per AND query by varying density d .

Table 5 reports the average nanoseconds spent per decoded integer, measured by calling the
operation decode for each list in the index. The methods V, R2, R3 and S are the fastest. However,
V decodes a stream of d-gaps and we skipped the final prefix-summing scan in this experiment,
whereas R2, R3 and S directly decode the values without the need of further processing (thus, the
results compare more favourably for V). There is no appreciable difference between the decoding
times of R2 and R3. The other bit-aligned methods EF, PEF and BIC are much slower, with the
latter being the least efficient of all. In particular, the ds2i library API does not expose a decode
operation, thus we implemented it for Elias-Fano-based methods. In such methods, a partition can
be represented using one among three different encodings according to its characteristics, namely
its relative universe of representation and size. These encodings include Elias-Fano, a bitmap and
an implicit representation whenever the relative universe of a partition is equal to its size (see [40]
and [23] for details). Thus, efficient decoding of Elias-Fano codes basically reduces to reading
negated unary codes; bitmaps are decoded using the same procedures as used in S (using the
built-in ctzll function); implicit partitions are decoded with inexpensive for loops. The sequential
decoding speed of Elias-Fano-based methods is, anyway, two times less than the one of the fastest
methods.
The BIC mechanism does not feature specific optimizations, except when decoding runs of

consecutive integers and is, on average, one order of magnitude slower than the fastest methods.

4.2 List queries: boolean AND/OR
We now consider the two fundamental list-level queries of intersections (boolean AND) and unions
(boolean OR). Again, for all methods the result of the query is materialized onto a pre-allocated
output buffer of 32-bit integers, thus we slightly modify the ds2i code base to do so (rather than
just counting matching integers). To ensure a fair comparison, we also slightly modify the pair-wise
intersection and union functions of CRoaring, because these always output a new Roaring data
structure resulting from the operation, thus including (potentially expensive) memory allocations
during the process. Thus, our modification avoids memory allocation but the result is accumulated
in the pre-allocated output buffer mentioned above.

Table 6 shows the result for intersections. The net result is that indexes partitioned by universe,
R2, R3 and S, are significantly more efficient than those partitioned by cardinality, thanks to their
“simpler” intersection algorithm using substantially less instructions and branches. As discussed, in
this context simplicity means that, being aligned to the same relative universe, bitmap intersections
can be carried out by a sequence of inexpensive bitwise AND 64-bit operations; sorted array



On Slicing Sorted Integer Sequences 15

Quantity d = 10−2 d = 10−3 d = 10−4

PEF R2 S PEF R2 S PEF R2 S

instructions (×109) 440.99 41.10 40.30 79.50 9.90 10.30 3.60 1.70 0.85
instructions/cycle 2.07 2.11 1.62 1.98 1.77 1.53 1.75 1.30 1.28
branches (×109) 69.70 4.70 5.50 11.70 1.50 1.50 0.50 0.35 0.14
L1 loads (×109) 101.99 7.80 5.98 18.30 2.10 1.83 0.85 0.45 0.18
L1 misses (×106) 228.40 421.60 282.40 51.10 100.10 62.90 6.70 16.90 6.80
LL loads (×106) 15.70 78.20 24.40 5.45 19.80 7.80 1.49 4.10 1.85
LL misses (×106) 11.20 35.20 14.10 4.50 12.50 5.60 1.43 3.10 1.54

Table 7. Performance counts collected with the perf Linux utility when executing AND queries on the Gov2
dataset, for the PEF, R2 and S methods, by varying density.

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

S with SIMD 507 1080 2370 135 378 820 11 60 159
S without SIMD 816 1959 5190 213 558 1344 13 72 203

Table 8. The performance of the S method when executing AND queries with and without the use of SIMD
instructions. Clearly, the first row of the table corresponds to the last row of Table 6.

intersections can be accelerated using SIMD-based algorithms. This results in 6× ÷ 51× faster
execution for d = 10−2; 5× ÷ 42× for d = 10−3; 4× ÷ 23× for d = 10−4.

As a further evidence of this fact, we report in Table 7 some performance counts collected with
the perf Linux utility, when executing the queries on the Gov2 datasets. We choose to report the
counts for the PEFmethod because it is the one generally performing better among the PC solutions.
From the numbers reported in the table we can see that both R2 and S perform significantly less
instructions and branches, for example, 10× and 8× less instructions for d = 10−2 and d = 10−3
respectively, thus confirming our previous claim about the increase of performance. The PEF
method is also “data hungry” compared to R2 and S as it is clear from the high number of L1 cache
loads. This is explained by the frequent switching of partitions for higher density values. Observe
that PEF is actually exploiting the data cache well (for example, only 228×106 misses out of 102
×109 loads in L1 for d = 10−2), however, the higher number of L1 references imposes a significant
penalty. Also observe that S is generally slower than R2 because of the further slicing into smaller
partitions, inducing more branches that are not easily predicted and thus partially eroding the
instruction throughput. In fact, the (intentionally) simpler design of R2 is a lot more advantageous
for SIMD instructions: to confirm this, we recompiled the CRoaring library by disabling explicit
SIMD optimizations and R2 scored the same as S, so vectorization does the difference. However,
notice how the difference in efficiency vanishes for lower density values because most of the
skipping happens at a coarser level. Furthermore, also observe that the use of run containers in
R3 prevents some SIMD optimizations [13], thus reducing or even annulling the performance gap
between R3 and S.

In Table 8 we also investigate the impact of SIMD instructions for the intersection of small
sorted array discussed in Section 3.2. The experiment highlights two important facts, one being the
consequence of the other: (1) the vectorization of small arrays pays off, as the results for AND are



16 Giulio Ermanno Pibiri

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 7754 12480 21000 2173 3924 6191 285 920 1407
EF 9540 17952 29600 2704 5495 8589 366 1300 2000
BIC 21115 39190 63972 6369 12898 20408 899 3185 5042
PEF 8900 17000 28349 2560 5230 8300 350 1252 1887
R2 1737 3570 5001 562 1360 1762 80 356 543
R3 1950 4215 5180 638 1657 1812 86 408 551
S 1955 4040 7440 590 1315 2265 73 276 476

Table 9. Average microseconds per OR query by varying density d .

significantly better with SIMD instructions (roughly 2× better for sufficiently dense sequences);
(2) most of the running time is actually spent in intersecting small arrays (not surprisingly, since
bitmaps require essentially bitwise instructions that are very cheap). The latter fact explains why
the SIMD optimization is so effective and is consistent with the breakdowns reported in Fig. 6.
Lastly, the effect of vectorization clearly tends to diminish for smaller sequences, being usually the
ones with lower density values, as we can see by comparing the values reported in the columns
corresponding to d = 10−2 and d = 10−4.

Table 9 shows instead the result for unions. For the same reasons discussed above for intersections,
the indexes partitioned by universe are superior. However, due to the scan-based nature of unions,
the performance gap with respect to the indexes partitioned by cardinality is not as high as the
one for intersections. It is anyway consistent and equal to 4.5× ÷ 13× for d = 10−2; 3.7× ÷ 11.5×
for d = 10−3; 3.6× ÷ 10.6× for d = 10−4. Finally, notice that the results for R2, R3 and S are very
similar in this case, with R3 being slightly less efficient.

4.3 Point queries: access and nextGEQ
For the methods V, EF and BIC, the access(i) operation returns the integer in position i mod B
from the partition of index ⌊i/B⌋, for B = 128 integers in this experimentation. In particular, the V
method requires decoding the partition and perform a prefix-summing scan up to position i mod
B. The PEF method needs to first locate the partition from which to return the integer because
partitions have variable sizes. Similarly, all solutions partitioned by universe, R2, R3 and S, have to
take into account the cardinality of each chunk covering a universe of size 216 in order to locate
the chunk containing the i-th integer. Table 10 shows the timings of such algorithms.
The EF method provides generally the fastest query time thanks to the constant-time random

access algorithm of Elias-Fano, with PEF and S being in close second position. The decoding
operation performed by V imposes a performance penalty with respect to such methods, that is
more evident for, clearly, sparser datasets. Again, notice that the access time decreases for decreasing
values of density, because fewer partitions per encoded sequence are represented. Lastly, S is faster
than R2 because the latter adopts a linear search for the proper chunk to access, whereas S builds
cumulative cardinality counts. Concerning the R3 variant with run containers, the linear-search
approach employed absorbs roughly 90% of the time resulting in a significant slowdown, confirming
the experimental conclusions already given by the authors of Roaring [13].

Table 11 shows instead the results for the nextGEQ(x) query. In this case, for all methods
partitioned by cardinality, the query is resolved by relying on the skip pointers, as explained in



On Slicing Sorted Integer Sequences 17

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 195 174 240 155 184 222 105 151 189
EF 118 122 173 88 103 123 58 75 86
BIC 890 835 1295 904 960 1230 685 876 1062
PEF 154 171 210 118 145 126 77 100 72
R2 475 545 610 294 453 402 111 365 310
R3 5604 18710 2852 2151 7681 1221 443 2254 612
S 153 170 244 105 116 152 55 61 78

Table 10. Average nanoseconds per random access query by varying density d .

Method d = 10−2 d = 10−3 d = 10−4

Gov2 CW09 CCNews Gov2 CW09 CCNews Gov2 CW09 CCNews

V 252 226 308 255 226 279 197 181 243
EF 187 122 250 146 155 175 91 113 120
BIC 955 897 1385 951 1012 1290 710 878 1100
PEF 167 182 229 138 157 144 94 118 89
R2 115 137 185 90 119 133 55 80 82
R3 105 138 188 80 115 136 50 72 85
S 145 174 225 90 110 134 48 57 69

Table 11. Average nanoseconds per nextGEQ query by varying density d .

Section 2.1. Precisely, the wanted partition is first identified by binary searching x among the skip
pointers, then the operation is concluded in the partition. Differently, the mechanism partitioned
by universe directly identifies the partition by considering fields of the binary representation of the
key x . For this reason and as already discussed in Section 3.2, this operation is actually faster than
access for universe-aligned methods.
Again, the Elias-Fano-based methods provides generally better efficiency but with R2 and S

being faster especially for lower density values: in such cases, S is the fastest thanks to the further
skipping introduced within a single partition. The slowdown imposed by the runs in R3 is alleviated
by the use of binary search in this case.

5 CONCLUSIONS
The problem of introducing a compression format for sorted integer sequences, with good practical
intersection/union performance, is old but pervasive in Computer Science, given its many applica-
tions, such as web search engines to mention a notable one. Identifying a single solution to the
problem is not generally easy, rather the many space/time trade-offs available can satisfy different
application requirements and the “best” solution should always be determined by considering the
actual data distribution. To this end, we compare the two different paradigms that partition an
inverted list for efficient query processing, either by cardinality or by universe.

Figure 7 is a clear summary of such experimental comparison because it shows different space/-
time trade-off points achievable for the list intersection operation which is the core one for inverted
indexes. On the one hand, techniques that use a partitioning-by-cardinality approach offer the



18 Giulio Ermanno Pibiri

3 4 5 6 7 8 9 10
bits/integer

27

29

211

213

se
c/

AN
D

Gov2 CW09 CCNews

V EF BIC PEF R2 R3 S

Fig. 7. Space/time trade-off curve for the different representations summarized in Table 1, when executing
AND queries under a density level of 10−3. Note the logarithmic scale on the y axis.

best space effectiveness, such as Elias-Fano-based methods and Interpolative; on the other hand,
the partitioning-by-universe paradigm offers a remarkably improved intersection efficiency at the
expense of space effectiveness, as apparent with the Roaring method. The Slicing solution devised
here offers a leading compromise between these two edge points, by combining operational effi-
ciency with space effectiveness. Observe that the Variable-Byte mechanism is generally dominated
by other space/time trade-off points: its main strength lies in the simplicity of the implementation
and the remarkably compact corresponding code (as far as SIMD instructions are not considered).
Because of the maturity reached by the state-of-the-art and the specificity of the problem,

identifying future research directions is not immediate. We mention some promising ones.
In general, devising “simpler” compression formats that can be decoded with algorithms using

low-latency instructions (e.g., bitwise) and with as few branches as possible, is a profitable line
of research, as demonstrated by the experimentation in this article. Such algorithms favour the
super-scalar execution of modern CPUs and are also suitable for SIMD instructions.
Another direction could look at devising dynamic and compressed representations for integer

sequences, able of also supporting additions and deletions. This problem is actually a specific case of
the more general dictionary problem, which is a fundamental textbook problem. While a theoretical
solution already exists with all operations supported in optimal time under succinct space [27], an
implementation with good practical performance could be of great interest for dynamic inverted
indexes.

ACKNOWLEDGMENTS
This work was partially supported by the BIGDATAGRAPES project (grant agreement #780751,
European Union’s Horizon 2020 research and innovation programme).

REFERENCES
[1] Vo Ngoc Anh and Alistair Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. Information

Retrieval Journal 8, 1 (2005), 151–166.
[2] Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words. Software: Practice and Experience 40, 2

(2010), 131–147.



On Slicing Sorted Integer Sequences 19

[3] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Y. Zien. 2003. Efficient query evaluation using
a two-level retrieval process. In Proceedings of the 12th ACM International Conference on Information and Knowledge
Management. 426–434.

[4] B. Barla Cambazoglu and Ricardo Baeza-Yates. 2015. Scalability Challenges in Web Search Engines. Morgan & Claypool
Publishers.

[5] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better bitmap performance with Roaring bitmaps.
Software: practice and experience 46, 5 (2016), 709–719.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd
ed.). MIT Press.

[7] Jeffrey Dean. 2009. Challenges in building large-scale information retrieval systems: invited talk. In Proceedings of the
2nd International Conference on Web Search and Data Mining.

[8] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static Files. J. ACM 21, 2 (1974), 246–260.
[9] Peter Elias. 1975. Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory

21, 2 (1975), 194–203.
[10] Robert Mario Fano. 1971. On the number of bits required to implement an associative memory. Memorandum 61,

Computer Structures Group, MIT (1971).
[11] Solomon Golomb. 1966. Run-length encodings. IEEE Transactions on Information Theory 12, 3 (1966), 399–401.
[12] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through vectorization. 45, 1 (2015),

1–29.
[13] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François Saint-Jacques, and Gregory Ssi-Yan-Kai.

2018. Roaring bitmaps: Implementation of an optimized software library. Software: Practice and Experience 48, 4 (2018),
867–895.

[14] Daniel Lemire, Nathan Kurz, and Christoph Rupp. 2018. Stream-VByte: faster byte-oriented integer compression.
Inform. Process. Lett. 130 (2018), 1–6.

[15] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently faster and smaller compressed bitmaps with
roaring. Software: Practice and Experience 46, 11 (2016), 1547–1569.

[16] Antonio Mallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano Venturini. 2017. Faster BlockMax
WAND with Variable-sized Blocks. In Proceedings of the International ACM Conference on Research and Development in
Information Retrieval. 625–634.

[17] ChristopherManning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge
University Press.

[18] Alistair Moffat. 2008. Compressing integer sequences and sets. In Encyclopedia of algorithms. Springer, 1–99.
[19] Alistair Moffat and Matthias Petri. 2017. ANS-Based Index Compression. In Proceedings of the ACM on Conference on

Information and Knowledge Management. 677–686.
[20] Alistair Moffat and Matthias Petri. 2018. Index Compression Using Byte-Aligned ANS Coding and Two-Dimensional

Contexts. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 405–413.
[21] Alistair Moffat and Lang Stuiver. 1996. Exploiting Clustering in Inverted File Compression. In Data Compression

Conference. 82–91.
[22] Alistair Moffat and Lang Stuiver. 2000. Binary Interpolative Coding for Effective Index Compression. Information

Retrieval Journal 3, 1 (2000), 25–47.
[23] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes. In Proceedings of the 37th International

Conference on Research and Development in Information Retrieval. 273–282.
[24] Prashant Pandey, Michael A Bender, and Rob Johnson. 2017. A fast x86 implementation of select. arXiv preprint

arXiv:1706.00990 (2017).
[25] Giulio Ermanno Pibiri, Matthias Petri, and Alistair Moffat. 2019. Fast Dictionary-Based Compression for Inverted

Indexes. In International ACM Conference on Web Search and Data Mining. 9.
[26] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Clustered Elias-Fano indexes. ACM Transactions on Information

Systems 36, 1, Article 2 (2017), 33 pages.
[27] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Dynamic Elias-Fano Representation. In Proceedings of the 28-th

Annual Symposium on Combinatorial Pattern Matching. 30:1–30:14.
[28] Giulio Ermanno Pibiri and Rossano Venturini. 2018. Inverted Index Compression. Encyclopedia of Big Data Technologies

(2018), 1–8.



20 Giulio Ermanno Pibiri

[29] Giulio Ermanno Pibiri and Rossano Venturini. 2019. On Optimally Partitioning Variable-Byte Codes. IEEE Transactions
on Knowledge and Data Engineering (2019), 1–12.

[30] Jeff Plaisance, Nathan Kurz, and Daniel Lemire. 2015. Vectorized VByte Decoding. In International Symposium on Web
Algorithms.

[31] Stephen Robertson and Sparck Jones. 1976. Relevance weighting of search terms. Journal of the American Society for
Information Science 27, 3 (1976), 129–146.

[32] Benjamin Schlegel, ThomasWillhalm, andWolfgang Lehner. 2011. Fast Sorted-Set Intersection using SIMD Instructions..
In ADMS@ VLDB. 1–8.

[33] Falk Scholer, Hugh E Williams, John Yiannis, and Justin Zobel. 2002. Compression of inverted indexes for fast query
evaluation. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 222–229.

[34] Fabrizio Silvestri. 2007. Sorting Out the Document Identifier Assignment Problem. In Proceedings of the 29th European
Conference on IR Research. 101–112.

[35] Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit Oberoi. 2011. SIMD-based decoding of
posting lists. In Proceedings of the 20th International Conference on Information and Knowledge Management. 317–326.

[36] Larry H Thiel and HS Heaps. 1972. Program design for retrospective searches on large data bases. Information Storage
and Retrieval 8, 1 (1972), 1–20.

[37] Andrew Trotman. 2014. Compression, SIMD, and postings lists. In Proceedings of the 2014 Australasian Document
Computing Symposium. ACM, 50.

[38] Peter van Emde Boas. 1975. Preserving Order in a Forest in less than Logarithmic Time. In Proceedings of the 16-th
Annual Symposium on Foundations of Computer Science. 75–84.

[39] Peter van Emde Boas. 1977. Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space. Inform.
Process. Lett. 6, 3 (1977), 80–82.

[40] Sebastiano Vigna. 2013. Quasi-succinct indices. In Proceedings of the 6th ACM International Conference on Web Search
and Data Mining. 83–92.

[41] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2017. An experimental study of bitmap
compression vs. inverted list compression. In Proceedings of the 2017 ACM International Conference on Management of
Data. ACM, 993–1008.

[42] Ian Witten, Alistair Moffat, and Timothy Bell. 1999. Managing gigabytes: compressing and indexing documents and
images (2nd ed.). Morgan Kaufmann.

[43] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression and query processing with optimized
document ordering. In Proceedings of the 18th International Conference on World Wide Web. 401–410.

[44] J. Zhang, X. Long, and T. Suel. 2008. Performance of compressed inverted list caching in search engines. In International
World Wide Web Conference (WWW). 387–396.

[45] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. Comput. Surveys 38, 2 (2006), 1–56.
[46] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2006. Super-Scalar RAM-CPU Cache Compression. In

Proceedings of the 22nd International Conference on Data Engineering. 59–70.


	Abstract
	1 Introduction
	2 Paradigms
	2.1 Partitioning by cardinality
	2.2 Partitioning by universe

	3 The Slicing approach
	3.1 Data structure
	3.2 Operations

	4 Experiments
	4.1 Index space and decoding time
	4.2 List queries: boolean AND/OR
	4.3 Point queries: access and nextGEQ

	5 Conclusions
	Acknowledgments
	References

