
Efficient and EffectiveQuery Auto-Completion
Simon Gog

eBay Inc.
sgog@ebay.com

Giulio Ermanno Pibiri
ISTI-CNR

giulio.ermanno.pibiri@isti.cnr.it

Rossano Venturini
University of Pisa

rossano.venturini@unipi.it

ABSTRACT
Query Auto-Completion (QAC) is an ubiquitous feature of modern
textual search systems, suggesting possible ways of completing
the query being typed by the user. Efficiency is crucial to make
the system have a real-time responsiveness when operating in the
million-scale search space. Prior work has extensively advocated
the use of a trie data structure for fast prefix-search operations in
compact space. However, searching by prefix has little discovery
power in that only completions that are prefixed by the query are
returned. This may impact negatively the effectiveness of the QAC
system, with a consequent monetary loss for real applications like
Web Search Engines and eCommerce.

In this work we describe the implementation that empowers a
new QAC system at eBay, and discuss its efficiency/effectiveness in
relation to other approaches at the state-of-the-art. The solution is
based on the combination of an inverted index with succinct data
structures, a much less explored direction in the literature. This
system is replacing the previous implementation based on Apache
SOLR that was not always able to meet the required service-level-
agreement.

1 INTRODUCTION
The Query Auto-Completion (QAC) problem we consider can be
formulated as follows. Given a collection S of scored strings and a
partially-completed user queryQ , find the top-k scored completions
that match Q in S. For our purposes, a completion is a full (i.e.,
completed) query for which the search engine, that indexes a large
document collection, returns a relevant and non-empty recall set.
The collection S is usually a query log consisting in several million
user queries seen in the past, with scores taken as a function of
the frequencies of the queries. The straightforward approach of
suggesting the “most popular queries” [1] (i.e., the ones appearing
more often) works well for real-world applications like eBay search.

At eBay, the QAC system helps users to formulate queries to
explore 1.4 billion live listings better (e.g., with less spell errors)
and faster (as we also include relevant category constraints). This
is important for desktop users but, in particular, for the growing
number of users of mobile devices. In fact, as QAC is expected
to happen instantaneously, these systems have a low-millisecond
service-level-agreement (SLA). The previous system implemented
at eBay, based on Apache SOLR1, was not always able to meet the
SLA and had a sub-optimal memory footprint. This motivated the
development of eBay’s new QAC system.

In this paper, we share the basic building blocks of the retrieval
part of the system. In short, it is based on a combination of suc-
cinct data structures, an inverted index, and tailored retrieval algo-
rithms. We also provide an open-source implementation in C++ of
the presented techniques – available at https://github.com/jermp/

1https://lucene.apache.org/solr

autocomplete – with a reproducible experimental setup that in-
cludes state-of-the-art baselines.

Lastly, we remark that a production version of this system2 was
implemented in eBay’s Cassini search framework and can serve
about 135,000 query per seconds at 50% CPU utilization on a 80-core
machine. (The 99-quantile latency is below 2 milliseconds and the
average latency is about 190 µs.)

2 RELATEDWORK
The QAC problem has been studied rather extensively since its
popularization by Google around 2004. The interested reader can
refer to the general surveys by Cai et al. [4] and Krishnan et al. [16]
for an introduction to the problem.

Following the taxonomy given by Krishnan et al. [16], we have
two major auto-completion query modes – prefix-search and multi-
term prefix-search – that have been implemented and are in wide-
spread use. Our own implementation at eBay is no exception, thus
these are the query modes we also focus on.

Informally speaking, searching by prefix means returning strings
from S that are prefixed by the concatenation of the terms of Q ; a
multi-term prefix-search identifies completions where all the terms
of Q appear as prefixes of some of the terms of the completions, re-
gardless their order. We will describe and compare these two query
modes in details in Section 3. Prefix-search is supported efficiently
by representing S with a trie [11] and many papers discuss this
approach [1, 12, 18, 19, 32, 33]. Multi-term prefix-search is, instead,
accomplished via an inverted index built from the completions
in S [2, 14]. In particular, if we assign integer identifiers (docids)
to the completions, an inverted list is materialized for each term
that appears in S and stores the identifiers of the completions that
contain the term. (As we are going to illustrate in the subsequent
sections, how docids are assigned to the completions is fundamental
for the efficiency of the inverted index and, hence, of the overall
QAC system.)

For example, ifQ is “shrimp dip rec”, then a plausible completion
found by prefix-search could be “shrimp dip recipes”. A multi-
term prefix-search could return, instead, “shrimp bienville dip
recipe” or “recipe for appetizer shrimp chipolte dip”. Note that
all terms of Q are prefixed by some terms of these two example
completions but in no specific order.

The focus of this paper is on the query modes, rather than on
the ranking of results. As already stated, we consider the popular
strategy of ranking the results by their frequency within a query
log. There have been some studies comparing different ranking
mechanism for a single query mode, e.g., prefix-search [7]. However,
little attention was given to the efficiency/effectiveness trade-off
between different query modes, with an exception in this regard

2This system includes spell correction and business logic. Both parts add latency but
also were improved by the presented techniques.

ar
X

iv
:2

00
5.

06
21

3v
2

 [
cs

.I
R

]
 1

0
Ju

n
20

20

https://github.com/jermp/autocomplete
https://github.com/jermp/autocomplete
https://lucene.apache.org/solr
https://github.com/jermp/autocomplete

1 Complete(query, k) :
2 prefix, suffix = Parse(dictionary, query)
3 if prefix was not found : return []
4 [ℓ, r] = dictionary.LocatePrefix(suffix)
5 if [ℓ, r] is invalid : return []
6 [p,q] = completions.LocatePrefix(prefix, [ℓ, r])
7 if [p,q] is invalid : return []
8 topk_ids = RMQ([p,q], k)
9 strings = ExtractStrings(topk_ids)

10 return strings

(a)

1 Complete(query, k) :
2 prefix, suffix = Parse(dictionary, query)
3 [ℓ, r] = dictionary.LocatePrefix(suffix)
4 if [ℓ, r] is invalid : return []
5 topk_ids = ConjunctiveSearch(prefix, [ℓ, r], k)
6 strings = ExtractStrings(topk_ids)
7 return strings

(b)

Figure 1: Auto-Completion algorithms based on prefix-search (a)
and conjunctive-search (b).

being the experimentation by Krishnan et al. [16]. They also report
significant variations in effectiveness by varying query mode.

We now briefly summarize two results that are closely related
to the contents of this paper because both use an inverted index.
Bast and Weber [2] merge the inverted lists into blocks and store
their unions to reduce the number of lists. As we will see, this is
crucial to sensibly boost the responsiveness of the QAC system in
the case of single-term queries. For queries involving several terms,
Ji et al. [14] propose an efficient algorithm to quickly check whether
a completion belongs to the union of a set L of inverted lists. Instead
of trivially computing the union, the idea is to check whether the
terms in the completion overlap with those corresponding to the
inverted lists in L.
Other Approaches. Although inherently different from the direc-
tion we pursue here, other approaches may include sub-string search,
where each term of Q can occur as a sub-string of a completion.
However, to the best of our knowledge, there are no implementa-
tions of this query mode but only a discussion by Chaudhuri and
Kaushik [6]. Also, suggesting n-grams from the indexed documents
was found to be very effective in absence of a query log [3].

3 EFFICIENT AND EFFECTIVE QUERY
AUTO-COMPLETION

Here we describe the QAC algorithm used at eBay – in essence,
based on the multi-term prefix-search query mode that we are going
to call conjunctive-search from now on.

We begin with an overview of the different steps involved in the
identification of the top-k completions for a query in Section 3.1.
The aim of such section is to introduce the data structures and
algorithms involved in the search. From Section 1, recall that we
useS to denote the set of scored strings from which completions are

Table 1: An example set of completions seen as strings and integer
sets in (a). The integer sets are obtained by replacing the terms with
their ids as given by the dictionary in (b).

(a)

docids completions sets
9 audi ⟨2⟩
6 audi a3 sport ⟨2, 1, 8⟩
3 audi q8 sedan ⟨2, 6, 8⟩
8 bmw ⟨3⟩
5 bmw x1 ⟨3, 10⟩
1 bmw i3 sedan ⟨3, 4, 7⟩
4 bmw i3 sport ⟨3, 4, 8⟩
2 bmw i3 sportback ⟨3, 4, 9⟩
7 bmw i8 sport ⟨3, 5, 8⟩

(b)

termids terms inverted lists
1 a3 ⟨6⟩
2 audi ⟨3, 6, 9⟩
3 bmw ⟨1, 2, 4, 5, 7, 8⟩
4 i3 ⟨1, 2, 4⟩
5 i8 ⟨7⟩
6 q8 ⟨3⟩
7 sedan ⟨1, 3⟩
8 sport ⟨4, 6, 7⟩
9 sportback ⟨2⟩
10 x1 ⟨5⟩

returned. As we will see next, we have several data structures built
from S, such as: (1) a dictionary, storing all its distinct terms; (2) a
representation of the completions that allows efficient prefix-search;
(3) an inverted-index. Section 3.2 discusses the implementation
details of these data structures. Lastly, in Section 3.3 we explain
how to implement conjunctive-search efficiently.

3.1 Query Processing Steps
In this section we detail the processing steps that are executed to
identify the top-k completions for a query. We are going to illustrate
the pseudo code given in Fig. 1 that shows two different solutions
to the QAC problem, respectively based on prefix-search (a) and
conjunctive-search (b).

A detail of crucial importance for the search efficiency is that
we do not manipulate scores directly, rather we assign docids to
completions in decreasing-score order. (Ties broken lexicographi-
cally.) This implies that if a completion has a smaller docid than
another, it has a “better” score as well. As we are going to illustrate
next, this docid-assignment strategy substantially simplifies the
implementation of both prefix-search and conjunctive-search.

With this initial remark in mind, we now consider an example
of S in Table 1a. Suppose k = 3. If the query Q is “bm”, then
the algorithm in Fig. 1a based on prefix-search would return the
completions having docid 1, 2, and 4. (The other implementation
in Fig. 1b would return the same results.) Now, if Q is “sport”, the
algorithm in Fig. 1b would find 2, 4, and 6, as the top-3 docids. (Note
that the algorithm in Fig. 1a is not able to answer this query.)
Parsing. We consider the query as composed by a set of terms,
each term being a group of characters separated by white spaces.
The query can possibly end without a white space: in this case the
last query term is considered to be incomplete. The first processing
step involves parsing the query, i.e., dividing it into two separate
parts: a prefix and a suffix. The suffix is just the last term (possi-
ble, incomplete). The prefix is made up of all the terms preceding
the suffix: each of them, say t , is looked up in a dictionary data
structure by means of the operation called Locate(t) that returns
the lexicographic integer id of t . For example, the id of the term
“sedan” is 7, in the example in Fig. 1b. (If term t does not belong to
the dictionary then an invalid id is returned to signal this event.)

(a) conjunctive-search (b) prefix-search (c) conjunctive-search

Figure 2: Some example of searches on the AOL query log. In (a), a simple prefix-search returns no results at all, whereas conjunctive-search
does. In (b) and (c) we see that both search modes return a full set of results (top-10), that are significantly different: only the results enclosed
within the boxes are in common. The example shows that the first two results returned by conjunctive-search have a better score than the
first result of prefix-search; the 4th, 5th, 6th, and 7th results of conjunctive-search have all better score than the second result of prefix-search.

Prefix-search. Let us assume for the moment that all terms in the
prefix are found in the dictionary. Let PS indicate the concatena-
tion of prefix and suffix. The Complete algorithm in Fig. 1a, based
on prefix-search, returns the top-k completions from S that are
prefixed by PS and comprises two steps. First, the dictionary is
used to obtain the lexicographic range [ℓ, r] of all the terms that
are prefixed by the suffix, using the operation LocatePrefix(suffix).
If there is no string in the dictionary that is prefixed by suffix, then
the range [ℓ, r] is invalid and the algorithm returns no results.

Otherwise, the operation LocatePrefix(prefix, [ℓ, r]) is executed
on a data structure representing the completions of S. More pre-
cisely, this data structure does not represent the completions as
strings of characters, but as (multi-) sets of integers, each integer
begin the lexicographic id of a dictionary term. Refer to Table 1a for
a pictorial example. In Fig. 1a, we indicate such data structure with
the name completions. The operation LocatePrefix(prefix, [ℓ, r]) re-
turns, instead, the lexicographic range [p,q] of the completions in S
that are prefixed by PS . Again, if there are no strings in completions
that are prefixed by PS , then prefix-search fails.

Let us consider a concrete example for the query “bmw i3 s”, with
S as in Table 1a. Then prefix = ⟨3, 4⟩ and suffix = “s”. The first oper-
ation LocatePrefix(“s”) on the dictionary of Table 1b returns [7, 9].
The second operation LocatePrefix(⟨3, 4⟩, [7, 9]), instead, returns
the range [6, 8].

We then proceed with the identification of the top-k comple-
tions. This step retrieves the smallest docids of the completions
whose lexicographic id is in [p,q]. If we materialize the list of the
docids following the lexicographic order of the completions (such
as the column “docids” in Table 1a) – say docids – then identifying
the top-k docids boils down to support range-minimum queries
(RMQ) [22] over docids[p,q]. Note that this is possible because of
the used docid-assignment. We recall that RMQ(p,q) returns the
position of the minimum element in docids[p,q]. Specifically, we
have that docids[i] = x , where x is the docid of the i-th lexicograph-
ically smallest completion. In other words, docids is a map from the

lexicographic id of a completion to its docid. The column “docids” in
Table 1a shows an example of such sequence. Continuing the same
example as before for the query “bmw i3 s”, we have got the range
[6, 8], thus we have to report the k smallest ids in docids[6, 8]. For
example, if k = 1, then RMQ(6, 8) = 6 and we return docids[6] = 1.
Conjunctive-search. A conjunctive-search is a multi-term prefix-
search that uses an inverted index. At a high-level point of view,
what we would like to do is to identify completions containing all
the terms specified in the prefix and any term that is prefixed by
the suffix. We can do this efficiently by computing the intersection
between the inverted lists of the term ids in the prefix and the union
of the inverted lists of all the terms in [ℓ, r]. In Section 3.3 we will
describe efficient implementations of this algorithm.

For our example query “bmw i3 s”, the intersection between the
inverted lists in Table 1b of the terms “bmw” and “i3” gives the
list X = [1, 2, 4]. Since the range [ℓ, r] is [7, 9] in our example, the
union of the inverted lists 7, 8, and 9 is Y = [1, 2, 3, 4, 6, 7]. We then
return the docids in X ∩ Y , i.e., [1, 2, 4]. In fact, it is easy to verify
that such completions of id 1, 2, and 4, are the ones having all the
two terms of the prefix and any term among the ones prefixed by
“s”, that are “sedan”, “sport” and “sportback”.

Again, observe that since the lists are sorted by docids and we
assigned docids in decreasing score order, the best results are those
appearing before as we process the lists from left to right.

We claim that conjunctive-search is more powerful than prefix-
search, for the following reasons.

• It is not restricted to just the completions that are prefixed by
PS . In fact, what if we have a query like “i3” or “bmw sport i8”?
The simple prefix-search is not able to answer. (No completion is
prefixed by “i3” or “bmw sport”.)

• There could exist a completion that is not prefixed by PS but has
a better score than that of some results identified by prefix-search.
Consider the practical examples in Fig. 2. over the AOL dataset,

one of the publicly available datasets we use in our experimental
analysis.

• It can also be issued when a query term is out of the vocabulary.
In that case, prefix-search is not able to answer at all (unless the
term is the suffix), whereas conjunctive-search can use the other
query terms in the prefix.
However, as we will experimentally show in Section 4, this ef-

fectiveness does not come for free in terms of efficiency.
Reporting. After the identification of the set of (at most) k top ids,
that we indicate with topk_ids in Fig. 1, the last step reports the
final identified completions, i.e., those strings having ids in topk_ids.
What we need is a data structure supporting the operationAccess(x)
that returns the string in S having lexicographic id x . Once we
have a completion, that is a (multi-) set of term ids, we can use the
dictionary to Extract each term from its id, hence reconstructing
the actual completion’s string.

3.2 Data Structures
In the light of the query processing steps described in Section 3.1 and
their operational requirements, we now discuss the implementation
details of the data structures they use.
The Dictionary. The string dictionary data structure has to sup-
port Locate, LocatePrefix and Extract. An elegant way of represent-
ing in compact space a set of strings while supporting all the three
operations, is that of using Front Coding compression (FC) [17].
FC provides good compression ratios when the strings share long
common prefixes and remarkably fast decoding speed.

We use a (standard) two-level data structure to represent the
dictionary. We chose a block size B and compress with FC the
⌈|dictionary |/(B + 1)⌉ buckets, with each bucket comprising B com-
pressed strings (except, possibly, the last). The first strings of every
bucket are stored uncompressed in a separate header stream. It
follows that both operations Locate and LocatePrefix are supported
by binary searching the header strings and then scanning: one
single bucket for Locate; or at most two buckets for LocatePrefix.
The operation Extract is even faster than Locate because only one
bucket has to be scanned without any prior binary search. Clearly
the bucket size B controls a space/time trade-off [17]: larger val-
ues of B favours space effectiveness (less space overhead for the
header), whereas smaller values favours query processing speed.
In Section 4 we will fix the value of B yielding a good space/time
trade-off.
TheCompletions. For representing the completions in S, we need
a data structure supporting LocatePrefix which returns the lexico-
graphic range of a given input string. (In the following discussion,
we assume S to be sorted lexicographically.)

As already mentioned in Section 2, a classic option is the trie [11]
data structure, that is a labelled tree with root-to-leaf paths rep-
resenting the strings of S. In our setting, we need an integer trie
and we adopt the data structure described by Pibiri and Venturini
[27, 28], augmented to keep track of the lexicographic range of
every node. More specifically, a node n stores the lexicographic
range spanned by its rooted subtrie: if α is the string spelled-out
by the path from the root to n and [p,q] is the range, then all the
strings prefixed by α span the contiguous range S[p,q]. It follows

that, for a trie level consisting in m nodes, the sequence formed by
the juxtaposition of the ranges [p1,q1] . . . [pm ,qm] is sorted by the
ranges’ left extremes, i.e., pi < pi+1 for i = 1, . . . ,m − 1. Therefore,
to allow effective compression is convenient to represent such se-
quence as two sorted integer sequences: the sequence L formed by
the left extremes, such that L[i] = pi − i; and the sequence obtained
by considering the range sizes and taking its prefix sums. Each level
of the trie is, therefore, represented by 4 sorted integer sequences:
nodes, pointers, left extremes, and range sizes. Another option to
represent S is to use FC compression as similarly done for the
dictionary data structure. We now discuss advantages and disad-
vantages of both options, and defer the experimental comparison
to Section 4.

• Tries achieve compact storage because common prefixes between
the strings are represented once by a shared root-to-node path in
the tree. Prefix coding is clearly better than that of FC but the
trie needs more redundancy for the encoding of the tree topology
and range information.

• Although prefix searches in the trie are supported in time linear
in the size of the searched pattern (assuming O(1) time spent per
level), the traversal process is cache-inefficient for long patterns.
The binary search needed to locate the front-coded buckets is
not cache-friendly as well (and includes string comparisons), but
is compensated by the fast decoding of FC.

• Another point of comparison is that of supporting the Access(i)
operation that returns the i-th smallest completion from S. This
is needed to implement the last step of processing, that is to
report the identified top-k completions as strings. The trie data
structure can not support Access without explicit node-to-parent
relationships, whereas FC offers a simple solution taking, again,
time proportional to B. If we opt to use a trie, a simple way of
supporting Access is to explicitly represent the completions in
a forward index that is, essentially, a map from the docid to the
completion. (The use of a forward index is also crucial for the
efficient implementation of conjunctive-search we will describe
in Section 3.3.)

In conclusion, we have two different and efficient ways of sup-
porting prefix-search and Reporting: either a trie plus a forward
index, or FC compression.
Range-MinimumQueries. The identification of the top-k docids
in a given lexicographic range follows a standard approach [12,
22]. The algorithm iteratively finds the k smallest elements in
docids[p,q]. To do so, we maintain a min-heap of ranges, each
of these keeping track of the position of the minimum element in
the range. At each step of the loop: (1) we pop from the heap the
interval having the minimum element; (2) add it to the result set; (3)
push onto the heap the two sub-ranges respectively to the left and
to the right on the minimum element. Correctness is immediate.
To answer a range-minimum query we build and store the carte-
sian tree of the array docids. It is well-known that such tree can be
represented in just 2n + o(n) bits, with n being the size of the array,
using a succinct encoding such as balanced parentheses (BP) [10].
Since the time complexity of a RMQ is O(1) and the heap contains
O(k) elements (at each iteration, we push at most two ranges but

always remove one) it follows that this algorithm has a worst-case
complexity of Θ(k logk).
The Inverted Index. Inverted indexes are subject of deep study
and a wealth of different techniques can be used to represent them
in compressed space [30], while allowing efficient query process-
ing. What we need is an algorithm for supporting list intersec-
tions: details on how this can be achieved by means of the Next
Greater-than or Equal-to (NextGeq) primitive are discussed by
many papers [21, 23, 25, 30]. The operation NextGeqt (x) returns
the element z ≥ x from the inverted list of the term t if such el-
ement exists, otherwise the sentinel ∞ (larger than any possible
value) is returned.

3.3 Multi-term Prefix-search Query Mode:
Conjunctive-search

In this section we discuss efficient implementations of the conjunctive-
search algorithm introduced in Section 3.1. We begin our discussion
by describing a simple approach that uses just an inverted index;
then highlight its main efficiency issues and present solutions to
solve them. Remember that the objective of this query mode is to
return completions that contain all the terms in the prefix and any
term that is prefixed by the suffix.
Using an Inverted Index. A first approach is illustrated in Fig. 3.
The idea is to iterate over the elements of the intersection (lines
7-8) between the inverted lists of the prefix and, for each element,
check whether it appears in any of the inverted lists of the terms in
[ℓ, r] (inner loop in lines 9-18). Directly iterating over the elements
of the intersection, rather than computing the whole intersection
between the inverted lists, saves time when the intersection has
many results because we only need the first, i.e., smallest, k results.
(Remember that we assign docids in decreasing score order.)

To implement the check for a given docid x, we maintain a heap
of list iterators: one iterator for each inverted list. To be clear, an
iterator over a list is an object that has the capability of skipping
over the list values using the NextGeq primitive, and advancing to
the element coming next the one currently “pointed to”. At each
step of the inner loop, the heap selects the iterator that currently
“points to” the minimum docid. If such docid is smaller than x,
then we can advance the iterator to the successor of x by calling
NextGeq and re-heapify the heap (line 13). Otherwise we have that
such docid is larger-than or equal-to x. If it is equal to x, then a
result is found. Then in any case we can break the loop because
either a result was found, or the docid is strictly larger then x, thus
also every other element in the heap is larger than x. Fig. 4 details
a step-by-step example showing the behavior of the algorithm.

Letm = r − ℓ + 1 be the size of the range [ℓ, r]. The filling and
making of the heap (lines 4-6) takes O(m) time. For every element
of the intersection, we execute the inner loop (lines 9-18) that has a
worst-case complexity of tcheck = O(m logm × tNextGeq). Therefore,
the overall complexity isO(m+tintersection+|intersection|×tcheck). We
point out that this theoretical complexity is, however, excessively
pessimistic because tcheck may be very distant from its worst-case
scenario, and indeed be evenO(1) when the body of the else branch
at line 15 is executed (lines 16-18). Also, the heap cost ofO(m logm)
progressively vanishes as iterators are popped out from the data

1 ConjunctiveSearch(prefix, [ℓ, r], k) :
2 intersection = index.IntersectionIterator(prefix)
3 results = [], heap = []
4 for i = ℓ; i ≤ r ; i = i + 1 :
5 heap.Append(index.Iterator(i))
6 heap.MakeHeap()
7 while intersection.HasNext() and !heap.Empty() :
8 x = intersection.Next()
9 while !heap.Empty() :

10 top = heap.Top()
11 if top.docid > x : break
12 if top.docid < x :
13 if top.NextGeq(x) < ∞ : heap.Heapify()
14 else : heap.Pop()
15 else :
16 results.Append(x)
17 if |results| == k : return results
18 break

19 return results

Figure 3: Heap-based conjunctive-search algorithm.

1 3

4 6 7

(5)

1 3

4 6 7

2

(1)

t1 :

<latexit sha1_base64="2SqVHcUrG/uq4EJHmBOGcR/9VP4=">AAACbnicbVHbSsNAEN3GW623quCLiMEq+CAlKRVFKIi++Khiq1BD2WwnunazibsTtQb/wVf9M//CT3ATi9jqwMLhzJnZMzN+LLhGx/koWGPjE5NTxenSzOzc/EJ5camlo0QxaLJIROrKpxoEl9BEjgKuYgU09AVc+r3jLH/5AErzSF5gPwYvpDeSB5xRNFRrEzvuwWanXHGqTh72X+AOQIUM4rSzWDi/7kYsCUEiE1TrtuvE6KVUIWcCXkrXiYaYsh69gbaBkoagvTS3+2JvGaZrB5EyT6Kds78rUhpq3Q99owwp3urRXEb+l2snGOx7KZdxgiDZ90dBImyM7Gx2u8sVMBR9AyhT3Hi12S1VlKHZ0FAnxEZAhYadvNBtoErASwX3wUwoRwZ8oOo+8dJnXh/mf+ReKuERn3LfQ4oL10uzHWRuS+YK7ujO/4JWrerWq7tntcrh0eAeRbJKNsg2cckeOSQn5JQ0CSN35JW8kffCp7VirVnr31KrMKhZJkNhbX8BWbu+iQ==</latexit>

t2 :

<latexit sha1_base64="688hg4ZJTHOOR3VUtH+R+aUHoOQ=">AAACbnicbVHbSsNAEN3GW63XKvgiYrAKPkhJiqIIBdEXH1VsFWoom+2krm42cXdSrcF/8FX/zL/wE9zEIrY6sHA4c2b2zIwfC67RcT4K1tj4xORUcbo0Mzs3v7BYXmrqKFEMGiwSkbr2qQbBJTSQo4DrWAENfQFX/v1Jlr/qgdI8kpfYj8ELaVfygDOKhmpuYrt2uNlerDhVJw/7L3AHoEIGcdYuFy5uOhFLQpDIBNW65ToxeilVyJmAl9JNoiGm7J52oWWgpCFoL83tvthbhunYQaTMk2jn7O+KlIZa90PfKEOKt3o0l5H/5VoJBgdeymWcIEj2/VGQCBsjO5vd7nAFDEXfAMoUN15tdksVZWg2NNQJsR5QoWEnL3TrqBLwUsF9MBPKkQF7VD0kXvrMd4f5H7mXSnjEp9z3kOLS9dJsB5nbkrmCO7rzv6BZq7q71b3zWuXoeHCPIlklG2SbuGSfHJFTckYahJE78kreyHvh01qx1qz1b6lVGNQsk6Gwtr8AW8K+ig==</latexit>

t3 :

<latexit sha1_base64="kpykqQNtdNkYZKUAGQeJbu3lYMU=">AAACbnicbVHbSsNAEN3GW613BV9EDFbBBymJFxRBEH3xUcXWQhvKZjupq5tN3J1Ua/AffNU/8y/8BDexiK0OLBzOnJk9M+PHgmt0nI+CNTI6Nj5RnCxNTc/Mzs0vLNZ0lCgGVRaJSNV9qkFwCVXkKKAeK6ChL+DGvz/L8jddUJpH8hp7MXgh7UgecEbRULUNbO0ebbTmy07FycP+C9w+KJN+XLQWClfNdsSSECQyQbVuuE6MXkoVcibgpdRMNMSU3dMONAyUNATtpbndF3vTMG07iJR5Eu2c/V2R0lDrXugbZUjxVg/nMvK/XCPB4NBLuYwTBMm+PwoSYWNkZ7Pbba6AoegZQJnixqvNbqmiDM2GBjohHgdUaNjOC91jVAl4qeA+mAnl0IBdqh4SL33me4P8j9xLJTziU+57QHHtemm2g8xtyVzBHd75X1Dbqbh7lf3LnfLJaf8eRbJC1skWcckBOSHn5IJUCSN35JW8kffCp7VsrVpr31Kr0K9ZIgNhbX0BXcm+iw==</latexit>

(2)

1 3

4 6 7

2

(3)

1 3

4 6 7

2

(4)

1 3

4 6 7

2

4 6 7

(6)

Figure 4: The steps performed by the algorithm in Fig. 3 for the
query “bmw i3 s”. We check the elements in the intersection be-
tween the inverted lists of “bmw” and “i3”, that are [1, 2, 4], over
the lists for the terms “sedan” (t1 : 1, 3), “sport” (t2 : 4, 6, 7) and
“sportback” (t3 : 2). The elements pointed to by the iterators in the
heap are the ones circled with solid lines. At the beginning we are
checking docid 1 and, since heap’s top element is 1, that is the first
result. At the second step we are now checking docid 2. Since the
heap still returns 1, we advance the iterator to NextGeqt1 (2) = 3.
At step 3, the heap returns the element 2 that is another found
result. At step 4 we are now checking docid 4, thus we advance the
iterator by calling NextGeqt3 (4). Since the inverted list of term t3
has no element larger-than or equal to 4, then NextGeqt3 (4) will be
equal to the sentinel ∞ and the iterator over such list is popped-out
from the heap. The same happens for the iterator of the list t1 at
step 5. The algorithm finally finds the last result 4, at step 6.

structure (line 14). In fact, as we will better show in Section 4, the
algorithm is pretty fast unlessm is very large. Handling large values
ofm efficiently is indeed the problem we address in the following.

Lastly, we point out that the approach by Bast and Weber [2]
can be implemented on top of this algorithm. The crucial difference
is that their algorithm makes use of a blocked inverted index, with
inverted lists grouped into blocks and merged. We will compare
against their approach in Section 4.

Forward Search. The approach coded in Fig. 3 is clearly more
convenient than explicitly computing the union of all the inverted
lists in [ℓ, r] and then searching it for every single docid belonging
to the intersection. However, it is inefficient when the range [ℓ, r]
is very large. We remark that this case is actually possible and
very frequent indeed, because it represents the case where the user
has typed just few characters of the suffix and, potentially, a large
number of strings are prefixed by such characters. We now discuss
how to solve this problem efficiently.

The idea, illustrated in Fig. 5, is to avoid accessing the inverted
lists of the terms in the range [ℓ, r] (and, thus, avoid using a heap
data structure as well) but rather check whether the terms of a
completion intersects the ones in [ℓ, r]. More precisely, for every
completion in the intersection we check if there is at least one
term t of the completion such that t ≥ ℓ and t ≤ r . Given that
completions do not contain many terms (see also Table 2), a simple
scan of the completion suffices to implement the check as fast as
possible. While this is not constant-time from a theoretical point of
view, in practice it is. This idea of falling back to a forward search
was introduced by Ji, Li, Li, and Feng [14].

Take again the example query “bmw i3 s”. We check whether
the completions of docid 1, 2, and 4, seen as integer sets, intersect
the range [7, 9]. By looking at Table 1a, it is easy to see that the last
term id of such completions is always in [7, 9].

The complexity of the algorithm is then essentially dependent
from the size of the intersection and the time needed to Extract a
completion, that isO(tintersection+ |intersection|×tExtract). Compared
to the heap-based algorithm in Fig. 3, we are improving the time
for checking a given docid (and saving a factor of O(m)), by relying
of the efficiency of the Extract operation. We clearly expect tExtract
to be more efficient than the worst-case complexity of tcheck that is
O(m logm × tNextGeq), especially for large values of m. Note that
although the worst-case theoretical complexity is independent from
m, in practice the size ofm influences the probability that the test
in line 6 succeeds: the larger is m, the higher the probability and
the faster the running time of the algorithm.

However, the behavior of the heap-based algorithm for small
values of m is not intuitive and its running time could not nec-
essarily be worse than having to issue many Extract operations
(when, for example, the test in line 11 succeeds frequently). Again,
the experimental analysis in Section 4 will compare the two differ-
ent approaches. Instead, it should be intuitive why this algorithm
produces the same results as the heap-based one: they are just the
“inverted version” of each other, i.e., one is using an inverted in-
dex whereas the other is using a “forward” approach. Therefore,
correctness is immediate.

To Extract a completion given its id (line 6), we can either use
a forward index or FC compression, as we have discussed in Sec-
tion 3.2. Using the latter method means to actually decode a comple-
tion, a process involving scanning and memory-copy operations,
whereas the former technique provides immediate access to the
completion, that is tExtract = O(1), at the expense of storing an
additional data structure (the forward index). Therefore, we have a
potential space/time trade-off here, that we investigate in Section 4.

1 ConjunctiveSearch(prefix, [ℓ, r], k) :
2 results = []
3 intersection = index.IntersectionIterator(prefix)
4 while intersection.HasNext() :
5 x = intersection.Next()
6 completion = Extract(x)
7 if completion intersects [ℓ, r] :
8 results.Append(x)
9 if |results| == k : break

10 return results

Figure 5: Forward conjunctive-search algorithm.

Single-TermQueries. Now we highlight another efficiency issue:
the case for single-term queries. We recall and remark that such
queries are always executed when users are typing, hence they
are the most frequent case. This motivates the need for having a
specific algorithm for their resolution.

Single-term queries represent a special case in that the prefix
is empty (we only have the suffix). This means that there is no
intersection over which to iterate, rather every single docid from
1 to |S| would have to be considered by both algorithms coded in
Fig. 3 and 5. This makes them very inefficient on such queries. In this
case, the “classic” approach of finding the k smallest elements from
the inverted lists in the range [ℓ, r] with a heap is more efficient
than checking every docid (using a similar approach to that coded
in Fig. 3). However, it is still slow on large ranges because an iterator
for every inverted list in the range [ℓ, r] has to be instantiated and
pushed onto the heap.

We can elegantly solve this problem with another RMQ data
structure. Let us consider the list minimal, where minimal[i] is the
first docid of the i-th inverted list. (In other words, minimal is the
“first column” of the inverted index.) If we build a RMQ data struc-
ture on such list, RMQ(ℓ, r) identifies the inverted list from which
the minimum docid is returned. Therefore, we instantiate an itera-
tor on such list and push onto the heap its next docid along with
the left and right sub-ranges. We proceed recursively as explained
in the previous section. (Now, if the element at the top of the heap
comes from an iterator we do not push left and right sub-ranges.)
The key difference with respect to the “classic” heap-based algo-
rithm mentioned above, is that an iterator is instantiated over an
inverted list if and only if an element has to be returned from it.

For the example in Table 1b, the minimal list will be [6, 3, 1, 1,
7, 3, 1, 4, 2, 5] and, if the single-term query is “s”, then we ask for
RMQ over minimal[7, 9]. Assume k = 3. The first returned docid is
therefore 1, the first for the inverted list of the term “sedan”. We
pushed onto the heap the next id from such list, 3, as well as the
right sub-range [8, 9]. The element at the top of the heap is now 2,
the first for the inverted list of the term “sportback”. There are no
more docids from such list, thus we remove the sub-range [8, 9] and
add the sub-range [8, 8]. We finally return the id 3, again from the
list of the term “sedan”. Observe that the iterator on the inverted
list of the term id 8 (“sport”, in this case) is never instantiated.

Table 2: Dataset statistics.

Statistic AOL MSN EBAY

Queries 10,142,395 7,083,363 7,295,104
Uncompressed size in MiB 299 208 189
Unique query terms 3,825,848 2,590,937 323,180
Avg. num. of chars per term 14.58 14.18 7.32
Avg. num. of queries per term 7.87 8.15 73.02
Avg. num. of terms per query 2.99 2.99 3.24

4 EXPERIMENTS
In this section we report on the experiments we conducted to assess
the efficiency and the effectiveness of the described QAC algorithms.
The experiments are organized as follows. We first benchmark and
tune the data structures used by the algorithms in Section 4.1. With
the tuning done, we then compare the efficiency of various options
to perform conjunctive-search, also with respect to the efficiency
of prefix-search, in Section 4.2. We then discuss effectiveness and
memory footprint of the various solutions in Section 4.3 and 4.4
respectively.
Datasets. We used three large real-world query logs in English:
AOL [24] and MSN [13] (both available at https://jeffhuang.com/
search_query_logs.html), and EBAY that is a proprietary collection
of queries collected during the year 2019 from the US .com site. We
do not apply any text processing to the logs, such as capitalization,
but index the strings as given in order to ensure accurate repro-
ducibility of our results. For AOL and MSN, the score of a query is
the number of times the query appears in the log (i.e., its frequency
count) [12]; for EBAY, the score is assigned by some machine learn-
ing facility that is irrelevant for the scope of this paper. As already
mentioned, integer ids (docids) have been assigned to queries in
decreasing score order. Ties are broken lexicographically. Table 2
summarizes the statistics.
Experimental Setting. Experiments were performed on a server
machine equipped with Intel i9-9900K cores (@3.60 GHz), 64 GB of
RAM DDR3 (@2.66 GHz) and running Linux 5 (64 bits).

For researchers interested in replicating the results on public
datasets, we provide the C++ implementation at https://github.com/
jermp/autocomplete. We used that implementation to obtain the
results discussed in the paper. The code was compiled with gcc
9.2.1 with all optimizations enabled, that is with flags -O3 and
-march=native.

The data structures were flushed to disk after construction and
loaded in memory to be queried. The reported timings are average
values among 5 runs of the same experiment. All experiments run
on a single CPU core. We use k = 10 for all experiments.

4.1 Tuning the Data Structures
For the experiments in this section, we used the (larger) AOL dataset
given that consistent results were also obtained for MSN and EBAY.
The Dictionary. As explained in Section 3.2, we represent the
dictionary using a 2-level data structure compressed with Front
Coding (FC). We are interested in benchmarking the time for three
operations, namely Extract, Locate, and LocatePrefix, by varying

Table 3: Front-coded dictionary benchmark on the AOL dataset, by
varying bucket size. Timings are in µsec per string. The size of the
uncompressed file is 56.85 MiB, that is an average of 15.58 bytes
per string (bps).

Bucket MiB bps Extract Locate
LocatePrefix

size 0% 25% 50% 75%
4 40.95 11.22 0.12 0.46 0.15 0.67 0.76 0.66
8 36.35 9.96 0.11 0.43 0.17 0.62 0.65 0.58
16 33.64 9.22 0.10 0.41 0.18 0.61 0.62 0.57
32 32.16 8.81 0.12 0.44 0.22 0.69 0.69 0.65
64 31.39 8.60 0.16 0.54 0.57 0.89 0.92 0.89
128 30.99 8.49 0.24 0.74 0.51 1.21 1.31 1.30
256 30.79 8.44 0.42 1.20 0.96 2.07 2.23 2.24

1 2 3 4 5 6 7+

Query terms

0.4

0.6

0.8

1.0

1.1

1.3

1.5

µ
se

c/
q

u
er

y

Trie

FC

(a) LocatePrefix

1 2 3

Query terms

0.0

0.6

1.2

1.8

2.3

2.9

3.5

µ
se

c/
q

u
er

y

00%

25%

50%

75%

(b) RMQ

Figure 6: Timings for (a) LocatePrefix and (b) RMQ in µsec per
string on AOL. Results for FC are relative to a bucket size of 16
strings.

the bucket size that directly controls the achievable space/time
trade-off. The result of the benchmark is reported in Table 3. The
timings, expressed in µsec per string, are recorded by executing
100,000 queries and computing the average. Such queries are strings
belonging to the dictionary and shuffled at random to avoid locality
of access. To benchmark the operation LocatePrefix, we retain 0%,
25%, 50% and 75% of the characters of a given input string (the
case for 100% would correspond to a Locate operation; in the case
of 0%, we always retain 1 single character instead of 0). As we
can see from the results reported in the table, the space decreases
but the time increases for increasing values of bucket size. The
Extract operation is roughly 4× faster than Locate. The timings for
LocatePrefix are pretty much the same for all percentages except
0%: in that case strings comparisons are much faster, resulting in a
better execution time. For all the following experiments, we choose
a bucket size of 16 that yields a good space/time trade-off: Extract
takes 0.1 µsec on average, with Locate and LocatePrefix around half
of a microsecond and, compared to the size of the uncompressed file
which is 56.85 MiB, FC offers a compression ratio of approximately
1.69×. (On MSN and EBAY, the compression ratio are 1.67× and
1.61× respectively.)

https://jeffhuang.com/search_query_logs.html
https://jeffhuang.com/search_query_logs.html
https://github.com/jermp/autocomplete
https://github.com/jermp/autocomplete

Table 4: Inverted index compression benchmark on AOL in average
bits per integer (bpi).

Method BIC DINT PEF EF OptVB VB Simple16

bpi 14.14 15.08 15.10 17.15 17.33 20.95 21.74

The Completions. We now compare the two distinct approaches
of representing the completions with a trie or Front Coding. Re-
garding the trie, we recall from Section 3.2 that it is represented by
four sorted integer sequences. We follow the design recommended
in [27, 28] of using Elias-Fano to represent nodes and pointers for its
fast, namely constant-time, random access algorithm and powerful
search capabilities. For the same reasons, we also adopt Elias-Fano
to compress the left extremes and range sizes. With Elias-Fano
compression, the trie takes a total of 88.80 MiB that is 9.18 bytes
per completions (bpc). Most of the space is spent, not surprisingly,
in the encoding of the nodes: 6.57 bpc (71.6%). Pointers take 0.84
bpc (9.17%), left extremes take 1.08 bpc (11.73%) and range sizes
take 0.69 bpc (7.5%). The completions compressed with FC, using a
bucket size of 16, take 97.98 MiB, i.e., 10.13 bpc. Thus the trie takes
9.4% less space than FC.

To record the time for the LocatePrefix operation, we partitioned
the completions by the number of termsd , ford from 1 to 6. All com-
pletions having d ≥ 7 terms (7+) are placed in the same partition.
From each partition, we then sample 100,000 queries at random.
We firs observed that the time is pretty much independent from
the size of the suffix because the average number of characters per
term is very low. (Basically, 14 for both AOL and MSN, and 7 for
EBAY. See Table 2.) Therefore, the only influence comes from the
number of query terms and we show the result in Fig. 6a.

While the Trie query time constantly increases by ≈200 nanosec-
onds per level (basically, 2 cache misses per level), the query time
for FC is almost insensitive to the size of the query. Therefore as
expected, the Trie is beaten by FC as query length increases due to
cache-misses. As a net result, better cache efficiency paired with
fast decoding makes FC roughly 2× faster than the Trie for queries
having more than 4 terms.
Range-MinimumQueries. The timings for RMQ are reported in
Fig. 6b. As it is intuitive, the timing strongly depends on the size
of the range. Such size is exponentially decreasing when both the
number of terms and the percentage of characters retained from
the suffix increases. As a matter of fact, the RMQ time is practically
negligible from 3 terms onwards.
Inverted IndexCompression. For the QAC problem, the inverted
lists are very short on average because the completions themselves
comprise only few terms (see Table 2). Therefore, we cannot ex-
pect a great deal of compression effectiveness as, for example, the
one for Web pages [30]. Nonetheless, we experimented with sev-
eral compressors, such as: Binary Interpolative Coding (BIC) [20],
dictionary-based encoding (DINT) [26], Elias-Fano (EF) [8, 9], par-
titioned Elias-Fano (PEF) [23], Variable-Byte paired with SIMD in-
structions [31], optimally-partitioned Variable-Byte (OptVB) [29],
and Simple16 [34]. A description of all such compression methods
can be found in the recent survey on the topic [30]. We report the
average number of bits spent per represented integer (bpi) by such

methods in Table 4. We also collected the timings to compute in-
tersections by varying the number of query terms (using the same
queries as used for the LocatePrefix experiment in order to compute
intersections among inverted lists relative to terms that co-occur
in real completions). Apart from BIC that is roughly 3× slower, all
other techniques offer similar efficiency.

In conclusion, we choose Elias-Fano (EF) to compress the in-
verted lists for its good space effectiveness, efficient query time and
compact implementation. We respect to the uncompressed case, EF
saves roughly 50% of the space.

4.2 Efficiency
With the tuning of the data structures done, we are now ready to
discuss the efficiency of the main building blocks that we may use to
implement a QAC algorithm, namely prefix-search and conjunctive-
search, as well as that of the (minor) steps of parsing the query and
reporting the strings.

In all the subsequent experiments, we are going to use the fol-
lowing methodology to measure the query time of the indexes. For
both AOL and MSN, we sampled 1,000 queries at random from each
set of completions having d = 1, . . . , 6 and d ≥ 7 terms (7+), and
use these completions as queries. We built the indexes by excluding
such queries. For EBAY, we took a log of 2.7 million queries col-
lected in early 2020, again from the US .com site, and sampled 7,000
queries as explained above. The queries are answered in random
order (i.e., in no particular order) to avoid locality of access.
Conjunctive-search. We compare the following algorithms for
conjunctive-search: the heap-based (Fig. 3) and indicated as Heap,
the two implementations of the forward-based (Fig. 5) that respec-
tively use a forward index (Fwd) and Front Coding (FC), and the
Hyb index by Bast and Weber [2]3. The comparison is reported
in Table 5. The first thing to note is that the impact of the differ-
ent solutions is very consistent across the datasets (although the
timings are different), therefore all considerations expressed in the
following apply to all datasets.
• As foreseen in Section 3.3, Heap is several order of magnitude

slower than all other approaches whenever the lexicographic
range of the suffix is very large as it happens for the 0% row.
Although this latency may not be acceptable for real-time per-
formance, observe the sharp drop in the running time as soon as
we have longer suffixes (≥ 25%): we pass from milliseconds to a
few hundred microseconds. Hyb protects against the worst-case
behaviour of Heap, thus confirming the analysis in the original
paper [2]. However, since Heap is faster than Hyb at performing
list intersection, it is indeed competitive with Hyb for sufficiently
long suffixes (e.g., ≥ 50%).

• The solutions Fwd and FC significantly outperform Heap and
Hyb by a wide margin for the reasons we explained in Section 3.3.
There is not a marked difference between Fwd and FC, except for
the case with two query terms. This is the case where the prefix
comprises only one term, thus every docid in its inverted list must

3The Hyb index depends on a parameter c that controls the degree of associativity
of the inverted lists. This parameter affects the trade-off between space and time [2].
We built indexes for different values of c , and found that the value c = 10−4 gives the
best space/time trade-off. Therefore, this is the value of c we used for the following
experiments.

Table 5: Top-10 conjunctive-search query timings in µsec per query, by varying query length and percentage of the last query token.

(a) AOL

Query terms
% 1 2 3 4 5 6 7+

Fw
d

0 4 5 22 30 24 24 16
25 2 97 70 41 30 25 16
50 0 149 77 48 30 25 16
75 0 150 76 48 30 25 16

FC

0 5 15 27 30 24 24 16
25 3 251 110 45 31 25 16
50 1 370 121 56 31 25 16
75 0 375 121 57 32 25 16

H
ea
p

0 55,537 29,189 30,498 22,431 17,713 16,474 13,312
25 474 623 957 485 376 378 299
50 1 251 178 251 229 123 178
75 0 226 162 240 219 116 173

H
yb

0 286 2,718 1,673 965 634 503 413
25 11 184 223 276 258 221 192
50 10 126 185 270 250 217 186
75 6 116 178 268 248 216 184

(b)MSN

Query terms
1 2 3 4 5 6 7+
4 5 14 15 11 10 7
1 39 34 18 13 10 7
0 56 38 19 13 10 8
0 57 37 19 12 10 7
5 15 17 15 11 10 7
2 101 51 19 13 10 8
1 137 58 21 13 10 7
0 137 57 21 13 10 7

7,626 12,459 11,964 8,921 6,164 5,749 5,686
353 252 256 282 170 192 125
10 73 70 109 84 66 54
1 61 62 83 80 63 51

53 1,626 915 477 307 270 237
10 90 109 127 111 111 90
7 53 97 122 107 108 87
4 46 95 121 106 106 85

(c) EBAY

Query terms
1 2 3 4 5 6 7+
3 6 53 80 96 146 94
1 125 115 111 112 152 95
1 214 131 113 114 151 95
1 239 132 114 113 150 95
4 16 59 81 96 146 96
3 258 133 115 113 152 96
2 444 153 117 115 151 94
2 494 156 119 114 150 94

120 4,799 6,391 4,618 3,566 1,945 971
43 854 1,392 1,28 904 727 331
41 603 1,213 895 835 687 314
41 594 1,217 909 840 688 312
15 2,909 2,827 1,756 1,371 821 417
9 638 790 580 553 543 303

11 454 694 513 530 537 297
12 454 698 517 529 536 297

Table 6: Percentage of better scored results returned by conjunctive-search wrt those returned by prefix-search for top-10 queries.

(a) AOL

Query terms
% 1 2 3 4 5 6 7+
0 17 107 207 327 295 270 270
25 19 178 246 373 298 155 356
50 23 227 302 440 364 213 524
75 41 282 362 504 424 257 882

(b)MSN

Query terms
1 2 3 4 5 6 7+

27 139 252 283 325 206 248
23 231 310 297 333 190 200
27 243 313 320 359 251 208
44 284 364 357 407 319 236

(c) EBAY

Query terms
1 2 3 4 5 6 7+

48 85 102 130 136 167 159
55 89 103 133 146 152 129
50 86 104 133 148 152 138
50 87 106 132 149 153 136

be checked until k results are found or the list is exhausted. Fwd
is faster than FC in this case because the many Extract operations
performed over the strings compressed with Front Coding impose
an overhead, resulting in a slowdown with respect to Fwd (and,
sometimes, Heap as well). Interestingly enough, this slowdown
progressively vanishes as fewer results need to be checked, such
as with 3 or more query terms. (This also suggests that, when
using FC, we could switch to Heap for sufficiently long suffixes
and two query terms.) The case with two query terms also sheds
light on the influence of the suffix size for Fwd and FC. Although
the worst-case complexity is independent from it because all
docids are checked in the worst-case, in practice the running
time increases with the suffix size because the test performed
in line 6 of the algorithm in Fig. 5 becomes progressively more
selective. In fact, working with a small lexicographic range lowers
the probability that a completion has at least one term in the
range.

• Lastly, consider the case for 1 query term. The solutions using
RMQ on the minimal docids, Fwd and FC, keep the response time
orders of magnitude lower compared to Heap and Hyb when the
suffix is very short (0% – 25%). Again, observe the drop in the
running time as soon longer suffixed are specified (≥ 50%). This

is especially true for Heap and Hyb because only few inverted
lists are accessed.

Prefix-search. As we discussed in Section 3.1, prefix-search com-
prises two LocatePrefix operations: one performed on the dictionary
data structure that, for a choice of bucket size equal to 16, costs 0.2
– 0.6 µsec per string (Table 3); the other performed on the set of
completions, for a cost of 0.4 – 1.7 µsec per string if we use a trie, or
0.4 – 0.7 µsec per string if we use Front Coding (Fig. 6a). Therefore,
summing together these contributions, we have that prefix-search
is supported in either: 0.6 – 2.4 µsec per query; or even less if we
allow more space, i.e., in 0.6 – 1.4 µsec per query for 9.4% of space
more. Lastly, to this cost we have also to add that of RMQ that, as
seen in Fig. 6b, is relevant only for queries having 1 and 2 terms
with a few characters typed at the end.

The timings for conjunctive-search, as reported in Table 5, are
far from being competitive from those of prefix-search, being actu-
ally orders of magnitude larger especially on shorter queries. This
is not surprising given that conjunctive-search involves querying
an inverted index and accessing other data structures, like a for-
ward index (for Fwd) or a compressed set of strings (for FC). The
use of conjunctive-search is, however, motivated by its increased
effectiveness as we are going to discuss next.

Other Costs. Further costs include that of parsing the query (i.e.,
looking-up each term in the dictionary) and reporting the actual
strings given a list of top-k docids. Both operations add a small
cost – always below 2 µsec per query, even in the case of very long
queries and many reported results.

4.3 Effectiveness
We now turn our attention to the comparison between prefix-search
and conjunctive-search by considering their respective effective-
ness. As already pointed out, prefix-search is cheaper from a com-
putational point of view but has limited discovery power, i.e., its
matches are restricted to string that are prefixed by the user input.
A simple and popular metric to asses the effectiveness of different
QAC algorithms, is coverage [5, 15], defined to be the fraction of
queries for which the algorithm returns at least one result. However,
coverage alone is little informative [3] because it is not able to cap-
ture the quality of the returned results. In the example of Fig. 2b-c,
both prefix-search and conjunctive-search return 10 results but 8 of
those returned by conjunctive-search have a better score than those
returned by prefix-search. Therefore, we use a different metric.

We consider the set of completions’ scores for a query q as
given by both conjunctive-search and prefix-search, say Sc (q) and
Sp (q) respectively. Clearly, conjunctive-search returns at least the
same number of results as prefix-search, that is |Sc (q)| ≥ |Sp (q)|.
Effectiveness is measured in the number of results returned by
conjunctive-search that have a better score than those returned
by prefix-search. Since for every element in Sp (q) we can always
find an element in Sc (q) that has the same or a better score, the
effectiveness value for the query q is |Sc (q) \ Sp (q)|. We say that
conjunctive-search returns |Sc (q) \ Sp (q)|/|Sp (q)| × 100% better
results than prefix-search for query q. For example, if the sets of
scores are Sp (q) = {182, 203, 344, 345} and Sc (q) = {123, 182, 198,
203, 344, 345}, then conjunctive-search found 2 more matches with
better score than those returned by prefix-search, those having
score 123 and 198, hence 50% better results.

In Table 6 we report the percentage of better results over the
same query logs used to generate Table 5. The numbers confirm
that conjunctive-search is a lot more effective than prefix-search
because the percentage of better results is always well above 80%
for queries involving more than one term. For example, over the
EBAY dataset for queries having 2 terms and by retaining 50% of
the last token, conjunctive-search found 4,062 results more than
the 4,711 found by prefix-search (for a total of 8,773 results), i.e.,
86.2% more results.

For single-term queries the possible completions for prefix-search
are many – especially for small suffixes – thus the difference with
respect to conjunctive-search is less marked.

4.4 Space Usage
We now discuss the space usage of the various solutions, summa-
rized in Table 7 as total MiB and bytes per completion (bpc).

The solution taking less space is Heap and the one taking more is
Fwd: the difference between these two is 19% on bothAOL andMSN;
17% on EBAY. The space effectiveness of the other two solutions,
FC and Hyb, stand in between that of Heap and Fwd.

Table 7: Space usage in total MiB and bytes per completion (bpc).

AOL MSN EBAY

MiB bpc MiB bpc MiB bpc
Fwd 312 32.28 218 32.32 168 24.14
FC 266 27.51 185 27.42 140 20.13
Heap 254 26.25 177 26.25 139 19.99
Hyb 275 28.48 191 28.26 157 22.50

Now, starting from the space breakdown of Fwd, we discuss
some details. The dictionary component takes 10 – 11% of the total
space of AOL and MSN, but only 1% for EBAY. This is not surprising
given that EBAY has (more than) 10× less unique query terms than
AOL (see also Table 2). The completions take a significant fraction
of the total space, i.e., 28 – 29%; the RMQ data structure takes
just 13 – 14%. The inverted and forward index components are
expensive, requiring 20 – 22% and 27 – 34% respectively. The FC
solution takes less space than Fwd – 15% less space on average
– because it eliminates the forward index (although it uses Front
Coding to represent the completions that is slightly less effective
than the trie data structure). Then, Heap takes even less space than
FC because it does not build an additional RMQ data structure on
the minimal docids. Lastly, Hyb introduces some redundancy in the
representation of the inverted index component, as term ids are
needed to differentiate the elements of unions of inverted lists.

In conclusion, taking a look back at the uncompressed size re-
ported in Table 2, we can say that the presented techniques allow
efficient and effective search capabilities with (approximately) the
same or even less space as that of the original collections.

5 CONCLUSIONS
In this work we explored the efficiency/effectiveness spectrum of a
multi-term prefix-search query mode – referred to as the conjunctive-
search query mode. The algorithm empowers the new implementa-
tion of eBay’s query auto-completion system. From the experimen-
tal evaluation presented in this work on publicly available datasets,
like AOL and MSN, and from our experience with eBay’s data, we
can formulate the following conclusions.
• Conjunctive-search overcomes the limited effectiveness of prefix-

search by returning more and better scored results.
• While prefix-search is very fast, requiring less then 3 µsec per

query on average, conjunctive-search is more expensive and
costs between 4 and 500 µsec per query depending on the size
of the query. However, we find this convenient at eBay given its
(much) increased effectiveness. We adopt several optimization for
conjunctive-search, including the use of a forward index (Fwd),
Front Coding (FC) compression, and RMQ.

• The solution Fwd takes on average 15% more space than FC but
it is faster on shorter queries (2, 3 terms).

• Both Fwd and FC substantially outperform the use of a classical
as well as blocked inverted index with small extra or even less
space.

• It is lastly advised to build RMQ succinct data structures to lower
the query times in case of single-term queries.

ACKNOWLEDGMENTS
This work was partially supported by the BIGDATAGRAPES (EU
H2020 RIA, grant agreement No

¯780751), the “Algorithms, Data
Structures and Combinatorics for Machine Learning” (MIUR-PRIN
2017), and the OK-INSAID (MIUR-PON 2018, grant agreement
No

¯ARS01_00917) projects.

REFERENCES
[1] Ziv Bar-Yossef and Naama Kraus. 2011. Context-sensitive query auto-completion.

In Proceedings of the 20th international conference on World wide web. ACM,
107–116.

[2] Holger Bast and Ingmar Weber. 2006. Type less, find more: fast autocompletion
search with a succinct index. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
364–371.

[3] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. 2011. Query suggestions
in the absence of query logs. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. 795–804.

[4] Fei Cai, Maarten De Rijke, and others. 2016. A survey of query auto completion
in information retrieval. Foundations and Trends® in Information Retrieval 10, 4
(2016), 273–363.

[5] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and
Hang Li. 2008. Context-aware query suggestion by mining click-through and
session data. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 875–883.

[6] Surajit Chaudhuri and Raghav Kaushik. 2009. Extending autocompletion to
tolerate errors. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data. ACM, 707–718.

[7] Giovanni Di Santo, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2015.
Comparing approaches for query autocompletion. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 775–778.

[8] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static
Files. J. ACM 21, 2 (1974), 246–260.

[9] Robert Mario Fano. 1971. On the number of bits required to implement an
associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

[10] Johannes Fischer and Volker Heun. 2011. Space-efficient preprocessing schemes
for range minimum queries on static arrays. SIAM J. Comput. 40, 2 (2011), 465–
492.

[11] Edward Fredkin. 1960. Trie memory. Commun. ACM 3, 9 (1960), 490–499.
[12] Bo-June Paul Hsu and Giuseppe Ottaviano. 2013. Space-efficient data structures

for top-k completion. In Proceedings of the 22nd international conference on World
Wide Web. ACM, 583–594.

[13] Microsoft Inc. 2006. MSN Query Log, https://www.microsoft.com/en-us/research/
people/nickcr.

[14] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. 2009. Efficient interactive
fuzzy keyword search. In Proceedings of the 18th international conference on World
wide web. 371–380.

[15] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating
query substitutions. In Proceedings of the 15th international conference on World
Wide Web. 387–396.

[16] Unni Krishnan, Alistair Moffat, and Justin Zobel. 2017. A taxonomy of query auto
completion modes. In Proceedings of the 22nd Australasian Document Computing
Symposium. ACM, 6.

[17] Miguel A Martínez-Prieto, Nieves Brisaboa, Rodrigo Cánovas, Francisco Claude,
and Gonzalo Navarro. 2016. Practical compressed string dictionaries. Information
Systems 56 (2016), 73–108.

[18] Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare prefixes.
In Proceedings of the 24th ACM international on conference on information and
knowledge management. ACM, 1755–1758.

[19] Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. 2014. On user
interactions with query auto-completion. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in information retrieval. ACM,
1055–1058.

[20] Alistair Moffat and Lang Stuiver. 2000. Binary Interpolative Coding for Effective
Index Compression. Information Retrieval Journal 3, 1 (2000), 25–47.

[21] Alistair Moffat and Justin Zobel. 1996. Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems (TOIS) 14, 4 (1996), 349–379.

[22] Shanmugavelayutham Muthukrishnan. 2002. Efficient algorithms for document
retrieval problems. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics, 657–666.

[23] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned elias-fano indexes.
In Proceedings of the 37th international ACM SIGIR conference on Research &
development in information retrieval. ACM, 273–282.

[24] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.
In International Conference on Scalable Information Systems, Vol. 152. 1.

[25] Giulio Ermanno Pibiri. 2019. On Slicing Sorted Integer Sequences. CoRR
abs/1907.01032 (2019). arXiv:1907.01032 http://arxiv.org/abs/1907.01032

[26] Giulio Ermanno Pibiri, Matthias Petri, and Alistair Moffat. 2019. Fast Dictionary-
Based Compression for Inverted Indexes. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. ACM, 6–14.

[27] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Efficient data structures
for massive n-gram datasets. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 615–624.

[28] Giulio Ermanno Pibiri and Rossano Venturini. 2019. Handling Massive N-Gram
Datasets Efficiently. ACM Transactions on Information Systems (TOIS) 37, 2 (2019),
25.

[29] Giulio Ermanno Pibiri and Rossano Venturini. 2019. On optimally partitioning
variable-byte codes. IEEE Transactions on Knowledge and Data Engineering (2019).

[30] Giulio Ermanno Pibiri and Rossano Venturini. 2019. Techniques for Inverted
Index Compression. CoRR abs/1908.10598 (2019). arXiv:1908.10598 http://arxiv.
org/abs/1908.10598

[31] Jeff Plaisance, Nathan Kurz, and Daniel Lemire. 2015. Vectorized VByte Decoding.
In International Symposium on Web Algorithms.

[32] Milad Shokouhi. 2013. Learning to personalize query auto-completion. In Proceed-
ings of the 36th international ACM SIGIR conference on Research and development
in information retrieval. ACM, 103–112.

[33] Milad Shokouhi and Kira Radinsky. 2012. Time-sensitive query auto-completion.
In Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval. ACM, 601–610.

[34] J. Zhang, X. Long, and T. Suel. 2008. Performance of compressed inverted list
caching in search engines. In International World Wide Web Conference (WWW).
387–396.

https://www.microsoft.com/en-us/research/people/nickcr
https://www.microsoft.com/en-us/research/people/nickcr
http://arxiv.org/abs/1907.01032
http://arxiv.org/abs/1907.01032
http://arxiv.org/abs/1908.10598
http://arxiv.org/abs/1908.10598
http://arxiv.org/abs/1908.10598

	Abstract
	1 Introduction
	2 Related work
	3 Efficient and Effective Query Auto-Completion
	3.1 Query Processing Steps
	3.2 Data Structures
	3.3 Multi-term Prefix-search Query Mode: Conjunctive-search

	4 Experiments
	4.1 Tuning the Data Structures
	4.2 Efficiency
	4.3 Effectiveness
	4.4 Space Usage

	5 Conclusions
	Acknowledgments
	References

