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The problem of answering rank/select queries over a bitmap is of utmost importance for many succinct data
structures. When the bitmap does not change, many solutions exist in the theoretical and practical side. In this
work we consider the case where one is allowed to modify the bitmap via a flip(𝑖) operation that toggles its
𝑖-th bit. By adapting and properly extending some results concerning prefix-sum data structures, we present a
practical solution to the problem, tailored for modern CPU instruction sets. Compared to the state-of-the-art,
our solution improves runtime with no space degradation. Moreover, it does not incur in a significant runtime
penalty when compared to the fastest immutable indexes, while providing even lower space overhead.

1 INTRODUCTION
Given a bitmapB of𝑢 bits where𝑛 are set, the query rank(𝑖) asks for the number of bits set inB[0..𝑖],
for an index 0 ≤ 𝑖 < 𝑢; the query select(𝑖) asks for the position of the 𝑖-th bit set, for 0 ≤ 𝑖 < 𝑛 (in
our formulation and throughout the paper, all indexes start from 0 so that if select(𝑖) = 𝑘 , then
rank(𝑘) = 𝑖 + 1). These queries are at the core of more complicated succinct data structures [17],
whose objective is to support efficient operations on theoretically-optimal compressed data, i.e.,
within lower order terms from the theoretic minimum space. Important applications of succinct
data structures include string dictionaries [18, 20], orthogonal range querying [4] and filtering [32],
Web graphs representation [3], text indexes [8], inverted indexes [27], just to name a few. For
this reason, many solutions were proposed in both theory and practice to answer these queries
efficiently with small extra space. It is intuitive that a data structure built on top of B – hereafter,
named the index – helps in answering both queries faster, thus indicating that many space/time
trade-offs are possible.
On the theoretical side, each of the two queries can be answered in 𝑂 (1) time with a separate

index that just takes 𝑜 (𝑢) extra bits [5, 17]. When both queries are to be supported using the same
𝑜 (𝑢)-bit index instead, it is not possible to do better than 𝑂 (log𝑢/log𝑤), where𝑤 is the machine
word size in bits [9]. The 𝑜 (𝑢) term in space occupancy is also almost optimal [12, 21]. Despite
their elegance, these results are of little usefulness in practice because their corresponding indexes
are either too complicated (i.e., with high constant factors and unpredictable memory accesses
that impair efficiency) or take much space. Instead, practical solutions have now reached a mature
state-of-the-art: depending on the size of the bitmap and the design of the index, both queries can
be answered in (roughly speaking) tens of nanoseconds with 3 − 28% of extra space.

Known solutions assume that the bitmap B is immutable. In this work we consider an extension
to the problem defined above, where one is allowed to modify B with a flip(𝑖) operation that
toggles B[𝑖], the 𝑖-th bit of B: the bit is set to 1 if it was 0 and vice versa, i.e., B[𝑖] = XOR(B[𝑖], 1).
We call this problem: rank/select queries over mutable bitmaps. We leave the bitmap uncompressed
and we do not take into account compressed representations.
For example, suppose B is [01101101010101110], with 𝑢 = 17 and 𝑛 = 10. Then, rank(7) = 5

and select(7) = 13. If we perform flip(3) and flip(6), then B becomes [01111111010101110],
so that now rank(7) = 7 and select(7) = 9.
Clearly, the index data structure should reflect the changes made on B and this complicates

the problem compared to the immutable setting. We cannot hope of doing better than, again,
𝑂 (log𝑢/log𝑤) time for this problem, due to a lower bound by Fredman and Saks [9]. However, it
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is not clear what can be achieved in practice, which is our concern with this work. The problem
is relevant for succinct dynamic data structures [28], and other applications such as counting
transpositions in an array and generating graphs by preferential attachment [19].

Our Contribution. Our solution to the problem builds on two main ingredients: (1) a space-
efficient bitmap index that leverages SIMD instructions [6] and other optimizations for fast query
evaluation, and (2) efficient algorithms to solve the problem of rank/select over small, immutable,
bitmaps. Regarding point (1), we adapt and extend a recent result [26] about the 𝑏-ary Segment-
Tree, and show that SIMD is very effective to search and update the data structure. We describe
two variants of the data structure, tailored for both the widespread AVX2 instruction set and the
new AVX-512 one. As per point (2), we review, extend, and compare all existing approaches to
perform rank/select over small bitmaps (e.g., 256 and 512 bits). These approaches include broadword
techniques, intrinsics, SIMD instructions, or a combination of them. The results of the comparison
may be of independent interest and relevant to other problems.
The best results for the two previous points are then combined to tune a mutable bitmap data

structure with support for rank/select queries, with the aim of establishing new reference trade-offs.
Compared to the state-of-the-art [19] (available as part of the Sux library [31]), our solution is faster
and consumes a negligible amount of extra space. We also compare the data structure against several
other solutions for the immutable setting, implemented in popular libraries such as Sdsl [10, 11],
Succinct [15], and Poppy [33]. Our data structure is competitive with the fastest indexes and takes
less space, while allowing clients to alter the bitmap as needed.
We publicly release the C++ implementation of the solutions proposed in this article at https:

//github.com/jermp/mutable_rank_select.

2 RELATEDWORK
In this section we review solutions devised to solve the problem of ranking and selection over
mutable and immutable bitmaps.

2.1 Mutable Bitmaps
To the best of our knowledge, only Marchini and Vigna [19] addressed the problem of rank/select
over mutable bitmaps, providing a solution that uses a (compressed) Fenwick tree [7] as index.
Therefore, this will be our direct competitor for this work. (To be fair, also the Dynamic library
by Prezza [28] contains a solution based on a B-tree but it is several times slower than the solution
by Marchini and Vigna [19], so we excluded it from our experimental analysis.)

2.2 Immutable Bitmaps
Solutions devised for the problem in the immutable setting abound in the literature. We summarize
the main different approached in Table 1.

Rank. The first data structure for constant-time rank was introduced by Jacobson [17], and
consists of a two-level index taking𝑂 (𝑢 log log𝑢/log𝑢) = 𝑜 (𝑢) bits of extra space. The index stores
precomputed rank values for blocks of the bitmap, so that a query is resolved by accessing a proper
value in each of the two levels. Vigna [30] provided a seminal implementation of this data structure
for blocks of 512 bits – known as Rank9 – by interleaving the data of the two levels to improve
locality of reference. The data structure consumes 25% extra space. Gog and Petri [11] presented
two variants of Rank9: one consumes less space by resorting on larger block sizes; (≈6% extra
space); the other is more cache-friendly and interleaves the index with the bitmap itself. We refer
to the former as Rank9.v2 and to the latter as IL.
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Table 1. Summary of data structures. A space overhead indicated with 𝑥 − 𝑦% is achieved by varying the
density of the bitmap from 0.1 to 0.9.

(a) rank

Method Index Design Space Overhead Reference

Rank9 2-level 25% [30, Sect. 3]
Rank9.v2 2-level 6.3% [11, Sect. 3]

IL 1-level 12.5% [11, Sect. 3]
Poppy 3-level 3% [33, Sect. 3.1]

(b) select

Method Index Design Space Overhead Reference

Rank9+Hinted 3-level 28% [15, Sect. 3.3]
Clark’s 3-level 60% [5]
MCL 2-level 3 − 20% [11, Sect. 4]
DArray 2-level 6 − 51% [24]

CS-Poppy 4-level 3.4% [33, Sect 3.2]

Zhou et al. [33] developed Poppy, a similar data structure to the space-efficient variant of Rank9
by Gog and Petri [11]. The main difference is that Poppy uses an additional level for the index,
therefore allowing to design the two-level index using 32-bit integers, instead of 64-bit values. The
extra space of Poppy is just 3%.

Select. The solutions developed for select can be broadly classified into two categories: rank-based
and position-based. A rank-based solution answers queries by binary-searching an index developed
for rank queries. The advantage is that the same index can be reused for both queries, so that
select can be performed with no (or small) additional space to that of rank. Instead, position-based
solutions are able to only answer select queries, thus, these take significant more space than
rank-based approaches.
Vigna [30] accelerated the binary search in the Rank9 index with an additional level that can

quickly find the area to be searched, hence performing a hinted binary search. The original imple-
mentation requires 12% space overhead in addition to that of Rank9, that is, a total space overhead
of 37%. Grossi and Ottaviano [15] also implemented the hinted binary search with only 3% extra
space, thus, the total space overhead becomes 28%.
A position-based solution builds an index storing sampled select results. The first data struc-

ture for constant-time queries was introduced by Clark [5] and consists of a three-level index
taking 3𝑢/⌈log log𝑢⌉ + 𝑂 (

√
𝑢 log𝑢 log log𝑢) bits of space in addition to the bitmap. However, a

straightforward implementation consumes a lot of space, i.e., 60% [13]. Gog and Petri [11] sim-
plified the implementation to reduce the space overhead (which can be up to 20%), and called it
MCL. Okanohara and Sadakane [24] proposed the DArray data structure, that essentially is Clark’s
solution with 2 levels instead of 3.
Vigna [30] proposed two data structures called Select9 and Simple. The Select9 data structure

adds selection capabilities on top of Rank9. The space overhead depends on the density of the
bits set in the bitmap (e.g., 25 − 32% as reported by Vigna in his experimentation). Although the
space overhead is larger than 25%, Select9 answers both queries. Instead, Simple does not depend
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on Rank9 and builds a two-level index following a similar idea to that of the DArray. The space
overhead also depends on the density (e.g., 9 − 46%).
Zhou et al. [33] proposed CS-Poppy that adds selection capabilities on top of Poppy, using the

idea of combined sampling [23]. Since the additional index requires only 0.4% of extra space, the
space overhead of Poppy is still very low, while also supporting select queries.

Compressed Layouts. Although in this work we do not aim at compressing the bitmap B nor its
index, it is important to remark that a separate line of research studied the problem of Rank/Select
queries over compressed bitmaps.

Okanohara and Sadakane [24] proposed the first practical data structure that approaches𝑢𝐻0 (B)+
𝑜 (𝑢) bits of space, where 𝐻0 (B) ≤ 1 is the zero-th order empirical entropy of B. However, the
𝑜 (𝑢) term can be very large, except for very sparse bitmaps with densities below 5%. Navarro and
Providel [23] proposed a practical implementation of the compression scheme by Raman et al. [29].
The data structure has a space overhead of around 10% of 𝑢, on top of the entropy-compressed
bitmap.
Of particular intrest for this work are the compressed solutions proposed by Grabowski and

Raniszewski [14], whose main concern is fast query support. We briefly sketch their data structures.
In general, the bitmap is divided into blocks, and blocks are grouped into superblocks. For each
block, a fixed-size header stores rank or select results. Depending on how headers and blocks are
compressed, different layouts are derived and named: basic (no compression); basic with compressed
header or bch (headers written differentially with respect to the first one); mono-pair elimination or
mpe (a “mono-pair” is a block of B consisting in all 1s or 0s, thus not stored); cache-friendly or cf
(results and offsets interleaved in a contiguous memory area). When the indexes are built for select,
two parameters are used: a sampling value ℓ so that the result of select(𝑖ℓ) is stored directly and
a threshold value 𝑇 which determines the sparseness of the blocks. A block is considered to be
sparse when select((𝑖 + 1)ℓ) − select(𝑖ℓ) > 𝑇 , or dense otherwise. For a sparse block, all the
results of select( 𝑗) for 𝑖ℓ < 𝑗 < (𝑖 + 1)ℓ are stored directly; for a dense block, the range of bits
B[select(𝑖ℓ) + 1..select((𝑖 + 1)ℓ) − 1] is stored.
Experiments using real-world datasets show that the query time of their compressed layouts is

competitive with that of the uncompressed counterparts.

3 EXPERIMENTAL SETUP
Throughout the paper we discuss experimental results, so in this section we report the details of
our setup and methodology. All the experiments were run on a single core of an Intel i9-9940X
processor, clocked at 3.30 GHz. The processor has two private levels of cache memory per core:
2× 32 KiB 𝐿1 cache (32 KiB for instructions and 32 KiB for data); 1 MiB for 𝐿2 cache. The third level
of cache, 𝐿3, is shared among all cores and spans ≈19 MiB. All cache lines are 64-byte long. The
processor has proper support for SSE, AVX, AVX2, and AVX-512, instruction sets.

Runtimes are reported in nanoseconds, measured by averaging among 1,000,000 random queries.
(In the plots, the minimum and maximum runtimes draw a “pipe”, with the marked line inside
representing the average time.) Prior to measurement, an untimed run of queries is executed to
warm-up the cache of the processor.

The whole codebase used for the experiments is written in C++ and available at https://github.
com/jermp/mutable_rank_select. The codewas tested under different UNIX platforms and compilers.
For the experiments reported in the paper, the code was compiled with gcc 9.2.1 under Ubuntu
19.10 (Linux kernel 5.3.0, 64 bits), using the flags -std=c++17 -O3 -march=native.
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template <typename SearchablePrefixSums, typename BlockType>
struct mutable_bitmap {
static const uint64_t block_size = BlockType::block_size;
static const uint64_t words_in_block = block_size / 64;

void build(uint64_t const* in, uint64_t num_64bit_words) {
uint64_t num_blocks = ceil(static_cast<double>(num_64bit_words) / words_in_block);
vector<uint16_t> counts;
counts.reserve(num_blocks);
bits.resize(words_in_block * num_blocks, 0);
memcpy(bits.data(), in, num_64bit_words * sizeof(uint64_t));
for (uint64_t i = 0; i != bits.size(); i += words_in_block) {
uint16_t val = 0;
for (uint64_t j = 0; j != words_in_block; ++j) {
val += __builtin_popcountll(bits[i + j]); // number of bits set in bits[i + j]

}
counts.push_back(val);

}
index.build(counts.data(), counts.size());

}

inline bool access(uint64_t i) const; // returns the i-th bit

void flip(uint64_t i) {
bool bit = access(i);
uint64_t word = i / 64, offset = i % 64, block = i / block_size;
bits[word] ^= 1ULL << offset;
index.update(block, bit);

}

uint64_t rank(uint64_t i) const {
uint64_t block = i / block_size, offset = i % block_size;
return (block ? index.sum(block - 1) : 0) +

BlockType::rank(&bits[words_in_block * block], offset);
}

uint64_t select(uint64_t i) const {
auto [block, sum] = index.search(i);
uint64_t offset = i - sum; // i - index.sum(block - 1);
return block_size * block + BlockType::select(&bits[words_in_block * block], offset);

}

private:
SearchablePrefixSums index;
vector<uint64_t> bits;

};

Fig. 1. The C++ implementation of a mutable bitmap with flip/rank/select capabilities.

4 OVERVIEW
An elegant way to solve the problem of Rank/Select over a mutable bitmap is to divide the bitmap
into blocks and use, as index, a searchable prefix-sum data structure that maintains the number
of bits set into each block. It follows that operations rank/select can be implemented by first
reading/searching the counters of the index and, then, concluding the query locally inside a block.
The flip operation is instead supported by “adjusting” some counters of the index and toggling a
bit of the bitmap. Therefore, the problem actually reduces to two distinct sub-problems:
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(1) The searchable prefix-sum problem, defined as follows. Given an array 𝐴 of𝑚 integers, we
are asked to support the following operations on 𝐴: sum(𝑖) returns the quantity ∑𝑖

𝑘=0𝐴[𝑘],
update(𝑖,Δ) sets 𝐴[𝑖] to 𝐴[𝑖] + Δ, and search(𝑥) returns the smallest 0 ≤ 𝑖 < 𝑚 such that
sum(𝑖) > 𝑥 . (As explained shortly, we are only interested in the special case where Δ ∈ {−1, +1}.)

(2) Rank/Select over “small” bitmaps (i.e., the blocks) without auxiliary space.
We address these sub-problems in Section 5 and 6 respectively. The best results for these sub-

problems are then combined to tune the final result in Section 7.
The example code in Figure 1 – the mutable_bitmap class – illustrates how a solution to the two

aforementioned sub-problems can be exploited to solve the problem we are considering. In fact,
note that rank uses the query index.sum(); select uses the query index.search(); and flip
uses the operation index.update() with values of Δ restricted to be either +1/−1 (one more/less
bit set inside a block).

Block Size. Before proceeding further, an important design decision has to be discussed – how to
choose the block size. (Throughout the paper, we will refer to this quantity as 𝐵.) The block size
determines space/time trade-offs: handling many small blocks can excessively enlarge the space
(and query time) of the prefix-sum data structure; on the other hand, blocks that are too large take
more time to be processed with a consequent query slowdown. For recent processors, theminimum
block size should always be 64 bits given that both rank and select can be answered with a
constant number of instructions over 64 bits (we provide further details about this in Section 6). For
a reasonable space/time trade-off, the block size should be a small multiple of the word size, e.g., 256
or 512. For example, using blocks of 256 bits we expect a reduction in space overhead of (roughly)
256/64 = 4× compared to the case of 64-bit blocks. For the rest of the paper, we will experiment
with two block sizes – 256 and 512 bits. What makes these two sizes particularly appealing for
modern processors is that (1) as long as no more than 512 bits are requested to be loaded, at most 1
cache-miss is generated because 512 bits is the (typical) cache-line size, and (2) we can process 256
and 512 bits of memory in parallel using the SIMD AVX2 and AVX-512 instruction sets.
Lastly, as we will better see in the following, this choice of block size plays an important role

for the efficiency of the searchable prefix-sum data structure because some of its counters are
sufficiently small as to permit packing several of these in a SIMD register for parallel processing.

5 THE SEARCHABLE PREFIX-SUM DATA STRUCTURE
In this section we adapt and extend the 𝑏-ary Segment-Tree data structure with parallel updates
proposed by Pibiri and Venturini to solve the prefix-sum problem [26]. They determined that
this data structure performs better than a binary Segment-Tree [1, 2] and solutions based on the
Fenwick-Tree [7]. Before presenting our data structure, we recall some preliminary notions.

Given an array 𝐴 of𝑚 integers, an internal node of a binary Segment-Tree stores the sum of the
elements in𝐴[𝑖, 𝑗], its left child that of𝐴[𝑖, ⌊(𝑖+ 𝑗)/2⌋], and its right child that of𝐴[⌊(𝑖+ 𝑗)/2⌋ +1, 𝑗].
The 𝑖-th leaf of the tree (from left to right) just stores 𝐴[𝑖] and the root the sum of the elements in
𝐴[0,𝑚 − 1]. It is easy to generalize the tree to become 𝑏-ary: a node holds 𝑏 integers, the 𝑖-th being
the sum of the elements of 𝐴 covered by the sub-tree rooted in its 𝑖-th child. Different trade-offs
between the runtime of sum and update can be obtained by changing the solution adopted to solve
such operations over the 𝑏 keys stored in a node.

Here is, in short, the solution by Pibiri and Venturini [26] assuming 𝐴 to be an array of (possibly
signed) 64-bit integers. Every node of the tree is a two-level data structure, holding an array of𝑏 keys,
say keys[0..𝑏). This array is divided into segments of

√
𝑏 keys each, and each segment stored in

prefix-sum. A summary[0..
√
𝑏) array stores the sums of the elements in each segment, again in prefix-

sum. (Precisely, the 𝑖-th entry of summary is responsible for the segment 𝑖 − 1, and summary[0] = 0.)
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82 188 190 13 20 20 23 151 351 360 360 0 0 143 219

0 190 213 573summary

keys

4 values in 256 bits

19

4 values in 256 bits

Fig. 2. A two-level node layout built from array [19, 63, 106, 2, 13, 7, 0, 3, 151, 200, 9, 0, 0, 0, 143, 76].

It follows that sum queries are answered in constant time with sum(𝑖) = summary[𝑖/
√
𝑏] + keys[𝑖];

update operations are resolved by updating the summary array and the specific segment comprising
the 𝑖-th key. Importantly, updates can be performed in parallel exploiting the fact that four 64-bit
keys can be packed in a SIMD register of 256 bits.

Figure 2 shows an example of this organization for an input array of size 𝑏 = 16 containing only
positive quantities as it is the case for the problem we are interested in this work.

Once a node of the tree has been modeled in this way, sum and update are resolved by traversing
the tree by issuing the corresponding operation on one node per each level. Using reasonably large
node fanouts 𝑏, the resulting tree is very flat, e.g., of height ⌈log256𝑚⌉, where𝑚 is the array size and
𝑏 = 256. Taking this into account, Pibiri and Venturini [26] also recommend to write a specialized
code path handling each possible value of tree height, which avoids the use of loops and branches
during tree traversals for increased performance. In what follows, we adopt their two-level node
layout and optimizations.
However, for the problem of rank/select over mutable bitmaps, we need to solve a specialized

version of the prefix-sum problem, for the following reasons.
(1) The input is an array of unsigned integers, with each value being at most 256 or 512 for our

choice of block size.
(2) The Δ value for update can only possibly be +1 or −1.
(3) We also need the search operation, which we will implement using SIMD instructions.

Given these specifications, we first describe our Segment-Tree data structure tailored for AVX2
and, then, discuss how to extend it to the new AVX-512 instruction set. As explained before, we
just need to care about the design of the tree nodes since every tree operation is a sequence of
operations performed on the nodes.

5.1 Using AVX2
We start by highlighting some facts that will guide and motivate our design choices.

As per point (1) above, it follows that the integers stored in the tree are all unsigned. This fact
poses a challenge on the applicability of SIMD instructions for updates and searches because most
of such instructions (up to and including the AVX2 set) do not work with unsigned arithmetic.
For example, it is not possible to compare unsigned integers natively1 but only signed quantities.
Therefore, care should be put in ensuring that the sign bit remains always 0 to guarantee correctness
of the algorithms which, in other words, limits the dynamic of the integers that can be loaded into a

1The unsigned comparison can be simulated using a combination of instructions, for a higher processing time.
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summary

keys

16 values in 256 bits

8 values in 256 bits

Fig. 3. The node128 layout.

SIMD register. For example, we cannot ever store a quantity 𝑣 grater than 215 − 1 in a 16-bit integer,
otherwise the result of the comparison 𝑣 > 𝑥 will be wrong for any 0 ≤ 𝑥 < 215.
To make the overall tree height as small as possible, we would like to maximize the number of

integers that we can pack in a 256-bit SIMD register. By construction of the Segment-Tree, the
deeper a node in the tree hierarchy, the smaller the integers it holds, and vice versa. This again
limits the number of integers that can be processed at once with a SIMD instruction at a given
level of the tree. Therefore we will define and use three node types with different fanouts: node128,
node64, and node32. Since their design is very similar, in the following we give the details for one
of them – node128 – and summarize the different types in Table 2a.

Node128. For our choice of block size, each value of the input array can be represented using 2
bytes. Therefore we do so and pack 16 values in a 256-bit node segment. Let 𝐵 indicate the block
size in bits. Since each segment is stored in prefix-sum, it follows that the maximum value we may
store in a segment is 16𝐵. For the discussion above, it follows that 𝐵 must satisfy 16𝐵 < 215 to
guarantee correctness. That is, every block size 𝐵 < 211 bits does not violate our design. Then, we
group 8 segments so that the maximum value stored in a segment is at most (8 − 1) × 16𝐵 which
we store into a 32-bit integer. Summing up, we have 8 segments of 16 keys each, for a total of 128
keys per node. We call this two-level node layout node128. Figure 3 is a pictorial representation
of this layout. We now illustrate how the methods, sum, update, and search, are supported with
node128.
Queries are resolved as sum(𝑖) = summary[𝑖/8] + keys[𝑖]. The code implementing update is

given below.
void update(uint64_t i, bool sign) {
if (i == fanout) return;
uint64_t j = i / 16, k = i % 16;
__m256i s1 = _mm256_load_si256((__m256i const*)T_summary + j + sign * 8);
__m256i r1 = _mm256_add_epi32(_mm256_loadu_si256((__m256i const*)summary), s1);
_mm256_storeu_si256((__m256i*)summary, r1);
__m256i s2 = _mm256_load_si256((__m256i const*)T_segment + k + sign * 16);
__m256i r2 = _mm256_add_epi16(_mm256_loadu_si256((__m256i const*)(keys + j * 16)), s2);
_mm256_storeu_si256((__m256i*)(keys + j * 16), r2);

}

It uses two pre-computed tables. Precisely, T_summary stores 2×8×8, 32-bit, signed integers, where
T_summary[𝑖] [0..7] is an array whose first 𝑖 + 1 integers are 0 and the remaining 8 − (𝑖 mod 8) − 1
are: +1 for 𝑖 = 0..7, and −1 for 𝑖 = 8..15. The table T_segment, instead, stores 2 × 16 × 16, 16-bit,
signed integers, where T_segment[𝑖] [0..15] is an array where the first 𝑖 integers are 0 and the
remaining 16 − (𝑖 mod 16) are: +1 for 𝑖 = 0..15, and −1 for 𝑖 = 16..31. The tables are used to obtain
the register configuration that must be added to the summary and segment, respectively, regardless
the sign of the update. (The difference with respect to the general approach by Pibiri and Venturini
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[26] is that tables can be used to directly obtain the register configuration to add because Δ is either
+1 or −1 in this case, rather than a generic 64-bit value.)
Also note that the input parameter sign is 0 for Δ = +1 and 1 for Δ = −1, so that the use of

update in the flip method of the mutable_bitmap class in Figure 1 (at page 5) is correct.
The search(𝑥) operation, that computes the smallest 𝑖 in [0..128) such that sum(𝑖) > 𝑥 , can also

be implemented using the SIMD instruction cmpgt (compare greater-than). Our approach is coded
below, assuming that 𝑥 < sum(128 − 1).
std::pair<uint64_t, uint64_t> search(uint64_t x) const {
uint64_t i = 0;
__m256i cmp1 = _mm256_cmpgt_epi32(_mm256_loadu_si256((__m256i const*)summary),

_mm256_set1_epi32(x));
i = index_fs<32>(cmp1) - 1;
x -= summary[i];
i *= 16;
__m256i cmp2 = _mm256_cmpgt_epi16(_mm256_loadu_si256((__m256i const*)(keys + i)),

_mm256_set1_epi16(x));
i += index_fs<16>(cmp2);
return {i, i ? sum(i - 1) : 0};

}

The algorithm essentially uses parallel comparisons of 𝑥 against, first, the summary and, then, in a
specific segment. The result of cmpgt_epi16(𝑉 ,𝑋 ) between the vectors 𝑉 and 𝑋 of 16-bit integers
is a vector 𝑌 such that 𝑌 [𝑖] = 216 − 1 if 𝑉 [𝑖] > 𝑋 [𝑖] and 0 otherwise. From vector 𝑌 , we need to
find the index of the “first set” (fs) 16-bit field. This function, referred to as index_fs in the code,
can be implemented efficiently using the built-in instruction ctz (count trailing zeros) over 64-bit
words. (The function takes a template parameter representing the number of bits of each integer in
a 256-bit register.) Some notes are in order.

Note that, since summary[0] = 0, it is guaranteed that index_fs(cmp1) is always at least 1 (but
not necessarily true for index_fs(cmp2)).
As already mentioned, there is no cmpgt instruction for unsigned integers in instruction sets

up to and including AVX2. Nonetheless, observe again that the search algorithm shown here is
correct because we never use the 15-th bit (sign) of the 16-bit integers we load in the registers.

Lastly, observe that the search function returns a pair of integers, not only the index 𝑖 but also
the sum of the elements to the “left of” index 𝑖 for convenience, i.e., sum(𝑖 − 1) (or just 0 if 𝑖 = 0),
because this quantity is needed by the select operation in Figure 1.

Other node types. With node128 it is, therefore, possible to handle bitmaps of size up to 27𝐵
bits. We can now define a node64 structure, by applying the same design rules (and using similar
algorithms) as we have done for the node128 structure. The node64 structure uses 8 segments,
each holding 8 32-bit keys. Its summary array holds 32-bit numbers too. It follows that using a
Segment-Tree of height two, where the root of the tree is a node of type node64 and its children
are of type node128, it is possible ho handle bitmaps of size up to 26+7𝐵 bits. For a tree of height 3
we re-use again node64, for up to 26+6+7𝐵 bits. Adding another node, node32, made up of 4 64-bit
values for the summary and segment of 8 32-bit keys, suffices to handle bitmaps of size up to 224𝐵
bits, e.g., 232 bits for 𝐵 = 256. Table 2a summarizes these node types, with Table 3a showing how
these are used in the Segment-Tree.

5.2 Using AVX-512
Using registers of 512 bits clearly increases the parallelism of both updates and searches as 2×more
integers can be packed in a register compared to AVX2 that uses 256-bit registers. We can again
define three node types to make full exploitation of the new AVX-512 instruction set: node512,
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Table 2. Segment-Tree node types. The type nodex has fanout equal to x.

(a) AVX2

Type Summary Segment Bytes

node32 4 × 64-bit 8 × 32-bit 160
node64 8 × 32-bit 8 × 32-bit 288
node128 8 × 32-bit 16 × 16-bit 288

(b) AVX-512

Type Summary Segment Bytes

node128 8 × 64-bit 16 × 32-bit 576
node256 16 × 32-bit 16 × 32-bit 1088
node512 16 × 32-bit 32 × 16-bit 1088

Table 3. Segment-Tree configurations used to index a bitmap with blocks of 𝐵 bits, 𝐵 < 211.

(a) AVX2

Tree height Node hierarchy Bitmap size

4 node32 up to 224𝐵 bits
3 node64 up to 219𝐵 bits
2 node64 up to 213𝐵 bits
1 node128 up to 27𝐵 bits

(b) AVX-512

Tree height Node hierarchy Bitmap size

3 node128 up to 224𝐵 bits
2 node256 up to 217𝐵 bits
1 node512 up to 29𝐵 bits

node256, and node128. Their design is akin to that for AVX2 in the previous section, with details
given in Table 2b. Table 3b shows, instead, that the height of the Segment-Tree can be reduced
by 1 compared to AVX2. We also expect this to help in lowering the runtime as cache misses are
reduced.

Another (minor) advantage of AVX-512 over AVX2 is that instructions implementing comparisons
directly return a mask vector of 8, 16, 32, or 64 bits, instead of a wider SIMD register. This resulting
mask can then be used as input for another instrinsic, such as ctz. In our case, the function
index_fs used during a search operation just translates to one single ctz call (instead of 4 calls as
in the case for a 256-bit register output by _mm256_cmpgt).

The only current limitation of AVX-512 is that is not as widespread as AVX2, so algorithms based
on such instruction set are less portable.

5.3 Experimental Analysis
In this section, we measure the runtime of sum, update, and search, for the introduced Segment-
Tree data structure and optimized state-of-the-art approaches, i.e., the Fenwick-Tree-based data
structures described by Marchini and Vigna [19], and implemented in the Sux [31] C++ library. We
reuse the nomenclature adopted by the authors in their own paper: Byte indicates compression at
the byte granularity; Fixed indicates no compression; F stands for classic Fenwick layout; and L
stands for level-order layout. For these experiments, we used arrays generated at random of size 2𝑘
integers, for 𝑘 = 8..24. Since the runtime of the operations on the Segment-Tree does not depend
on the block size 𝐵, we fix 𝐵 to 256 in these experiments. Therefore, each integer of the input array
is a random value in [0..256]. (Each element of the array logically models the population count of a
256-bit block, so that the maximum array size cannot exceed 224 for a bitmap of size 232 bits.)
Figure 4 illustrates the result of the experiments. We shall first consider the Segment-Tree data

structure described in this section and compare the use of AVX2 with AVX-512. The runtime of sum
and update is very similar for both versions of the Segment-Tree. Recall that every tree operation
translates into some of the corresponding operations performed at the nodes – one such operation
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Table 4. The two-step framework for rank with approaches to perform the steps of (1) popcount and (2)
prefix-sum.

(1) popcount

broadword [30, Alg. 1]
built-in instruction
SIMD [22, Figure 10]

(2) prefix-sum

loop
unrolled loop
SIMD [16, Figure 5 of this paper]

per level of the tree. For sum and update, these node operations are data-independent and our
implementation exploits this fact to leave the processor pipeline the opportunity to execute them
out of order. Therefore, only one level of difference between the two tree heights does not suffice
to make the two curves sufficiently distinct.

This consideration does not apply, instead, to the search operation because the result of search
at level ℓ is used to perform search at level ℓ + 1, hence making the search algorithm inherently
sequential. As a consequence of this fact, observe that the runtime of search is substantially higher
than that of sum and update (not only because of the more complicated algorithm). In this case,
the use of AVX-512 shines over AVX2 – often by a factor of 2× – because one less level to traverse
makes a big difference in the runtime of a sequential algorithm. (Also notice how both curves rise
when one more level of the tree is in use.)

Compared to solutions based on the Fenwick-Tree, the Segment-Tree is consistently faster and
by a good margin, confirming that the joint use of branch-free code and SIMD instructions have a
significant impact on the practical performance of the data structures.
The space of the Segment-Tree is slightly more than the space needed to represent the input

array itself, assuming that a fixed number of bytes is used to store each element. For our choice
of block size, each array element can be stored in 2 bytes, so the number of bytes spent by the
Segment-Tree for each element will be slightly more than 2 for sufficiently large inputs, i.e., ≈2.29
for AVX2 and ≈2.13 for AVX-512. In fact, the overhead of the tree hierarchy progressively vanishes
as the tree height increases because nodes with large fanout are used. (It is easy to derive the exact
number of bytes consumed by the data structure from the tree height and the space of each node
type reported in Table 2.) This ultimately means that, when the Segment-Tree is used as a bitmap
index, its extra space is just (2.29 × 8)/256 × 100% < 7.2% of that of the bitmap itself with blocks of
256 bits, and less than 3.6% with blocks of 512 bits.

The compressed Fenwick-Tree data structures perform similarly to the Segment-Tree (the space
for ByteF and ByteL is the same), taking ≈2 bytes per element. The Fixed variants take considerably
more space because every element is represented with 4 or 8 bytes.
In conclusion, the searchable prefix-sum data structure described in this section – a Segment-

Tree with SIMD-ized updates and searches – consumes space comparable to that of a compressed
Fenwick-Tree while being significantly faster.

6 RANK/SELECT QUERIES OVER SMALL BITMAPS
In this section we study the problem of answering rank and select queries over small bitmaps of
𝐵 = 256 and 512 bits (four and eight 64-bit words respectively) without auxiliary space. We first
describe the algorithms under a unifying implementation framework; then discuss experimental
results to choose the fastest algorithms.
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__m256i prefix_sum_256(__m256i C) {
static const int idx1 = _MM_SHUFFLE(2, 1, 0, 3);
static const int idx2 = _MM_SHUFFLE(1, 0, 3, 2);
C = _mm256_add_epi64(C, _mm256_maskz_permutex_epi64(0b11111110, C, idx1));
C = _mm256_add_epi64(C, _mm256_maskz_permutex_epi64(0b11111100, C, idx2));
return C;

}

__m512i prefix_sum_512(__m512i C) {
static const __m512i idx1 = _mm512_set_epi64(6, 5, 4, 3, 2, 1, 0, 7);
static const __m512i idx2 = _mm512_set_epi64(5, 4, 3, 2, 1, 0, 7, 6);
static const __m512i idx3 = _mm512_set_epi64(3, 2, 1, 0, 7, 6, 5, 4);
C = _mm512_add_epi64(C, _mm512_maskz_permutexvar_epi64(0b11111110, idx1, C));
C = _mm512_add_epi64(C, _mm512_maskz_permutexvar_epi64(0b11111100, idx2, C));
C = _mm512_add_epi64(C, _mm512_maskz_permutexvar_epi64(0b11110000, idx3, C));
return C;

}

Fig. 5. A SIMD-based implementation of the parallel prefix-sum algorithm described by Hillis and Steele
[16], for 256 and 512 bits. It leverages the instructions maskz_permutex and maskz_permutexvar available
in the instruction set AVX-512.

6.1 Rank
A common framework to solve rank for an index 0 ≤ 𝑖 < 𝐵 consists of the following two steps.
(1) Count the numbers of ones appearing in the first 𝑗 = ⌊𝑖/64⌋ words, where the 𝑗-th word is

appropriately masked to zero the most significant 64 − (𝑖 + 1) mod 64 bits.
(2) Prefix-sum the resulting counters.
From a logical point of view, the result of step (1) is an array 𝐶 [0..𝐵/64) of counters so that the
final result for rank(𝑖) is computed as 𝐶 [0] + · · · +𝐶 [ 𝑗] in step (2).
Several algorithms to perform these two steps are summarized in Table 4. By combining such

basic steps we obtain different implementations of rank.
We have three different approaches to implement step (1). The first is the broadword algorithm

by Vigna [30, Algo. 1]. The second is the __builtin_popcountll instruction available from SSE4.2.
The third is a parallel algorithm using SIMD developed by Muła et al. [22, Figure 10], to concurrently
compute 4 or 8 popcount results, i.e., filling the vector 𝐶 . (We took the original implementation
made available by the authors at https://github.com/WojciechMula/sse-popcount.)

Also for step (2) we have three different approaches. The first is a simple loop that incrementally
sums 𝐶 [𝑘] for 0 ≤ 𝑘 ≤ 𝑗 , and requires a test for 𝑗 at each iteration. The second is an unrolled
loop that computes all the prefix sums 𝐶 [𝑘] = 𝐶 [𝑘] + 𝐶 [𝑘 − 1] for 0 < 𝑘 < 𝐵/64 and returns
𝐶 [ 𝑗]. The approach does not require any branch. The third is a SIMD-based implementation of
the parallel prefix-sum algorithm devised by Hillis and Steele [16]. In Figure 5 we show the two
implementations for, respectively, 256 and 512 bits. Note that the last two approaches work in a
branch-free manner but need to popcount all the 𝐵/64 words.
We now consider the runtimes achieved by the various approaches reported in Table 4. For all

such experiments, we generated random bitmaps of increasing size and random queries of the
form ⟨ 𝑗, 𝑖 𝑗 ⟩, indicating that a given algorithm has to run over block 𝑗 and with index 𝑖 𝑗 as input
parameter.
Figure 6 shows the runtimes for step (1). The fastest approach is to use the built-in popcount

instruction, with the SIMD-based algorithm catching up (especially on the larger 𝐵 = 512). The
broadword algorithm is outperformed by the other two approaches. Concerning step (2), Figure 7
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Fig. 6. Average nanoseconds spent per pop-count (step (1) in Table 4) by different algorithms, for 𝐵 = 256.
The trend for 𝐵 = 512 is the same, but the gap between broadword and the other approaches is more evident.

shows that the use of an unrolled loop provides consistently better results than a traditional loop
for a wide range of practical bitmap sizes, because it completely avoids branches and increases the
instruction throughput. It is comparable with (for 𝐵 = 256) or even better than SIMD (for 𝐵 = 512).
However, when the size of a bitmap is very large, using a simple loop is faster. This is because large
bitmaps involve slower memory accesses, resulting in the memory latency dominating the cost of
the CPU pipeline flush. In that case, the branchy implementation becomes faster since unnecessary
memory accesses are avoided. (In fact, the difference is more evident for the case 𝐵 = 512 rather
than for 𝐵 = 256.) This is consistent with prior work [26].

Lastly, in the light of the results in Figure 6 and 7, we combine some of the approaches to obtain
the fastest rank algorithm. Our expectation is that the combination builtin+unrolled performs best
until the bitmap size becomes very large, when eventually the combination builtin+loop wins out.
Also the implementation SIMD+SIMD is expected to be competitive with, but actually worse than,
these two identified combinations. Figure 8 shows the runtimes of such algorithms and confirms
our expectations.

6.2 Select
A common framework to solve select for an index 0 ≤ 𝑖 < 𝐵 consists of the following three steps.
(1) Count the numbers of ones appearing in each word, using an array 𝐶 [0..𝐵/64).
(2) Prefix-sum 𝐶 and search for the 𝑗-th word,𝑤 𝑗 , containing the 𝑖-th bit set.
(3) Compute select locally in𝑤 𝑗 , an operation that we denote by select64 (select-in-word).
More formally, step (2) determines the smallest 𝑗 such that 𝑖 < 𝐶 [ 𝑗] and step (3) returns 𝑗64 +
select64(𝑤 𝑗 , 𝑖 −𝐶 [ 𝑗 − 1]). Approaches to perform these steps are summarized in Table 5.
For step (1), we reuse the three approaches in Table 4 adopted for rank. For step (2), we have

two approaches: the first is a simple loop that incrementally computes the prefix-sums in 𝐶 and
checks if 𝑖 < 𝐶 [ 𝑗]; the second is a branch-free implementation that computes the prefix-sums in
parallel and finds the target 𝑗-th word using SIMD AVX-512 instructions. For step (3), we have
three approaches. Two approaches are based on broadword programming, developed by Vigna
[30] and Gog and Petri [11], respectively. We used the implementations available from the libraries
Succinct [15] and Sdsl [10, 11]. (We took advantage of built-in instructions whenever possible. This

14



2929 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

bitmap size

1

2

3

5

6

7

9

10

na
no

se
cs

/p
re

fix
-s

um

loop
unrolled
SIMD

(a) 𝐵 = 256 bits

2929 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

bitmap size

3

5

7

9

11

13

15

na
no

se
cs

/p
re

fix
-s

um

loop
unrolled
SIMD

(b) 𝐵 = 512 bits

Fig. 7. Average nanoseconds spent per prefix-sum (step (2) in Table 4) by different algorithms.

Table 5. The three-step framework for select with approaches to perform the steps of (1) popcount, (2)
search, and (3) select-in-word.

(1) popcount

same as in Table 4

(2) search

loop
SIMD

(3) select-in-word

broadword-sdsl [11, Sect. 6.2]
broadword-succinct [30, Alg. 2]
parallel bits deposit (pdep) [25]

makes both algorithms faster compared to when intrinsics are not used.) The third approach is a
one-line algorithm using the parallel bits deposit (pdep) intrinsic devised by Pandey et al. [25].
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Fig. 8. Average nanoseconds spent per rank by different algorithms.

To benchmark the approaches in Table 5, we reuse the same methodology adopted for rank: ran-
dom bitmaps of increasing size under a random workload of ⟨ 𝑗, 𝑖 𝑗 ⟩ queries. Answering select(𝑖 𝑗 )
over block 𝑗 makes the runtime practically independent from the density of the 1s, which we fixed
to 30% in these experiments.
From the results in Figure 9 and 10, we see that SIMD is very effective in implementing the

search step (which is also coherent with the results in Section 5) and the use of pdep is much faster
than broadword approaches (as also noted in the paper by Pandey et al. [25]).
As similarly done for rank, we now discuss some combinations of the basic steps to identify

the fastest select algorithm. Since pdep is always the fastest at performing in-word-selection,
we exclude broadword approaches. Clearly, we expect that a combination of SIMD+pdep for the
last two steps performs best. The final result shown in Figure 11 again meets our expectations
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Fig. 9. Average nanoseconds spent per search (step (2) in Table 5) by different algorithms, for 𝐵 = 256. (The
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Fig. 10. Average nanoseconds spent per select-in-word (step (3) in Table 5) by different algorithms.

as the combination SIMD+SIMD+pdep is almost always the fastest. However, note that also the
combination builtin+loop+pdep is good (and even the best for 𝐵 = 512 and large bitmaps) because
the first two steps are inherently merged into one, i.e., popcount is performed within the searching
loop, whereas the use of SIMD for step (2) requires computing popcount for all words. As already
noticed, this performs fewer memory accesses that are very expensive for large bitmaps.

6.3 Conclusions
In the light of the experimental analysis in this section of the paper, we now summarize the two
fastest algorithms for rank and select.
• For rank, use builtin+unrolled for all bitmaps of size up to 225 bits (as a rule of thumb), and
switch to builtin+loop for larger bitmaps.
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Fig. 11. Average nanoseconds spent per select by different algorithms.

• For select, use SIMD+SIMD+pdep if AVX-512 instructions are available, or builtin+loop+pdep
otherwise.

We recall that we are going to use these selected algorithms over the blocks of a mutable bitmap
data structure, as exemplified in Figure 1.
Now we report how much the runtime increases, in percentage, when considering these algo-

rithms with 𝐵 = 512 compared to the case where 𝐵 = 256. To do so, we compute the average increase
for three intervals of bitmap size 𝑢, that model small, medium, and large bitmaps respectively:
(i) 29 ≤ 𝑢 < 221, (ii) 221 ≤ 𝑢 < 225, and (iii) 225 ≤ 𝑢 ≤ 232. For rank, we determined an average
increase of (i) 50%, (ii) 80%, and (iii) 40%. For select, we obtained (i) 80%, (ii) 80%, and (iii) 50%.
These numbers show the doubling the block size 𝐵 sometimes causes the runtime to nearly double
(+80%) as one would expect, but the increase is only 40-50% more on large bitmaps.
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Lastly, we also conclude that SIMD instructions are more effective for select rather than rank.
This is because potentially all words in the block must be searched, differently than rank that does
not need any search, and this can be done quickly with SIMD.

7 FINAL RESULT
The mutable_bitmap class coded in Figure 1 (at page 5) can be tuned in many possible ways,
depending on which index and rank/select algorithms are used to maintain its blocks. For the final
examples we are going to illustrate in this section, we adopt the best results from the previous
sections. (Other examples can be obtained by changing these two components.) Therefore, our
tuning is summarized below.

As index, we use the 𝑏-ary Segment-Tree with SIMD AVX-512 described in Section 5, as this data
structure gives the fastest results for search and preserves the runtime of sum/update compared
to AVX2 (see Figure 4 at page 11). For rank in a block, we use the algorithm builtin+unrolled for all
bitmap sizes up to 225 and then switch to builtin+loop. We adopt this strategy for both 𝐵 = 256 and
𝐵 = 512. For select in a block, we use SIMD+SIMD+pdep for 𝐵 = 256 and builtin+loop+pdep for
𝐵 = 512. Rank and select in a single 64-bit word (i.e., 𝐵 = 64) are respectively done with masking
followed by builtin popcount, and pdep.
With the indexing data structure and algorithms fixed, we show in Figure 12 the difference in

runtime by varying the block size 𝐵. For all the experiments in this section, we use random bitmaps
of increasing size, whose density is fixed to 0.3, under a random query workload (as consistently
done in Section 6). The plots for flip and rank are very similar for all block sizes, thus the choice
of 𝐵 = 512 should be preferred for the smaller space overhead. The impact of the block size is
evident for select instead: increasing the block size makes the runtime to grow as well for different
space/time trade-offs. In fact, we recall that our solution with blocks of 256 bits takes 7.2% extra
space, and just 3.6% more with blocks of 512 bits. With the smallest block size, 64, the extra space
becomes 26.7%.

7.1 Comparison against Immutable Indexes
It is interesting to understand how our mutable index compares against the immutable indexes that
we reviewed in Section 2.2, both in the uncompressed and compressed settings. This comparison is
important to quantify how much the mutability feature impacts on the performance.

Uncompressed Indexes. Figure 13 reports the runtime of some selected uncompressed indexes in
comparison with the mutable bitmap already shown in Figure 12. In order to choose our baselines,
we take into account the following space/time trade-offs: (1) the most time-efficient solution that
requires a separate index for each query; (2) the most time-efficient solution that requires a single
index for both queries; and (3) the most space-efficient solution. For the first category, we have the
combination Rank9+DArray. In this case, the extra space results from the sum of the space of the
two indexes, which is at least 25% because of Rank9. We use the implementation available in the
Succinct library. (The implementation of Rank9 in Sdsl performed the same as Succinct’s.) For the
second category, we have the combination Rank9+Hinted that performs a binary search directly
over the Rank9 index to solve select. Also in this case we use the Succinct’s implementation which
only requires 3% extra space on top of Rank9, for a total of 28% extra. For the last category, we
have Poppy with combined sampling (CS-Poppy), and we run the implementation by the original
authors which requires 3.4% extra space to support both queries.
Other baselines available in the Sdsl library provide additional space/time trade-offs: Rank9.v2

is a more space-efficient version of Rank9 that takes ≈6% extra space; IL interleaves the original
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Fig. 12. Average nanoseconds spent per operation by the mutable_bitmap by varying the block size 𝐵 =

64, 256, 512.
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Fig. 13. Average nanoseconds spent per operation by the mutable_bitmap by varying the block size (𝐵 =

64, 256, 512), in comparison with other immutable indexes.

bitmap with rank informations to help locality of reference, taking 12.5% extra space; MCL is a
modified Clark’s data structure for select, with low overhead (see Section 2.2 and Table 1, page 3).
From Figure 13 we see that the difference in runtime between our mutable index and the best

immutable indexes is not as high as one would expect. Thus, our proposal brings further advantages
in that it allows to modify the underlying bitmap without incurring in a significant runtime penalty
and with even lower space overhead. More detailed observations are given below.

• Compared to the combination Rank9+DArray, the mutable index with 𝐵 = 256 only introduces
a penalty in runtime for select on large bitmaps (from 225 onward, by 2×), but takes several
times less space. The extra space for Rank9 is fixed to 25% but the space of DArray depends on
the density of the bitmap because it is a position-based solution. While we did not observe a
meaningful difference in runtime by varying the density, we measured the space overhead for
the densities [0.1, 0.3, 0.5, 0.7, 0.9] and obtained [5.6%, 16.9%, 28.1%, 39.4%, 50.6%]. Again, these
should be summed to another 25%. Note that our mutable index does not depend on the density
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of the bitmap, therefore it consumes 4 − 11× less space. Lastly, the efficiency gap for select
can be reduced by using a smaller block size, e.g., 𝐵 = 64, with comparable or less space.

• Compared to the combination Rank9+Hinted, the mutable index with 𝐵 = 256 is basically as
fast but also reduces the space overhead by 4×, from 28% to 7%.

• Compared to the most space-efficient index, CS-Poppy, the mutable index with 𝐵 = 512 is faster
(especially for rank) and takes the same extra space.

• Concerning the implementations in the Sdsl library, we see that Rank9.v2 performs similarly
to CS-Poppy but consumes more space; IL is 2× more space-efficient than Rank9 but slower
for small and medium sized bitmaps; MCL for select consumes less space than DArray but is
consistently slower. It is also possible to binary search the IL layout to solve select but the
runtime of this approach is 4 − 5× slower than that of other approaches for medium and large
bitmaps (therefore, we excluded it from the plots).

Compressed Indexes. We compare the mutable index with the compressed indexes proposed
by Grabowski and Raniszewski [14]. (We recall that they aim at compressing the index component
as well as the underlying bitmap. Refer to Section 2.2, page 4, for a description of their compressed
layouts.) For consistency of presentation and methodology, we test the compressed indexes on
random bitmaps of increasing size with density fixed to 0.3. As also shown by the original authors
(see [14, Figure 6]), the query time and space overhead of the compressed indexes is pretty much
stable by varying the density of the bitmap (except possibly, for extremely sparse scenarios, i.e.,
0.05 density). While we cannot expect a great deal of compression in this setting, our objective here
is to determine the impact of a compressed layout on query time rather than that of saving space
(indeed, recall that the mutable bitmap is not compressed).

Figure 14 illustrates the comparison. We used the same names for the compressed indexes as
given by the authors in their own paper [14]. (From Section 2.2, page 4, we recall that their indexes
for select depend on two parameters, ℓ and 𝑇 , that are also reported in Figure 14. For example,
bch-128-4K indicates the bch layout with ℓ = 128 and 𝑇 = 4096.) The general trend is that a
compressed layout can be faster than the mutable bitmap for large sizes (larger than, say, 228 bits)
because of a better cache exploitation. A more precise evaluation is as follows.

• Regarding the rank query, we determine a space overhead of: 25% for basic; 3.7% for bch; 12.5%
for cf; and 4% for mpe1-3. Recall that the mutable index has an overhead of 26.7%, 7.2%, and
3.6%, for 𝐵 equal to 64, 256, and 512 respectively. The fastest compressed solution is cf (“cache
friendly”), which is also faster than the mutable index on bitmap sizes larger than 228 bits.
Also, this variant always dominates the basic variant, being as fast or faster and with less
space overhead. The other solutions, bch and mpe1-3, are consistently slower than the mutable
bitmap.

• Regarding select instead, we determine a space overhead of: 31% for basic-128-4K; 7.6% for
basic-512-8K; 20% for bch-128-4K; 5.1% for bch-512-8K; 20% for mpe-128-4K (1-3). In this case,
the performance is quite similar for all the different compressed layouts on bitmaps up to 226 bits,
with the basic-128-4K variant being generally faster but with also the largest space overhead.
On larger bitmaps, the compressed layouts are competitive with the mutable index for both
𝐵 = 256 and 𝐵 = 512.

As a last note, we remark that the compressed solutions we take into account here are optimized
for one operation, i.e., the indexes for rank and different than those for select. This means that,
as already pointed out for other immutable approaches, one has to build both indexes if both
operations are needed for the same bitmap. The mutable index proposed in this article, instead,
supports three operations (Rank, Select, and Flip) with the same data structure.
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Fig. 14. Average nanoseconds spent per operation by the mutable_bitmap by varying the block size (𝐵 =

64, 256, 512), in comparison with other compressed indexes.

8 CONCLUSIONS AND FUTUREWORK
We have proposed an efficient solution to the problem of rank/select queries over mutable bitmaps.
The result leverages on the efficiency of two components: (1) a searchable prefix-sum data structure,
optimized with SIMD instructions, and (2) rank/select algorithms over small immutable bitmaps.
Comparison against the best immutable indexes reveals that a mutable index can be competitive in
query time and consume even less space.
Future work will focus on making queries even faster, especially select that benefited more

than rank from SIMD optimizations. Another study could explore the impact of compressing the
blocks of the index for possibly improved space/time trade-offs in space-constrained applications.
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