
Efficient Data Structures for Massive N -Gram Datasets?

Giulio Ermanno Pibiri and Rossano Venturini

Department of Computer Science, University of Pisa, Italy
giulio.pibiri@di.unipi.it, rossano.venturini@unipi.it

Abstract. In this paper we summarize the experimental results of [7],
whose main proposal is a compressed trie index for N -grams in which
each word is encoded as an integer value proportional to the number of
words that follow a context of fixed length. Since the number of words
following a given context is typically very small in natural languages, we
are able to lower the space of representation to compression levels that
were never achieved before. Despite the significant savings in space, we
show that our technique introduces a negligible penalty at query time.

1 Elias-Fano Tries with Context-based ID Remapping

The problem we consider in this paper is the one of indexing massive N -gram
datasets in compressed space, i.e., how to efficiently represent the map from the
N -gram strings to their corresponding frequency counts, so that we can retrieve
a count by means of a Lookup operation. In the remaining of the section, we
sketch the main design of the trie data structure proposed in [7].

Uni-grams are indexed using a minimal and perfect hash data structure that
stores for each string its integer ID in order to retrieve it in O(1) worst-case.
We sort all k-grams, for 1 ≤ k ≤ N , following the token-ID order: the k-th
level of the trie is formed by the sequence of IDs corresponding to the k-th
tokens of the k-grams. Now, the k-grams sharing the same prefix of length k− 1
form a strictly increasing range of (sibling) IDs. We transform each level of the
trie into a monotone sequence by taking range-wise prefix sums. In order to
distinguish the successors of a gram from others, we also maintain where each
range begins in another monotone integer sequence of pointers. We compress
these two sequences with Elias-Fano in order to support efficient searches.

To further reduce the space taken by the token-ID sequences, we map a token
ID to the position it occupies within its siblings. We call this technique context-
based remapping as each ID is mapped to the position it takes relatively to a
context. As the range of a gram is much smaller than the whole vocabulary size
(number of uni-grams), we shrink the magnitude of the integers that form the
levels of the trie. In our case, a token-ID sequence of length n and universe u is
encoded with Elias-Fano: this encoding spends dlog u

ne+ 2 bits per integer, thus
a number of bits proportional to the average gap (u/n) between the integers.
Remapping them as explained reduces the universe u of representation, hence
lowering the average gap and space of the sequence.

? The full version of this paper will be presented at the 40-th ACM SIGIR [7].



Europarl YahooV2 GoogleV2

bpg µs × query bpg µs × query bpg µs × query

EF 1.97 1.28 2.17 1.60 2.13 2.09
PEF 1.87 (−4.99%) 1.35 (+5.93%) 1.91 (−12.03%) 1.73 (+8.00%) 1.52 (−28.60%) 1.91 (−8.79%)

C
O
N
T
E
X
T
-B

A
S
E
D

ID
R
E
M
A
P
P
IN

G

k
=

1 EF 1.67 (−15.30%) 1.58 (+23.86%) 1.89 (−12.92%) 2.05 (+28.07%) 1.91 (−10.24%) 3.03 (+44.61%)

PEF 1.53 (−22.36%) 1.61 (+25.89%) 1.63 (−24.91%) 2.16 (+35.22%) 1.31 (−38.71%) 2.30 (+9.88%)

k
=

2 EF 1.46 (−25.62%) 1.60 (+25.17%) 1.68 (−22.32%) 2.08 (+30.23%) — —
PEF 1.28 (−34.87%) 1.64 (+28.12%) 1.38 (−36.15%) 2.15 (+34.81%) — —

Table 1. Average bytes per gram (bpg) and average Lookup time per query in micro
seconds.

2 Experiments

We performed the experiments on the following standard datasets: Europarl [4],
YahooV2 [1] and GoogleV2 [2] that include, respectively, 101 428 257, 828 223 677
and 11 131 242 087 N -grams. We compare the performance of our data structures
against the following software packages: BerkeleyLM [6]; Expgram [9]; KenLM [3];
Marisa [10]; RandLM [8].

All experiments have been performed on a machine with 16 Intel Xeon E5-
2630 v3 cores (32 threads) clocked at 2.4 Ghz, with 193 GBs of RAM, running
Linux 3.13.0, 64 bits. Our implementation is in standard C++11 and freely avail-
able at https://github.com/jermp/tongrams. The code was compiled with gcc
5.4.1, using the highest optimization settings. To test the speed of lookup queries,
we use a query set of 5 million random N -grams for YahooV2 and GoogleV2 and
of 0.5 million for Europarl. In order to smooth the effect of fluctuations during
measurements, we repeat each experiment five times and consider the mean.

2.1 Elias-Fano Tries

In this subsection we analyze our proposed Elias-Fano trie data structure, when
the levels of the trie are encoded with plain Elias-Fano (EF) or partitioned Elias-
Fano (PEF) [5]. Refer to Table 1. In particular, for GoogleV2 we use a context
of length k = 1, as the tri-grams alone take 66% of the whole dataset and,
therefore, should be kept remapped. As we can see by the second row of Table 1,
partitioning the gram sequences using PEF yields a better space occupancy with
respect to EF (up to 29% on GoogleV2) and brings only a negligible overhead in
query processing speed (less than 8% on Europarl and YahooV2).

Concerning the efficacy of the context-based remapping, we have that remap-
ping the gram IDs with a context of length k = 1 is already able of reducing
the space of the sequences by ≈13% on average when sequences are encoded
with Elias-Fano, with respect to the EF cost. If we consider a context of length
k = 2 we double the gain, allowing for more than 28% of space reduction without
affecting the lookup time with respect to the case k = 1. As a first conclusion,
when space efficiency is the main concern, it is always convenient to apply the

https://github.com/jermp/tongrams


remapping strategy with a context of length 2. The gain of the strategy is even
more evident with PEF (36% on average and up to 39% on GoogleV2): this is no
surprise as the encoder can better exploit the reduced IDs by encoding all the
integers belonging to a block with a universe relative to the block and not to the
whole sequence. However, the remapping strategy comes with a penalty at query
time as we have to map an ID before it can be searched in the proper gram se-
quence. On average, we found that 30% more time is spent with respect to the EF
baseline. Notice that PEF does not introduce any time degradation with respect
to EF with context-based remapping: it is actually faster on GoogleV2.

In the following subsection, we call PEF-Trie and PEF-RTrie the partitioned
Elias-Fano trie without remapping and with remapping of order 2 respectively.

Europarl YahooV2 GoogleV2

bpg µs × query bpg µs × query bpg µs × query

PEF-Trie 1.87 1.35 1.91 1.73 1.52 1.91
PEF-RTrie 1.28 1.64 1.38 2.15 1.31 2.30

BerkeleyLM C. 1.70 (−8.89%) 2.83 (+108.88%) 1.69 (−11.41%) 3.48 (+101.84%) 1.45 (−4.87%) 4.13 (+116.57%)

(+32.90%) (+72.70%) (+22.04%) (+61.70%) (+10.83%) (+79.76%)

BerkeleyLM H.3 6.70 (+258.81%) 0.97 (−28.46%) 7.82 (+310.38%) 1.13 (−34.35%) 9.24 (+507.79%) 2.18 (+13.95%)

(+423.40%) (−40.85%) (+465.36%) (−47.41%) (+608.07%) (−5.42%)

BerkeleyLM H.50 7.96 (+326.03%) 0.97 (−28.49%) 9.37 (+391.32%) 0.96 (−44.27%) — —
(+521.45%) (−40.88%) (+576.87%) (−55.35%)

Expgram 2.06 (+10.18%) 2.80 (+106.61%) 2.24 (+17.36%) 9.23 (+435.33%) — —
(+60.73%) (+70.82%) (+61.68%) (+328.87%)

KenLM T. 2.99 (+60.11%) 1.28 (−5.47%) 3.44 (+80.39%) 1.94 (+12.32%) — —
(+133.56%) (−21.84%) (+148.52%) (−10.01%)

Marisa 3.61 (+93.09%) 2.06 (+52.00%) 3.81 (+99.60%) 3.24 (+87.96%) — —
(+181.66%) (+25.67%) (+174.98%) (+50.58%)

RandLM 1.81 (−3.06%) 4.39 (+224.20%) 2.02 (+6.18%) 5.08 (+194.35%) 2.60 (+70.73%) 9.25 (+384.54%)

(+41.41%) (+168.04%) (+46.29%) (+135.82%) (+98.90%) (+302.19%)

Table 2. Average bytes per gram (bpg) and average Lookup time per query in micro
seconds. An empty entry means that was not possible to build the data structure due
to memory constraints

2.2 Overall Comparison

In this subsection we compare the performance of our selected trie data struc-
tures, PEF-RTrie and PEF-Trie, against the competitors mentioned at the begin-
ning of the section. The results of the comparison are shown in Table 2. For each
competitor, we report two percentages indicating its score against our PEF-Trie
and PEF-RTrie respectively.

BerkeleyLM compressed (C.) variant results ≈21% larger than the PEF-RTrie
and slower by more than 70%. It gains, instead, an advantage of roughly 9%
over the PEF-Trie data structure, but it is also more than 2 times slower. The
HASH variant uses hash tables with linear probing to represent the nodes of
the trie. Therefore, we test it with a small extra space factor of 3% for table
allocation (H.3) and with 50% (H.50). Clearly the space occupancy of both hash
variants do not compete with the ones of our proposals as these are from 3 to 7
times larger, but the O(1)-lookup capabilities of hashing makes it faster than a



trie implementation. Expgram is ≈13.5% larger than PEF-Trie and also 2 and 5
times slower on Europarl and YahooV2 respectively. Our PEF-RTrie data structure
retains an advantage in space of 60% and it is still significantly faster: of about
72% on Europarl and 4.3 times on YahooV2. KenLM is the fastest trie language
model implementation in the literature. As we can see, our PEF-Trie variant
retains 70% of its space with a negligible penalty at query time. Compared to
PEF-RTrie, it results a little faster, i.e., ≈15%, but also 2.3 and 2.5 times larger on
Europarl and YahooV2 respectively. We also tested the performance of Marisa even
though it is not a trie optimized for language models as to understand how our
proposals compare against a general-purpose string dictionary implementation.
We outperform Marisa in both space and time: compared to PEF-RTrie, it is 2.7
times larger and 38% slower; with respect to PEF-Trie it is more than 90% larger
and 70% slower. RandLM is designed for small memory footprint and returns
approximated frequency counts when queried. While being from 2.3 to 5 times
slower than our exact and lossless approach, it is quite compact because the
quantized frequency counts are recomputed on the fly [8]. Therefore, while its
space occupancy results even larger with respect to our grams representation by
61%, it is still no better than the whole space of the PEF-RTrie data structure.
With respect to the whole space of PEF-Trie, it retains instead an advantage of
≈15.6%.

References

[1] Yahoo! n-grams, version 2.0. 2006. URL: http://webscope.sandbox.yahoo.com/
catalog.php?datatype=l.

[2] Thorsten Brantz and Alex Franz. The Google Web 1T 5-Gram Corpus. In
Technical Report LDC2006T13, 2006. URL: http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html.

[3] Kenneth Heafield. Kenlm: Faster and smaller language model queries. In WMT,
pages 187–197, 2011. URL: http://kheafield.com/code/kenlm.

[4] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In
MT summit, pages 79–86, 2005. URL: http://www.statmt.org/europarl.

[5] Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano Indexes. In
SIGIR, pages 273–282, 2014.

[6] Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In ACL,
pages 258–267, 2011. URL: https://github.com/adampauls/berkeleylm.

[7] Giulio Ermanno Pibiri and Rossano Venturini. Efficient Data Structures for Mas-
sive N -Gram Datasets. In SIGIR, pages –, 2017.

[8] David Talbot and Miles Osborne. Randomised language modelling for statistical
machine translation. In ACL, pages 512–519, 2007. URL: https://sourceforge.
net/projects/randlm.

[9] Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. A succinct n-gram lan-
guage model. In IJCNLP, pages 341–344, 2009. URL: https://github.com/

tarowatanabe/expgram.
[10] Susumu Yata. Prefix/patricia trie dictionary compression by nesting pre-

fix/patricia tries. In NLP, 2011. URL: https://github.com/s-yata/

marisa-trie.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://kheafield.com/code/kenlm
http://www.statmt.org/europarl
https://github.com/adampauls/berkeleylm
https://sourceforge.net/projects/randlm
https://sourceforge.net/projects/randlm
https://github.com/tarowatanabe/expgram
https://github.com/tarowatanabe/expgram
https://github.com/s-yata/marisa-trie
https://github.com/s-yata/marisa-trie

	Efficient Data Structures for Massive N-Gram Datasets

