
I

Inverted Index Compression

Giulio Ermanno Pibiri and Rossano Venturini
Department of Computer Science, University of
Pisa, Pisa, Italy

Definition

The data structure at the core of nowadays large-
scale search engines, social networks, and storage
architectures is the inverted index. Given a collec-
tion of documents, consider for each distinct term
t appearing in the collection the integer sequence
`t , listing in sorted order all the identifiers of the
documents (docIDs in the following) in which
the term appears. The sequence `t is called the
inverted list or posting list of the term t . The
inverted index is the collection of all such lists.

The scope of the entry is the one of surveying
the most important encoding algorithms devel-
oped for efficient inverted index compression and
fast retrieval.

Overview

The inverted index owes its popularity to the
efficient resolution of queries, expressed as a set
of terms ft1; : : : ; tkg combined with a query op-
erator. The simplest operators are Boolean AND
and OR. For example, given an AND query,
the index has to report all the docIDs of the

documents containing the terms ft1; : : : ; tkg. This
operation ultimately boils down to intersecting
the inverted lists corresponding to the terms of
the query set. Efficient list intersection relies on
the operation NextGEQt .x/, which returns the
integer ´ 2 `t such that ´ � x. This primitive is
used because it permits to skip over the lists to be
intersected.

Because of the many documents indexed
by search engines and stringent performance
requirements dictated by the heavy load of user
queries, the inverted lists often store several
millions (even billion) of integers and must be
searched efficiently. In this scenario, compressing
the inverted lists of the index appears as a
mandatory design phase since it can introduce
a twofold advantage over a non-compressed
representation: feed faster memory levels with
more data in order to speed up the query
processing algorithms and reduce the number of
storage machines needed to host the whole index.
This has the potential of letting a query algorithm
work in internal memory, which is faster than
the external memory system by several orders of
magnitude.

Chapter Notation
All logarithms are binary, i.e., log x D log2 x,
x > 0. Let B.x/ represent the binary representa-
tion of the integer x and U.x/ its unary represen-
tation, that is, a run of x zeroes plus a final one:
0x1. Given a binary string B , let jBj represent
its length in bits. Given two binary strings B1 and
B2, let B1B2 be their concatenation. We indicate

© Springer International Publishing AG 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_52-1

https://doi.org/10.1007/978-3-319-63962-8_52-1


2 Inverted Index Compression

with S.n; u/ a sequence of n integers drawn
from a universe of size u and with SŒi; j � the
subsequence starting at position i and including
endpoint SŒj �.

Key Research Findings

Integer Compressors
The compressors we consider in this subsec-
tion are used to represent a single integer. The
most classical solution is to assign each integer a
self-delimiting (or uniquely decodable) variable-
length code so that the whole integer sequence is
the result of the juxtaposition of the codes of all
its integers. Clearly, the aim of such encoders is to
assign the smallest code word as possible in order
to minimize the number of bits used to represent
the sequence.

In particular, since we are dealing with in-
verted lists that are monotonically increasing by
construction, we can subtract from each element
the previous one (the first integer is left as it
is), making the sequence be formed by integers
greater than zero known as delta-gaps (or just d -
gaps). This popular delta-encoding strategy helps
in reducing the number of bits for the codes. Most
of the literature assumes this sequence form, and,
as a result, compressing such sequences of d -
gaps is a fundamental problem that has been
studied for decades.

Elias’ Gamma and Delta
The two codes we now describe have been in-
troduced by Elias (1975) in the 1960s. Given an
integer x > 0, �.x/ D 0jB.x/j�1B.x/, where
jB.x/j D dlog.x C 1/e. Therefore, j�.x/j D
2dlog.xC 1/e � 1 bits. Decoding �.x/ is simple:
first count the number of zeroes up to the one, say
there are n of these, then read the following nC1
bits, and interpret them as x.

The key inefficiency of � lies in the use of the
unary code for the representation of jB.x/j � 1,
which may become very large for big integers.
The ı code replaces the unary part 0jB.x/j�1 with
�.jB.x/j/, i.e., ı.x/ D �.jB.x/j/B.x/. Notice
that, since we are representing with � the quantity
jB.x/j D dlog.x C 1/e which is guaranteed

to be greater than zero, ı can represent value
zero too. The number of bits required by ı.x/ is
j�.jB.x/j/j C jB.x/j, which is 2dlog.djB.x/j C
1e/e C dlog.x C 1/e � 1.

The decoding of ı codes follows automatically
from the one of � codes.

Golomb-Rice
Rice and Plaunt (1971) introduced a parameter
code that can better compress the integers in a
sequence if these are highly concentrated around
some value. This code is actually a special case of
the Golomb code (Golomb 1966), hence its name.

The Rice code of x with parameter k, Rk.x/,
consists in two pieces: the quotient q D bx�1

2k
c

and the remainder r D x � q � 2k � 1. The
quotient is encoded in unary, i.e., with U.q/,
whereas the remainder is written in binary with k
bits. Therefore, jRk.x/j D qCkC1 bits. Clearly,
the closer 2k is to the value of x the smaller the
value of q: this implies a better compression and
faster decoding speed.

Given the parameter k and the constant 2k

that is computed ahead, decoding Rice codes is
simple too: count the number of zeroes up to the
one, say there are q of these, then multiply 2k

by q, and finally add the remainder, by reading
the next k bits. Finally, add one to the computed
result.

Variable-Byte
The codes described so far are also called bit-
aligned as they do not represent an integer using
a multiple of a fixed number of bits, e.g., a byte.
The decoding speed can be slowed down by the
many operations needed to decode a single inte-
ger. This is a reason for preferring byte-aligned or
even word-aligned codes when decoding speed is
the main concern.

Variable-Byte (VByte) (Salomon 2007) is the
most popular and simplest byte-aligned code: the
binary representation of a nonnegative integer is
split into groups of 7 bits which are represented
as a sequence of bytes. In particular, the 7 least
significant bits of each byte are reserved for
the data, whereas the most significant (the 8-th),
called the continuation bit, is equal to 1 to signal
continuation of the byte sequence. The last byte



Inverted Index Compression 3

I

of the sequence has its 8-th bit set to 0 to signal,
instead, the termination of the byte sequence.
The main advantage of VByte codes is decoding
speed: we just need to read one byte at a time until
we find a value smaller than 128. Conversely, the
number of bits to encode an integer cannot be
less than 8; thus VByte is only suitable for large
numbers, and its compression ratio may not be
competitive with the one of bit-aligned codes for
small integers.

Various enhancements have been proposed in
the literature to improve the (sequential) decod-
ing speed of VByte. This line of research fo-
cuses on finding a suitable format of control
and data streams in order to reduce the prob-
ability of a branch misprediction that leads to
higher instruction throughput and helps keep-
ing the CPU pipeline fed with useful instruc-
tions (Dean 2009) and on exploiting the paral-
lelism of SIMD instructions (single-instruction-
multiple-data) of modern processors (Stepanov
et al. 2011; Plaisance et al. 2015; Lemire et al.
2018).

List Compressors
Differently from the compressors introduced in
the previous subsection, the compressors we now
consider encode a whole integer list, instead of
representing each single integer separately. Such
compressors often outperform the ones described
before for sufficiently long inverted lists because
they take advantage of the fact that inverted
lists often contain clusters of close docIDs, e.g.,
runs of consecutive integers, that are far more
compressible with respect to highly scattered
sequences. The reason for the presence of such
clusters is that the indexed documents themselves
tend to be clustered, i.e., there are subsets of doc-
uments sharing the very same set of terms. There-
fore, not surprisingly, list compressors greatly
benefit from reordering strategies that focus on
reassigning the docIDs in order to form larger
clusters of docIDs.

An amazingly simple strategy, but very ef-
fective for Web pages, is to assign identifiers
to documents according to the lexicographical
order of their URLs (Silvestri 2007). A recent
approach has instead adopted a recursive graph

bisection algorithm to find a suitable reordering
of docIDs (Dhulipala et al. 2016). In this model,
the input graph is a bipartite graph in which one
set of vertices represents the terms of the index
and the other set represents the docIDs. Since
a graph bisection identifies a permutation of the
docIDs, the goal is the one of finding, at each
step of recursion, the bisection of the graph which
minimizes the size of the graph compressed using
delta-encoding.

Block-Based
A relatively simple approach to improve both
compression ratio and decoding speed is to en-
code a block of contiguous integers. This line of
work finds its origin in the so-called frame of
reference (FOR) (Goldstein et al. 1998).

Once the sequence has been partitioned into
blocks (of fixed or variable length), then each
block is encoded separately. An example of this
approach is binary packing (Anh and Moffat
2010; Lemire and Boytsov 2013), where blocks
of fixed length are used, e.g., 128 integers. Given
a block SŒi; j �, we can simply represent its inte-
gers using a universe of size dlog.SŒj � � SŒi �C
1/e bits by subtracting the lower bound SŒi � from
their values. Plenty of variants of this simple ap-
proach has been proposed (Silvestri and Venturini
2010; Delbru et al. 2012; Lemire and Boytsov
2013). Recently, it has also been shown (Otta-
viano et al. 2015) that using more than one com-
pressor to represent the blocks, rather than simply
representing all blocks with the same compressor,
can introduce significant improvements in query
time within the same space constraints.

Among the simplest binary packing strategies,
Simple-9 and Simple-16 (Anh and Moffat 2005,
2010) combine very good compression ratio and
high decompression speed. The key idea is to
try to pack as many integers as possible in a
memory word (32 or 64 bits). As an example,
Simple-9 uses 4 header bits and 28 data bits. The
header bits provide information on how many
elements are packed in the data segment using
equally sized code words. The 4 header bits
distinguish from 9 possible configurations. Simi-
larly, Simple-16 has 16 possible configurations.



4 Inverted Index Compression

PForDelta
The biggest limitation of block-based strategies
is their space inefficiency whenever a block
contains at least one large value, because this
forces the compressor to encode all values with
the number of bits needed to represent this
large value (universe of representation). This
has been the main motivation for the introduction
of PForDelta (PFD) (Zukowski et al. 2006). The
idea is to choose a proper value k for the universe
of representation of the block, such that a large
fraction, e.g., 90%, of its integers can be written
in k bits each. This strategy is called patching.
All integers that do not fit in k bits are treated as
exceptions and encoded separately using another
compressor.

More precisely, two configurable parameters
are chosen: a base value b and a universe of
representation k so that most of the values fall in
the range Œb; bC2k �1� and can be encoded with
k bits each by shifting (delta-encoding) them in
the range Œ0; 2k � 1�. To mark the presence of an
exception, we also need a special escape symbol;
thus we have Œ0; 2k � 2� possible configurations
for the integers in the block.

The variant OptPFD (Yan et al. 2009), which
selects for each block the values of b and k

that minimize its space occupancy, has been
demonstrated to be more space-efficient and only
slightly slower than the original PFD (Yan et al.
2009; Lemire and Boytsov 2013).

Elias-Fano
The encoding we are about to describe was in-
dependently proposed by Elias (1974) and Fano
(1971), hence its name. Given a monotonically
increasing sequence S.n; u/, i.e., SŒi�1� � SŒi �,
for any 1 � i < n, with SŒn � 1� < u, we write
each SŒi � in binary using dlog ue bits. The binary
representation of each integer is then split into
two parts: a low part consisting in the rightmost
` D dlog u

n
e bits that we call low bits and a high

part consisting in the remaining dlog ue � ` bits
that we similarly call high bits. Let us call `i
and hi the values of low and high bits of SŒi �,
respectively. The Elias-Fano representation of S
is given by the encoding of the high and low parts.

The array L D Œ`0; : : : ; `n�1� is written ex-
plicitly in ndlog u

n
e bits and represents the encod-

ing of the low parts. Concerning the high bits,
we represent them in negated unary using a bit
vector of n C 2blognc � 2n bits as follows. We
start from a 0-valued bit vector H , and set the
bit in position hi C i , for all i 2 Œ0; n/. Finally
the Elias-Fano representation of S is given by
the concatenation of H and L and overall takes
EF.S.n; u// � ndlog u

n
e C 2n bits.

While we can opt for an arbitrary split into
high and low parts, ranging from 0 to dlog ue,
it can be shown that ` D dlog u

n
e minimizes

the overall space occupancy of the encod-
ing (Elias 1974). Figure 1 shows an example
of encoding for the sequence S.12; 62/ D

Œ3; 4; 7; 13; 14; 15; 21; 25; 36; 38; 54; 62�.
Despite its simplicity, it is possible to ran-

domly access an integer from a sequence en-
coded with Elias-Fano without decompressing
the whole sequence. We refer to this operation as
Access.i/, which returns SŒi �. The operation is
supported using an auxiliary data structure that is
built on bit vector H , able to efficiently answer
Select1.i/ queries, that return the position in H
of the i -th 1 bit. This auxiliary data structure is
succinct in the sense that it is negligibly small
in asymptotic terms, compared to EF.S.n; u//,
requiring only o.n/ additional bits (Navarro and
Mäkinen 2007; Vigna 2013).

Using the Select1 primitive, it is possible to
implement Access.i/ inO.1/ time. We basically
have to relink together the high and low bits of an
integer, previously split up during the encoding
phase. The low bits `i are trivial to retrieve as
we need to read the range of bits LŒi`; .i C 1/`/.
The retrieval of the high bits deserves, instead, a
bit more care. Since we write in negated unary
how many integers share the same high part, we
have a bit set for every integer of S and a zero
for every distinct high part. Therefore, to retrieve
the high bits of the i -th integer, we need to know
how many zeros are present in HŒ0;Select1.i//.
This quantity is evaluated on H in O.1/ as
Rank0.Select1.i// D Select1.i/ � i . Finally,
linking the high and low bits is as simple as:
Access.i/ D ..Select1.i/� i/� `/ j `i , where



Inverted Index Compression 5

I

Inverted Index
Compression, Fig. 1 An
example of Elias-Fano
encoding. We distinguish
in light gray the missing
high bits, i.e., the ones not
belonging to the integers of
the sequence among the
possible 2blognc

� is the left shift operator and j is the bitwise
OR.

The query NextGEQ.x/ is supported in
O.1 C log u

n
/ time as follows. Let hx be

the high bits of x. Then for hx > 0, i D
Select0.hx/ � hx C 1 indicates that there are
i integers in S whose high bits are less than hx .
On the other hand, j D Select0.hx C 1/ � hx
gives us the position at which the elements having
high bits greater than hx start. The corner case
hx D 0 is handled by setting i D 0. These
two preliminary operations take O.1/. Now
we have to conclude our search in the range
SŒi; j �, having skipped a potentially large range
of elements that, otherwise, would have required
to be compared with x. We finally determine the
successor of x by binary searching in this range
which may contain up to u=n integers. The time
bound follows.

Partitioned Elias-Fano
One of the most relevant characteristics of Elias-
Fano is that it only depends on two parameters,
i.e., the length and universe of the sequence. As
inverted lists often present groups of close do-
cIDs, Elias-Fano fails to exploit such natural clus-
ters. Partitioning the sequence into chunks can
better exploit such regions of close docIDs (Ot-
taviano and Venturini 2014).

The core idea is as follows. The sequence
S.n; u/ is partitioned into n=b chunks, each of b
integers. First level L is made up of the last ele-
ments of each chunk, i.e., L D ŒSŒb � 1�; SŒ2b �
1�; : : : ; SŒn�1��. This level is encoded with Elias-
Fano. The second level is represented by the
chunks themselves, which can be again encoded
with Elias-Fano. The main reason for introduc-

ing this two-level representation is that now the
elements of the i -th chunk are encoded with a
smaller universe, i.e., LŒi� � LŒi � 1� � 1, i > 0.
As the problem of choosing the best partition is
posed, an algorithm based on dynamic program-
ming can be used to find in O.n log1Ceps 1=eps/
time partition whose cost (i.e., the space taken
by the partitioned encoded sequence) is at most
.1 C "/ away from the optimal one, for any 0 <
" < 1 (Ottaviano and Venturini 2014).

This inverted list organization introduces a
level of indirection when resolving NextGEQ
queries. However, this indirection only causes
a very small time overhead compared to plain
Elias-Fano on most of the queries (Ottaviano
and Venturini 2014). On the other hand, parti-
tioning the sequence greatly improves the space
efficiency of its Elias-Fano representation.

Binary Interpolative
Binary Interpolative coding (BIC) (Moffat and
Stuiver 2000) is another approach that, like Elias-
Fano, directly compresses a monotonically in-
creasing integer sequence without a first delta-
encoding step. In short, BIC is a recursive al-
gorithm that first encodes the middle element of
the current range and then applies this encoding
step to both halves. At each step of recursion, the
algorithm knows the reduced ranges that will be
used to write the middle elements in fewer bits
during the next recursive calls.

More precisely, consider the range SŒi; j �. The
encoding step writes the quantity SŒm� � low �
m C i using dlog.hi � low � j C i/e bits,
where SŒm� is the range middle element, i.e., the
integer at position m D .i C j /=2, and low and
hi are, respectively, the lower bound and upper
bound of the range SŒi; j �, i.e., two quantities



6 Inverted Index Compression

Inverted Index
Compression, Fig. 2 An
example of Binary
Interpolative coding. We
highlight in bold font the
middle element currently
encoded: above each
element we report a pair
where the first value
indicates the element
actually encoded and the
second value the universe
of representation

such that low � SŒi � and hi � SŒj �. The
algorithm proceeds recursively, by applying the
same encoding step to both halves: Œi; m� and
Œm C 1; j � by setting hi D SŒm� � 1 for the
left half and low D SŒm� C 1 for the right half.
At the beginning, the encoding algorithm starts
with i D 0, j D n � 1, low D SŒ0�, and
hi D SŒn � 1�. These quantities must be also
known at the beginning of the decoding phase.
Apart from the initial lower and upper bound, all
the other values of low and hi are computed on
the fly by the algorithm.

Figure 2 shows an encoding example for the
same sequence of Fig. 1. We can interpret the
encoding as a preorder visit of the binary tree
formed by the recursive calls the algorithm per-
forms. The encoded elements in the example are
in order: Œ7; 2; 0; 0; 18; 5; 3; 16; 1; 7�. Moreover,
notice that whenever the algorithm works on a
range SŒi; j � of consecutive integers, such as the
range SŒ3; 4� D f13; 14g in the example, i.e., the
ones for which the condition SŒj ��SŒi � D j � i
holds, it stops the recursion by emitting no bits
at all. The condition is again detected at decod-
ing time, and the algorithm implicitly decodes
the run SŒi �; SŒi � C 1; SŒi � C 2; : : : ; SŒj �. This
property makes BIC extremely space-efficient
whenever the encoded sequences feature clusters
of docIDs (Witten et al. 1999; Yan et al. 2009;

Silvestri and Venturini 2010), which is the typical
case for inverted lists. The key inefficiency of
BIC is, however, the decoding speed which is
highly affected by the recursive nature of the
algorithm. This is even more evident considering
random access to individual integers that cannot
be performed in constant time as it is the case for
Elias-Fano (see 1).

Future Directions for Research

This concluding section is devoted to recent ap-
proaches that encode many inverted lists together
to obtain higher compression ratios. This is possi-
ble because the inverted index naturally presents
some amount of redundancy, caused by the fact
that many docIDs are shared between its lists.
In fact, as already motivated at the beginning
of section “List Compressors”, the identifiers of
similar documents will be stored in the inverted
lists of the terms they share.

Pibiri and Venturini (2017) proposed a clus-
tered index representation. The inverted lists are
divided into clusters of similar lists, i.e., the ones
sharing as many docIDs as possible. Then for
each cluster, a reference list is synthesized with
respect to which all lists in the cluster are en-
coded. In particular, the intersection between the



Inverted Index Compression 7

I

cluster reference list and a cluster list is encoded
more efficiently: all the docIDs are implicitly
represented as the positions they occupy within
the reference list. This makes a big improvement
for the cluster space, since each intersection can
be rewritten in a much smaller universe. Although
any list compressor supporting NextGEQ can be
used to represent the (rank-encoded) intersection
and the residual segment of each list, the pa-
per adopted partitioned Elias-Fano (see 1). With
an extensive experimental analysis, the proposed
clustered representation is shown to be superior
to partitioned Elias-Fano and also Binary Inter-
polative coding for index space usage. By varying
the size of the reference lists, different time/space
trade-offs can be obtained.

Reducing the redundancy in highly repetitive
collections has also been advocated in the work
by Claude, Fariña, Martínez-Prieto, and Navarro
(2016). The described approach first transforms
the inverted lists into lists of d -gaps and then
applies a general, i.e., universal, compression
algorithm to the sequence formed by the con-
catenation of all the lists. The compressed rep-
resentation is also enriched with pointers to mark
where each individual list begins. The paper ex-
periments with Re-Pair compression (Larsson
and Moffat 1999), VByte, and LZMA (http://
www.7-zip.org/) that is an improved version of
the classic LZ77 (Ziv and Lempel 1977) and
run-length encoding. The experimental analysis
reveals that significant reduction in space is possi-
ble on highly repetitive collections, e.g., versions
of Wikipedia, with respect to encoders tailored
for inverted indexes while only introducing mod-
erate slowdowns.

An approach based on generating a context-
free grammar from the inverted index has been
proposed by Zhang, Tong, Huang, Liang, Li,
Stones, Wang, and Liu (2016). The core idea
is to identify common patterns, i.e., repeated
subsequences of docIDs, and substitute them with
symbols belonging to the generated grammar.
Although the reorganized inverted lists and
grammar can be suitable for different encoding
schemes, the authors adopted OptPFD (Yan et al.
2009). The experimental analysis indicates that
good space reductions are possible compared

to state-of-the-art encoding strategies with
competitive query processing performance. By
exploiting the fact that the identified common
patterns can be placed directly in the final result
set, the query processing performance can also
be improved.

Cross-References

�Compression and Indexing of Repetitive Tex-
tual Datasets

�Grammar-Based Compression
� (Web/Social) Graph Compression

References

Anh VN, Moffat A (2005) Inverted index compression
using word-aligned binary codes. Inf Retr J 8(1):151–
166

Anh VN, Moffat A (2010) Index compression using 64-bit
words. Softw Pract Exp 40(2):131–147

Claude F, Fariña A, Martínez-Prieto MA, Navarro G
(2016) Universal indexes for highly repetitive docu-
ment collections. Inf Syst 61:1–23

Dean J (2009) Challenges in building large-scale infor-
mation retrieval systems: invited talk. In: Proceedings
of the 2nd international conference on web search and
data mining (WSDM)

Delbru R, Campinas S, Tummarello G (2012) Searching
web data: an entity retrieval and high-performance
indexing model. J Web Semant 10:33–58

Dhulipala L, Kabiljo I, Karrer B, Ottaviano G, Pupyrev S,
Shalita A (2016) Compressing graphs and indexes with
recursive graph bisection. In: Proceedings of the 22nd
international conference on knowledge discovery and
data mining (SIGKDD), pp 1535–1544

Elias P (1974) Efficient storage and retrieval by content
and address of static files. J ACM 21(2):246–260

Elias P (1975) Universal codeword sets and representa-
tions of the integers. IEEE Trans Inf Theory 21(2):194–
203

Fano RM (1971) On the number of bits required to
implement an associative memory. Memorandum 61.
Computer Structures Group, MIT, Cambridge

Goldstein J, Ramakrishnan R, Shaft U (1998) Compress-
ing relations and indexes. In: Proceedings of the 14th
international conference on data engineering (ICDE),
pp 370–379

Golomb S (1966) Run-length encodings. IEEE Trans Inf
Theory 12(3):399–401

Larsson NJ, Moffat A (1999) Offline dictionary-based
compression. In: Data compression conference (DCC),
pp 296–305

http://www.7-zip.org/
http://www.7-zip.org/
http://link.springer.com/Compression and Indexing of Repetitive Textual Datasets
http://link.springer.com/Grammar-Based Compression
http://link.springer.com/(Web/Social) Graph Compression


8 Inverted Index Compression

Lemire D, Boytsov L (2013) Decoding billions of integers
per second through vectorization. Softw Pract Exp
45(1):1–29

Lemire D, Kurz N, Rupp C (2018) Stream-VByte: faster
byte-oriented integer compression. Inf Process Lett
130:1–6

Moffat A, Stuiver L (2000) Binary interpolative coding for
effective index compression. Inf Retr J 3(1):25–47

Navarro G, Mäkinen V (2007) Compressed full-text in-
dexes. ACM Comput Surv 39(1):1–79

Ottaviano G, Venturini R (2014) Partitioned elias-fano
indexes. In: Proceedings of the 37th international con-
ference on research and development in information
retrieval (SIGIR), pp 273–282

Ottaviano G, Tonellotto N, Venturini R (2015) Optimal
space-time tradeoffs for inverted indexes. In: Proceed-
ings of the 8th annual international ACM conference
on web search and data mining (WSDM), pp 47–56

Pibiri GE, Venturini R (2017) Clustered Elias-Fano in-
dexes. ACM Trans Inf Syst 36(1):1–33. ISSN 1046-
8188

Plaisance J, Kurz N, Lemire D (2015) Vectorized VByte
decoding. In: International symposium on web algo-
rithms (iSWAG)

Rice R, Plaunt J (1971) Adaptive variable-length coding
for efficient compression of spacecraft television data.
IEEE Trans Commun 16(9):889–897

Salomon D (2007) Variable-length codes for data com-
pression. Springer, London

Silvestri F (2007) Sorting out the document identifier
assignment problem. In: Proceedings of the 29th Eu-
ropean conference on IR research (ECIR), pp 101–112

Silvestri F, Venturini R (2010) Vsencoding: efficient cod-
ing and fast decoding of integer lists via dynamic
programming. In: Proceedings of the 19th international
conference on information and knowledge manage-
ment (CIKM), pp 1219–1228

Stepanov A, Gangolli A, Rose D, Ernst R, Oberoi P (2011)
Simd-based decoding of posting lists. In: Proceedings
of the 20th international conference on information and
knowledge management (CIKM), pp 317–326

Vigna S (2013) Quasi-succinct indices. In: Proceedings of
the 6th ACM international conference on web search
and data mining (WSDM), pp 83–92

Witten I, Moffat A, Bell T (1999) Managing gigabytes:
compressing and indexing documents and images, 2nd
edn. Morgan Kaufmann, San Francisco

Yan H, Ding S, Suel T (2009) Inverted index compres-
sion and query processing with optimized document
ordering. In: Proceedings of the 18th international
conference on world wide web (WWW), pp 401–410

Zhang Z, Tong J, Huang H, Liang J, Li T, Stones RJ, Wang
G, Liu X (2016) Leveraging context-free grammar for
efficient inverted index compression. In: Proceedings
of the 39th international conference on research and
development in information retrieval (SIGIR), pp 275–
284

Ziv J, Lempel A (1977) A universal algorithm for se-
quential data compression. IEEE Trans Inf Theory
23(3):337–343

Zukowski M, Héman S, Nes N, Boncz P (2006) Super-
scalar RAM-CPU cache compression. In: Proceedings
of the 22nd international conference on data engineer-
ing (ICDE), pp 59–70


	Inverted Index Compression
	Definition
	Overview
	Chapter Notation

	Key Research Findings
	Integer Compressors
	Elias' Gamma and Delta
	Golomb-Rice
	Variable-Byte

	List Compressors
	Block-Based
	PForDelta
	Elias-Fano
	Partitioned Elias-Fano
	Binary Interpolative


	Future Directions for Research
	Cross-References
	References
	References




