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The data structure at the core of large-scale search engines is the inverted index, which is essentially a collection
of sorted integer sequences called inverted lists. Because of the many documents indexed by such engines and
stringent performance requirements imposed by the heavy load of queries, the inverted index stores billions
of integers that must be searched efficiently. In this scenario, index compression is essential because it leads to
a better exploitation of the computer memory hierarchy for faster query processing and, at the same time,
allows reducing the number of storage machines.

The aim of this article is twofold: first, surveying the encoding algorithms suitable for inverted index
compression and, second, characterizing the performance of the inverted index through experimentation.
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1 INTRODUCTION
Consider a collection of textual documents each described, for this purpose, as a set of terms.
For each distinct term t appearing in the collection, an integer sequence St is built and lists, in
sorted order, all the identifiers of the documents (henceforth, docIDs) where the term appears. The
sequence St is called the inverted list, or posting list, of the term t and the set of inverted lists for
all the distinct terms is the subject of this article – the data structure known as the inverted index.
Inverted indexes can store additional information about each term, such as the set of positions
where the terms appear in the documents (in positional indexes) and the number of occurrences
of the terms in the documents, i.e., their frequencies [14, 56, 113]. In this article we consider the
docID-sorted version of the inverted index and we ignore additional information about each term.
The inverted index is the data structure at the core of large-scale search engines, social networks
and storage architectures [14, 56, 113]. In a typical use case, it is used to index millions of documents,
resulting in several billions of integers. We mention some noticeable examples.

Classically, inverted indexes are used to support full-text search in databases [56]. Identifying a
set of documents containing all the terms in a user query reduces to the problem of intersecting the
inverted lists associated to the terms in the query. Likewise, an inverted list can be associated to
a user in a social network (e.g., Facebook) and stores the sequence of all friend identifiers of the
user [22]. Database systems based on SQL often precompute the list of row identifiers matching
a specific frequent predicate over a large table, in order to speed up the execution of a query
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2 G. E. Pibiri and R. Venturini

Table 1. Timeline of techniques.

1949 Shannon-Fano [32, 93]
1952 Huffman [43]
1963 Arithmetic [1]1

1966 Golomb [40]
1971 Elias-Fano [30, 33]; Rice [87]
1972 Variable-Byte and Nibble [101]
1975 Gamma and Delta [31]
1978 Exponential Golomb [99]
1985 Fibonacci-based [6, 37]
1986 Hierarchical bit-vectors [35]
1988 Based on Front Coding [16]
1996 Interpolative [65, 66]

1998 Frame-of-Reference (For) [39];
modified Rice [2]

2003 SC-dense [11]
2004 Zeta [8, 9]

2005 Simple-9, Relative-10, and Carryover-12 [3];
RBUC [60]

2006 PForDelta [114]; BASC [61]
2008 Simple-16 [112]; Tournament [100]
2009 ANS [27]; Varint-GB [23]; Opt-PFor [111]
2010 Simple8b [4]; VSE [96]; SIMD-Gamma [91]
2011 Varint-G8IU [97]; Parallel-PFor [5]
2013 DAC [12]; Quasi-Succinct [107]

2014 partitioned Elias-Fano [73]; QMX [103];
Roaring [15, 51, 53]

2015 BP32, SIMD-BP128, and SIMD-FastPFor [50];
Masked-VByte [84]

2017 clustered Elias-Fano [80]

2018
Stream-VByte [52]; ANS-based [63, 64];
Opt-VByte [83]; SIMD-Delta [104];
general-purpose compression libraries [77];

2019 DINT [79]; Slicing [78]

involving the conjunction of many predicates [42, 85]. Key-value storage is a popular database
design principle, adopted by architectures such as Apache Ignite, Redis, InfinityDB, BerkeleyDB
and many others. Common to all such architectures is the organization of data elements falling
into the same bucket due to an hash collision: the list of all such elements is materialized, which is
essentially an inverted list [24].

Because of the huge quantity of indexed documents and heavy query loads, compressing the
inverted index is indispensable because it can introduce a twofold advantage over a non-compressed
representation: feed faster memory levels with more data and, hence, speed up the query processing
algorithms. As a result, the design of techniques that compress the index effectively while main-
taining a noticeable decoding speed is a well-studied problem, that dates back to more than 50
years ago, and still a very active field of research. In fact, many representation for inverted lists are
known, each exposing a different space/time trade-off: refer to the timeline shown in Table 1 and
references therein.

Organization. We classify the techniques in a hierarchical manner by identifying three main
classes. The first class consists of algorithms that compress a single integer (Section 2). The second
class covers algorithms that compress many integers together, namely an inverted list (Section 3).
The third class describes a family of algorithms that represent many lists together, i.e., the whole
inverted index (Section 4). In our intention, this first part of the survey is devoted to readers who
are new to the field of integer compression.

This hierarchical division is natural and intuitive. First, it reflects the flexibility of the algorithms,
given that algorithms in a higher class can be used to represent the unit of compression of the
algorithms in a lower class, but not the other way round. For example, an algorithm that compresses
1Actually somewhat before 1963. See Note 1 on page 61 in the book by Abramson [1].
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Techniques for Inverted Index Compression 3

a single integer at a time (first class) can obviously be used to represent a list of integers (unit
of compression of the second class) by just concatenating the encoding of each single integer
in the list. Second, it shows that less flexibility can be exploited to enlarge the “visibility” of the
algorithms. For example, algorithms in the second class seek opportunities for better compression
by looking for regions of similar integers in the list. Instead, algorithms in the third class seek for
such regularities across many lists (or even across the whole index).

After the description of the techniques, we provide pointers to further readings (Section 5).
The last part of the article is dedicated to the experimental comparison of the paradigms used to
represent the inverted lists (Section 6). In our intention, this part is targeted to more experienced
readers who are already familiar with the research field and the practical implementation of the
techniques. We release the full experimental suite at https://github.com/jermp/2i_bench, in the
hope of spurring further research in the field. We conclude the survey by summarizing experimental
lessons and discussing some future research directions (Section 7).

2 INTEGER CODES
The algorithms we consider in this section compress a single integer. We first introduce some
preliminary notions that help to better illustrate such algorithms. Let x > 0 indicate the integer to
be represented2. Sometimes we assume that an upper bound on the largest value that x can take is
known, the so-called “universe” of representation, and we indicate that with U . Therefore, it holds
x ≤ U , ∀x . Let C(x) be the bit string encoding x – the codeword of x according to the code C – and
|C(x)| its length in bits.

The most classical solution to the problem of integer coding is to assign x a uniquely-decodable
variable-length code, in order to decode without ambiguity (thus, correctly) from left to right. The
aim of the algorithms we present in the following is to assign the smallest codeword as possible. In
this regard, a distinction is made between the identification of a set of codeword lengths and the
subsequent codeword assignment phase, that is the mapping from integer identifiers to binary strings.
Once the codeword lengths have been computed, the specific codewords are actually irrelevant
provided that no codeword is a prefix of another one (prefix-free condition) in order to guarantee
unique decodability – a key observation widely documented in the literature [49, 59, 67, 68, 109].
Therefore, we can think of a code as being a (multi-) set of codeword lengths. This interpretation
has the advantage of being independent from the specific codewords and makes possible to choose
the assignment that is best suited for fast decoding – an important property as far as practicality
is concerned for inverted index compression. Throughout this section we opt for a lexicographic
assignment of the codewords, that is the codewords are in the same lexicographic order as the
integers they represent. This property will be exploited for fast decodability in Section 2.1. The
crucial fact about these initial remarks is that all prefix-free codes can be arranged in this way,
hence providing a “canonical” interface for their treatment.

Another key notion is represented by the Kraft-McMillan inequality [47, 57] that gives a necessary
and sufficient condition for the existence of a uniquely-decodable code for a given set of codeword
lengths, where no codeword is a prefix of another one. More formally, it must hold

∑u
x=1 2−|C(x ) | ≤ 1

for the code to be uniquely-decodable.
It should be intuitive that no code is optimal for all possible integer distributions. According

to Shannon [93], the ideal codeword length of the integer x should be log2(1/P(x)) bits long,
where P(x) is the probability of occurrence of x in the input. Therefore, by solving the equation

2Throughout the section we present the codes for positive integers. Also, we use 1-based indexes for arrays. This is a deliberate
choice for illustrative purposes. The reader should be aware that some implementations at https://github.com/jermp/2i_bench
may differ from the content of the paper and should be careful in comparing them.
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4 G. E. Pibiri and R. Venturini

|C(x)| = log2(1/P(x)) with respect to P(x), the distribution for which the considered integer code
is optimal can be derived.

Lastly, we also remark that sometimes it could be useful to implement a sub-optimal code if it
allows faster decoding for a given application, and/or to organize the output bit stream in a way
that is more suitable for special hardware instructions such as SIMD (Single-Instruction-Multiple-
Data) [20]. SIMD is a computer organization that exploits the independence of multiple data objects
to execute a single instruction on these objects simultaneously. Specifically, a single instruction is
executed for every element of a vector – a large(r) machine register that packs multiple elements
together, for a total of 128, 256, or even 512 bits of data. SIMD is widely used to accelerate the
execution of many data-intensive tasks, and (usually) an optimizing compiler is able to automatically
“vectorize” code snippets to make them run faster. Many algorithms that we describe in this article
exploit SIMD instructions.

2.1 Encoding and decoding prefix-free codes
We now illustrate how the lexicographic ordering of the codewords can be exploited to achieve
efficient encoding and decoding of prefix-free codes. By “efficiency” we mean that a small and fixed
number of instructions is executed for each encoded/decoded integer, thus avoiding the potentially
expensive bit-by-bit processing. The content of this section is based on the work by Moffat and
Turpin [67] that also laid the foundations for (part of) Chapter 4 of their own book [68] and the
descriptions in Section 3.1 and 3.2 of the survey by Moffat [59].

We are going to refer to Table 2a as an example code. The table shows the codewords assigned to
the integers 1..8 by the gamma code, the first non-trivial code we will describe later in Section 2.3.
Let M be the length of the longest codeword, that is M = maxx {|C(x)|}. In our example, M = 7. The
column headed lengths reports the lengths (in bits) of the codewords, whereas values are the decimal
representation of the codewords seen as left-justifiedM-bit integers. If such columns are represented
with two parallel arrays indexed by the x value, then the procedures for encoding/decoding are
easily derived as follows. To encode x , just write to the output stream the most significant (from the
left) lengths[x] bits of values[x]. To decode x , we use a variable buffer always holdingM bits from the
input stream. The value assumed by buffer is, therefore, an M-bit integer that we search in the array
values determining the codeword length ℓ = length[x] such that values[x] ≤ buffer < values[x + 1].
Now that ℓ bits are consumed from buffer , other ℓ bits are fetched from the input stream via a few
masking and shifting operations.

For example, to encode the integer 4, we omit the lengths[4] = 5 most significant bits from
the binary representation of values[4] = 96 as a 7-bit integer, that is 1100000. The obtained
codeword for 4 is, therefore, 11000. Instead, assume we want to decode the next integer from a
buffer configuration of 1010100. This 7-bit integer is 84. By searching 84 in the values array, we
determine the index x = 3 as 80 = values[3] < 84 < values[4] = 96. Therefore, the decoded integer
is 3 and we can fetch the next lengths[3] = 3 bits from the input stream. (It is easy to see that the
buffer configuration 1010100 holds the encoded values 3, 0, and 2.)

However, the cost of storing the lengths and values arrays can be large because they can hold as
many values as U . The universe U is typically in the range of tens of millions for a typical inverted
index benchmark (see also Table 10 at page 10 for a concrete example), thus resulting in large
lookup tables that do not fit well in the computer cache hierarchy. Fortunately enough, it is possible
to replace such arrays with two compact arrays of just M + 1 integers each when the codewords are
assigned in lexicographic order. Recall that we have defined M to be the longest codeword length.
(In our example from Table 2, M is 7.) We expect to have M ≤ U and, in particular, M ≪ U , which
is always valid in practice unless U is very small.
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Techniques for Inverted Index Compression 5

Table 2. In (a), an example prefix-free code for the integers 1..8, along with associated codewords, codeword
lengths and corresponding left-justified, 7-bit, integers. The codewords are left-justified to better highlight
their lexicographic order. In (b), the compact version of the table in (a), used by the encoding/decoding
procedures coded in Fig. 1. The “values” and “first” columns are padded with a sentinel value (in gray) to let
the search be well defined.

(a)

x codewords lengths values

1 0 1 0
2 100 3 64
3 101 3 80
4 11000 5 96
5 11001 5 100
6 11010 5 104
7 11011 5 108
8 1110000 7 112
– – – 127

(b)

lengths first values

1 1 0
2 2 64
3 2 64
4 4 96
5 4 96
6 8 112
7 8 112
– 9 127

1 Encode(x ) :
2 determine ℓ such that first[ℓ] ≤ x < first[ℓ + 1]
3 offset = x − first[ℓ]
4 jump = 1 ≪ (M − ℓ)
5 Write((values[ℓ] + offset × jump) ≫ (M − ℓ), ℓ)

1 Decode() :
2 determine ℓ such that values[ℓ] ≤ buffer < values[ℓ + 1]
3 offset = (buffer − values[ℓ]) ≫ (M − ℓ)
4 buffer = ((buffer ≪ ℓ)&MASK) + Take(ℓ) ▷MASK is the constant 2M − 1.
5 return first[ℓ] + offset

Fig. 1. Encoding and decoding procedures using two parallel arrays first and values ofM + 1 values each.

Table 2b shows the “compact” version of Table 2a, where other two arrays, first and values, of
M + 1 integers each are used. Both arrays are now indexed by codeword length ℓ. In particular,
first[ℓ] is the first integer that is assigned a codeword of length equal to ℓ, with values[ℓ] being the
corresponding M-bit integer representation. For example, first[3] = 2 because 2 is the first integer
represented with a codeword of length 3. Note that not every possible codeword length could
be used. In our example, we are not using codewords of length 2, 4 and 6. These unused lengths
generate some “holes” in the first and values arrays. A hole at position ℓ is then filled with the
value corresponding to the smallest codeword length ℓ′ > ℓ that is used by the code. For example,
we have a hole at position ℓ = 2 because we have no codeword of length 2. Therefore, first[2] and
values[2] are filled with 2 and 64 respectively because these are the values corresponding to the
codeword length ℓ′ = 3. With these two arrays it is possible to derive the compact pseudo code
illustrated in Fig. 1, whose correctness is left to the reader. The function Write(val, len) writes the
len low bits of the value val to the output stream; conversely, the function Take(len) fetches the
next len bits from the input stream and interprets them as an integer value. We now discuss some
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6 G. E. Pibiri and R. Venturini

salient aspects of the pseudo code along with examples, highlighting the benefit of working with
lexicographically-sorted codewords.

Assigning lexicographic codewords makes possible to use the offsets computed in line 3 of both
listings in Fig. 1 to perform encoding/decoding, essentially allowing a sparse representation of
the mapping from integers to codewords and vice versa. As an example, consider the encoding
of the integer 6. By searching the first array, we determine ℓ = 5. Now, the difference offset =
6 − first[5] = 6 − 4 = 2 indicates that 6 is the (offset + 1)-th integer, the 3rd in this case, that is
assigned a codeword of length 5. Therefore, starting from values[5] = 96 we can derive the M-bit
integer corresponding to the encoding of 6 using such offset, via 96 + 2 × 4 = 104. It is easy to see
that this computation is correct only when the codewords are assigned lexicographically, otherwise
it would not be possible to derive the M-bit integer holding the codeword. The same reasoning
applies when considering the decoding algorithm.

Another advantage of working with ordered codewords is that both first and values arrays are
sorted, thus binary search can be employed to implement the identification of ℓ at line 2 of both
encoding and decoding algorithms. This step is indeed the most expensive one. Linear search could
result faster than binary search for its cache-friendly nature, especially when M is small. If we
are especially concerned with decoding efficiency and can trade a bit more working space, it is
possible to identify ℓ via direct addressing, i.e., in O(1) per decoded symbol, using a 2M -element
table indexed by buffer . Other options are possible, including hybrid strategies using a blend of
search and direct addressing: for a discussion of these options, again refer to the work by Moffat
and Turpin [67, 68], Moffat [59, Section 3.1 and 3.2], and references therein.

2.2 Unary and Binary
Perhaps the most primitive form of integer representation is unary coding, that is the integer x is
represented by a run of x − 1 ones plus a final zero: 1x−10. The presence of the final 0 bit implies
that the encoding is uniquely-decodable: decoding bit-by-bit will keep reading ones until we hit a
0 and then report the number of read ones by summing one to this quantity. Because we need x
bits to represent the integer x , that is |U(x)| = x , this encoding strongly favours small integers. For
example, we can represent 2 with just 2 bits (10) but we would need 503 bits to represent the integer
503. Solving ⌈log2(1/P(x))⌉ = x yields that the unary code is optimal whenever P(x) = 1/2x .

We indicate with bin(x ,k) the binary representation of an integer 0 ≤ x < 2k using k bits. When
we just write bin(x), it is assumed that k = ⌈log2(x + 1)⌉, which is the minimum number of bits
necessary to represent x . We also distinguish between bin(x ,k) and the binary codeword B(x)
assigned to an integer x > 0. Given that we consider positive integers only, we use the convention
that B(x) is bin(x − 1) throughout this section. For example, B(6) = bin(5) = 101. See the second
column of Table 3 for more examples. This means that, for example, |B(4)| is 2 and not 3; B(503)
just needs ⌈log2 503⌉ = 9 bits instead of 503 as needed by its unary representation. The problem
of binary coding is that it is not uniquely-decodable unless we know the number of bits that we
dedicate to the representation of each integer in the coded stream. For example, if the integers in
the stream are drawn from a universe U bounded by 2k for some k > 0, then each integer can be
represented with ⌈log2U ⌉ ≤ k bits, with an implied distribution of P(x) = 1/2k . (Many compressors
that we present in Section 3 exploit this simple strategy.) If U = 2k , then the distribution simplifies
to P(x) = 1/U (i.e., uniform).

The following definition will be useful. Consider x ∈ [0,b − 1] for some b > 0 and let c = ⌈log2 b⌉.
We define the minimal binary codeword assigned to x in the interval [0,b − 1] as bin(x , c − 1)
if x < 2c − b, bin(x + 2c − b, c) otherwise. Note that if b is a power of two the minimal binary
codeword for x is bin(x , c).
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Table 3. The integers 1..8 as represented with several codes. The “.” symbol highlights the distinction between
different parts of the codes and has a purely illustrative purpose: it is not included in the final coded
representation.

x U(x) B(x) γ (x) δ (x) G2(x) ExpG2(x) Z2(x)
1 0 0 0. 0. 0.0 0.00 0.0
2 10 1 10.0 100.0 0.1 0.01 0.10
3 110 10 10.1 100.1 10.0 0.10 0.11
4 1110 11 110.00 101.00 10.1 0.11 10.000
5 11110 100 110.01 101.01 110.0 10.000 10.001
6 111110 101 110.10 101.10 110.1 10.001 10.010
7 1111110 110 110.11 101.11 1110.0 10.010 10.011
8 11111110 111 1110.000 11000.000 1110.1 10.011 10.1000

2.3 Gamma and Delta
The two codes we now describe were introduced by Elias [31] and are called universal because
the length of these codes is O(logx) bits for every integer x , thus a constant factor away from
the optimal binary representation of length |bin(x)| = ⌈log2(x + 1)⌉ bits. Additionally, they are
uniquely-decodable.

The gamma code for x is made by the unary representation of |bin(x)| followed by the |bin(x)|−1
least significant bits of bin(x). Therefore, |γ (x)| = 2|bin(x)| − 1 bits and P(x) ≈ 1/(2x2). Bit-
by-bit decoding of γ (x) is simple too. First read the unary code, say ℓ. Then sum to 2ℓ−1 the
integer represented by the next ℓ − 1 bits. For example, the integer 113 is represented as γ (113) =
1111110.110001, because bin(113) = 1110001 is 7 bits long.

The key inefficiency of the gamma code lies in the use of the unary code for the represen-
tation of |bin(x)|, which may become very large for big integers. To overcome this limitation,
the delta code replaces U(|bin(x)|) with γ (|bin(x)|) in the δ representation of x . The number of
bits required by δ (x) is, therefore, |γ (|bin(x)|)| + |bin(x)| − 1. The corresponding distribution is
P(x) ≈ 1/(2x(log2 x)2). Bit-by-bit decoding of δ codes follows automatically from that of γ codes.
Again, the integer 113 is represented as δ (113) = 11011.110001. The first part of the encoding,
11011, is the γ representation of 7, which is the length of bin(113). Table 3 shows the integers 1..8
as encoded with γ and δ codes.

In order to decode gamma codes faster on modern processors, a simple variant of gamma is
proposed by Schlegel et al. [91] and called k-gamma. Groups of k integers are encoded together,
with k = 2, 3 or 4, using the same number of bits. Thus, instead of recording the unary length for
each integer, only the length of the largest integer in the group is written. This leads to a higher
compression ratio if the k integers are close to each other, namely they require the same codeword
length. On the other hand, if the largest integers in the group requires more bits than the other
integers, this encoding is wasteful compared to the traditional gamma. However, decoding is faster:
once the binary length has been read, a group of k integers is decoded in parallel using SIMD
instructions. Similarly, Trotman and Lilly [104] introduced a SIMD version of delta codes. A 512-bit
payload is broken down into its 16 × 32-bit integers and the base-2 magnitude of the largest integer
is written using gamma coding as a selector (writing the selector in unary code gives 16-gamma).
Although not as fast as k-gamma, the representation is faster to decode compared to decoding bit
by bit.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: August 2020.



8 G. E. Pibiri and R. Venturini

2.4 Golomb
In 1966 Golomb introduced a parametric code that is a hybrid between unary and binary [40]. The
Golomb code of x with parameter b > 1, Gb (x), consists in the representation of two pieces: the
quotient q = ⌊(x − 1)/b⌋ and the remainder r = x −q ×b − 1. The quantity q + 1 is written in unary,
followed by a minimal binary codeword assigned to r ∈ [0,b − 1]. Clearly, the closer b is to the
value of x the smaller the value of q, with consequent better compression and faster decoding speed.
Table 3 shows an example code with b = 2. Let us consider the code with b = 5, instead. From
the definition of minimal binary codeword, we have that c = ⌈log2 5⌉ = 3 and 2c − b = 3. Thus
the first 3 reminders, 0..2, are always assigned the first 2-bit codewords 00, 01 and 10 respectively.
The reminders 3 and 4 are instead assigned codewords 110 and 111 as given by bin(3 + 3, 3) and
bin(4 + 3, 3), respectively. Decoding just reverts the encoding procedure. After the unary prefix,
always read c − 1 bits, with c = ⌈log2 b⌉. If these c − 1 bits give a quantity r that is less than 2c − b,
then stop and work with the reminder r . Instead, if r ≥ 2c −b then fetch another bit and compute r
as the difference between this c-bit number and the quantity 2c − b.

Golomb was the first to observe that if n integers are drawn at random from a universe of
size U , then the gaps between the integers follow a geometric distribution P(x) = p(1 − p)x−1

with parameter p = n/U being the probability to find an integer x among the ones selected.
It is now clear that the optimal value for b depends on p and it can be shown that this value
is the integer closest to −1/log2(1 − p), i.e., the value that satisfies (1 − p)b ≈ 1/2. Doing the
math we have b ≈ 0.69/p, which is a good approximation of the optimal value and can be used
to define a Golomb code with parameter b. This code is optimal for the geometric distribution
P(x) = p(1 − p)x−1. Gallager and Van Voorhis [38] showed that the optimal value for b can be
computed as b = −⌈log2(2 − p)/log2(1 − p)⌉.

2.5 Rice
The Rice code [86, 87] is actually a special case of the Golomb code for which b is set to 2k , for
some k > 0 (sometimes also referred to as the Golomb-Rice code). Let Ricek (x) be the Rice code
of x with parameter k > 0. In this case the remainder r is always written in k bits. Therefore, the
length of the Rice code is |Ricek (x)| = ⌊(x − 1)/2k ⌋ + k + 1 bits. To compute the optimal parameter
for the Rice code, we just pretend to be constructing an optimal Golomb code with parameter b
and then find two integers, l and r , such that 2l ≤ b ≤ 2r . One of these two integers will be the
optimal value of k for the Rice code. (We also point the interested reader to the technical report
by Kiely [46] for a deep analysis about the optimal values of the Rice parameter.)

2.6 Exponential Golomb
The exponential Golomb code proposed by Teuhola [99] logically defines a vector of “buckets”

B =
[
0, 2k ,

1∑
i=0

2k+i ,
2∑
i=0

2k+i ,
3∑
i=0

2k+i , . . .
]
, for some k ≥ 0

and encodes an integer x as a bucket identifier plus an offset relative to the bucket. More specifically,
the code ExpGk (x) is obtained as follows. We first determine the bucket where x belongs to, i.e.,
the index h ≥ 1 such that B[h] < x ≤ B[h + 1]. Then h is coded in unary, followed by a minimal
binary codeword assigned to x − B[h] − 1 in the shrunk interval [0,B[h + 1] − B[h] − 1]. (Since
log2(B[h + 1] − B[h]) is always a power of 2 for the choice of B above, the binary codeword of x is
bin(x − B[h] − 1, log2(B[h + 1] − B[h])).)

Table 3 shows an example for k = 2. Note that ExpG0 coincides with Elias’ γ .

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: August 2020.



Techniques for Inverted Index Compression 9

Table 4. The integers 1..8 as represented with Fibonacci-based codes. In (a), the final control bit is highlighted
in bold font and the relevant Fibonacci numbers Fi involved in the representation are also shown at the
bottom of the table. In (b), the “canonical” lexicographic codewords are presented.

(a) “original” codewords

x F(x)
1 1 1
2 0 1 1
3 0 0 1 1
4 1 0 1 1
5 0 0 0 1 1
6 1 0 0 1 1
7 0 1 0 1 1
8 0 0 0 0 1 1

Fi 1 2 3 5 8 13

(b) lexicographic codewords

x F(x)
1 0 0
2 0 1 0
3 0 1 1 0
4 0 1 1 1
5 1 0 0 0 0
6 1 0 0 0 1
7 1 0 0 1 0
8 1 0 0 1 1 0

2.7 Zeta
Boldi and Vigna [8, 9] introduced the family of zeta codes that is optimal for integers distributed
according to a power law with small exponent α (e.g., less than 1.6), that is P(x) = 1/(ζ (α)xα ),
where ζ (·) denotes the Riemann zeta function. The zeta code Zk is an exponential Golomb code
relative to a vector of “buckets” [0, 2k − 1, 22k − 1, 23k − 1, . . .]. Again, Table 3 shows an examples
for k = 2. Note that Z1 coincides with ExpG0, therefore also Z1 is identical to Elias’ γ .

For example, let us consider Z2(5). The value of h is 2 because 22 − 1 < 5 < 24 − 1. Therefore the
first part of the code is the unary representation of 2. Now we have to assign a minimal binary
codeword to 5 − (22 − 1) − 1 = 1 using 3 bits, that is bin(1, 3) = 001. A more involved example is
the one for, say, Z3(147). In this case, we have h = 3, thus the interval of interest is [26 − 1, 29 − 1].
Now we have to assign 147 − (26 − 1) − 1 = 83 a minimal binary codeword in the interval [0, 448].
Since 83 is more than the left extreme 26 − 1, we have to write bin(147, 9) for a final codeword of
110.010010011.

2.8 Fibonacci
Fraenkel and Klein [37] introduced in 1985 a class of codes based on Fibonacci numbers [71] and
later generalized by Apostolico and Fraenkel [6]. The encoding is a direct consequence of the
Zeckendorf’s theorem: every positive integer can be uniquely represented as the sum of some, non
adjacent, Fibonacci numbers. Let Fi = Fi−1 + Fi−2 define the i-th Fibonacci number for i > 2, with
F1 = 1 and F2 = 2. Then we have: F3 = 3, F4 = 5, F5 = 8, F6 = 13, etc. The Fibonacci encoding F(x) of
an integer x is obtained by: (1) emitting a 1 bit if the i-th Fibonacci number is used in the sum giving
x , or emitting a 0 bit otherwise; (2) appending a final control 1 bit to ensure unique decodability.
Table 4a shows the first 8 integers as encoded with this procedure, where we highlighted in bold
font the final control bit. For example, 7 = F2 + F4, thus F(7) will be given by 4 bits where the
second and the fourth are 1, i.e., 0101, plus the control 1 bot for a final codeword of 01011.

Note that the codewords assigned by the procedure described above are not lexicographically-
sorted in the integers they represent. However, if we first compute the codeword lengths we can then
generate a set of lexicographically-sorted codewords in a rather simple way, therefore obtaining
a Fibonacci-based code that can be encoded/decoded with the procedures we have illustrated in

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: August 2020.



10 G. E. Pibiri and R. Venturini

Section 2.1. Given a non-decreasing sequence of codeword lengths [ℓ1, . . . , ℓn] satisfying the Kraft-
McMillan inequality (see the beginning of Section 2), the corresponding codewords are generated
as follows. The first codeword is always the bit string of length ℓ1 that is 0ℓ1 . Now, let ℓ = ℓ1. For
all i = 2, . . . ,n we repeat the following two steps.

(1) Let c be the next lexicographic codeword of ℓ bits. If ℓi = ℓ, then we just emit c . Otherwise, c
is padded with possible 0 bits to the right until we have a ℓi -bit codeword.

(2) We set ℓ = ℓi .
Note that the way be define c in step (1) guarantees that the generated code is prefix-free.

For our example in Table 4b, the sequence of codeword lengths is [2, 3, 4, 4, 5, 5, 5, 6]. Let us
generate the first 4 codewords. The first codeword is therefore 00, with ℓ1 = 2. The next codeword
length ℓ2 is 3, thus we pad the next 2-bit codeword following 00, i.e., 01, with a 0 and obtain the
3-bit codeword 010. The next codeword length is 4, thus we obtain the codeword 0110. The next
codeword length is 4 again and the codeword is just obtained by assigning the codeword following
0110 in lexicographic order, that is 0111.

There is a closed-form formula for computing the i-th Fibonacci number, i ≥ 1, called Binet’s
formula:

Fi =
1
√

5

[( 1 +
√

5
2

) i+1
−
( 1 −

√
5

2

) i+1]
≈
( 1 +

√
5

2

) i+1
= ϕi+1,

where ϕ = 1+
√

5
2 is the so-called golden ratio. Using this formula, it can be shown that the codeword

length of F(x) is approximately equal to 1 + logϕ x bits. Therefore, the corresponding distribution
is P(x) = 1/(2x1/log2 ϕ ) ≈ 1/(2x1.44). This implies that Fibonacci-based codes are shorter than γ for
x > 3; and as good as or even better than δ for a wide range of practical values ranging from F2 = 2
to F19 = 6765.

2.9 Variable-Byte
The codes described in the previous sections are bit-aligned as they do not represent an integer
using a multiple of a fixed number of bits, e.g., a byte. But reading a stream of bits in chunks where
each chunk is a byte of memory (or a multiple of a byte, e.g., a memory word – 4 or 8 bytes), is
simpler and faster because the data itself is written in memory in this way. Therefore, it could be
preferable to use byte-aligned or word-aligned codes when decoding speed is the main concern
rather than compression effectiveness.
Variable-Byte, first described by Thiel and Heaps [101], is the most popular and simplest byte-

aligned code: the binary representation of a non-negative integer is split into groups of 7 bits
which are represented as a sequence of bytes. In particular, the 7 least significant bits of each byte
are reserved for the data whereas the most significant, called the continuation bit, is equal to 1 to
signal continuation of the byte sequence. The last byte of the sequence has its 8-th bit set to 0 to
signal, instead, the termination of the byte sequence. The main advantage of Variable-Byte codes is
decoding speed: we just need to read one byte at a time until we found a value smaller than 27.
Conversely, the number of bits to encode an integer cannot be less than 8, thus Variable-Byte is
only suitable for large numbers and its compression ratio may not be competitive with the one
of bit-aligned codes for small integers. Variable-Byte uses ⌈⌈log2(x + 1)⌉/7⌉ × 8 bits to represent
the integer x , thus it is optimal for the distribution P(x) ≈ 7

√
1/x8. For example, the integer 65,790

is represented as 00000100.10000001.11111110, where we mark the control bits in bold font.
Also notice the padding bits in the first byte starting from the left, inserted to align the binary
representation of the number to a multiple of 8 bits.
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Table 5. The integers 1..20 as represented by SC(4, 4)- and SC(5, 3)-dense codes respectively.

x SC(4, 4,x) SC(5, 3,x)
1 000 000
2 001 001
3 010 010
4 011 011
5 100.000 100
6 100.001 101.000
7 100.010 101.001
8 100.011 101.010
9 101.000 101.011
10 101.001 101.100

x SC(4, 4,x) SC(5, 3,x)
11 101.010 110.000
12 101.011 110.001
13 110.000 110.010
14 110.001 110.011
15 110.010 110.100
16 110.011 111.000
17 111.000 111.001
18 111.001 111.010
19 111.010 111.011
20 111.011 111.100

Nibble coding is a simple variation of this strategy where 3 bits are used for data instead of 7,
which is optimal for the distribution P(x) ≈ 3

√
1/x4.

Culpepper and Moffat [21] describe a byte-aligned code with the property that the first byte of
each codeword defines the length of the codeword, which makes decoding simpler and faster.

Various enhancements were proposed to accelerate the sequential decoding speed of Variable-
Byte. For example, in order to reduce the probability of a branch misprediction that leads to higher
throughput and helps keeping the CPU pipeline fed with useful instructions, the control bits can
be grouped together. If we assume that the largest represented integer fits into four bytes, we have
to distinguish between only four different byte-lengths, thus two bits are sufficient. In this way,
groups of four integers require one control byte only. This optimization was introduced in Google’s
Varint-GB format [23], which is faster to decode than the original Variable-Byte code.

Working with byte-aligned codes also opens the possibility of exploiting the parallelism of SIMD
instructions to further enhance the sequential decoding speed. This is the approach taken by the
proposals Varint-G8IU [97], Masked-VByte [84] and Stream-VByte [52] that we overview below.
Varint-G8IU [97] uses a format similar to the one of Varint-GB: one control byte describes a

variable number of integers in a data segment of exactly eight bytes, therefore each group can
contain between two and eight compressed integers. Masked-VByte [84] works, instead, directly on
the original Variable-Byte format. The decoder first gathers the most significant bits of consecutive
bytes using a dedicated SIMD instruction. Then using previously-built look-up tables and a shuffle
instruction, the data bytes are permuted to obtain the decoded integers. Stream-VByte [52] separates
the encoding of the control bits from the data bits by writing them into separate streams. This
organization permits to decode multiple control bits simultaneously and, consequently, to reduce
data dependencies that can stop the CPU pipeline execution when decoding the data stream.

2.10 SC-Dense
In Variable-Byte encoding the value 27 acts as a separator between stoppers, i.e., all values in
[0, 27 − 1], and continuers, i.e., all values in [27, 28 − 1]. A generalization of the encoding can be
obtained by changing the separator value, thus enlarging or restricting the cardinalities of the
set of continuers and stoppers. In general, the values from 0 to c − 1 are reserved to stoppers and
the values from c to c + s − 1 to continuers, provided that c + s = 28. Intuitively, changing the
separating value can better adapt to the distribution of the integers to be encoded. For example, if
most integers are larger than (say) 127, then it is convenient to have more continuers. This is the
main idea behind the SC-dense code introduced by Brisaboa et al. [11].
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Fig. 2. Distribution of the gaps in the real-world datasets Gov2, ClueWeb09, and CCNews.

Given the integer x , its SC(s, c,x) representation is obtained as follows. Let k(x) ≥ 1 be the
number of ⌈log2(s + c)⌉-bit words needed by the representation of x . This value k(x) will be such
that

s
ck(x )−1 − 1

c − 1 ≤ x < s
ck (x ) − 1
c − 1 .

If k(x) = 1, the representation is just the stopper x − 1. Otherwise, let y = ⌊(x − 1)/s⌋ and
x ′ = x − (sck (x )−1 − s)/(c − 1). In this case, x > s and k(x) is given by ⌊(y − 1)/c⌋ + 2. The
representation is given by a sequence of k(x) − 1 continuers, made by repeating the continuer
s + c − 1 for k(x) − 2 times followed by the continuer s + ((y − 1) mod c), plus the final stopper
(x ′ − 1) mod s . The number of bits required by encoding of x is k(x)⌈log2(s + c)⌉, thus it follows
that P(x) ≈ (s + c)−k (x ). It is also possible to compute via dynamic programming the optimal values
for s and c given the probability distribution of the integers [11].

Table 5 shows the codewords assigned to the integers 1..20 by the dense codes SC(4, 4) and
SC(5, 3) respectively. Let us consider the encoding of x = 13 under the code SC(5, 3). In this
example, we have y = ⌊(13 − 1)/5⌋ = 2 and k(13) = ⌊(2 − 1)/3⌋ + 2 = 2. The only continuer is
therefore given by 5 + ((2 − 1) mod 3) = 6, i.e., 110. Since x ′ = 3, the stopper is (3 − 1) mod 3 = 2,
i.e., 010, for a final representation of 110.010.

2.11 Concluding remarks
In the context of inverted indexes, we can exploit the fact that inverted lists are sorted – and
typically, strictly increasing – to achieve better compression. In particular, given a sequence S[1..n]
of this form, we can transform the sequence into S′ where S′[i] = S[i] − S[i − 1] for i > 1 and
S′[1] = S[1]. In the literature, S′ is said to be formed by the so-called gaps of S (or delta-gaps).
Using the codes described in this section on the gaps of S is a very popular strategy for compressing
inverted indexes, with the key requirement of performing a prefix-sum during decoding. Clearly,
compressing these gaps is far more convenient than compressing the integers of S because the
gaps are smaller, thus less bits are required for their codes. In this case, the compressibility of the
inverted index critically depends on the distribution of the gaps but, fortunately, most of them are
small. Fig. 2 shows the distribution of the gaps for three large text collection that we will introduce
in Section 6 (see Table 10, at page 28, for their basic statistics). The plot highlights the skewed
distribution of the gaps: the most frequent integer is a gap of 1 so that, for better visualization, we
cut the percentage to 16% but report the actual value in bold. For example, on the ClueWeb09 dataset
50% of the gaps are just 1. The other values have decreasing frequencies. We divide the distribution
into buckets of exponential size, namely the buckets B = [1, 2, 4, 8, . . . , 8192]. In particular, bucket
B[i] comprises all gaps д such that B[i − 1] < д ≤ B[i]. (The last bucket also comprises all other
gaps larger than 8192 – the “tail” of the distribution.)
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Fig. 3. Comparison between several codes described in Section 2 for the integers 1..64.

As an illustrative comparison between several of the codes described in this section, we report in
Fig. 3 the number of bits taken by their codewords when representing the integers 1..64, knowing
that such values cover most of the gaps we have in inverted index data (e.g., approximately 86
– 95% of the gaps shown in Fig. 2). In particular, we show the comparison between the codes:
binary (B) as an illustrative “single-value” lower bound, γ , δ , Rice (R), Zeta (Z), Fibonacci (F) and
Variable-Byte (V). In the plots, data points corresponding to different methods that have the same
coordinates have been stacked vertically for better visualization otherwise these would have been
indistinguishable. For example, γ , δ , Zeta and Fibonacci all take 5 bits to represent the integers
5 and 6. Not surprisingly, a tuned parametric code such as Rice or Zeta may be the best choice.
However, tuning is not always possible and a single parameter has to be specified for the encoding
of all integers in the list (or, say, in a sufficiently large block). For the smallest integers the universal
codes γ and δ are very good, but not competitive immediately for slightly larger integers, e.g.,
larger than 16. On such values and larger, a simple byte-aligned strategy such as Variable-Byte
performs well.

3 LIST COMPRESSORS
In this section we describe algorithms that encode an integer list, instead of representing each
single integer separately. A useful tool to analyze the space effectiveness of these compressors is
the combinatorial information-theoretic lower bound, giving the minimum number of bits needed
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to represent a list of n strictly increasing integers drawn at random from a universe of size U ≥ n,
that is [74] (e = 2.718 is the base of the natural logarithm):⌈

log2

(
U

n

)⌉
= n log2(eU /n) − Θ(n2/U ) −O(logn)

which is approximately

n(log2(U /n) + log2 e) = n log2(U /n) + 1.443n bits, for n = o(
√
U ).

However, it is important to keep in mind that the compressors we describe in this section often
take less space than that computed using the information-theoretic lower bound. In fact, while the
lower bound assumes that the integers are distributed at random, the compressors take advantage
of the fact that inverted lists feature clusters of close integers, e.g., runs of consecutive integers,
that are far more compressible than highly scattered regions. This is also the reason why these
compressors usually outperform the ones presented in Section 2, at least for sufficiently long lists.
As a preliminary example of exploitation of such local clusters, we mention the Binary Adaptive
Sequential Coding (BASC) by Moffat and Anh [61]. Given a sequence of integers S[1..n], instead of
coding the binary magnitude bi = ⌈log2(S[i] + 1)⌉ of every single integer S[i] – as it happens, for
example, in the Elias’ and related codes – we can assume bi+1 to be similar to bi (if not the same).
This allows to code bi+1 relatively to bi , hence amortizing its cost.

Such natural clusters of integers are present because the indexed documents themselves tend
to be clustered, i.e., there are subsets of documents sharing the very same set of terms. Consider
all the Web pages belonging to a certain domain: since their topic is likely to be the same, they
are also likely to share a lot of terms. Therefore, not surprisingly, list compressors greatly benefit
from docID-reordering strategies that focus on re-assigning the docIDs in order to form larger
clusters. When the indexed documents are Web pages, a simple and effective strategy is to assign
identifiers to documents according to the lexicographic order of their URLs [95]. This is the strategy
we use in the experimental analysis in Section 6 and its benefit is highlighted by Fig. 2: the most
frequent gap size is just 1. Another approach uses a recursive graph bisection algorithm to find a
suitable re-ordering of docIDs [26]. In this model, the input graph is a bipartite graph in which one
set of vertices represents the terms of the index and the other set represents the docIDs. A graph
bisection identifies a permutation of the docIDs and, thus, the goal is that of finding, at each step of
recursion, the bisection of the graph which minimizes the size of the graph compressed using delta
encoding. (There are also other reordering strategies that may be relevant [7, 94]: the works cited
here are not meant to be part of an exhaustive list.)

3.1 Binary packing
A simple way to improve both compression ratio and decoding speed is to encode a block of integers,
instead of the whole sequence. This line of work finds its origin in the so-called frame-of-reference
(FOR) [39]. Once the sequence has been partitioned into blocks (of fixed or variable length), then
each block is encoded separately. The key insight behind this simple idea is that, if the sequence is
locally homogeneous, i.e., it features clusters of close integers, the values in a block are likely to
be of similar magnitude. Vice versa, it is generally hard to expect a long sequence to be globally
homogeneous and this is why compression on a per-block basis gives usually better results.

An example of this approach is binary packing. Given a block, we can compute the bit width
b = ⌈log2(max + 1)⌉ of the max element in the block and then represent all integers in the block
using b-bit codewords. Clearly the bit width b must be stored prior to the representation of the block.
Moreover, the gaps between the integers can be computed to lower the value of b. Many variants
of this simple approach have been proposed [25, 50, 96]. For example, in the Recursive Bottom-Up
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Table 6. The 9 different ways of packing integers in a 28-bit segment as used by Simple9.

4-bit selector integers bits per integer wasted bits
0000 28 1 0
0001 14 2 0
0010 9 3 1
0011 7 4 0
0100 5 5 3
0101 4 7 0
0110 3 9 1
0111 2 14 0
1000 1 28 0

Coding (RBUC) code proposed by Moffat and Anh [60], blocks of fixed size are considered, the
bit width bi of each block determined, and the i-th block represented via bi -bit codewords. The
sequence of bit widths {bi }i needs to be represented as well and the procedure sketched above is
applied recursively to it.

Dividing a list into fixed-size blocks may be suboptimal because regions of close identifiers
may be contained in a block containing a much larger value. Thus, it would be preferable to split
the list into variable-size blocks in order to better adapt to the distribution of the integers in the
list. Silvestri and Venturini [96] present an algorithm that finds the optimal splitting of a list of
size n in time O(kn), where k is the maximum block size allowed, in order to minimize the overall
encoding cost. Lemire and Boytsov [50] report that the fastest implementation of this approach –
named Vector of Splits Encoding (VSE) – is that using splits of size 1..14, 16 and 32 integers.

Lemire and Boytsov [50] propose word-aligned versions of binary packing for fast decoding. In
the scheme called BP32, 4 groups of 32 bit-packed integers each are stored together in a meta block.
Each meta block is aligned to 32-bit boundaries and a 32-bit word is used as descriptor of the meta
block. The descriptor stores the 4 bit widths of the 4 blocks in the meta block (8-bit width for each
block). The variant called SIMD-BP128 combines 16 blocks of 128 integers each that are aligned to
128-bit boundaries. The use of SIMD instructions provides fast decoding speed.

3.2 Simple
Rather than splitting the sequence into blocks of integers as in binary packing, we can split the
sequence into fixed-memory units and ask how many integers can be packed in a unit. This is
the key idea of the Simple family of encoders introduced by Anh and Moffat [3]: pack as many
integers as possible in a memory word, i.e., 32 or 64 bits. This approach typically provides good
compression and high decompression speed.

For example, Simple9 [3] (sometimes also referred to as Simple4b [4]) adopts 32-bit memory words.
It dedicates 4 bits to the selector code and 28 bits for data. The selector provides information about
how many elements are packed in the data segment using equally-sized codewords. A selector 0000
may correspond to 28 1-bit integers; 0001 to 14 2-bit integers; 0010 to 9 3-bit integers (1 bit unused),
and so on, as we can see in Table 6. The four bits distinguish between 9 possible configurations.
Similarly, Simple16 [112] has 16 possible configurations using 32-bit words. Simple8b [4], instead,
uses 64-bit words with 4-bit selectors. Dedicating 60 bits for data offers 14 different combinations
rather than just 9, with only 2 configurations having wasted bits rather than 3.

Anh and Moffat [3] also describe two variations of the Simple9 mechanism, named Relative10
and Carryover12. The idea behind Relative10 is to just use 2 bits for the selector, thus allowing 10
packing configurations with 30 bits. In order to make use of more than 4 options, the selector code
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is combined with the one of the previous word, hence enabling the whole range of 10 possibilities.
However, when packing 7 × 4-bit integers or 4 × 7-bit integers, two bits per word are wasted (only
28 out of the 30 available bits are used). Therefore, in the Carryover12 approach these two bits are
used to define the selector code of the following word configuration that makes use of the full 32
bits for packing the integers.

A similar approach to that of the Simple family is used in the QMX mechanism, introduced
by Trotman [103]. Considering memory words larger than 64 bits is a popular strategy for exploiting
the parallelism of SIMD instructions. QMX packs as many integers as possible into 128- or 256-
bit words (Quantities) and stores the selectors (eXtractors) separately in a different stream. The
selectors are compressed (Multipliers) with run-length encoding, that is with a stream of pairs
(value, length). For example, given the sequence [12, 12, 12, 5, 7, 7, 7, 7, 9, 9], its corresponding RLE
representation is [(12, 3), (5, 1), (7, 4), (9, 2)].

3.3 PForDelta
The biggest limitation of block-based strategies is their space-inefficiency whenever a block contains
just one large value, because this forces the compressor to use a universe of representation as large
as that value. This is the main motivation for the introduction of a “patched” frame-of-reference or
PForDelta (PFor), proposed by Zukowski et al. [114]. The idea is to choose a value k for the universe
of representation of the block, such that a large fraction, e.g., 90%, of its integers can be represented
using k bits per integer. All integers that do not fit in k bits, are treated as exceptions and encoded
in a separate array using another compressor, e.g., Variable-Byte or Simple. This strategy is called
patching. More precisely, two configurable parameters are chosen: a base value b and a universe of
representation k , so that most of the values fall in the range [b,b + 2k − 1] and can be encoded with
k bits each by shifting them (delta-encoding) in the range [0, 2k − 1]. To mark the presence of an
exception, we also need a special escape symbol, thus we have [0, 2k − 2] available configurations.

For example, the sequence [3, 4, 7, 21, 9, 12, 5, 16, 6, 2, 34] is represented using PForDelta with
parameters b = 2 and k = 4 as [1, 2, 5, ∗, 7, 10, 3, ∗, 4, 0, ∗] − [21, 16, 34]. The special symbol ∗ marks
the presence of an exception that is written in a separate sequence, here reported after the dash.

The optimized variant Opt-PFor devised by Yan, Ding, and Suel [111], which selects for each
block the values of b and k that minimize its space occupancy, it is more space-efficient and only
slightly slower than the original PFor. Lemire and Boytsov [50] proposed another variant called
Fast-PFor where exceptions are compressed in pages, i.e., groups of blocks of integers. For example,
a page may be 32 consecutive blocks of 128 integers each, for a total of 4096 integers. In this scheme,
all the b-bit exceptions from all the blocks in a page are stored contiguously, for b = 1..32. What
makes this organization faster to decode is the fact that exceptions are decoded in bulk at a page
level, rather than at a (smaller) block level as in Opt-PFor.

In the parallel PFor method, proposed by Ao et al. [5], exceptions are represented in a different
way to allow their decompression in parallel with that of the “regular” values. Instead of using the
escape symbol, each time an exception x is encountered only the least k bits of x − b are written
and the overflow bits accumulated in a separate array. The positions of the exceptions are stored in
another array and compressed using a suitable mechanism. The same sequence used in the above
example, for b = 2 and k = 4, becomes [1, 2, 5, 3, 7, 10, 3, 14, 4, 0, 0] − [1, 0, 2] − [4, 8, 11], because: the
least 4 bits of the exceptions 21− 2 = 19, 16− 2 = 14, and 34− 2 = 32 are 3, 14 and 0 respectively (in
bold font); the corresponding overflow bits are 1, 0, and 2; the three exceptions appear at positions
4, 8, and 11.
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Table 7. An example of Elias-Fano encoding applied to the sequenceS = [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62].

S 3 4 7 13 14 15 21 25 36 38 54 62

high
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 0 0 1 0 1

low
0 1 1 1 1 1 1 0 1 1 1 1
1 0 1 0 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 1 0 0 0 0

H 1110 1110 10 10 110 0 10 10

L 011.100.111 101.110.111 101 001 100.110 110 110

3.4 Elias-Fano
The encoder we now describe was independently proposed by Elias [30] and Fano [33]. Let S(n,U )
indicate a sorted sequence S[1..n] whose integers are drawn from a universe of sizeU > S[n]. The
binary representation of each integer S[i] as bin(S[i], ⌈log2U ⌉) is split into two parts: a low part
consisting in the right-most ℓ = ⌈log2(U /n)⌉ bits that we call low bits and a high part consisting in
the remaining ⌈log2U ⌉ − ℓ bits that we similarly call high bits. Let us call ℓi and hi the values of low
and high bits of S[i] respectively. The Elias-Fano encoding of S(n,U ) is given by the encoding of the
high and low parts. The integers [ℓ1, . . . , ℓn] are written verbatim in a bitvector L of n⌈log2(U /n)⌉
bits, which represents the encoding of the low parts. The high parts are represented with another
bitvector of n + 2 ⌊log2 n ⌋ ≤ 2n bits as follows. We start from a 0-valued bitvector H and set the bit in
position hi + i , for all i = 1, . . . ,n. It is easy to see that the k-th unary valuem of H indicates that
m−1 integers of S have high bits equal to k , 0 ≤ k ≤ ⌊log2 n⌋. Finally the Elias-Fano representation
of S is given by the concatenation of H and L and overall takes

EF(S(n,U )) ≤ n⌈log2(U /n)⌉ + 2n bits. (1)

Although we can opt for an arbitrary split into high and low parts, ranging from 0 to ⌈log2U ⌉, it
can be shown that ℓ = ⌈log2(U /n)⌉ minimizes the overall space occupancy of the encoding [30].
Moreover, given that the information-theoretic lower bound is approximately n log2(U /n)+n log2 e
bits, it can be shown [30] that less than half a bit is wasted per element by Formula 1. Table 7 shows
an example of encoding for the sequence [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62]. Note that no
integer has high part equal to 101.

The same code arrangement was later described by Anh and Moffat [2] as a “modified” version
of the Rice code (Section 2.5). In fact, they partition U into buckets of 2k integers each for some
k > 0, code in unary how many integers fall in each bucket, and represent each integer using k
bits as an offset to its bucket. The connection with Rice is established by writing the number of
integers sharing the same quotient, rather than encoding this quantity for every integer. They also
indicated that the optimal parameter k should be chosen to be ⌈log2(U /n)⌉.
Supporting random Access. Despite the elegance of the encoding, it is possible to support
random access to individual integers without decompressing the whole sequence. Formally, we
are interested in implementing the operation Access(i) that returns S[i]. The operation can be
implemented by using an auxiliary data structure that is built on the bitvector H and efficiently
answers Select1 queries. The answer to a Selectb (i) query over a bitvector is the position of the i-th
bit set to b. For example, Select0(3) = 10 on the bitvector H of Table 7. This auxiliary data structure
is succinct in the sense that it is negligibly small in asymptotic terms, compared to EF(S(n,U )),
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requiring only o(n) additional bits [54, 107]. Using the Select1 primitive, it is possible to implement
Access in O(1). (A prior method than that using Select is described by Anh and Moffat [2], who
adopted a byte-wise processing algorithm to accelerate skipping thorough the H bitvector.)

We basically have to “re-link” together the high and low bits of an integer, previously split up
during the encoding phase. The low bits ℓi are trivial to retrieve as we need to read the range of bits
ℓi = L[(i − 1)ℓ + 1, iℓ]. The retrieval of the high bits is, instead, more complicated. Since we write in
unary how many integers share the same high part, we have a bit set for every integer inS and a zero
for every distinct high part. Therefore, to retrieve the high bits of the i-th integer, we need to know
how many zeros are present in the first Select1(i) bits of H . This quantity is evaluated on H in O(1)
as Select1(i) − i . Linking the high and low bits is as simple as: Access(i) = ((Select1(i) − i) ≪ ℓ) | ℓi ,
where ≪ indicates the left shift operator and | is the bitwise OR.

For example, to recover S[4] = 13, we first evaluate Select1(4) − 4 = 5 − 4 = 1 and conclude that
the high part of S[4] is the binary representation of 1, that is 001. Finally, we access the low bits
L[10..12] = 101 and re-link the two parts, hence obtaining 001.101.

Supporting Successor queries. The query Successor(x), returning the smallest integer y of S
such that y ≥ x , is supported in O(1 + log(U /n)) time as follows. Let hx be the high bits of x . Then
for hx > 0, i = Select0(hx ) − hx + 1 indicates that there are i integers in S whose high bits are less
than hx . On the other hand, j = Select0(hx + 1) − hx gives us the position at which the elements
having high bits greater than hx start. The corner case hx = 0 is handled by setting i = 0. These
two preliminary operations take O(1). Now we can conclude the search in the range S[i, j], having
skipped a potentially large range of elements that, otherwise, would have required to be compared
with x . We therefore determine the successor of x by binary searching in this range which contains
up to U /n integers. The time bound follows.

As an example, consider the query Successor(30) over the example sequence from Table 7. Since
h30 = 3, we have i = Select0(3) − 3 + 1 = 8 and j = Select0(4) − 3 = 9. Therefore we conclude our
search in the range S[8, 9] by returning Successor(30) = S[9] = 36.

In the specific context of inverted indexes, the query Successor is called NextGEQ (Next Greater-
than or Equal-to) and we are going to adopt this terminology in Section 6. It should also be observed
that Moffat and Zobel [70] were the first to explore the use of skip pointers – meta data aimed at
accelerating the skipping through blocks of compressed integers – for faster query evaluation.

Partitioning the integers by cardinality. One of the most pertinent characteristics of the Elias-
Fano space bound in Formula 1 is that it only depends on two parameters, i.e., the size n of the
sequence S and the universe U > S[n]. As already explained, inverted lists often present clusters
of very similar integers and Elias-Fano fails to exploit them for better compression because it
always uses a number of bits per integer at most equal to ⌈log2(U /n)⌉ + 2, thus proportional to
the logarithm of the average gap U /n between the integers and regardless any skewed distribution.
(Note that also Golomb and Rice are insensitive to any deviation away from a random selection of
the integers.) In order to better adapt to the distribution of the gaps between the integers, we can
partition the sequence, obtaining the so-called partitioned Elias-Fano (PEF) representation [73].

The sequence is split into k blocks of variable length. The first level of representation stores
two sequences compressed with plain Elias-Fano: (1) the sequence made up of the last elements
{U1, . . . ,Uk } of the blocks, the so-called upper-bounds and (2) the prefix-summed sequence of
the sizes of the blocks. The second level is formed, instead, by the representation of the blocks
themselves, that can be again encoded with Elias-Fano. The main advantage of this two-level
representation, is that now the integers in the i-th block are encoded with a smaller universe, i.e.,
Ui −Ui−1, i > 0, thus improving the space with respect to the original Elias-Fano representation.
More precisely, each block in the second level is encoded with one among three different strategies.
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As already stated, one of them is Elias-Fano. The other two additional strategies come into play to
overcome the space inefficiencies of Elias-Fano when representing dense blocks.

Let consider a block and call b its size, M its universe respectively. Vigna [107] observed that as
b approaches M the space bound b ⌈log2(M/b)⌉ + 2b bits becomes close to 2M bits. In other words,
the closer b is to M , the denser the block. However, we can always represent the block with M
bits by writing the characteristic vector of the block, that is a bitvector where the i-th bit is set if
the integer i belongs to the block. Therefore, besides Elias-Fano, two additional encodings can be
chosen to encode the block, according on the relation betweenm and b. The first one addresses the
extreme case in which the block covers the whole universe, i.e., when b = M : in such case, the first
level of the representation (upper-bound and size of the block) trivially suffices to recover each
element of the block that, therefore, does not need to be represented at all. The second case is used
whenever the number of bits used by the Elias-Fano representation of the block is larger than M
bits: by doing the math, it is not difficult to see that this happens whenever b > M/4. In this case
we can encode the block with its characteristic bitvector using M bits. The choice of the proper
encoding for a block is rather fundamental for the practical space effectiveness of PEF.

Let us consider a simple example with M = 40 bits. Suppose that the block is sparse, e.g., with
b = 5. Then, Elias-Fano takes ⌈log2(40/5)⌉ + 2 = 5 bits per element, whereas a characteristic vector
representation would take 40/5 = 8 bits per element. In a dense case with, say, b = 30, a bitmap
just takes 40/30 = 1.33 bits per element, whereas Elias-Fano would take 3 bits per element.

Splitting the sequence into equally-sized block is clearly sub-optimal, since we cannot expect
clusters of similar integers to be aligned with uniform partitions. For such reason, an algorithm
based on dynamic programming is presented by Ottaviano and Venturini [73] that yields a partition
whose cost in bits is at most (1 + ϵ) times away from the optimal one taking O(n log 1

ϵ ) time and
O(n) space for any 0 < ϵ < 1. Notice that the time complexity becomes Θ(n) when ϵ is constant. In
fact, the problem of determining the partition of minimum encoding cost can be seen as the problem
of finding the path of minimum cost (shortest) in a complete, weighted and directed acyclic graph
(DAG). This DAG has n vertices, one for each integer of S, and Θ(n2) edges where the cost w(i, j)
of edge (i, j) represents the number of bits needed to represent S[i, j]. Each edge cost w(i, j) is
computed inO(1) by just knowing the universe and size of the chunk S[i, j]. By pruning the DAG it
is possible to attain to the mentioned complexity by preserving the approximation guarantees [73].

Partitioning the integers by universe. As already mentioned, we can opt for an arbitrary split
between the high and the low part of the Elias-Fano representation. Partitioning the universe U
into chunks containing at most 2ℓ integers each, with ℓ = ⌈log2(U /n)⌉, minimizes the space of
the encoding [30] but a non-parametric split – independent from the values of U and n – is also
possible. Let us assume that U ≤ 232 in the following.

For example, Roaring [15, 51, 53] partitionsU into chunks spanning 216 values each and represents
all the integers of the sequence falling into a chunk in two different ways according to the cardinality
of the chunk: if the chunk contains less than 4096 elements, then it is considered to be sparse and
represented as a sorted array of 16-bit integers; otherwise it is considered dense and encoded as a
bitmap of 216 bits. Lastly, very dense chunks can also be encoded with runs if advantageous. A run
is represented as a pair (v, ℓ) meaning that all the integers v ≤ x ≤ v + ℓ belong to the chunk.

Inspired by the van Emde Boas tree [105, 106], the Slicing [78] data structure recursively slices
the universe of representation in order to better adapt to the distribution of the integers being
compressed. Differently from Roaring, a sparse sparse chunk is further partitioned into at most 28

blocks of 28 elements each. Therefore, a non-empty universe slice of 216 elements can be either:
represented with a bitmap of 216 bits (dense case); represented implicitly if the slice contains all the
possible 216 elements (full case); or it is recursively partitioned into smaller slices of 28 elements
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[3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54] 
(m = 6; n = 11; l = 0; h = 62)

writing 10 using 6 bits

[3, 4, 7, 13, 14] 
(m = 3; n = 5; l = 0; h = 14)

writing 5 using 4 bits

[3, 4] 
(m = 1; n = 2; l = 0; h = 6)

writing 3 using 3 bits

[4] 
(m = 1; n = 1; l = 4; h = 6)

writing 0 using 2 bits

[13, 14] 
(m = 1; n = 2; l = 8; h = 14)

writing 5 using 3 bits

[14]
(m = 1; n = 1; l = 14; h = 14)

writing no bits

[21, 25, 36, 38, 54] 
(m = 3; n = 5; l = 16; h = 62)

writing 18 using 6 bits

[21, 25] 
(m = 1; n = 2; l = 16; h = 35)

writing 5 using 5 bits

[25] 
(m = 1; n = 1; l = 22; h = 35)

writing 3 using 4 bits

[38, 54] 
(m = 1; n = 2; l = 37; h = 62)

writing 1 using 5 bits

[54] 
(m = 1; n = 1; l = 39; h = 62)

writing 15 using 5 bits

Fig. 4. The recursive calls performed by the Binary Interpolative Coding algorithm when applied to the
sequence [3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54] with initial knowledge of lower and upper bound values l = 0
and h = 62. In bold font we highlight the middle element being encoded.

each. Finally, each non-empty slice of 28 elements is encoded with a sorted array of 8-bit integers
(sparse case); or with a bitmap of 28 bits (dense case). The idea of a hybrid compression scheme
with hierarchical bit-vectors and sorted-arrays (that can be further compressed) was first proposed
by Fraenkel et al. [35].

It should be noted that all the partitioning strategies we have described in this section, namely
partitioned Elias-Fano (PEF), Roaring and Slicing, exploit the same idea to attain to good space
effectiveness: look for dense regions to be encoded with bitmaps and use a different mechanism
for sparse regions. While PEF achieves this goal by splitting the sequence optimally by cardinality,
Roaring and Slicing partition the universe of representation greedily, hence maintaining the property
that all partitions are represented using the same universe. As we will better see in Section 6, these
different partitioning paradigms achieve different space/time trade-offs.

3.5 Interpolative
The Binary Interpolative Code (BIC) invented by Moffat and Stuiver [65, 66] represents a sorted
integer sequence without requiring the computation of its gaps. The key idea of the algorithm
is to exploit the order of the already-encoded elements to compute the number of bits needed to
represent the elements that will be encoded next.

At the beginning of the encoding phase, suppose we are specified two quantities l ≤ S[1] and
h ≥ S[n]. Given such quantities, we can encode the element in the middle of the sequence, i.e.,
S[m] withm = ⌈n/2⌉, in some appropriate manner, knowing that l ≤ S[m] ≤ h. For example, we
can write S[m] − l −m + 1 using just ⌈log2(h − l − n + 1)⌉ bits. After that, we can apply the same
step to both halves S[1,m − 1] and S[m + 1,n] with updated knowledge of lower and upper values
(l ,h) that are set to (l ,S[m] − 1) and (S[m] + 1,h) for the left and right half respectively. Note
that whenever the condition l + n − 1 = h is satisfied, a “run” of consecutive integers is detected:
therefore, we can stop recursion and emit no bits at all during the encoding phase. When the
condition is met again during the decoding phase, we simply output the values l , l + 1, l + 2, . . . ,h.
This means that BIC can actually use codewords of 0 bits to represent more than one integer, hence
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attaining to a rate of less than one bit per integer – a remarkable property that makes the code
very succinct for highly clustered inverted lists.

We now consider an encoding example applied to the sequence [3, 4, 7, 13, 14, 15, 21, 25, 36, 38,
54, 62]. As it is always safe to choose l = 0 and h = S[n], we do so, thus at the beginning of the
encoding phase we have l = 0 and h = 62. Since we set h = S[n], the last value of the sequence is
first encoded and we process S[1..n−1] only. Fig. 4 shows the sequence of recursive calls performed
by the encoding algorithm oriented as a binary tree. At each node of the tree we report the values
assumed by the quantities m, n, l and h, plus the processed subsequence and the number of bits
needed to encode the middle element. By pre-order visiting the tree, we obtain the sequence of
written values, that is [10, 5, 3, 0, 5, 18, 5, 3, 1, 15] with associated codeword lengths [6, 4, 3, 2, 3, 6,
5, 4, 5, 5]. Note that the value in the second leaf of the tree, i.e., S[5] = 14, is encoded with 0 bits
given that both l and h are equal to 14.

However, the encoding process obtained by the use of simple binary codes as illustrated in Fig. 4 is
wasteful. In fact, as discussed in the original work [65, 66], more succinct encodings can be achieved
with a minimal binary encoding (recall the definition at the end of Section 2.2). More precisely,
when the range r > 0 is specified, all values 0 ≤ x ≤ r are assigned fixed-length codewords of size
⌈log2(r + 1)⌉ bits. But the more r is distant from 2 ⌈log2(r+1)⌉ the more this allocation of codewords
is wasteful because c = 2 ⌈log2(r+1)⌉ − r − 1 codewords can be made 1 bit shorter without loss of
unique decodability. Therefore we proceed as follows. We identify the range of smaller codewords,
delimited by the values rl and rh , such that every value x ≤ r such that rl < x < rh is assigned a
shorter (⌈log2(r + 1)⌉ − 1)-bit codeword and every value outside this range is assigned a longer one
of ⌈log2(r + 1)⌉ bits. To maintain unique decodability, we first always read ⌈log2(r + 1)⌉ − 1 bits and
interpret these as the value x . Then we check if condition rl < x < rh is satisfied: if so, we are done;
otherwise, the codeword must be extended by 1 bit. In fact, in a left-most minimal binary code
assignment, the first c values are assigned the shorter codewords, thus rh = 2 ⌈log2(r+1)⌉−r−1 (and we
only check whether x < rh ). In a centered minimal binary code assignment, the values in the centre
of the range are assigned the shorter codewords, thus (rl , rh) = (⌊r/2⌋ − ⌊c/2⌋ −1, ⌊r/2⌋+ ⌊c/2⌋+1)
if r is even, or (rl , rh) = (⌊r/2⌋ − ⌊c/2⌋, ⌊r/2⌋ + ⌊c/2⌋ + 1) if r is odd. The rationale behind using
centered minimal codes is that a reasonable guess is to assume the middle element to be about
half of the upper bound. As already noted, we remark that the specific assignment of codewords
is irrelevant and many assignments are possible: what matters is to assign correct lengths and
maintain the property of unique decodability.

It is also worth mentioning that the Tournament code developed by Teuhola [100] is very related
to BIC.

3.6 Directly-addressable codes
Brisaboa, Ladra, and Navarro [12] introduced a representation for a list of integers that supports
random access to individual integers – called directly-addressable code (DAC) – noting that this is
not generally possible for many of the representations described in Section 2 and 3. They reduced
the problem of random access to the one of ranking over a bitmap. Given a bitmap B[1..n] of
n bits, the query Rankb (B, i) returns the number of b bits in B[1, i], for i ≤ n. For example, if
B = 010001101110 then Rank1(6) = 2 and Rank0(8) = 5. Rank queries can be supported in O(1)
by requiring only o(n) additional bits [17, 41, 44].

Each integer in the list is partitioned into (b + 1)-bit chunks. Similarly to Variable-Byte, b bits are
dedicated to the representation of the integer and the control bit indicates whether another chunk
follows or not. All the first n b-bit chunks of every integer are grouped together in a codeword
stream C1 and the control bits form a bitmap B1[1..n] of n bits. If the i-th bit is set in such bitmap,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: August 2020.



22 G. E. Pibiri and R. Venturini

then the i-th integer in the sequence needs a second chunk, otherwise a single chunk is sufficient.
Proceeding recursively, all the second m ≤ n chunks are concatenated together in C2 and the
control bits in a bitmap B2[1..m] ofm bits. Again, the i-th bit of such bitmap is set if the i-th integer
with at least two chunks needs a third chunk of representation. In general, if U is the maximum
integer in the list, there are at most ⌈log2(U + 1)/b⌉ levels (i.e., streams of chunks).

As an example, the sequence [2, 7, 12, 5, 13, 142, 61, 129] is encoded with b = 3 as follows:
B1 = 0.0.1.0.1.1.1.1; B2 = 0.0.1.0.1; B3 = 0.0; C1 = 010.111.100.101.101.110.011.001;
C2 = 001.001.001.110.000; C3 = 010.010.

Accessing the integer x in position i reduces to a sequence of c − 1 Rank1 operations over the
levels’ bitmaps, where c ≥ 1 is the number of (b + 1)-bit chunks of x , that is ⌈log2(x + 1)/b⌉. Now,
for k = 1..c , we repeat the following step: (1) retrieve the i-th chunk from the Ck in constant time
given that all chunks are b bits long; (2) if Bk [i] = 0, we are done; otherwise j = Rank1(Bk , i)
gives us the number of integers (in the level k + 1) that have more than k chunks, so we set i = j
and repeat. For example, Access(5) is resolved as follows on our example sequence. We retrieve
C1[5] = 101; since B1[5] = 1, we compute Rank1(B1, 5) = 2. Now we retrieveC2[2] = 001 and given
B2[2] = 0, we stop by returning the integer C2[2].C1[5] = 001.101, that is 13.

Lastly, nothing prevents from changing the value of b at each level of the data structure. For this
purpose, the authors of DAC present an algorithm, based on dynamic programming, that finds
such optimal values for a given list.

3.7 Hybrid approaches
Hybrid approaches are possible by using different compressors to represent the blocks of a list. For
example, given a query log, we can collect access statistics at a block-level granularity, namely how
many times a block is accessed during query processing, and represent rarely-accessed blocks with
more space-efficient compressor; vice versa frequently-accessed blocks are encoded with more
time-efficient compressor [72]. This hybrid strategy produces good space/time trade-offs.

Pibiri and Venturini [83] show that a list of n sorted integers can be optimally partitioned into
variable-length blocks whenever the chosen representation for each block is given by either: (1)
any compressor described in Section 2, namely a point-wise encoder, or (2) the characteristic vector
of the block. From Section 3.4 we recall that, given a block of universem, the characteristic vector
representation of the block is given by a bitmap ofm bits where the i-th bit is set if the integer i
belongs to the block. By exploiting the fact that the chosen encoder is point-wise, i.e., the number
of bits needed to represent an integer solely depends on the integer itself rather than the block
where it belongs to, it is possible to devise an algorithm that finds an optimal partitioning in Θ(n)
time and O(1) space. The constant factor hidden by the asymptotic notation is very small, making
the algorithm very fast in practice.

3.8 Entropy coding: Huffman, Arithmetic, and Asymmetric Numeral Systems
In this section we quickly survey the most famous entropy coding techniques – Huffman [43],
Arithmetic coding [62, 76, 88, 89], and Asymmetric Numeral Systems (ANS) [27–29]. Although
some authors explored the use of these techniques for index compression, especially Huffman [10,
36, 45, 69] and ANS [63, 64] (see Section 4.2), they are usually not competitive in terms of efficiency
and implementation simplicity against the compressors we have illustrated in the previous sections,
making them a hard choice for practitioners. An in-depth treatment of such techniques is, therefore,
outside the scope of this article and the interested reader can follow the references to the individual
papers we include here. The survey by Moffat [59] about Huffman coding also contains descriptions
of Arithmetic Coding and ANS (Section 5.1 and 5.2 of that article, respectively).
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symbols weights lengths codewords
2 8 2 00
5 7 2 01
6 2 3 100
7 2 3 101
1 2 4 1100
3 2 4 1101
4 1 4 1110
8 1 4 1111

25

15

8 7

10

4 6

2 2 2 4

2 2 1 1

2 5

6 7

1 3 4 8

0

0 1

1

0 1

10 0 1

0 1 0 1

Fig. 5. An example of Huffman coding applied to a sequence of size 25 with symbols 1..8 and associated
weights [2, 8, 2, 1, 7, 2, 2, 1].

We first recall the definition of entropy, a tool introduced by Shannon [93]. He was concerned
with the problem of defining the information content of a discrete random variable X : Σ → R, with
distribution P(s) = P{X = s}, s ∈ Σ. He defined the entropy of X as H =

∑
s ∈Σ[P(s) log2(1/P(s))]

bits. The quantity log2(1/P(s)) bits is also called the self-information of the symbol s andH represents
the average number of bits we need to encode each value of Σ. Let now S be a sequence of n
symbols drawn from an alphabet Σ. (In the context of this article, the symbols will be integer
numbers.) Let also ns denote the number of times the symbol s occurs in S. Assuming empirical
frequencies as probabilities [75] (the larger is n, the better the approximation), i.e., P(s) ≈ ns/n,
we can consider S as a random variable assuming value s with probability P(s). In this setting,
the entropy of the sequence S is H0 = 1/n∑s ∈Σ[ns log2(n/ns )] bits, also known as the 0-th order
(or empirical) entropy of S. In particular, the quantity nH0 gives a theoretic lower bound on the
average number of bits we need to represent S and, hence, to the output size of any compressor
that encodes each symbol of S with a fixed-length codeword.

Huffman. It is standard to describe the Huffman’s algorithm in terms of a binary tree. In this
logical binary tree, a leaf corresponds to a symbol to be encoded with associated symbol occurrence
– its weight – and an internal node stores the sum of the weights of its children. The algorithm
maintains a candidate set of tree nodes from which, at each step: (1) the two nodes with smallest
weight are selected; (2) they are merged together into a new parent node whose weight is the
sum of the weights of the two children; (3) the parent node is added to the candidate set. The
algorithm repeats this merging step until only the root of the tree (whose weight is the length
of the sequence S) is left in the candidate set. Fig. 5 shows an example of Huffman coding. It is
important to mention that, in practice, the decoding process does not traverse any tree. An elegant
variation of the algorithm – known as canonical Huffman – allows fast decoding by using lookup
tables as we similarly illustrated in Section 2.1. Again, Moffat [59] provides all details.

Now, let L be the average Huffman codeword length. Two of the most important properties
of Huffman coding are: (1) L is minimum among all possible prefix-free codes; (2) L satisfies
H0 ≤ L < H0 + 1. The first property means that Huffman coding produces an optimal code for a
given distribution of the integers. (The precursor of the Huffman’s algorithm is the less-known
Shannon-Fano algorithm that was independently proposed by Shannon [93] and Fano [32], which,
however, does not always produce an optimal code.) The second property suggests that an Huffman
code can loose up to 1 bit compared to the entropy H0 because it requires at least 1 bit to encode
a symbol (as any other prefix-free code), thus if H0 is large, the extra bit lost is negligible in

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: August 2020.



24 G. E. Pibiri and R. Venturini

practice; otherwise the distribution of probabilities is skewed and Huffman looses a significant
space compared to the entropy of the source.

Now, it should be clear why Huffman may not be an appropriate choice for inverted index
compression. Applying Huffman to the compression of the integers in inverted lists means that its
alphabet of representation is too large, thus making the mere description of the code outweigh the
cost of representing very sparse inverted lists. The same reason applies if we try to use the code
to compress the gaps between successive integers: the largest gap could be as large as the largest
integer in the sequence.

Arithmetic. The first concept of Arithmetic coding was introduced by Elias before 1963 according
to Note 1 on page 61 in the book by Abramson [1]. However, the method requires infinite precision
arithmetic and, because of this, it remained unpublished. The first practical implementations
were designed during 1976 by Rissanen [89] and Pasco [76], and later refined by Rissanen [88]. A
more recent efficient implementation is described by Moffat et al. [62]. The method offers higher
compression ratios than Huffman’s, especially on highly skewed distributions, because it is not
a prefix-free code, so it does not require at least one bit to encode a symbol. Indeed a single bit
may correspond to more than one input symbol. However, Huffman codes are faster to decode;
Arithmetic does not permit to decode an output stream starting from an arbitrary position, but
only sequential decoding is possible.

Given a sequence of symbols S = [s1..sn], the main idea behind the method works as follows.
The interval [0, 1) is partitioned into |Σ| segments of length proportional to the probabilities of the
symbols. Then the subinterval corresponding to s1, say [ℓ1, r1), is chosen and the same partitioning
step is applied to it. The process stops when all input symbols have been processed and outputs a
single real number x in [ℓn , rn), that is the interval associated to the last input symbol sn . Then the
pair (x ,n) suffices to decode the original input sequence S.

It can be shown that Arithmetic coding takes at most nH0 + 2 bits to encode a sequence S of
length n. This means that the overhead with respect to the empirical entropy H0 is only of 2/n bits
per symbol, thus negligible for basically all practical values of n. As already pointed out, Arithmetic
coding requires infinite precision that can be very costly to be approximated. In fact, a practical
implementation [110] using approximated arithmetic can take up to nH0 +

2
100n bits, thus having

0.02 bits of loss per symbol rather than 2/n.

Asymmetric Numeral Systems. Asymmetric Numeral Systems (ANS) is a family of entropy
coding algorithms, originally developed by Duda [27, 28], which approaches the compression ratio
of Arithmetic coding with a decompression speed comparable with the one of Huffman [29]. The
basic idea of ANS is to represent a sequence of symbols with a natural number x .

Let us consider a concrete example [64] with an alphabet of 3 symbols only, namely {a,b, c}
and assuming that P(a) = 1/2, P(b) = 1/3 and P(c) = 1/6. In order to derive the encoding of a
sequence of symbols, a frame f [1..m] of symbols is constructed, having 1/2 of the entries equal
to a, 1/3 equal to b and 1/6 equal to c . For example, one such frame could be f [1..6] = [aaabbc],
but other symbol permutations with possibly largerm are possible as well. The frame determines
a table that is used to map a sequence of symbols to an entry in the table. Refer to Table 8a for
an example with the frame f [1..6] = [aaabbc]. The entries in the table are the natural numbers
assigned incrementally in the order determined by the frame. For example, since the first three
symbols in the frame are aaa, the first numbers assigned to a’s row are 1, 2 and 3. The next two
symbols are bb, so b’s row gets 4 and 5. The last symbol in the frame is c , so the first entry in c’s
row is 6. The process now proceed in cycles, thus placing 7, 8 and 9 in a’s row; 10 and 11 in b’s
row, a final 12 in c’s row, and so on (first 10 columns are shown in the table). Table 8b shows an
example for another distribution of the symbols, constructed using a frame f [1..4] = [caba].
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Table 8. Two example of ANS encoding table, with respectively frame f [1..6] = [aaabbc] and f [1..4] = [caba].

(a)

Σ P codes
a 1/2 1 2 3 7 8 9 13 14 15 19
b 1/3 4 5 10 11 16 17 22 23 28 29
c 1/6 6 12 18 24 30 36 42 48 54 60

0 1 2 3 4 5 6 7 8 9

(b)

Σ P codes
a 1/2 2 4 6 8 10 12 14 16 18 20
b 1/4 3 7 11 15 19 23 27 31 35 39
c 1/4 1 5 9 13 17 21 25 29 33 37

0 1 2 3 4 5 6 7 8 9

Now, consider the sequence caa and let us determine its ANS code with the table in Fig. 8a.
We make use of the transition function defined by the table T itself as state′ = T [s, state] which,
given a symbol s and a state value, produces the next state′ of the encoder. At the beginning we
set state = 0, thus for the given sequence caa the state variable assumes values 0 → 6 → 13 → 26
(last value not shown in the table). The code assigned to the sequence is, therefore, the integer 26.
For the sequence acb under the encoding table in Table 8b we generate, instead, the transitions
0 → 2 → 9 → 39, thus the assigned code is 39. Decoding reverts this process. For example, given
39 we know that the last symbol of the encoded sequence must have been b because 39 is found on
the second row of the table. The value is in column 9, which is found in column 2 in the third row
that corresponds to the c symbol. Finally, the column number 2 is found in a’s row, thus we emit
the message acb.

4 INDEX COMPRESSORS
This section is devoted to approaches that look for regularities among all the lists in the inverted
index. In fact, as already motivated at the beginning of Section 3, the inverted index naturally
presents some amount of redundancy in that many sub-sequences of integers are shared between
the lists. Good compression can be achieved by exploiting this correlation, usually at the expense
of a reduced processing efficiency.

4.1 Clustered
Pibiri and Venturini [80] propose a clustered index representation. The inverted lists are grouped
into clusters of “similar” lists, i.e., the ones sharing as many integers as possible. Then for each
cluster, a reference list is synthesized with respect to which all lists in the cluster are encoded. More
specifically, the integers belonging to the intersection between the cluster reference list and a list
in the cluster are represented as the positions they occupy within the reference list. This makes a
big improvement for the cluster space, since each intersection can be re-written in a much smaller
universe. Although any compressor can be used to represent the intersection and the residual
segment of each list, the authors adopt partitioned Elias-Fano; by varying the size of the reference
lists, different time/space trade-offs can be obtained.

4.2 ANS-based
In Section 3.8 we have seen an example of the ANS method developed by Duda [27, 28]. As we
have already observed in that section, the alphabet size may be too large for representing the
integers in inverted indexes. Even the largest gap may be equal to the number of documents in the
collection, which is usually several order to magnitudes larger than, for example, the (extended)
ASCII alphabet. For this reason, Moffat and Petri [63] describe several adaptations of the base ANS
mechanism tailored for effective index compression. In order to reduce the alphabet size, they
perform a preprocessing step with Variable-Byte to reduce the input list to a sequence of bytes
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1 2 4 8 16 runs exceptionsdictionary

encoded
stream 

. . .

16 bits

216
<latexit sha1_base64="4i5jCgRr0eG4wD0m2y/FnMYCvTg=">AAACcHicbVHBThsxEHWWQiEUCvSC1EOXBiSEULSOEHBBQvTSY4oIRAoL8jqziRWvd7FngWDlJ3qlP9bf6BfUu4kQCYxk6enNm/GbmSiTwmAQ/K14cx/mFz4uLlWXP62sfl5b37g0aa45tHgqU92OmAEpFLRQoIR2poElkYSraPCjyF/dgzYiVRc4zCBMWE+JWHCGjmpvN24sPRxt367VgnpQhv8W0AmokUk0b9cr59fdlOcJKOSSGdOhQYahZRoFlzCqXucGMsYHrAcdBxVLwIS2NDzydxzT9eNUu6fQL9nXFZYlxgyTyCkThn0zmyvI93KdHOPj0AqV5QiKjz+Kc+lj6hfT+12hgaMcOsC4Fs6rz/tMM45uR1OdEE9iJg3sl4X0BHUOoZUiAjehmhnwnum7PLRP4mCaf5GHVsEDPpa+pxQXNLTFDgq3VXcFOrvzt+CyUadBnf5q1E7PJvdYJF/Jd7JLKDkip+QnaZIW4USS3+SZ/Kn88za9b97WWOpVJjVfyFR4e/8BCr+/Rg==</latexit><latexit sha1_base64="4i5jCgRr0eG4wD0m2y/FnMYCvTg=">AAACcHicbVHBThsxEHWWQiEUCvSC1EOXBiSEULSOEHBBQvTSY4oIRAoL8jqziRWvd7FngWDlJ3qlP9bf6BfUu4kQCYxk6enNm/GbmSiTwmAQ/K14cx/mFz4uLlWXP62sfl5b37g0aa45tHgqU92OmAEpFLRQoIR2poElkYSraPCjyF/dgzYiVRc4zCBMWE+JWHCGjmpvN24sPRxt367VgnpQhv8W0AmokUk0b9cr59fdlOcJKOSSGdOhQYahZRoFlzCqXucGMsYHrAcdBxVLwIS2NDzydxzT9eNUu6fQL9nXFZYlxgyTyCkThn0zmyvI93KdHOPj0AqV5QiKjz+Kc+lj6hfT+12hgaMcOsC4Fs6rz/tMM45uR1OdEE9iJg3sl4X0BHUOoZUiAjehmhnwnum7PLRP4mCaf5GHVsEDPpa+pxQXNLTFDgq3VXcFOrvzt+CyUadBnf5q1E7PJvdYJF/Jd7JLKDkip+QnaZIW4USS3+SZ/Kn88za9b97WWOpVJjVfyFR4e/8BCr+/Rg==</latexit><latexit sha1_base64="4i5jCgRr0eG4wD0m2y/FnMYCvTg=">AAACcHicbVHBThsxEHWWQiEUCvSC1EOXBiSEULSOEHBBQvTSY4oIRAoL8jqziRWvd7FngWDlJ3qlP9bf6BfUu4kQCYxk6enNm/GbmSiTwmAQ/K14cx/mFz4uLlWXP62sfl5b37g0aa45tHgqU92OmAEpFLRQoIR2poElkYSraPCjyF/dgzYiVRc4zCBMWE+JWHCGjmpvN24sPRxt367VgnpQhv8W0AmokUk0b9cr59fdlOcJKOSSGdOhQYahZRoFlzCqXucGMsYHrAcdBxVLwIS2NDzydxzT9eNUu6fQL9nXFZYlxgyTyCkThn0zmyvI93KdHOPj0AqV5QiKjz+Kc+lj6hfT+12hgaMcOsC4Fs6rz/tMM45uR1OdEE9iJg3sl4X0BHUOoZUiAjehmhnwnum7PLRP4mCaf5GHVsEDPpa+pxQXNLTFDgq3VXcFOrvzt+CyUadBnf5q1E7PJvdYJF/Jd7JLKDkip+QnaZIW4USS3+SZ/Kn88za9b97WWOpVJjVfyFR4e/8BCr+/Rg==</latexit><latexit sha1_base64="4i5jCgRr0eG4wD0m2y/FnMYCvTg=">AAACcHicbVHBThsxEHWWQiEUCvSC1EOXBiSEULSOEHBBQvTSY4oIRAoL8jqziRWvd7FngWDlJ3qlP9bf6BfUu4kQCYxk6enNm/GbmSiTwmAQ/K14cx/mFz4uLlWXP62sfl5b37g0aa45tHgqU92OmAEpFLRQoIR2poElkYSraPCjyF/dgzYiVRc4zCBMWE+JWHCGjmpvN24sPRxt367VgnpQhv8W0AmokUk0b9cr59fdlOcJKOSSGdOhQYahZRoFlzCqXucGMsYHrAcdBxVLwIS2NDzydxzT9eNUu6fQL9nXFZYlxgyTyCkThn0zmyvI93KdHOPj0AqV5QiKjz+Kc+lj6hfT+12hgaMcOsC4Fs6rz/tMM45uR1OdEE9iJg3sl4X0BHUOoZUiAjehmhnwnum7PLRP4mCaf5GHVsEDPpa+pxQXNLTFDgq3VXcFOrvzt+CyUadBnf5q1E7PJvdYJF/Jd7JLKDkip+QnaZIW4USS3+SZ/Kn88za9b97WWOpVJjVfyFR4e/8BCr+/Rg==</latexit>

c1
<latexit sha1_base64="SFo2n6x5K/Ag5QIiVZNkEW/7XOs=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUrIi6Isg+uKjiq1CDWWzndjFzSbuTtQa/AZf9dP8Cn/BTQxiWwcWDmfOzJ6ZCRIpDHreZ8UZGR0bn5icqk7PzM7NLywuNU2cag4NHstY3wTMgBQKGihQwk2igUWBhOvg/jTPXz+CNiJWV9hLwI/YnRKh4Awt1djkbbrZXqh5da8IdxjQEtRIGeftxcrlbSfmaQQKuWTGtKiXoJ8xjYJLeK3epgYSxu/ZHbQsVCwC42eF21d3yzIdN4y1fQrdgv1bkbHImF4UWGXEsGsGczn5X66VYnjoZ0IlKYLiPx+FqXQxdvPR3Y7QwFH2LGBcC+vV5V2mGUe7oL5OiEchkwZ2i0J6hDoFP5MiADuhGhjwkemH1M9exH4//yv3MwVP+Fz47lNcUT/Ld5C7rdor0MGdD4PmXp16dXqxVzs+Ke8xSVbJBtkhlByQY3JGzkmDcCLIG3knH5UvZ8VZc9Z/pE6lrFkmfeFsfwOYm74s</latexit><latexit sha1_base64="SFo2n6x5K/Ag5QIiVZNkEW/7XOs=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUrIi6Isg+uKjiq1CDWWzndjFzSbuTtQa/AZf9dP8Cn/BTQxiWwcWDmfOzJ6ZCRIpDHreZ8UZGR0bn5icqk7PzM7NLywuNU2cag4NHstY3wTMgBQKGihQwk2igUWBhOvg/jTPXz+CNiJWV9hLwI/YnRKh4Awt1djkbbrZXqh5da8IdxjQEtRIGeftxcrlbSfmaQQKuWTGtKiXoJ8xjYJLeK3epgYSxu/ZHbQsVCwC42eF21d3yzIdN4y1fQrdgv1bkbHImF4UWGXEsGsGczn5X66VYnjoZ0IlKYLiPx+FqXQxdvPR3Y7QwFH2LGBcC+vV5V2mGUe7oL5OiEchkwZ2i0J6hDoFP5MiADuhGhjwkemH1M9exH4//yv3MwVP+Fz47lNcUT/Ld5C7rdor0MGdD4PmXp16dXqxVzs+Ke8xSVbJBtkhlByQY3JGzkmDcCLIG3knH5UvZ8VZc9Z/pE6lrFkmfeFsfwOYm74s</latexit><latexit sha1_base64="SFo2n6x5K/Ag5QIiVZNkEW/7XOs=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUrIi6Isg+uKjiq1CDWWzndjFzSbuTtQa/AZf9dP8Cn/BTQxiWwcWDmfOzJ6ZCRIpDHreZ8UZGR0bn5icqk7PzM7NLywuNU2cag4NHstY3wTMgBQKGihQwk2igUWBhOvg/jTPXz+CNiJWV9hLwI/YnRKh4Awt1djkbbrZXqh5da8IdxjQEtRIGeftxcrlbSfmaQQKuWTGtKiXoJ8xjYJLeK3epgYSxu/ZHbQsVCwC42eF21d3yzIdN4y1fQrdgv1bkbHImF4UWGXEsGsGczn5X66VYnjoZ0IlKYLiPx+FqXQxdvPR3Y7QwFH2LGBcC+vV5V2mGUe7oL5OiEchkwZ2i0J6hDoFP5MiADuhGhjwkemH1M9exH4//yv3MwVP+Fz47lNcUT/Ld5C7rdor0MGdD4PmXp16dXqxVzs+Ke8xSVbJBtkhlByQY3JGzkmDcCLIG3knH5UvZ8VZc9Z/pE6lrFkmfeFsfwOYm74s</latexit><latexit sha1_base64="SFo2n6x5K/Ag5QIiVZNkEW/7XOs=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUrIi6Isg+uKjiq1CDWWzndjFzSbuTtQa/AZf9dP8Cn/BTQxiWwcWDmfOzJ6ZCRIpDHreZ8UZGR0bn5icqk7PzM7NLywuNU2cag4NHstY3wTMgBQKGihQwk2igUWBhOvg/jTPXz+CNiJWV9hLwI/YnRKh4Awt1djkbbrZXqh5da8IdxjQEtRIGeftxcrlbSfmaQQKuWTGtKiXoJ8xjYJLeK3epgYSxu/ZHbQsVCwC42eF21d3yzIdN4y1fQrdgv1bkbHImF4UWGXEsGsGczn5X66VYnjoZ0IlKYLiPx+FqXQxdvPR3Y7QwFH2LGBcC+vV5V2mGUe7oL5OiEchkwZ2i0J6hDoFP5MiADuhGhjwkemH1M9exH4//yv3MwVP+Fz47lNcUT/Ld5C7rdor0MGdD4PmXp16dXqxVzs+Ke8xSVbJBtkhlByQY3JGzkmDcCLIG3knH5UvZ8VZc9Z/pE6lrFkmfeFsfwOYm74s</latexit>

c2
<latexit sha1_base64="d0f77pdfgSalrpGhHC2wX+SI7MA=">AAACbXicdVFdS8MwFM3q9/yc4pMiwSn6IKMdA/VBEH3xUcWpMMtIs1sNpmlNbtVZ/A2+6k/zV/gXTLspTvRA4HDuucm5N0EihUHXfS85Q8Mjo2PjE+XJqemZ2bnK/LmJU82hyWMZ68uAGZBCQRMFSrhMNLAokHAR3B7m9Yt70EbE6gy7CfgRu1YiFJyhlZprvF1fa89V3dpuAdoj240+2fWoV3MLVEkfx+1K6fSqE/M0AoVcMmNanpugnzGNgkt4Ll+lBhLGb9k1tCxVLALjZ0XaZ7pulQ4NY22PQlqoPzsyFhnTjQLrjBjemN+1XPyr1kox3PEzoZIUQfHeQ2EqKcY0H512hAaOsmsJ41rYrJTfMM042gUN3IS4FzJpYKto9PZQp+BnUgRgJ1S/Brxn+i71syfRGNS/7X6m4AEfi9wDjjPPz/Id5GnL9he+Vk3/J+f1mufWvJN6df+g/x/jZImskk3ikW2yT47IMWkSTgR5Ia/krfThLDrLzkrP6pT6PQtkAM7GJ7nuvsA=</latexit><latexit sha1_base64="d0f77pdfgSalrpGhHC2wX+SI7MA=">AAACbXicdVFdS8MwFM3q9/yc4pMiwSn6IKMdA/VBEH3xUcWpMMtIs1sNpmlNbtVZ/A2+6k/zV/gXTLspTvRA4HDuucm5N0EihUHXfS85Q8Mjo2PjE+XJqemZ2bnK/LmJU82hyWMZ68uAGZBCQRMFSrhMNLAokHAR3B7m9Yt70EbE6gy7CfgRu1YiFJyhlZprvF1fa89V3dpuAdoj240+2fWoV3MLVEkfx+1K6fSqE/M0AoVcMmNanpugnzGNgkt4Ll+lBhLGb9k1tCxVLALjZ0XaZ7pulQ4NY22PQlqoPzsyFhnTjQLrjBjemN+1XPyr1kox3PEzoZIUQfHeQ2EqKcY0H512hAaOsmsJ41rYrJTfMM042gUN3IS4FzJpYKto9PZQp+BnUgRgJ1S/Brxn+i71syfRGNS/7X6m4AEfi9wDjjPPz/Id5GnL9he+Vk3/J+f1mufWvJN6df+g/x/jZImskk3ikW2yT47IMWkSTgR5Ia/krfThLDrLzkrP6pT6PQtkAM7GJ7nuvsA=</latexit><latexit sha1_base64="d0f77pdfgSalrpGhHC2wX+SI7MA=">AAACbXicdVFdS8MwFM3q9/yc4pMiwSn6IKMdA/VBEH3xUcWpMMtIs1sNpmlNbtVZ/A2+6k/zV/gXTLspTvRA4HDuucm5N0EihUHXfS85Q8Mjo2PjE+XJqemZ2bnK/LmJU82hyWMZ68uAGZBCQRMFSrhMNLAokHAR3B7m9Yt70EbE6gy7CfgRu1YiFJyhlZprvF1fa89V3dpuAdoj240+2fWoV3MLVEkfx+1K6fSqE/M0AoVcMmNanpugnzGNgkt4Ll+lBhLGb9k1tCxVLALjZ0XaZ7pulQ4NY22PQlqoPzsyFhnTjQLrjBjemN+1XPyr1kox3PEzoZIUQfHeQ2EqKcY0H512hAaOsmsJ41rYrJTfMM042gUN3IS4FzJpYKto9PZQp+BnUgRgJ1S/Brxn+i71syfRGNS/7X6m4AEfi9wDjjPPz/Id5GnL9he+Vk3/J+f1mufWvJN6df+g/x/jZImskk3ikW2yT47IMWkSTgR5Ia/krfThLDrLzkrP6pT6PQtkAM7GJ7nuvsA=</latexit><latexit sha1_base64="d0f77pdfgSalrpGhHC2wX+SI7MA=">AAACbXicdVFdS8MwFM3q9/yc4pMiwSn6IKMdA/VBEH3xUcWpMMtIs1sNpmlNbtVZ/A2+6k/zV/gXTLspTvRA4HDuucm5N0EihUHXfS85Q8Mjo2PjE+XJqemZ2bnK/LmJU82hyWMZ68uAGZBCQRMFSrhMNLAokHAR3B7m9Yt70EbE6gy7CfgRu1YiFJyhlZprvF1fa89V3dpuAdoj240+2fWoV3MLVEkfx+1K6fSqE/M0AoVcMmNanpugnzGNgkt4Ll+lBhLGb9k1tCxVLALjZ0XaZ7pulQ4NY22PQlqoPzsyFhnTjQLrjBjemN+1XPyr1kox3PEzoZIUQfHeQ2EqKcY0H512hAaOsmsJ41rYrJTfMM042gUN3IS4FzJpYKto9PZQp+BnUgRgJ1S/Brxn+i71syfRGNS/7X6m4AEfi9wDjjPPz/Id5GnL9he+Vk3/J+f1mufWvJN6df+g/x/jZImskk3ikW2yT47IMWkSTgR5Ia/krfThLDrLzkrP6pT6PQtkAM7GJ7nuvsA=</latexit>

c3
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<latexit sha1_base64="k8QVqzcut0T8sO85mdUrzdA5Des=">AAACbXicbVHbSsNAEN3Ge71VxSdFgq3og5REBH0RRF98VLEXaEPZbCft0s0m7k7UGvwGX/XT/Ap/wU0sYqsDC4czZ2bPzPix4Bod56NgTU3PzM7NLxQXl5ZXVktr63UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g8ss33gApXkk73AYgxfSnuQBZxQNVauwzmmlUyo7VScP+y9wR6BMRnHdWSvctrsRS0KQyATVuuU6MXopVciZgJdiO9EQUzagPWgZKGkI2ktzty/2nmG6dhAp8yTaOfu7IqWh1sPQN8qQYl9P5jLyv1wrweDUS7mMEwTJvj8KEmFjZGej212ugKEYGkCZ4sarzfpUUYZmQWOdEM8CKjQc5oXuGaoEvFRwH8yEcmLAB6ruEy995sfj/I/cSyU84lPue0xx53pptoPMbdFcwZ3c+V9QP6q6TtW9OSqfX4zuMU+2yC45IC45IefkilyTGmGEk1fyRt4Ln9amtW3tfEutwqhmg4yFtf8FpsW+Mw==</latexit><latexit sha1_base64="k8QVqzcut0T8sO85mdUrzdA5Des=">AAACbXicbVHbSsNAEN3Ge71VxSdFgq3og5REBH0RRF98VLEXaEPZbCft0s0m7k7UGvwGX/XT/Ap/wU0sYqsDC4czZ2bPzPix4Bod56NgTU3PzM7NLxQXl5ZXVktr63UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g8ss33gApXkk73AYgxfSnuQBZxQNVauwzmmlUyo7VScP+y9wR6BMRnHdWSvctrsRS0KQyATVuuU6MXopVciZgJdiO9EQUzagPWgZKGkI2ktzty/2nmG6dhAp8yTaOfu7IqWh1sPQN8qQYl9P5jLyv1wrweDUS7mMEwTJvj8KEmFjZGej212ugKEYGkCZ4sarzfpUUYZmQWOdEM8CKjQc5oXuGaoEvFRwH8yEcmLAB6ruEy995sfj/I/cSyU84lPue0xx53pptoPMbdFcwZ3c+V9QP6q6TtW9OSqfX4zuMU+2yC45IC45IefkilyTGmGEk1fyRt4Ln9amtW3tfEutwqhmg4yFtf8FpsW+Mw==</latexit><latexit sha1_base64="k8QVqzcut0T8sO85mdUrzdA5Des=">AAACbXicbVHbSsNAEN3Ge71VxSdFgq3og5REBH0RRF98VLEXaEPZbCft0s0m7k7UGvwGX/XT/Ap/wU0sYqsDC4czZ2bPzPix4Bod56NgTU3PzM7NLxQXl5ZXVktr63UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g8ss33gApXkk73AYgxfSnuQBZxQNVauwzmmlUyo7VScP+y9wR6BMRnHdWSvctrsRS0KQyATVuuU6MXopVciZgJdiO9EQUzagPWgZKGkI2ktzty/2nmG6dhAp8yTaOfu7IqWh1sPQN8qQYl9P5jLyv1wrweDUS7mMEwTJvj8KEmFjZGej212ugKEYGkCZ4sarzfpUUYZmQWOdEM8CKjQc5oXuGaoEvFRwH8yEcmLAB6ruEy995sfj/I/cSyU84lPue0xx53pptoPMbdFcwZ3c+V9QP6q6TtW9OSqfX4zuMU+2yC45IC45IefkilyTGmGEk1fyRt4Ln9amtW3tfEutwqhmg4yFtf8FpsW+Mw==</latexit><latexit sha1_base64="k8QVqzcut0T8sO85mdUrzdA5Des=">AAACbXicbVHbSsNAEN3Ge71VxSdFgq3og5REBH0RRF98VLEXaEPZbCft0s0m7k7UGvwGX/XT/Ap/wU0sYqsDC4czZ2bPzPix4Bod56NgTU3PzM7NLxQXl5ZXVktr63UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g8ss33gApXkk73AYgxfSnuQBZxQNVauwzmmlUyo7VScP+y9wR6BMRnHdWSvctrsRS0KQyATVuuU6MXopVciZgJdiO9EQUzagPWgZKGkI2ktzty/2nmG6dhAp8yTaOfu7IqWh1sPQN8qQYl9P5jLyv1wrweDUS7mMEwTJvj8KEmFjZGej212ugKEYGkCZ4sarzfpUUYZmQWOdEM8CKjQc5oXuGaoEvFRwH8yEcmLAB6ruEy995sfj/I/cSyU84lPue0xx53pptoPMbdFcwZ3c+V9QP6q6TtW9OSqfX4zuMU+2yC45IC45IefkilyTGmGEk1fyRt4Ln9amtW3tfEutwqhmg4yFtf8FpsW+Mw==</latexit>
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<latexit sha1_base64="0YgxniZ94UxRnsldhJcBbEAEzhg=">AAACcHicdVFdSxwxFM1OtepW60dfBB+adhVEZJmIoD4Ioi8+2uLqwjosmeydNZjJjMkd7Tbsn+hr/WP+DX+Bmdm1uGIPBA7nnpucexPnSloMw8da8GFq+uPM7Fz90/zC58Wl5ZULmxVGQEtkKjPtmFtQUkMLJSpo5wZ4Giu4jG9OyvrlHRgrM32OgxyilPe1TKTg6KX2uug6Fg7Xu0uNsHlQgY7I3u6YHDDKmmGFBhnjrLtc+3nVy0SRgkahuLUdFuYYOW5QCgXD+lVhIefihveh46nmKdjIVYGHdMMrPZpkxh+NtFJfdzieWjtIY+9MOV7bt7VSfK/WKTDZj5zUeYGgxeihpFAUM1pOT3vSgEA18IQLI31WKq654QL9jiZuQjxMuLKwXTWyQzQFRE7JGPyE+s2Ad9zcFpH7LXcn9X/2yGm4x19V7gnHOYtcuYMybd3/wsuq6f/JxU6ThU32Y6dxdDz+j1myRr6TTcLIHjkip+SMtIggivwhf8lD7SlYDb4G30bWoDbu+UImEGw9A4QHwAU=</latexit><latexit sha1_base64="0YgxniZ94UxRnsldhJcBbEAEzhg=">AAACcHicdVFdSxwxFM1OtepW60dfBB+adhVEZJmIoD4Ioi8+2uLqwjosmeydNZjJjMkd7Tbsn+hr/WP+DX+Bmdm1uGIPBA7nnpucexPnSloMw8da8GFq+uPM7Fz90/zC58Wl5ZULmxVGQEtkKjPtmFtQUkMLJSpo5wZ4Giu4jG9OyvrlHRgrM32OgxyilPe1TKTg6KX2uug6Fg7Xu0uNsHlQgY7I3u6YHDDKmmGFBhnjrLtc+3nVy0SRgkahuLUdFuYYOW5QCgXD+lVhIefihveh46nmKdjIVYGHdMMrPZpkxh+NtFJfdzieWjtIY+9MOV7bt7VSfK/WKTDZj5zUeYGgxeihpFAUM1pOT3vSgEA18IQLI31WKq654QL9jiZuQjxMuLKwXTWyQzQFRE7JGPyE+s2Ad9zcFpH7LXcn9X/2yGm4x19V7gnHOYtcuYMybd3/wsuq6f/JxU6ThU32Y6dxdDz+j1myRr6TTcLIHjkip+SMtIggivwhf8lD7SlYDb4G30bWoDbu+UImEGw9A4QHwAU=</latexit><latexit sha1_base64="0YgxniZ94UxRnsldhJcBbEAEzhg=">AAACcHicdVFdSxwxFM1OtepW60dfBB+adhVEZJmIoD4Ioi8+2uLqwjosmeydNZjJjMkd7Tbsn+hr/WP+DX+Bmdm1uGIPBA7nnpucexPnSloMw8da8GFq+uPM7Fz90/zC58Wl5ZULmxVGQEtkKjPtmFtQUkMLJSpo5wZ4Giu4jG9OyvrlHRgrM32OgxyilPe1TKTg6KX2uug6Fg7Xu0uNsHlQgY7I3u6YHDDKmmGFBhnjrLtc+3nVy0SRgkahuLUdFuYYOW5QCgXD+lVhIefihveh46nmKdjIVYGHdMMrPZpkxh+NtFJfdzieWjtIY+9MOV7bt7VSfK/WKTDZj5zUeYGgxeihpFAUM1pOT3vSgEA18IQLI31WKq654QL9jiZuQjxMuLKwXTWyQzQFRE7JGPyE+s2Ad9zcFpH7LXcn9X/2yGm4x19V7gnHOYtcuYMybd3/wsuq6f/JxU6ThU32Y6dxdDz+j1myRr6TTcLIHjkip+SMtIggivwhf8lD7SlYDb4G30bWoDbu+UImEGw9A4QHwAU=</latexit><latexit sha1_base64="0YgxniZ94UxRnsldhJcBbEAEzhg=">AAACcHicdVFdSxwxFM1OtepW60dfBB+adhVEZJmIoD4Ioi8+2uLqwjosmeydNZjJjMkd7Tbsn+hr/WP+DX+Bmdm1uGIPBA7nnpucexPnSloMw8da8GFq+uPM7Fz90/zC58Wl5ZULmxVGQEtkKjPtmFtQUkMLJSpo5wZ4Giu4jG9OyvrlHRgrM32OgxyilPe1TKTg6KX2uug6Fg7Xu0uNsHlQgY7I3u6YHDDKmmGFBhnjrLtc+3nVy0SRgkahuLUdFuYYOW5QCgXD+lVhIefihveh46nmKdjIVYGHdMMrPZpkxh+NtFJfdzieWjtIY+9MOV7bt7VSfK/WKTDZj5zUeYGgxeihpFAUM1pOT3vSgEA18IQLI31WKq654QL9jiZuQjxMuLKwXTWyQzQFRE7JGPyE+s2Ad9zcFpH7LXcn9X/2yGm4x19V7gnHOYtcuYMybd3/wsuq6f/JxU6ThU32Y6dxdDz+j1myRr6TTcLIHjkip+SMtIggivwhf8lD7SlYDb4G30bWoDbu+UImEGw9A4QHwAU=</latexit>
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<latexit sha1_base64="5No43jngpV4rc+rIlfKyZ3Z8jnw=">AAACcHicbVFNTxsxEHWWAiF8BXpB4tCFgIQQitYIiV6QEL1wpFUCkcIq8jqzxIrXu9izoamVP9Fr+WP9G/0F9S5R1SSMZOnpzZvxm5kok8JgEPyueEsflldWq2u19Y3Nre36zu69SXPNoc1TmepOxAxIoaCNAiV0Mg0siSQ8RMMvRf5hBNqIVLVwnEGYsCclYsEZOqpzxHuW0slRr94ImkEZ/iKgU9Ag07jr7VS+PfZTniegkEtmTJcGGYaWaRRcwqT2mBvIGB+yJ+g6qFgCJrSl4Yl/7Ji+H6faPYV+yf5fYVlizDiJnDJhODDzuYJ8L9fNMf4cWqGyHEHxt4/iXPqY+sX0fl9o4CjHDjCuhfPq8wHTjKPb0UwnxKuYSQNnZSG9Qp1DaKWIwE2o5gYcMf2ch/aHuJjl/8lDq+AFv5e+ZxQtGtpiB4XbmrsCnd/5Irg/b9KgSb+eN65vpveokn1ySE4IJZfkmtySO9ImnEjyk/wir5U/3p73yTt4k3qVac1HMhPe6V9mwb9z</latexit><latexit sha1_base64="5No43jngpV4rc+rIlfKyZ3Z8jnw=">AAACcHicbVFNTxsxEHWWAiF8BXpB4tCFgIQQitYIiV6QEL1wpFUCkcIq8jqzxIrXu9izoamVP9Fr+WP9G/0F9S5R1SSMZOnpzZvxm5kok8JgEPyueEsflldWq2u19Y3Nre36zu69SXPNoc1TmepOxAxIoaCNAiV0Mg0siSQ8RMMvRf5hBNqIVLVwnEGYsCclYsEZOqpzxHuW0slRr94ImkEZ/iKgU9Ag07jr7VS+PfZTniegkEtmTJcGGYaWaRRcwqT2mBvIGB+yJ+g6qFgCJrSl4Yl/7Ji+H6faPYV+yf5fYVlizDiJnDJhODDzuYJ8L9fNMf4cWqGyHEHxt4/iXPqY+sX0fl9o4CjHDjCuhfPq8wHTjKPb0UwnxKuYSQNnZSG9Qp1DaKWIwE2o5gYcMf2ch/aHuJjl/8lDq+AFv5e+ZxQtGtpiB4XbmrsCnd/5Irg/b9KgSb+eN65vpveokn1ySE4IJZfkmtySO9ImnEjyk/wir5U/3p73yTt4k3qVac1HMhPe6V9mwb9z</latexit><latexit sha1_base64="5No43jngpV4rc+rIlfKyZ3Z8jnw=">AAACcHicbVFNTxsxEHWWAiF8BXpB4tCFgIQQitYIiV6QEL1wpFUCkcIq8jqzxIrXu9izoamVP9Fr+WP9G/0F9S5R1SSMZOnpzZvxm5kok8JgEPyueEsflldWq2u19Y3Nre36zu69SXPNoc1TmepOxAxIoaCNAiV0Mg0siSQ8RMMvRf5hBNqIVLVwnEGYsCclYsEZOqpzxHuW0slRr94ImkEZ/iKgU9Ag07jr7VS+PfZTniegkEtmTJcGGYaWaRRcwqT2mBvIGB+yJ+g6qFgCJrSl4Yl/7Ji+H6faPYV+yf5fYVlizDiJnDJhODDzuYJ8L9fNMf4cWqGyHEHxt4/iXPqY+sX0fl9o4CjHDjCuhfPq8wHTjKPb0UwnxKuYSQNnZSG9Qp1DaKWIwE2o5gYcMf2ch/aHuJjl/8lDq+AFv5e+ZxQtGtpiB4XbmrsCnd/5Irg/b9KgSb+eN65vpveokn1ySE4IJZfkmtySO9ImnEjyk/wir5U/3p73yTt4k3qVac1HMhPe6V9mwb9z</latexit><latexit sha1_base64="5No43jngpV4rc+rIlfKyZ3Z8jnw=">AAACcHicbVFNTxsxEHWWAiF8BXpB4tCFgIQQitYIiV6QEL1wpFUCkcIq8jqzxIrXu9izoamVP9Fr+WP9G/0F9S5R1SSMZOnpzZvxm5kok8JgEPyueEsflldWq2u19Y3Nre36zu69SXPNoc1TmepOxAxIoaCNAiV0Mg0siSQ8RMMvRf5hBNqIVLVwnEGYsCclYsEZOqpzxHuW0slRr94ImkEZ/iKgU9Ag07jr7VS+PfZTniegkEtmTJcGGYaWaRRcwqT2mBvIGB+yJ+g6qFgCJrSl4Yl/7Ji+H6faPYV+yf5fYVlizDiJnDJhODDzuYJ8L9fNMf4cWqGyHEHxt4/iXPqY+sX0fl9o4CjHDjCuhfPq8wHTjKPb0UwnxKuYSQNnZSG9Qp1DaKWIwE2o5gYcMf2ch/aHuJjl/8lDq+AFv5e+ZxQtGtpiB4XbmrsCnd/5Irg/b9KgSb+eN65vpveokn1ySE4IJZfkmtySO9ImnEjyk/wir5U/3p73yTt4k3qVac1HMhPe6V9mwb9z</latexit>

c9
<latexit sha1_base64="zSUo+b2uXW3fK+VBBi2rU+s1fJk=">AAACbXicbVHbSsNAEN3GW63XKj4pEmxFH6QkRVAfBNEXH1WsLbShbLYTXdxs4u6kWoPf4Kt+ml/hL7iJRWx1YOFw5szsmRk/Flyj43wUrInJqemZ4mxpbn5hcWm5vHKjo0QxaLBIRKrlUw2CS2ggRwGtWAENfQFN//4syzf7oDSP5DUOYvBCeit5wBlFQzWqrHtU7S5XnJqTh/0XuENQIcO46JYLV51exJIQJDJBtW67ToxeShVyJuCl1Ek0xJTd01toGyhpCNpLc7cv9rZhenYQKfMk2jn7uyKlodaD0DfKkOKdHs9l5H+5doLBoZdyGScIkn1/FCTCxsjORrd7XAFDMTCAMsWNV5vdUUUZmgWNdEI8DqjQsJcXuseoEvBSwX0wE8qxAftUPSRe+sz3R/kfuZdKeMSn3PeI4tr10mwHmduSuYI7vvO/4KZec52ae1mvnJwO71Ek62SL7BKXHJATck4uSIMwwskreSPvhU9rzdqwNr+lVmFYs0pGwtr5AqjLvjQ=</latexit><latexit sha1_base64="zSUo+b2uXW3fK+VBBi2rU+s1fJk=">AAACbXicbVHbSsNAEN3GW63XKj4pEmxFH6QkRVAfBNEXH1WsLbShbLYTXdxs4u6kWoPf4Kt+ml/hL7iJRWx1YOFw5szsmRk/Flyj43wUrInJqemZ4mxpbn5hcWm5vHKjo0QxaLBIRKrlUw2CS2ggRwGtWAENfQFN//4syzf7oDSP5DUOYvBCeit5wBlFQzWqrHtU7S5XnJqTh/0XuENQIcO46JYLV51exJIQJDJBtW67ToxeShVyJuCl1Ek0xJTd01toGyhpCNpLc7cv9rZhenYQKfMk2jn7uyKlodaD0DfKkOKdHs9l5H+5doLBoZdyGScIkn1/FCTCxsjORrd7XAFDMTCAMsWNV5vdUUUZmgWNdEI8DqjQsJcXuseoEvBSwX0wE8qxAftUPSRe+sz3R/kfuZdKeMSn3PeI4tr10mwHmduSuYI7vvO/4KZec52ae1mvnJwO71Ek62SL7BKXHJATck4uSIMwwskreSPvhU9rzdqwNr+lVmFYs0pGwtr5AqjLvjQ=</latexit><latexit sha1_base64="zSUo+b2uXW3fK+VBBi2rU+s1fJk=">AAACbXicbVHbSsNAEN3GW63XKj4pEmxFH6QkRVAfBNEXH1WsLbShbLYTXdxs4u6kWoPf4Kt+ml/hL7iJRWx1YOFw5szsmRk/Flyj43wUrInJqemZ4mxpbn5hcWm5vHKjo0QxaLBIRKrlUw2CS2ggRwGtWAENfQFN//4syzf7oDSP5DUOYvBCeit5wBlFQzWqrHtU7S5XnJqTh/0XuENQIcO46JYLV51exJIQJDJBtW67ToxeShVyJuCl1Ek0xJTd01toGyhpCNpLc7cv9rZhenYQKfMk2jn7uyKlodaD0DfKkOKdHs9l5H+5doLBoZdyGScIkn1/FCTCxsjORrd7XAFDMTCAMsWNV5vdUUUZmgWNdEI8DqjQsJcXuseoEvBSwX0wE8qxAftUPSRe+sz3R/kfuZdKeMSn3PeI4tr10mwHmduSuYI7vvO/4KZec52ae1mvnJwO71Ek62SL7BKXHJATck4uSIMwwskreSPvhU9rzdqwNr+lVmFYs0pGwtr5AqjLvjQ=</latexit><latexit sha1_base64="zSUo+b2uXW3fK+VBBi2rU+s1fJk=">AAACbXicbVHbSsNAEN3GW63XKj4pEmxFH6QkRVAfBNEXH1WsLbShbLYTXdxs4u6kWoPf4Kt+ml/hL7iJRWx1YOFw5szsmRk/Flyj43wUrInJqemZ4mxpbn5hcWm5vHKjo0QxaLBIRKrlUw2CS2ggRwGtWAENfQFN//4syzf7oDSP5DUOYvBCeit5wBlFQzWqrHtU7S5XnJqTh/0XuENQIcO46JYLV51exJIQJDJBtW67ToxeShVyJuCl1Ek0xJTd01toGyhpCNpLc7cv9rZhenYQKfMk2jn7uyKlodaD0DfKkOKdHs9l5H+5doLBoZdyGScIkn1/FCTCxsjORrd7XAFDMTCAMsWNV5vdUUUZmgWNdEI8DqjQsJcXuseoEvBSwX0wE8qxAftUPSRe+sz3R/kfuZdKeMSn3PeI4tr10mwHmduSuYI7vvO/4KZec52ae1mvnJwO71Ek62SL7BKXHJATck4uSIMwwskreSPvhU9rzdqwNr+lVmFYs0pGwtr5AqjLvjQ=</latexit>
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Fig. 6. A dictionary-based encoded stream example, where dictionary entries corresponding to {1, 2, 4, 8, 16}-
long integer patterns, runs and exceptions, are labelled with different shades. Once provision has been made
for such a dictionary structure, a sequence of gaps can be modelled as a sequence of codewords {ck }, each
being a reference to a dictionary entry, as represented with the encoded stream in the picture. Note that,
for example, codeword c9 signals an exception, therefore the next symbol e is decoded using an escape
mechanism.

and then apply ANS (VByte+ANS). Local variability can be instead captured by using 16 different
ANS models, each selected using a 4-bit selector in the spirit of the Simple approach described in
Section 3.2 (Simple+ANS). Another variant is obtained by dividing a list into blocks and encoding
each block with the most suitable model, chosen among 16 possibilities according to a selected
block statistic e.g., its maximum value (Packed+ANS).

4.3 Dictionary-based
Pibiri, Petri, and Moffat [79] show that inverted indexes can be effectively compressed using a
dictionary-based approach. Their technique – named Dictionary of INTeger sequences (DINT) –
builds on the observation that patterns of gaps are highly repetitive across the whole inverted
index. For example, the pattern [1, 1, 2, 1] of 4 gaps can be very repetitive. Therefore, a dictionary
storing the most frequent 2b patterns, for some b > 0, can be constructed. Note that, in general,
the problem of building a dictionary that minimizes the number of output bits when sequences
symbols are coded as references to its entries is NP-hard [98]. More specifically, an integer list can
be modelled as a sequence of b-bit codewords, each codeword corresponding to a dictionary pattern.
Fig. 6 illustrates the approach. This representation has the twofold advantage of: (1) requiring b bits
to represent a pattern (thus, potentially, several integers); (2) decoding of a pattern requires just
a lookup in the dictionary. In their investigation, patterns of size 1, 2, 4, 8 and 16 are considered,
with b = 16 to avoid bit-level manipulations and allow very fast decoding.

A detail of crucial importance is to take advantage of the presence of runs of 1s, hence reserving
some special entries in the dictionary to encode runs of different sizes, such as 32, 64, 128, and 256.
A dictionary entry must also be reserved to signal the presence of an exception – an integer not
sufficiently frequent to be included in the dictionary and represented via an escape mechanism (e.g.,
Variable-Byte or a plain 32-bit integer). Moreover, compacting the dictionary has the potential of
letting the dictionary fit in the processor cache, hence speeding up the decoding process thanks to
a reduced number of cache misses. Lastly, once the dictionary is built, a shortest-path computation
suffices to find the optimal encoding of a list for that specific dictionary.

Other authors have instead advocated the use of Re-Pair [48] to compress the gaps between the
integers of inverted lists [18, 19]. Re-Pair uses a grammar-based approach to generate a dictionary
of sequences of symbols. Description of this algorithm is outside the scope of this article.
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5 FURTHER READINGS
Besides the individual papers listed in the bibliography, we mention here previous efforts in
summarizing encoding techniques for integers/integer sequences. The book by Witten, Moffat, and
Bell [109] is the first, to the best of our knowledge, that treats compression and indexing data as a
unified problem, by presenting techniques to solve it efficiently. Fenwick [34] and Salomon [90]
provide a vast and deep coverage of variable-length codes. The survey by Zobel and Moffat [113]
covers more than 40 years of academic research in Information Retrieval and gives an introduction to
the field, with Section 8 dealing with efficient index representations. Moffat and Turpin [68], Moffat
[58], Pibiri and Venturini [82] describe several of the techniques illustrated in this article; Williams
and Zobel [108], Scholer et al. [92] and Trotman [102] experimentally evaluate many of them.

Other approaches not described in this article include: an adaptation of Front Coding [109]
for compressing text, seen as formed by quadruples holding document, paragraph, sentence, and
word number [16]; the use of general-purpose compression libraries, such as ZStd3 and XZ4, for
encoding/decoding of inverted lists [77].

6 EXPERIMENTS
In this section of the article, we report on the space effectiveness and time efficiency of different
inverted index representations. Specifically, space effectiveness is measured as the average number
of bits dedicated to the representation of a document identifier; time efficiency is assessed in terms
of the time needed to perform sequential decoding, intersection, and union of inverted lists. For
the latter two operations, we focus on materializing the full results set, without any ranking or
dynamic pruning mechanism [13, 55] being applied.

We do not aim at being exhaustive here but rather compare some selected representations and
point the interested reader to the code repository at https://github.com/jermp/2i_bench for further
comparisons.

Tested index representations.We compare the 12 different configurations, summarized in Table 9.
We report some testing details of such configurations. The tested Rice implementation (Section 2.5)
specifies the Rice parameter k for each block of integers, choosing the value of k ∈ [1, 4] giving the
best space effectiveness. Two bits per block suffices to encode the value of k . Also, we write the
quotient of the Rice representation of an integer in γ rather than in unary, as we found this to give a
better space/time trade-off than regular Rice. Variable-Byte uses the SIMD-ized decoding algorithm
devised by Plaisance et al. [84] and called Masked-VByte. Interpolative (BIC) uses leftmost minimal
binary codes. The tested version of DINT uses a single packed dictionary and optimal block parsing.
In Roaring, extremely dense chunks are represented with runs.

Datasets. We perform the experiments on the following standard test collections. Gov2 is the TREC
2004 Terabyte Track test collection, consisting in roughly 25 million .gov sites crawled in early
2004. The documents are truncated to 256 KB. ClueWeb09 is the ClueWeb 2009 TREC Category B
test collection, consisting in roughly 50 million English web pages crawled between January and
February 2009. CCNews is a dataset of news freely available from CommonCrawl. Precisely, the
dataset consists of the news appeared from 09/01/16 to 30/03/18.

Identifiers were assigned to documents according to the lexicographic order of their URLs [95]
(see also the discussion at the beginning of Section 3). From the original collections we retain all
lists whose size is larger than 4096. The postings belonging to these lists cover 93%, 94%, and 98% of
the total postings of Gov2, ClueWeb09, and CCNews respectively. From the TREC 2005 and TREC

3http://www.zstd.net
4http://tukaani.org/xz
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Table 9. The different tested index representations.

Method Partitioned by SIMD Alignment Description
VByte cardinality yes byte fixed-size partitions of 128
Opt-VByte cardinality yes bit variable-size partitions
BIC cardinality no bit fixed-size partitions of 128
δ cardinality no bit fixed-size partitions of 128
Rice cardinality no bit fixed-size partitions of 128
PEF cardinality no bit variable-size partitions
DINT cardinality no 16-bit word fixed-size partitions of 128
Opt-PFor cardinality no 32-bit word fixed-size partitions of 128
Simple16 cardinality no 64-bit word fixed-size partitions of 128
QMX cardinality yes 128-bit word fixed-size partitions of 128
Roaring universe yes byte single-span
Slicing universe yes byte multi-span

Table 10. The datasets used in the experiments.

(a) basic statistics

Gov2 ClueWeb09 CCNews

Lists 39,177 96,722 76,474
Universe 24,622,347 50,131,015 43,530,315
Integers 5,322,883,266 14,858,833,259 19,691,599,096
Entropy of the gaps 3.02 4.46 5.44
⌈log2⌉ of the gaps 1.35 2.28 2.99

(b) TREC 2005/06 queries

Gov2 ClueWeb09 CCNews

Queries 34,327 42,613 22,769
2 terms 32.2% 33.6% 37.5%
3 terms 26.8% 26.5% 27.3%
4 terms 18.2% 17.7% 16.8%
5+ terms 22.8% 22.2% 18.4%

2006 Efficiency Track topics, we selected all queries whose terms are in the lexicons of the tested
collection. Table 10 reports the statistics for the collections.

Experimental setting and methodology. Experiments are performed on a server machine
equipped with Intel i9-9900K cores (@3.6 GHz), 64 GB of RAM DDR3 (@2.66 GHz) and run-
ning Linux 5 (64 bits). Each core has two private levels of cache memory: 32 KiB L1 cache (one for
instructions and one for data); 256 KiB for L2 cache. A shared L3 cache spans 16,384 KiB.

The whole code is written in C++ and compiled with gcc 9.2.1 using the highest optimization
setting, i.e., with compilation flags -O3 and -march=native.

We build the indexes in internal memory and write the corresponding data structures to a file on
disk. To perform the queries, the data structure is memory mapped from the file and a warming-up
run is executed to fetch the necessary pages from disk. To test the speed of intersection and union,
we use a random sampling of 1000 queries for each number of query terms from 2 to 5+ (with 5+
meaning queries with at least 5 terms). Each experiment was repeated 3 times to smooth fluctuations
during measurements. The time reported is the average among these runs.

Compression effectiveness. In Table 11 we report the compression effectiveness of each method
expressed as total GiB and bit-per-integer rate. The following considerations hold pretty much
consistently across the three tested datasets. The most effective method is BIC with PEF being close
second. Observe that both methods come very close to the entropy of gaps (with BIC being even
better), as reported if Table 10a. The least effective methods are VByte and Roaring (in particular,
Roaring is sensibly better than VByte on Gov2 but performs worse on the other two datasets). The
representations Opt-VByte, δ , Rice, DINT, Opt-PFor and Simple16 are all similar in space, taking
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Table 11. Space effectiveness in total GiB and bits per integer, and nanoseconds per decoded integer.

Method Gov2 ClueWeb09 CCNews

GiB bits/int ns/int GiB bits/int ns/int GiB bits/int ns/int

VByte 5.46 8.81 0.96 15.92 9.20 1.09 21.29 9.29 1.03
Opt-VByte 2.41 3.89 0.73 9.89 5.72 0.92 14.73 6.42 0.72
BIC 1.82 2.94 5.06 7.66 4.43 6.31 12.02 5.24 6.97
δ 2.32 3.74 3.56 8.95 5.17 3.72 14.58 6.36 3.85
Rice 2.53 4.08 2.92 9.18 5.31 3.25 13.34 5.82 3.32
PEF 1.93 3.12 0.76 8.63 4.99 1.10 12.50 5.45 1.31
DINT 2.19 3.53 1.13 9.26 5.35 1.56 14.76 6.44 1.65
Opt-PFor 2.25 3.63 1.38 9.45 5.46 1.79 13.92 6.07 1.53
Simple16 2.59 4.19 1.53 10.13 5.85 1.87 14.68 6.41 1.89
QMX 3.17 5.12 0.80 12.60 7.29 0.87 16.96 7.40 0.84
Roaring 4.11 6.63 0.50 16.92 9.78 0.71 21.75 9.49 0.61
Slicing 2.67 4.31 0.53 12.21 7.06 0.68 17.83 7.78 0.69

roughly 3 – 4, 5 – 6 and 6 – 6.5 bits/int for Gov2, ClueWeb09, and CCNews respectively. The QMX
and Slicing approaches stand in a middle position between the former two classes of methods.

Sequential decoding. Table 11 also reports the average nanoseconds spent per decoded integer,
measured after decoding all lists in the index. For all the different methods, the result of decoding a
list is materialized into an output buffer of 32-bit integers. Again, results are consistent across the
different datasets.

The fastest methods are Roaring and Slicing thanks to their “simpler” design involving byte-
aligned codes, bitmaps, and the use of SIMD instructions, allowing a value to be decoded in 0.5 –
0.7 nanoseconds. The methods Opt-VByte, QMX, and PEF are the second fastest, requiring 0.7 –
1.3 nanoseconds on average. In particular, Opt-VByte and PEF gain most of their speed thanks to
the efficient decoding of dense bitmaps. The methods BIC, δ , and Rice are the slowest as they only
decode one symbol at a time (observe that BIC is almost 2× slower than the other two because
of its recursive implementation). The other mechanisms VByte, DINT, Opt-PFor and Simple16
provide similar efficiency, on average decoding an integer in 1 – 1.9 nanoseconds.

Lastly, recall that all methods – except BIC, PEF, Roaring, and Slicing – require a prefix-sum
computation because they encode the gaps between the integers. In our experiments, we determined
that the cost of computing the prefix-sum of the gaps is 0.5 nanoseconds per integer. This cost,
sometimes, dominates that of decoding the gaps.

BooleanAND/ORqueries.We now consider the operations of list intersection and union. Table 12
and 13 report the timings by varying the number of query terms. Fig. 7 displays the data in the
tables for the ClueWeb09 dataset along space/time trade-off curves, (thus, also incorporating the
space information brought by Table 11) and with the time being the “avg.” column. Almost identical
shapes were obtained for the other datasets. When considering the general trade-off, especially
highlighted by the plots, we see that the trend of the trade-off is the same for both intersections
and unions, even across three different datasets. Therefore we can make some general points.

For methods partitioned by cardinality, the efficiency of intersection is strictly correlated to
that of NextGEQ(x), an operation returning the smallest integer z ≥ x ; the efficiency of union is
correlated to that of sequential decoding. This is not necessarily true for Roaring and Slicing that,
being partitioned by universe rather than cardinality, employ an intersection algorithm that does
not use NextGEQ , nor a merging algorithm that loop through every single integer in a sequence.
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Table 12. Milliseconds spent per AND query by varying the number of query terms.

Method Gov2 ClueWeb09 CCNews

2 3 4 5+ avg. 2 3 4 5+ avg. 2 3 4 5+ avg.
VByte 2.2 2.8 2.7 3.3 2.8 10.2 12.1 13.7 13.9 12.5 14.0 22.4 19.7 21.9 19.5
Opt-VByte 2.8 3.1 2.8 3.2 3.0 12.2 13.3 14.0 13.6 13.3 16.0 23.2 19.6 20.3 19.8
BIC 6.8 9.7 10.4 13.2 10.0 31.7 44.2 51.5 53.8 45.3 45.6 79.7 76.9 88.8 72.8
δ 4.6 6.3 6.5 8.2 6.4 20.9 28.3 33.5 34.5 29.3 28.6 50.9 48.0 55.6 45.8
Rice 4.1 5.6 5.8 7.3 5.7 19.2 25.7 30.2 31.1 26.6 26.5 46.5 43.5 50.1 41.6
PEF 2.5 3.1 2.8 3.2 2.9 12.3 13.5 14.4 13.8 13.5 17.2 24.6 21.0 21.9 21.2
DINT 2.5 3.3 3.3 4.1 3.3 11.9 14.6 16.5 17.1 15.0 16.9 27.3 24.6 28.1 24.2
Opt-PFor 2.6 3.5 3.5 4.3 3.5 12.8 15.9 18.0 18.3 16.3 16.6 27.2 24.3 27.1 23.8
Simple16 2.8 3.7 3.7 4.6 3.7 12.8 16.3 18.4 18.9 16.6 17.6 28.8 26.3 29.5 25.5
QMX 2.0 2.6 2.5 3.0 2.5 9.6 11.5 13.0 13.1 11.8 13.3 21.5 18.8 20.8 18.6
Roaring 0.3 0.5 0.7 0.8 0.6 1.5 2.5 3.1 4.3 2.9 1.1 2.0 2.6 4.1 2.5
Slicing 0.3 1.0 1.2 1.6 1.0 1.5 4.5 5.4 6.7 4.5 1.8 4.3 5.1 6.0 4.3

There is a cluster of techniques providing similar efficiency/effectiveness trade-offs, including
PEF, DINT, Opt-VByte, Simple16, Opt-PFor and QMX, whereas BIC, δ and Rice are always the
slowest and dominated by the aforementioned techniques.

The procedures employed by Roaring and Slicing outperform in efficiency all techniques by a
wide margin. Again, this is possible because they do not consider one-symbol-at-a-time operations,
rather they rely on the intrinsic parallelism of inexpensive bitwise instructions over 64-bit words.
The difference in query time between Roaring and Slicing has to be mostly attributed to the SIMD
instructions that are better exploited by Roaring thanks to its simpler design. To confirm this,
we performed an experiment with SIMD disabled and obtained almost identical timings to those
of Slicing. However, these representations take more space than the aforementioned cluster of
techniques: Slicing stands in a middle position between such cluster and Roaring.

Also observe that, for AND queries, the efficiency gap between the methods partitioned by
universe and the ones partitioned by cardinality reduces when more query terms are considered.
This is because the queries becomes progressively more selective (on average), hence allowing
large skips to be performed by NextGEQ . On the contrary, methods partitioned by universe only
skip at a coarser level, e.g., chunks containing at most 216 integers, therefore the cost for in-chunk
calculations is always paid, even when only few integers belong to the result set. Note that this is
not true for OR queries: the gap becomes progressively more evident with more query terms.

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
The problem of introducing a compression format for sorted integer sequences, with good practical
intersection/union performance, is well-studied and important, given its fundamental application to
large-scale retrieval systems such as Web search engines. For that reason, inverted index compres-
sion is still a very active field of research that began several decades ago. With this article, we aimed
at surveying the encoding algorithms suitable to solve the problem. However, electing a solution
as the “best” one is not generally easy, rather the many space/time trade-offs available can satisfy
different application requirements and the solution should always be determined by considering the
actual data distribution. To this end, we also offer an experimental comparison between many of
the techniques described in this article. The different space/time trade-offs assessed by this analysis
are summarized by Fig. 7.

Because of the maturity reached by the state-of-the-art and the specificity of the problem,
identifying future research directions is not immediate. We mention some promising ones. In
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Table 13. Milliseconds spent per OR query by varying the number of query terms.

Method Gov2 ClueWeb09 CCNews

2 3 4 5+ avg. 2 3 4 5+ avg. 2 3 4 5+ avg.
VByte 6.8 24.4 54.7 131.7 54.4 20.1 71.3 156.0 379.5 156.7 24.4 94.5 178.8 391.4 172.3
Opt-VByte 11.0 35.7 77.4 176.0 75.0 31.3 101.4 213.4 500.1 211.6 36.4 128.0 232.0 510.4 226.7
BIC 16.7 50.3 105.0 238.8 102.7 49.9 145.3 290.4 668.2 288.4 64.4 193.8 332.6 692.5 320.8
δ 12.6 40.8 87.9 202.5 85.9 34.9 112.9 236.7 557.7 235.6 42.2 144.9 263.8 571.3 255.5
Rice 13.4 43.1 93.3 211.3 90.3 36.8 118.2 248.5 576.6 245.0 43.6 149.3 270.5 585.6 262.2
PEF 10.2 33.0 71.7 164.2 69.8 31.1 99.7 208.5 492.3 207.9 37.6 127.5 232.6 507.1 226.2
DINT 8.5 28.5 63.7 147.6 62.1 24.9 84.1 178.8 424.3 178.0 30.6 109.2 200.4 432.7 193.2
Opt-PFor 8.9 31.1 69.4 161.4 67.7 27.0 90.8 194.0 453.5 191.3 31.3 113.2 209.0 447.2 200.2
Simple16 7.8 26.2 58.3 138.2 57.6 23.7 78.0 165.5 394.7 165.5 28.7 101.5 185.3 397.8 178.4
QMX 6.6 23.8 53.4 128.1 53.0 19.7 70.0 153.2 377.9 155.2 24.0 92.6 175.2 382.4 168.6
Roaring 1.2 2.8 4.3 6.4 3.7 4.7 9.0 12.0 15.7 10.3 3.8 7.6 10.5 15.1 9.2
Slicing 1.3 4.0 6.3 9.2 5.2 5.0 12.8 18.1 25.3 15.3 5.8 12.9 17.3 23.0 14.8
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Fig. 7. Space/time trade-off curves for the ClueWeb09 dataset.

general, devising “simpler” compression formats that can be decoded with algorithms using low-
latency instructions (e.g., bitwise) and with as few branches as possible, is a profitable line of
research, as demonstrated by the experimentation in this article. Such algorithms favour the super-
scalar execution of modern CPUs and are also suitable for SIMD instructions. Another direction
could look at devising dynamic and compressed representations for integer sequences, able of also
supporting additions and deletions. This problem is actually a specific case of the more general
dictionary problem, which is a fundamental textbook problem. While a theoretical solution already
exists with all operations supported in optimal time and compressed space [81], an implementation
with good practical performance could be of great interest for dynamic inverted indexes.
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