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Parallel and External-Memory Construction of
Minimal Perfect Hash Functions with PTHash

Giulio Ermanno Pibiri – Roberto Trani

Abstract—A minimal perfect hash function f for a set S of n keys is a bijective function of the form f : S → {0, . . . , n − 1}. These
functions are important for many practical applications in computing, such as search engines, computer networks, and databases.
Several algorithms have been proposed to build minimal perfect hash functions that: scale well to large sets, retain fast evaluation time,
and take very little space, e.g., 2 – 3 bits/key. PTHash is one such algorithm, achieving very fast evaluation in compressed space,
typically several times faster than other techniques. In this work, we propose a new construction algorithm for PTHash enabling: (1)
multi-threading, to either build functions more quickly or more space-efficiently, and (2) external-memory processing to scale to inputs
much larger than the available internal memory. Only few other algorithms in the literature share these features, despite of their big
practical impact. We conduct an extensive experimental assessment on large real-world string collections and show that, with respect
to other techniques, PTHash is competitive in construction time and space consumption, but retains 2 – 6× better lookup time.

Index Terms—Minimal Perfect Hashing; PTHash; Multi-Threading; External-Memory
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1 INTRODUCTION

M inimal perfect hashing (MPH) is a well-studied and
fundamental problem in Computer Science. It asks

to build a data structure that assigns the numbers in [n] =
{0, . . . , n − 1} to the n distinct elements of a static set S.
In other words, the resulting data structure realizes a “one-
to-one” correspondence between S and the integers in [n],
with n = |S|. Such bijective function f : S → {0, . . . , n− 1}
is called a minimal perfect hash function (MPHF henceforth).

MPHFs are useful in all those practical situations where
space-efficient storage and fast retrieval from static sets is
deemed. In fact, they are employed in compressed full-text
indexes [1], computer networks [2], databases [3], prefix-
search data structures [4], language models [5, 6], Bloom
filters and their variants [7, 8, 9], programming languages,
compilers, and operating systems, just to mention some
important applications.

The most interesting aspect of the MPH problem is that
it ignores the behavior of f on keys that do not belong to
S, i.e., f (x) can be any value in [n] if x /∈ S. Therefore, the
MPHF data structure does not need to store the keys. As
a result, pioneer work on the problem has proved a space
lower bound of n log2 e bits for the size of any MPHF [10,
11], which is approximately just 1.44 bits/key. While it is
difficult to come close to this space usage, several practical
algorithms exist that take little space, i.e., 2 – 3 bits/key,
retain very fast lookup time, and scale well to large sets,
e.g., billions of keys.
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Our initial investigation on the problem focused on
achieving especially fast lookup [12]. We were motivated
by the observation that MPHFs are usually built once and
evaluated many times, thus making lookup time the most
critical efficiency aspect for the MPH problem, provided
that both construction time and space usage are reasonably
low. PTHash [12] was proposed to accomplish this goal and
shown to be significantly faster at lookup time than other
techniques while taking a similar memory footprint. In our
previous work, however, we only proposed a sequential and
internal-memory construction.

In this work, we extend the treatment of PTHash and
consider two important algorithmic aspects: multi-threading
and external-memory scaling. While multi-threading can be
used to either quicken the construction or build more space-
efficient functions, temporary disk storage can be used
to scale to inputs much larger than the available internal
memory. Only few other algorithms in the literature support
these two features, despite of their big practical impact.

A simple and elegant solution to harness both aspects
is to partition the input and build, in internal memory, an
independent MPHF on each partition [13]. This approach
also offers good scalability as the independent partitions
that fit into internal memory may be processed in parallel by
multiple threads. Very importantly, this solution is valid for
any construction algorithm. However, this approach imposes
an indirection at lookup time to identify the partition, i.e.,
the proper MPHF to query, and additional space to store
the offset of each partition. Indeed, partitioned MPHFs are
usually 30 − 50% slower and 20% larger than their non-
partitioned counterpart [13, 14].

Our Contribution. Since the construction can either run in
internal or external memory, can either use one or multiple
threads, we consider the four possible construction settings:

• internal-memory/sequential,
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• internal-memory/parallel,
• external-memory/sequential,
• external-memory/parallel.
We present a new construction algorithm for PTHash

that overcomes the overhead of the folklore partitioning ap-
proach and, yet, easily adapts to all the above four settings.

We conduct an extensive experimental assessment over
real-world string collections, ranging in size from tens of
millions to several billions of strings. We show that PTHash
is competitive at building MPHFs with the best existing
techniques that also support parallel execution and external-
memory scaling. However and very importantly, PTHash
retains the best lookup time, i.e., 2 – 6× smaller than other
techniques.

Source Code. Our C++ MPHF library is publicly available
at https://github.com/jermp/pthash.

Organization. The article is structured as follows. Sec-
tion 2 reviews all practical approaches to MPH and in-
dicates which techniques support multi-threading and/or
use external memory. Section 3 presents a new general
PTHash construction algorithm, with Section 4 highlighting
how its design seamlessly adapts to the different settings
we consider. In particular, Section 4.2 and 4.3 detail how
the general construction is supported in internal and ex-
ternal memory, respectively, with multi-threading support
(Section 4.1). Section 5 presents the experimental results.
PTHash is compared against all the approaches reviewed
in Section 2. We conclude in Section 6.

2 RELATED WORK

Minimum perfect hashing has a long history of develop-
ment. Our focus is on practical approaches, that is, those that
have been implemented and shown to perform well on very
large key sets. In fact, we point out that some theoretical
constructions, like that by Hagerup and Tholey [15], can be
proved to reach the space lower bound of n log2 e bits, but
only work in the asymptotic sense, i.e., for n too large to be
of any practical interest.

Up to date, four “classes” of different, practical, ap-
proaches have been devised to solve the problem, which
we describe below in chronological order of proposal. The
upper part of Table 1 summarizes the notation used to
describe the algorithms.

Hash and Displace. The hash and displace technique was
originally introduced by Fox, Chen, and Heath [16] in a
work that was named FCH after them. That work also
inspired the development of PTHash [12]. The main idea
of the method is as follows.

Keys are first hashed and mapped into non-uniform buck-
ets; then, the buckets are sorted and processed by falling
size: for each bucket, a displacement value di ∈ [n] is deter-
mined so that all keys in the bucket can be placed without
collisions to positions (h(x) + di)mod n, for a proper uni-
versal hash function h. Lastly, the sequence of displacements
di is stored in compact form using dlog2 ne bits per value.
While the theoretical analysis suggests that by decreasing
the number of buckets it is possible to lower the space usage
(at the cost of a larger construction time), in practice it is
unfeasible to go below 2.5 bits/key for large values of n.

TABLE 1
General notation (upper) and PTHash-specific notation (bottom).

S a set of keys
n the number of keys in S, n = |S|
f MPHF built from S

f (x) a value in [n] = {0, . . . , n− 1},
the result of computing f on the key x

h hash function chosen at random from a universal familiy
c a value that trades search efficiency for space effectiveness
α a value in (0, 1], used to define the search space [n′ = n/α]
m number of buckets used for the search, m = dcn/ log2 ne
L largest bucket size
P pilots table

x⊕ y bitwise XOR between hash codes x and y

In the compressed hash and displace (CHD) variant by Be-
lazzougui et al. [17], keys are first uniformly distributed to
buckets, with expected size λ > 0. For each bucket, a pair
of displacements 〈d0, d1〉 is determined so that all keys in
the bucket can be placed without collisions to positions
(h1(x) + d0h2(x) + d1)mod n, for a given pair of hash func-
tions h1, h2. Instead of explicitly storing a pair 〈d0, d1〉 for
each bucket, the index of such pair in the sequence

〈0, 0〉, . . . , 〈0, n− 1〉, . . . , 〈n− 1, 0〉, . . . , 〈n− 1, n− 1〉

is stored. Lastly, the sequence of indexes is stored in com-
pressed form using the entropy coding mechanism intro-
duced by Fredriksson and Nikitin [18], retaining O(1) access
time.

Linear Systems. In the late 90s, Majewski et al. [19] in-
troduced an algorithm to build a MPHF exploiting a con-
nection between linear systems and hypergraphs (almost
ten years later, Chazelle et al. [20] proposed an analogous
construction in an independent manner). The MPHF f is
found by generating a system of n random equations in t
variables of the form

wh1(x) + wh2(x) + · · ·+ whr(x) = f (x)mod n, x ∈ S,

where hi : S → [t] is a random hash function, and {wi}
are t variables whose values are in [n]. Due to bounds on
the acyclicity of random graphs, if the ratio between t and
n is above a certain threshold γr, the system can be almost
always triangulated and solved in linear time by peeling the
corresponding hypergraph. The constant γr depends on the
degree r of the graph, and attains its minimum for r = 3,
i.e., γ3 ≈ 1.23.

Belazzougui et al. [14] proposed a cache-oblivious im-
plementation of the previous algorithm suitable for external
memory construction and named EMPHF. The algorithm
uses a compact representation of the incidence lists of the
hypergraph. The compact representation is based on the
observation that, for the wanted operations on the lists, it
is not necessary to store actual edges. Instead, all vertices in
the same position can be XORed together, hence a constant
amount of memory per node is retained.

Genuzio et al. [21, 22] (GOV) demonstrated practical
improvements to the Gaussian elimination technique, which
is used to solve the linear system. The improvements are
based on broadword programming techniques. The authors

https://github.com/jermp/pthash


3

released a very efficient implementation of the algorithm
that scales well using external memory and multi-threading.

Fingerprinting. Müller et al. [23] introduced a technique
based on fingerprinting. The general idea is as follows. All
keys are first hashed in [n] using a random hash function
and collisions are recorded using a bitmap B0 of size n0 = n.
In particular, keys that do not collide have their position
in the bitmap marked with a 1; all positions involved in a
collision are marked with a 0 instead. If n1 > 0 collisions
are produced, then the same process is repeated recursively
for the n1 colliding keys using a bitmap B1 of size n1. All
bitmaps, called “levels”, are then concatenated together in a
bitmap B. The lookup algorithm keeps hashing the key level
by level until a 1 is hit, say in position p of B. A constant-
time ranking data structure [24, 25] is used to count the
number of 1s in B[0..p] to ensure that the returned value is
in [n]. On average, only 1.56 levels are accessed in the most
succinct setting [23], which takes 3 bits/key.

Limasset et al. [26] provided an implementation of this
approach, named BBHash, that is very fast in construction
and scales to very large key sets using multiple threads.
Furthermore, no auxiliary data structures are needed during
construction except the levels themselves, meaning that the
space consumed in the process is essentially that of the final
MPHF. Thus, the approach is also suitable for construction
in external memory.

A parameter γ ≥ 1 is introduced to speedup construc-
tion and lookup time, so that bitmap Bi on level i is γni bits
large. This clearly reduces collisions and, thus, the average
number of levels accessed per lookup. However, the larger
γ, the higher the space consumption.

Recursive Splitting. Very recently, Esposito et al. [27] pro-
posed a new technique, named RecSplit, for building very
succinct functions. RecSplit is the most compact data struc-
ture up to date, achieving 1.80 bits/key on large key sets.
Also, the construction runs in expected linear time and
provides fast lookup time in expected constant time.

The authors first observed that for very small sets it is
possible to find a MPHF simply by brute-force searching for
a bijection with suitable codomain. Then, the same approach
is applied in a divide-and-conquer manner to solve the
problem on larger inputs.

Given two parameters b and `, the keys are divided into
buckets of average size b using a random hash function.
Each bucket is recursively split until a block of size ` is
formed and for which a MPHF can be found using brute-
force, hence forming a rooted tree of splittings. The param-
eters b and ` provide different space/time trade-offs. While
providing a very compact representation, the evaluation
performs one memory access for each level of the tree that
penalizes the lookup time.

The authors indicate that the approach is amenable to
good parallelization as the buckets may be processed by
multiple threads in parallel. However, there is no public
parallel implementation of this algorithm yet.

3 A GENERAL CONSTRUCTION

In this section, we present a general construction algorithm
for PTHash, based on few abstract steps, that is suitable for

1 build(S, c, α) :
2 blocks = map(S, c)
3 buckets = merge(blocks)
4 P = search(buckets, α)
5 encode(P)

Alg. 1. Construction for an input set S, with parameters c and α.

both parallel and external-memory settings. While the focus
of this section is on the algorithm rather than on the specific
implementation, Section 4 will detail how the proposed
construction can be easily implemented to support multi-
threading, in either internal or external memory. Refer to
the bottom part of Table 1 for the notation used to describe
PTHash.

In short, PTHash maps the keys into non-uniform buck-
ets and processes the buckets by falling size. For each bucket
i, it searches for ki – the pilot of bucket i – an integer able of
placing all the keys in the bucket to positions

f (x) = (h(x)⊕ h(ki))mod n

without collisions. Lastly, the collection of such pilots, one
for each bucket, is materialized in a pilots table (PT) and
indicated with P in Table 1. This is what the MPHF data
structure actually stores. In particular, the table is stored in
compressed format using a compressor supporting random
access to P[i] in O(1) worst-case time.

Let us now consider how the pilots table is computed.
Besides the input set S, the construction uses two param-
eters, c > log2 e and 0 < α ≤ 1, respectively affecting the
number of buckets and the size of the search space (see
also the bottom part of Table 1). The general construction
algorithm is composed of three steps, namely map, merge,
and search, followed by an encoding step that compresses
the table as anticipated before. These steps, explained in the
following, are summarized in Alg. 1.

3.1 Map

The first step aims at mapping each key of S to a fixed
number of bytes with the help of an universal hash function
h. During this step, keys are “logically” associated to one
of the m = dcn/ log2 ne buckets that are indicated with the
integers in [0, m). Specifically, the bucket identifier for a key
x is obtained via the function

bucket(x) =
{

h′(x)mod p2 x ∈ S1
p2 + (h′(x)mod (m− p2)) otherwise ,

where S1 = {x|(h′(x)mod n) < p1} and h′ is, like h, a
random hash function. The thresholds p1 and p2 are set to,
respectively, 0.6n and 0.3m so that the mapping of keys into
buckets is skewed: roughly 60% of the keys are mapped into
30% of the buckets. We point out that the skew distribution
of keys into buckets is very important for the efficiency of the
search step (and the final compression effectiveness), but we
defer the reader to our previous paper [12] for a discussion
about this fact.

For each key x ∈ S we generate a pair of the form

〈id, hash〉 = 〈bucket(x), h(x)〉
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1 search(buckets, α) :
2 n′ = n/α . search space
3 m = |buckets| . number of buckets
4 L = |buckets[0].hashes| . largest bucket size
5 P = ∅
6 positions = ∅
7 allocate the bitmap taken[0..n′ − 1] with all 0s
8 for i = 0; i < m; i = i + 1 :
9 bucket = buckets[i]

10 ki = 0 . pilot for i-th bucket
11 while true :
12 clear positions
13 j = 0
14 for ; j < |bucket.hashes|; j = j + 1 :
15 p = (bucket.hashes[j]⊕ h(ki))mod n′

16 if taken[p] = 1 :
17 ki = ki + 1
18 break . try next pilot

19 add p to positions

20 if j = |bucket.hashes| :
21 if positions contains duplicates :
22 ki = ki + 1
23 continue . try next pilot

24 add 〈bucket.id, ki〉 to P . save pilot
25 for all p in positions : taken[p] = 1
26 break

27 sort(P)
28 return P

Alg. 2. Search procedure for an input collection of buckets, with
parameter α.

and divide the n pairs into K blocks, each of (roughly) equal
size. The pairs in each block are sorted by, first, the id
component, then by hash. Blocks are formed either because:
keys are evenly distributed among K threads and processed
in parallel in internal memory, or a block of pairs is flushed
to disk when internal memory is exhausted. We will better
explain these two scenarios in Section 4.2 and 4.3.

The map step takes O(n log(n/K)) expected time using
quick-sort and assuming the computation of h(x) and h′(x)
to take constant time. If we use u-bit hash codes, the amount
of temporary space taken by the map step is n(dlog2 me+ u)
bits.

3.2 Merge

The K blocks output by the previous step are then merged
to group together all the hash codes for a given bucket.
Specifically, the pairs are merged by their id component only.
In this way we are also able to check that all keys were
correctly hashed to distinct hash codes1. Moreover, since
pairs having the same id are also sorted by hash, checking
for duplicates is efficient (i.e., scanning of the pairs).

1. In case of a duplicate hash code, any MPHF construction must fail.
However, the failing probability is very low and depends only on n and
u. Indeed, we never saw a single collision during our experiments using
u = 64 bits.

During this step we also accomplish to sort the buckets
by non-increasing size, as follows2. We allocate L buffers,
where L is the largest bucket size. Suppose the merge for a
bucket is complete and the bucket contains k hash codes. We
append its identifier and the k hash codes to the k-th buffer.
In this way we have all the buckets of the same size written
contiguously.

Each bucket in the k-th buffer is a contiguous span of
k+ 1 integers, for 0 ≤ k < L. Therefore, the total space taken
by the L buffers is mdlog2 me+ nu+O(L) ' mdlog2 me+ nu
bits since L is very small compared to n (e.g., L < 40
in our experiments with billions of keys). Once the merge
is complete for all buckets, the input blocks of pairs are
destroyed.

The overall complexity is that of the preliminary merge
phase which is carried out using a min-heap data structure
of size O(K) memory words, hence O(n log K) time.

The output of this step is the set of such L buffers, so
that the next step, the search, has to logically process the
buffers from index L − 1 down to index 0. However, we
indicate the L buffers with the abstraction buckets in Alg. 1.
This abstract collection buckets must only support sequential
iteration in the wanted bucket order (from largest to smallest
bucket size). Sequential iteration is an access pattern of
crucial importance as to avoid expensive memory reads for
the buckets (especially in the external-memory setting). We
are going to assume that each element of the collection is a
bucket – an object made by an array of hashes, plus a unique
identifier 0 ≤ id < m.

3.3 Search

The search procedure is illustrated in Alg. 2 and it is
the core of the whole construction. The procedure keeps
track of occupied positions in the search space [n′ =
n/α] = {0, . . . , n′ − 1} using a bitmap, taken[0..n′ − 1].
For each bucket = buckets[i] we search for an integer ki
such that the position assigned to h(x) ∈ bucket.hashes is
p = (h(x)⊕ h(ki))mod n′ and taken[p] = 0. As anticipated,
the integer ki is called the pilot for bucket. If the search for ki
is successful, i.e., ki places all hashes of bucket into unused
positions of taken (and there are no hashes in bucket that
are mapped to the same slot of taken, i.e., the if in line 21
fails), then ki is saved in the pilots table P (line 24) and the
positions are marked as occupied via taken[p] = 1 (line 25);
otherwise, the next integer ki + 1 is tried.

At this stage of the description, P is modelled as an
abstract collection of pairs 〈id, pilot〉. The collection is then
sorted by id to materialize the final pilots table (line 27). In
this way, the code of the search can adapt to either work in
internal or external memory.

Both positions p (line 15) and pilots ki are 64-bit integers.
Therefore, the search consumes n′ bits for the bitmap taken,
plus 64L bits for the array positions because at most L
positions can be added to it, plus m(dlog2 me+ 2× 64) bits
for P.

2. The steps map and merge have the same role of the steps called
mapping and ordering in the original MOS framework introduced by
FCH [16]. However, in our construction, the ordering of the buckets
is carried out during both steps: sorting of the pairs during map and
displacing of the pairs into the L buffers during merge.
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1 P[i] :
2 block = bi/bc
3 offset = i mod b
4 w = W[block + 1]−W[block]
5 position = W[block]× b + offset× w
6 x = B[position, position + w]
7 return x

Alg. 3. Algorithm for retrieving the i-th element of the pilots table
when represented in partitioned compact (PC) form. The notation
x = B[a, b], a < b, means that b− a bits are read from the bitmap B
starting at position a and written to an integer value x.

Lastly, we give the following theorem which relates the
performance of the search, in terms of expected CPU time,
to the parameters c and α.

Theorem 1. The expected time of the search, for n keys and
parameters c > log2 e and 0 < α ≤ 1, is O(n1+Θ(α/c)).

Proof – Given in the Appendix.

The search space is of size n′ = n/α which is actually
larger than n if α < 1. This makes the search for pilots
faster by lowering the probability of hitting already taken
positions in the bitmap. However, the output of f must be
guaranteed to be minimal, i.e., a value in [n], not in [n′]. We
therefore need a mechanism to assign the slots left unused
by f in its codomain [n]. Suppose F is the list of unused posi-
tions up to, and including, position n− 1. Then there are |F|
keys that are mapped to positions pi ≥ n, that can fill such
unused positions. We materialize an array free[0..n′ − n− 1],
where free[pi − n] = F[i], for each i = 0, . . . , |F| − 1. To
compute the (uncompressed) free array we need Θ(n) time
and 64(n′ − n) bits.

3.4 Encode

The PTHash data structure stores the two compressed ta-
bles, P and free. For the free array, we always use Elias-
Fano [28, 29], noting that it only takes (n′− n)(dlog2

n
n′−n e+

2+ o(1)) bits. The pilots table P, instead, can be compressed
using any compressor for integer sequences that supports
constant-time random access to its i-th integer P[i]. (It is also
desirable that compressing P runs in linear time, i.e., Θ(m)
time. We only consider compressors with this complexity in
the article.)

Therefore, we have three degrees of freedom for the
tuning of PTHash, namely the choice of
• the compressor for P,
• the size of the search space, tuned with α, and
• the number of buckets, tuned with c,

that allow to obtain different space/time trade-offs. We
point the interested reader to our previous paper [12] for
an overview and discussion of the achievable trade-offs.
For example, a good balance between space effectiveness
and lookup efficiency is obtained using the front-back
dictionary-based encoding (D-D) [12], with α = 0.94 and
c = 7.0. More compact representations can be obtained,
instead, by using Elias-Fano (EF) on the prefix-sums of P at
the price of a slowdown at query time. We are going to use
both configurations in the experiments as reference points.

Here we propose another compressed representation
that supports constant-time random access, and named par-
titioned compact (PC) encoding hereafter. The pilots table is
divided into dm/be blocks of size b each (except possibly the
last one; in our implementation we use b = 256). For each
block, we compute the minimum bit-width wi necessary to
represent its maximum element, i.e., wi = dlog2(max + 1)e
(if max = 0, then wi is set to 1), so that every integer in
the block can be represented using wi bits. The whole pilots
table is represented by concatenating the representations of
all blocks in a bitmap B that takes O(1) + b ∑

dm/be−1
i=0 wi bits.

To support random access we also materialize in a separate
array the sequence

W = [0, W(0), W(1), W(2), . . . , W(dm/be − 2)]

where W(j) = ∑
j
i=0 wi. The algorithm for retrieving P[i]

is illustrated in Alg. 3: it requires two memory accesses
(one to W, the other to B) and no branches, thus indicating
that fast evaluation is retained. The space effectiveness of
the encoding is expected to be good for the same reasons
why front-back compression works well [12, Section 4.2]:
the entropy of P is lower at the front and higher at the
back, with a smooth transition between the two regions. This
means that the bit-widths {wi} tend to generally increase
when moving from i = 0 to i = dm/be − 1. Indeed, the PC
encoding can be considered as a generalization of front-back
compression.

4 IMPLEMENTATION DETAILS

In this section, we detail concrete implementations of the
PTHash construction from Section 3. These implementations
are meant to deliver good practical performance, hence,
exploit multi-threading and external-memory scaling. To
this end, we first present in Section 4.1 a fundamental
building block – a parallel search procedure. In Section 4.2
we assume that the whole input set S can be processed in
internal memory. In Section 4.3, instead, we aim at building
the PTHash data structure for very large sets that cannot
be processed in internal memory, thus it is necessary to use
temporary disk storage.

For all constructions, the pairs 〈id, hash〉, defined during
the map step in Section 3.1, consume an integral number of
bytes, q, e.g., q = 12 if id is a 4-byte identifier (allowing up
to 232 buckets) and hash is a 8-byte long hash code.

4.1 Parallel Search
As already noted in Section 3, the search step is the core
of the whole PTHash construction and the most time-
consuming step. Therefore we would like to exploit all the
target machine cores to search pilots more efficiently. But
parallelizing the algorithm in Alg. 2 presents some serious
limitations in that we cannot compute pilots in parallel, say,
K pilots for K different buckets, because the displacement of
keys in the i-th bucket depends on the displacement of all
previous buckets.

However, while a thread may not finalize the computation
of a pilot, it can try some pilots anyway given the current bit-
configuration of the bitmap and, thus, potentially discard many
pilots that surely cannot work because of the occupied slots. Fig. 1
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thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 0

thread 1

buckets

5691

5692

5693

5694

5695

5696

5697

already processed

to be processed

5690

computation

Fig. 1. A graphical representation of the parallel search procedure with
8 threads, when processing buckets from index 5690 to index 5697. The
bars to the right of the buckets represent the amount of computation
that threads have to do before computing the first successful pilot. The
shaded part of the bars corresponds to the work done for unsuccessful
pilots (those that create collisions in the bitmap). In this example, thread
2 (in bold font) has to commit its work, therefore it can execute until
success (the shaded part covers its entire bar). The crucial point is
that: the shaded part can be computed in parallel, hence saving time
compared to the sequential implementation.

illustrates a pictorial representation of this idea. Based on
this idea, we proceed as follows.

We spawn K parallel threads, working on K consecutive
buckets, one thread per bucket. Each thread advances in the
search of a pilot independently, pausing the search when a
pilot that works for the current state of the bitmap is found.
At that point, either the thread is processing the first bucket
to commit, or it is waiting for some other thread to update
the bitmap. In the former case, the thread (i) concludes
the pilot search, (ii) updates the bitmap, and (iii) starts
processing the next bucket. Only one thread at a time can
thus update the bitmap. In the latter case, the waiting thread
wakes up after a bitmap update and continues the pilot
search according to the new state of the bitmap, pausing
as soon as it finds a new working pilot.

The crucial point, now, is to manage the turns between
the threads in an efficient way. To do so, we label the threads
with unique identifiers, from 0 to K − 1, and maintain the
following invariant: thread i processes the bucket of index
0 ≤ j < m where i = j mod K (see Fig. 1 for an example with
K = 8). It follows that the threads must finalize their respective
computation and commit changes to the bitmap following the
identifier order to guarantee correctness. We guarantee this
ordering using a shared identifier, periodically indicating
the thread that is allowed to commit. Therefore, a thread
advances the search as far as it can and checks (inside a
loop, sometimes called “busy waiting”) the shared identifier.

If the shared identifier is equal to its own identifier, then the
thread can commit his work. Note that we do not require
a lock/unlock mechanism to synchronize the threads that
would sensibly erode the benefit of parallelism, but rely on
the value assumed by the shared identifier. This is a rather
important point to obtain good practical performance.

At the beginning of the algorithm, the shared identifier is
equal to 0, hence only the first thread is allowed to conclude
the search and update the bitmap. Then the shared identifier
is set to 1 by the first thread. The second thread can now
commit, and so on. In general, the turn of the thread i comes
when all threads 0 ≤ j < i have committed (when the thread
K− 1 commits, the shared identifier is set back to 0).

4.2 Internal Memory

Let us assume that the construction algorithm has enough
internal memory available. Then we have to specify only few
details given the flexibility of the algorithm in Section 3.
• The blocks output by the map step are materializd as

in-memory vectors of pairs. Let K be the number of
parallel threads to use. The map step spawns K threads.
Each thread allocates a vector of n/K pairs and fills it
by forming pairs from a partition of S consisting in n/K
keys. Once the vector is filled up, it is sorted. Since the
threads work on different partitions of S, the map with
K threads achieves nearly ideal speed-up.

• The collection of buckets output by the merge step
consists in L in-memory vectors of hash codes. There
is no meaningful opportunity for parallelization during
the merge step.

• The auxiliary arrays used by the search step, i.e., taken
and positions are materialized as in-memory arrays of
64-bit integers. The pilots table P in the pseudocode of
Alg. 2 is also implemented with a 64-bit integer array.
Since P fits in internal memory, the saving of a pilot in
line 24 simplifies to P[bucket.id] = ki so that P is already
sorted and the sort(P) step in line 27 is not performed
at all. The search can be executed in parallel using K
threads as we explained in Section 4.1.

4.3 External Memory

When not enough internal memory is available for the
construction, e.g., because the size of S is very large, it is
mandatory to resort to external memory. The general algo-
rithm described in Section 3 easily adapts to this scenario
because the steps of the algorithm do not change, rather
the output of map and merge is written to (resp. read
from) disk. Let M indicate the maximum amount of internal
memory (in bytes) that the construction is allowed to use,
and q be the number of bytes taken by a 〈id, hash〉 pair.
• During the map step, we allocate an in-memory vector

of size M/q pairs. Whenever the vector fills up, it is
sorted (possibly in parallel) and flushed to a new file
on disk, as to guarantee that at most M bytes of internal
memory are used during the process.

• Let K be the number of files created during the map
step, i.e., K = d(qn)/Me. The pairs from these K
files are merged together to create the collection of L
buffers representing the buckets. Again, the L buffers
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are formed in internal memory without violating the
limit of M bytes. Whenever the limit is reached, the
content of the buffers is accumulated to L files on disk.

• The buckets are read from the L files and processed by
the search procedure, possibly by its parallel implemen-
tation described in Section 4.1.
We point out that the bitmap taken is always kept in in-
ternal memory (and the array positions as well), because
its access pattern is random and the search would be
slowed down to unacceptable rates if the bitmap were
resident on disk.
Therefore, taking into account that the seach needs
n′ = n/α bits of internal memory, we are left with
M′ = M− n′/8 bytes available to store the pilots. The
pilots are accumulated in an in-memory vector of M′/q
pairs 〈id, pilot〉 (also these pairs consume q bytes each
as those used during the map step). Whenever the M-
byte limit is reached, the vector is flushed to disk and
emptied. Lastly, the different files containing the pilots
are merged together to obtain the final P table – the
sort(P) step in line 27 of the algorithm in Alg. 2.

5 EXPERIMENTAL RESULTS

In this section of the article, we report on the results of
an extensive experimental analysis that, as mentioned in
Section 1, considers the four possible settings to run the
construction:
• internal-memory/sequential,
• internal-memory/parallel,
• external-memory/sequential,
• external-memory/parallel.

Hardware. We use a server machine equipped with 8 Intel
i9-9900K cores (@3.60 GHz), 64 GB of RAM DDR3 (@2.66
GHz), and running Linux 5 (64 bits).

For all experiments where parallelism is enabled we use
8 parallel threads, one thread per core.

Each core has two private levels of cache memory: 32 KiB
L1 cache (one for instructions and one for data); 256 KiB for
L2 cache. A shared L3 cache spans 16 MiB. All cache levels
have a line size of 64 bytes. All datasets are read from a
Western Digital Red mechanical disk with 4 TB of storage
and a rotation rate of 5400 rpm (SATA 3.1, 6 GB/s).

Software. The implementation of PTHash is written in
C++ and available at https://github.com/jermp/pthash.
We use native C++ threads to support parallel execution,
i.e., without relying on other frameworks such as Intel’s
TBBs or OpenMP that would otherwise limit the portability
of our software. For the experiments reported in the arti-
cle, the code was compiled with gcc 9.2.1 using the flags:
-std=c++17 -pthread -O3 -march=native.

Methodology. Construction time is reported in total sec-
onds, taking the average between 3 runs. Lookup time is
measured by looking up every single key in the input using
a single core of the processor, and taking the average time
between 5 runs. For inputs residing on disk, we load batches
of 8 GB of keys in internal memory and measure lookup
time on each batch. The final reported time is the average
among the measurements on all batches. Lookup time is

TABLE 2
String collections used in the experiments.

Collection num. strings avg. bytes/string

UK2005 URLs 39 459 925 71.37
ClueWeb09-B URLs 49 937 704 54.72
GoogleBooks 2-gr 665 752 080 17.21
TweetsKB IDs 1 983 291 944 18.75
ClueWeb09-Full URLs 4 780 950 911 67.28
GoogleBooks 3-gr 7 384 478 110 23.30

TABLE 3
Methods and implementations.

Method Implementation

multi-threading external memory

PTHash X X
PTHash-HEM X X
FCH [16]
CHD [17]
EMPHF [14] X
EMPHF-HEM [14] X
GOV [21, 22] X X
BBHash [26] X X
RecSplit [27]

reported in nanoseconds per key (ns/key). The space of the
MPHF data structures is reported in bits per key (bits/key).

A testing detail of particular importance is that, before
running a construction algorithm, the disk cache is cleared to
ensure that the whole input dataset is read from the disk.

Datasets. We use some real-world string collections as input
datasets. Table 2 reports the basic statistics for these collec-
tions. All datasets are publicly available for download by
following the corresponding link in the References.

We use natural-language q-grams as they are in
widespread use in IR, NLP, and Machine-Learning appli-
cations. Specifically, we use the 2-3-grams from the English
GoogleBooks corpus, version 2 [30], as also used in prior
work on the problem [14, 26]. URLs are interesting as they
represent a sort of “worst-case” input given their very long
average length. We use those of the Web pages in the
ClueWeb09 dataset [31] (category B and full dataset), and
those collected in 2005 from the UbiCrawler [32] relative to
the .uk domain [33]. TweetsKB [34] is a collection of unique
tweets identifiers (IDs), corresponding to tweets collected
from February 2013 to December 2020.

As TweetsKB IDs, ClueWeb09-Full URLs, and Google-
Books 3-gr do not fit in the internal memory of our test
machine (64 GB), we are going to use these three datasets
to benchmark the construction algorithms in external mem-
ory. The other three datasets can be processed in internal
memory.

Methods and Implementations. PTHash is compared
against the state-of-the-art methods reviewed in Section 2.
Table 3 indicates what methods support parallel execution
and external-memory scaling. The “HEM” suffix used in the
tables stands for heuristic external memory [13] and refers
to the approach of partitioning the input and building an
independent MPHF on each partition.

Whenever possible, we used the implementations avail-

https://github.com/jermp/pthash
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TABLE 4
Internal-memory construction time, space, and lookup time, for a range of methods.

Numbers in parentheses refer to the parallel construction using 8 threads.
All PTHash configurations use α = 0.94 and c = 7.0.

Method
UK2005 URLs ClueWeb09-B URLs GoogleBooks 2-gr

construction space lookup construction space lookup construction space lookup
(seconds) (bits/key) (ns/key) (seconds) (bits/key) (ns/key) (seconds) (bits/key) (ns/key)

PTHash (D-D) 9 (5) 3.11 46 12 (6) 3.07 49 410 (156) 2.97 63
PTHash (PC) 9 (5) 2.82 49 12 (6) 2.80 52 407 (153) 2.67 69
PTHash (EF) 9 (5) 2.50 59 12 (6) 2.49 63 408 (154) 2.38 121

PTHash-HEM (D-D) 8 (2) 3.11 52 10 (2) 3.08 57 167 (34) 2.97 72
PTHash-HEM (PC) 8 (2) 2.82 54 10 (2) 2.80 59 164 (34) 2.67 80
PTHash-HEM (EF) 8 (2) 2.50 66 10 (2) 2.49 70 164 (34) 2.38 159

FCH (c = 3.0) 1138 3.00 52 1438 3.00 55 – – –
FCH (c = 4.0) 266 4.00 60 267 4.00 64 9110 4.00 54
FCH (c = 5.0) 119 5.00 68 107 5.00 71 3225 5.00 55

CHD (λ = 4) 32 2.17 170 43 2.17 185 1251 2.17 410
CHD (λ = 5) 84 2.07 173 115 2.07 182 3923 2.07 410
CHD (λ = 6) 306 2.01 173 429 2.01 178 15583 2.01 406

EMPHF 10 2.61 126 13 2.61 135 276 2.61 211
EMPHF-HEM 9 3.49 152 11 3.30 158 148 3.44 287

GOV 39 (14) 2.23 87 47 (15) 2.23 94 613 (170) 2.23 170

BBHash (γ = 1.0) 50 (12) 3.10 154 66 (14) 3.06 174 1248 (189) 3.08 273
BBHash (γ = 2.0) 31 (7) 3.71 133 40 (9) 3.71 150 666 (102) 3.71 204

RecSplit (` = 5, b = 5) 6 2.95 153 8 2.95 148 132 2.95 244
RecSplit (` = 8, b = 100) 37 1.79 113 47 1.79 118 724 1.80 202
RecSplit (` = 12, b = 9) 225 2.23 93 284 2.23 107 3789 2.23 225

able from the original authors. We include a link to the
source code in the References section. All implementations
are in C/C++, except for the construction of GOV which is
only available in Java (but lookup time is measured using a
C program). Moreover, we also tested the algorithms using
the same parameters as suggested by their respective authors
to offer different trade-offs between construction time and
space effectiveness. Below we report some details.

FCH is the only algorithm that we re-implemented (in
C++) faithfully to the original paper. For the CHD method
we were unable to use λ = 7 for more than a few thousand
keys. The EMPHF library also includes the corresponding
HEM implementation of the algorithm, EMPHF-HEM. The
authors of BBHash also considers γ = 5.0 in their own
work but we obtained a space larger than 6.8 bits/key, so
we excluded this value of γ from the analysis.

5.1 Internal Memory
Table 4 shows the performance of the methods on the
datasets that can be processed entirely in internal memory.
The numbers in parentheses refer to the parallel construc-
tion using 8 threads; moreover, all PTHash configurations
use α = 0.94 and c = 7.0.

Let us first consider the sequential construction and
formulate some general observations. PTHash is the fastest
MPHF data structure at evaluation time. FCH offers similar
lookup performance but PTHash is more space-efficient and
much faster at construction time (FCH with c = 3.0 takes
too much time to run over the GoogleBooks 2-gr dataset).
Moreover, PTHash offers good space effectiveness, albeit
not the best: around 3.2 bits/key using the D-D encoding
but less using PC, i.e., around 2.7 – 2.8 bits/key, and even

less using Elias-Fano (EF), i.e., around 2.4 – 2.5 bits/key. For
methods achieving a similar space, such as BBHash, PTHash
is 2× faster at lookup time, and even better at construction
time. Compared to more space-efficient methods, such as
RecSplit or CHD, PTHash is 2 – 6× faster at lookup time
with better construction time.

For the HEM implementation of PTHash we fix the
average partition size to b = 5 × 106 and let the number
of partitions be approximately n/b. Therefore, we use 8, 16,
and 128 partitions for UK2005 URLs, ClueWeb09-B URLs,
and GoogleBooks 2-gr respectively. It is worth noting that
PTHash-HEM is faster to build than PTHash, and the gap
increases by increasing n. For example, building 128 par-
titions takes 170 seconds on the GoogleBooks 2-gr dataset
instead of 410 seconds, hence 2.45× faster. This is a direct
consequence of the complexity of the search that is not linear
in n as per Theorem 1. Thus, building n/b functions each for
≈b keys is faster than building a single function for n keys.

Another meaningful point to observe is that PTHash-
HEM imposes a penalty at lookup time of 10 – 16% with
respect to PTHash with no space overhead. As a com-
parison, EMPHF-HEM imposes a penalty of 17 – 36% at
lookup time and of 26 – 33% of space usage compared to
EMPHF. It is desirable that the space of the HEM repre-
sentation with r partitions is very similar to that of the un-
partitioned data structure built from the same input with
m = dcn/ log2 ne buckets. To this end, we search for each
MPHF partition using exactly bm/rc buckets so to guarantee
that the total number of buckets used by the HEM data
structure is m. In fact, note that using bm/rc buckets for
the i-th partition is different than letting the search over
ni keys to use dcni/ log2 nie buckets because of the non-
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PTHash-HEM

Parallel PTHash
Parallel PTHash-HEM

Fig. 2. Internal-memory construction time of PTHash and PTHash-HEM on the GoogleBooks 2-gr dataset, by varying c, and for two values of α.
The parallel construction uses 8 threads. The horizontal line marks the lowest construction time achieved by sequential PTHash, that is for c = 7.0.
Note the log-scale of the y-axis.
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(b) α = 0.99

PTHash (D-D)
PTHash-HEM (D-D)

PTHash (PC)
PTHash-HEM (PC)

PTHash (EF)
PTHash-HEM (EF)

Fig. 3. Space/time trade-offs for PTHash and PTHash-HEM by varying c and compressor (D-D, PC, EF), and for two values of α. Performance was
measured on the GoogleBooks 2-gr dataset.

linearity of the log2 function. In particular, it will be that
bm/rc < dcni/ log2 nie assuming an average partition size
ni close to n/r.

We now discuss the results for parallel constructions.
Since a parallel construction has the clear advantage of
reducing construction time, it can be used to either:
• build functions more quickly, for a fixed space budget;
• build more compact functions by selecting tighter pa-

rameters c and α for the search, for a fixed construction-
time budget.

The numbers in parentheses in Table 4 show that construc-
tion time improves significantly. The parallel algorithm re-
duces construction time by 2 – 2.5×, thus allowing PTHash
to build faster than its direct competitors that also exploit
multi-threading, like GOV and BBHash. Better speedup

can be achieved, not surprisingly, by PTHash-HEM because
partitions can be built independently in parallel.

Fig. 2 highlights, instead, that parallelism can also be
used to build more space-efficient functions. In the fig-
ure, the horizontal line marks the lowest construction time
achieved by sequential PTHash (for c = 7.0), so that it is
easy to see the same time is spent by the parallel PTHash for
a smaller c. For example, c can be reduced from 7.0 to 5.0 for
α = 0.94, and from 7.0 to 5.2 for α = 0.99, to build a smaller
MPHF within the same time-budget using 8 parallel threads.
The companion Fig. 3 shows the space consumption and
lookup time corresponding to such values of c. Continuing
the same example, for the D-D encoder, space improves from
2.97 to 2.63 bits/key for α = 0.94, and from 2.89 to 2.52
bits/key for α = 0.99.
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TABLE 5
External-memory construction time, space, and lookup time, for a range of methods.

Numbers in parentheses refer to the parallel construction using 8 threads.
All PTHash configurations use α = 0.94 and c = 7.0.

Method
TweetsKB IDs ClueWeb09-Full URLs GoogleBooks 3-gr

construction space lookup construction space lookup construction space lookup
(seconds) (bits/key) (ns/key) (seconds) (bits/key) (ns/key) (seconds) (bits/key) (ns/key)

PTHash (D-D) 2105 (1058) 3.07 80 7234 (4869) 2.96 120 9770 (5865) 2.91 91
PTHash (PC) 2098 (1051) 2.61 101 7161 (4859) 2.58 175 9756 (5736) 2.56 143
PTHash (EF) 2098 (1052) 2.36 188 7225 (4788) 2.32 214 9649 (5849) 2.31 208

PTHash-HEM (D-D) 989 (581) 2.85 116 4651 (3632) 2.75 152 5215 (3510) 2.71 135
PTHash-HEM (PC) 982 (580) 2.61 128 4522 (3541) 2.58 192 5015 (3366) 2.57 190
PTHash-HEM (EF) 983 (580) 2.36 201 4627 (3631) 2.32 235 5179 (3512) 2.31 230

EMPHF 4021 2.61 207 24862 2.61 231 37731 2.61 220
EMPHF-HEM 909 3.03 279 3980 3.31 304 5606 3.06 304

GOV 2678 (1463) 2.23 192 8228 (5400) 2.23 232 10782 (6461) 2.23 242

BBHash (γ = 1.0) 4750 (931) 3.07 294 19360 (18391) 3.07 320 20178 (9554) 3.07 305
BBHash (γ = 2.0) 2365 (590) 3.71 217 11074 (10348) 3.71 236 10254 (5404) 3.71 235

Fig. 3 also shows that the partitioned compact encoding
(PC) introduced in Section 3 is always more effective than D-
D with only a minor lookup penalty. PC may be preferable
to EF for its better lookup performance despite the latter
being still more space-efficient. We conclude with two more
illustrative examples.
• Compared to RecSplit (` = 12, b = 9), parallel PTHash

with α = 0.99 and c = 4.0 builds faster (3789 vs. 2710
seconds) and, using PC, it retains even better space, i.e.,
2.12 bits/key, with 3.75× faster lookup time.

• Elias-Fano (EF) allows PTHash to break the 2 bits/key
“barrier”, indeed consuming only 1.98 bits/key for
α = 0.99 and c = 4.0: we point out that, up to date, only
RecSplit was able to do so. Using that configuration of
parameters, PTHash-HEM is only slightly larger than
RecSplit (` = 8, b = 100), that is, 1.98 vs. 1.80 bits/key,
but builds nearly 2× faster with 1.5× better lookup
time.

5.2 External Memory
Table 5 shows the performance of the methods that support
external-memory scaling, on datasets comprising several
billions of strings. For PTHash and PTHash-HEM we fixed
the amount of internal memory to 16 GB (out of the 64 GB
available) as we did not observe any appreciable difference
by using less or more memory. The number of partitions
used by PTHash-HEM is set using the same methodology
of Section 5.1, i.e., we fix the average partition size to
b = 5 × 106 and let the number of partitions be approxi-
mately n/b. Therefore, we use 400, 1000, and 1500 partitions
for TweetsKB IDs, ClueWeb09-Full URLs, and GoogleBooks
3-gr respectively.

Results for external memory are consistent with those
discussed for internal memory: the construction time of
PTHash is competitive or better than that of other methods,
for similar space effectiveness but better lookup time.

We point out, again, that the parallel search algorithm
described in Section 4.1 is a key ingredient to achieve
efficient parallel construction, even in external memory.
PTHash-HEM offers further reductions in construction time

at the cost of a lookup penalty. However, note that the
parallel speedup is partially eroded in external memory
compared to internal memory, due to I/O operations that
are merely sequential.

Considering Table 5, we now illustrate some compar-
isons using the largest dataset GoogleBooks 3-gr (≈7.4
billion strings) as example, noting that very similar consid-
erations are valid for the other datasets:
• PTHash with D-D is 2× faster than BBHash with

γ = 1.0 at construction, retains even better space usage,
and 3× faster lookups. Compared to GOV, it achieves
similar or better construction time with 2.7× faster
lookups, albeit being less space-efficient (23% larger).

• PTHash-HEM with EF is practically as efficient as GOV
regarding space and lookup time, but with almost 2×
better construction time.

• PTHash with PC is nearly 4× faster at construction than
EMPHF (using the sequential algorithm), retains the
same space and 1.5× better lookup. (The high construc-
tion time of EMPHF is due to excessive I/O operations.)
The HEM implementation of PTHash outperforms the
HEM implementation of EMPHF under every aspect.

6 CONCLUSIONS

In this work we described a construction algorithm for
PTHash that enables (the joint use of) multi-threading and
external-memory scaling. These two features are very im-
portant to scale to large datasets in reasonable time. Our
C++ implementation is publicly available.

We presented an extensive experimental analysis and
comparisons, using large real-world string collections. There
are three efficiency aspects for minimum perfect hash
data structures: construction time, space consumption, and
lookup time. PTHash can be tuned to match the performance of
another method on one of the three aspects and, then, outperform
the same method on the other two aspects. We remark that
lookup time may be the most relevant aspect in concrete
applications of minimal perfect hashing. In this regard,
PTHash offers very fast evaluation, e.g., 2 – 6 × faster than
other techniques.
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APPENDIX

Proof of Theorem 1 – Each pilot ki is a random variable
taking value v ∈ {0, 1, 2, . . .} with probability depending
on the current load factor of the bitmap taken (fraction of
1s). It follows that ki is geometrically distributed with success
probability pi being the probability of placing all keys in
Bi without collisions. Let α(i) be the load factor of the
bitmap after buckets B0, . . . , Bi−1 have been processed, that
is α(i) = α

n ∑i−1
j=0 |Bj|, for i = 1, . . . , m− 1 and α(0) = 0 for

convenience (empty bitmap). Then the probability pi can be
modeled as pi = (1− α(i))|Bi |.

Since ki is geometrically distributed, the probability that
ki = v, i.e., the probability of having success after v failures
(v+ 1 total trials), is pi(1− pi)

v, with expected value E[ki] =
1
pi
− 1 = ( 1

1−α(i) )
|Bi | − 1.

By linearity of expectation and taking into account that
each trial takes at most |Bi| time, the expected running time
is at most

m−1

∑
i=0
|Bi| ·

( 1
1− α(i)

)|Bi |
. (1)

To bound (1) from above, we first introduce some helper
definitions. Let L be the largest bucket size and C` the set of
all buckets of size L− `. Also, define β(`) as the load factor
of the bitmap after all buckets in the sets C0, . . . , C`−1 have
been processed, with β(0) = 0. Using these definitions, the
previous sum (1) can be rewritten as3

L−1

∑
`=0

|C` |−1

∑
i=0

(L− `) ·
( 1

1−
(

β(`) + αi(L− `)/n
))L−`

. (2)

We estimate the innermost sum with an integral and bound
it from above using a Riemann-Sum, taking into account
that the argument of the sum is an increasing function of
i. (In fact, given an increasing function f (x),

∫ b
a f (x) dx ≤

∑b
i=a f (i) ≤

∫ b+1
a f (x) dx holds true.) We obtain

(2) ≤
L−1

∑
`=0

∫ |C` |

0
(L− `) ·

( 1
1−

(
β(`) + αy(L− `)/n

))L−`
dy

=
L−1

∑
`=0

∫ 1−β(`+1)

1−β(`)
(L− `) ·

( 1
x

)L−`(
− n

α(L− `)

)
dx

=
n
α

L−1

∑
`=0

∫ 1−β(`)

1−β(`+1)

( 1
x

)L−`
dx. (3)

Since keys are not uniformly distributed into the buckets,
β(`) ≤ ∆` with ∆ = α/L being the average increase in the
load factor caused by each set C`. Therefore we have that

(3) ≤ n
α

L−2

∑
`=0

∫ 1−∆`

1−∆(`+1)

( 1
x

)L−`
dx + Z, (4)

where the last term

Z =
n
α

∫ 1−α·(1−1/n)+∆

1−α·(1−1/n)

1
x

dx

=
n
α

loge

(1− α · (1− 1/n) + ∆
1− α · (1− 1/n)

)
(5)

3. In (1), the maximum value assumed by the function α(·) is α · (1−
1/n) because, when processing the last key, the bitmap has a load factor
of α · (1− 1/n). The same holds true for the function β(·) in (2).

comes from the buckets of size 1 (class CL−1) 4.
Now we overestimate each integral in the sum with

∆/(1−∆(`+ 1))L−` (the area of a rectangle whose base is ∆
and height is (1/x)L−` in the left extreme x = 1− ∆(`+ 1))
and obtain that

(4) ≤ n∆
α

L−2

∑
`=0

1
(1− ∆(`+ 1))L−` + Z

=
n
L

L

∑
`=2

( 1
1− α + α

L (`− 1)

)`
+ Z

by replacing ∆ with α/L and some manipulation. Since
(1/(1 − α + α

L (` − 1)))` is maximum around ` = L/(3α),
then

L

∑
`=2

( 1
1− α + α

L (`− 1)

)`
< (L− 1)

( 1
4/3− α(1 + 1/L)

) L
3α

< (L− 1)2αL, for all L > L′,

where L′ is a small constant. The expected running time
is therefore O(n2αL), which is O(n1+Θ(α/c)) because L =
Θ(log n/c).

�
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