
TDM -11/05 1

FP-growth Mining of Frequent Itemsets
+

Constraint-based Mining

Francesco Bonchi

e-mail: francesco.bonchi@isti.cnr.it

homepage: http://www-kdd.isti.cnr.it/~bonchi/

Pisa KDD Laboratory
http://www-kdd.isti.cnr.it

TDM – 11Maggio 06

TDM -11/05 2

TDM -11/05 3

Is Apriori Fast Enough — Any Performance
Bottlenecks?

� The core of the Apriori algorithm:

� Use frequent (k – 1)-itemsets to generate candidate frequent

k-itemsets

� Use database scan and pattern matching to collect counts

for the candidate itemsets

� The bottleneck of Apriori: candidate generation

� Huge candidate sets:

� 104 frequent 1-itemset will generate 107 candidate 2-itemsets

� To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one

needs to generate 2100 ≈ 1030 candidates.

� Multiple scans of database:

� Needs (n +1) scans, n is the length of the longest pattern

TDM -11/05 4

Mining Frequent Patterns
Without Candidate Generation

� Compress a large database into a compact,

Frequent-Pattern tree (FP-tree) structure

� highly condensed, but complete for frequent pattern

mining

� avoid costly database scans

� Develop an efficient, FP-tree-based frequent

pattern mining method

� A divide-and-conquer methodology: decompose
mining tasks into smaller ones

� Avoid candidate generation: sub-database test only!

TDM -11/05 5

How to Construct FP-tree from a Transactional
Database?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

TDM -11/05 6

Benefits of the FP-tree Structure

� Completeness:

� never breaks a long pattern of any transaction

� preserves complete information for frequent pattern
mining

� Compactness

� reduce irrelevant information—infrequent items are gone

� frequency descending ordering: more frequent items are

more likely to be shared

� never be larger than the original database (if not count

node-links and counts)

TDM -11/05 7

Mining Frequent Patterns Using FP-tree

� General idea (divide-and-conquer)

� Recursively grow frequent pattern path using the FP-

tree

� Method

� For each item, construct its conditional pattern-base,
and then its conditional FP-tree

� Repeat the process on each newly created conditional

FP-tree

� Until the resulting FP-tree is empty, or it contains only

one path (single path will generate all the combinations of its

sub-paths, each of which is a frequent pattern)

TDM -11/05 8

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the

FP-tree

2) Construct conditional FP-tree from each conditional

pattern-base

3) Recursively mine conditional FP-trees and grow

frequent patterns obtained so far

4) If the conditional FP-tree contains a single path, simply

enumerate all the patterns

TDM -11/05 9

Step 1: From FP-tree to Conditional Pattern Base

� Starting at the frequent header table in the FP-tree

� Traverse the FP-tree by following the link of each frequent item

� Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

TDM -11/05 10

Properties of FP-tree for Conditional Pattern
Base Construction

� Node-link property

� For any frequent item ai, all the possible frequent

patterns that contain ai can be obtained by following ai's

node-links, starting from ai's head in the FP-tree header

� Prefix path property

� To calculate the frequent patterns for a node ai in a path

P, only the prefix sub-path of ai in P need to be

accumulated, and its frequency count should carry the

same count as node ai.

TDM -11/05 11

Step 2: Construct Conditional FP-tree

� For each pattern-base

� Accumulate the count for each item in the base

� Construct the FP-tree for the frequent items of the pattern
base

m-conditional pattern

base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

����
����

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

TDM -11/05 12

Mining Frequent Patterns by Creating Conditional
Pattern Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p

Conditional FP-treeConditional pattern-baseItem

TDM -11/05 13

Step 3: recursively mine the conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)

{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

TDM -11/05 14

Single FP-tree Path Generation

� Suppose an FP-tree T has a single path P

� The complete set of frequent pattern of T can be

generated by enumeration of all the combinations of the

sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

����

TDM -11/05 15

Principles of Frequent Pattern Growth

� Pattern growth property

� Let α be a frequent itemset in DB, B be α's

conditional pattern base, and β be an itemset in B.

Then α ∪ β is a frequent itemset in DB iff β is

frequent in B.

� “abcdef ” is a frequent pattern, if and only if

� “abcde ” is a frequent pattern, and

� “f ” is frequent in the set of transactions containing

“abcde ”

TDM -11/05 16

Adding Constraints to Frequent Itemset
Mining

TDM -11/05 17

Why Constraints?

� Frequent pattern mining usually produces too many solution
patterns. This situation is harmful for two reasons:

1. Performance: mining is usually inefficient or, often, simply unfeasible

2. Identification of fragments of interesting knowledge blurred within a
huge quantity of small, mostly useless patterns, is an hard task.

� Constraints are the solution to both these problems:
1. they can be pushed in the frequent pattern computation exploiting them

in pruning the search space, thus reducing time and resources
requirements;

2. they provide to the user guidance over the mining process and a way of
focussing on the interesting knowledge.

� With constraints we obtain less patterns which are more
interesting. Indeed constraints are the way we use to define
what is “interesting”.

TDM -11/05 18

Problem Definition

� We indicate the frequency constraint with Cfreq

� Given a constraint C , let Th(C) = {X| C(X)} denote the set of all itemsets X
that satisfy C.

� The frequent itemsets mining problem requires to compute Th(Cfreq)

� The constrained frequent itemsets mining problem requires to compute:

Th(Cfreq) ∩ Th(C).

� I={x1, ..., xn} set of distinct literals (called items)

� X ⊆ I, X ≠ ∅, |X| = k, X is called k-itemset

� A transaction is a couple 〈tID, X〉 where X is an itemset

� A transaction database TDB is a set of transactions

� An itemset X is contained in a transaction 〈tID, Y〉 if X⊆ Y

� Given a TDB the subset of transactions of TDB in which X is contained is named
TDB[X].

� The support of an itemset X , written suppTDB(X) is the cardinality of TDB[X].

� Given a user-defined min_sup an itemset X is frequent in TDB if its support is no less
than min_sup.

TDM -11/05 19

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

� Given a frequent pattern mining query with a set of constraints C, the
algorithm should be

� sound: it only finds frequent sets that satisfy the given constraints C

� complete: all frequent sets satisfying the given constraints C are
found

� A naïve solution (generate&test)

� Generate all frequent sets, and then test them for constraint
satisfaction

� More efficient approaches:

� Analyze the properties of constraints comprehensively

� Push them as deeply as possible inside the frequent pattern
computation.

TDM -11/05 20

Anti-Monotonicity and Succinctness

� A first work defining classes of constraints which exhibit nice

properties [Ng et al. SIGMOD’98].

� Anti-monotonicity and Succinctness are introduced

� CAP, an Apriori-like algorithm which exploits anti-

monotonicity and succinctness of constraints

� 4 classes of constraints + associated computational strategy

1. Constraints that are anti-monotone but not succinct

2. Constraints that are both anti-monotone and succinct

3. Constraints that are succinct but not anti-monotone

4. Constraints that are neither

TDM -11/05 21

Anti-Monotonicity in Constraint-Based Mining

� Anti-monotonicity:

� When an intemset S satisfies the constraint, so does any

of its subset

� Frequency is an anti-monotone constraint.

� “Apriori property”: if an itemset X does not satisfy Cfreq then
no superset of X can satisfy Cfreq.

� sum(S.Price) ≤ v is anti-monotone

� Very easy to push in the frequent itemset computation

TDM -11/05 22

Succinctness in Constraint-Based Mining

� Succinctness:

� Given A1, the set of items satisfying a succinct constraint C, then any

set S satisfying C is based on A1 , i.e., S contains a subset

belonging to A1

� Idea: whether an itemset S satisfies constraint C can be determined

based on the singleton items which are in S

� min(S.Price) ≤ v is succinct

� sum(S.Price) ≥ v is not succinct

� Optimization: If C is succinct, C is pre-counting pushable (can be

satisfied at candidate-generation time).

� Substitute the usual “Generate-Apriori” procedure with a special

candidate generation procedure.

TDM -11/05 23

CAP – computational strategies

� 4 classes of constraints + associated computational strategy

1. Constraints that are anti-monotone but not succinct

� Check them in conjunction with frequency as a unique anti-monotone
constraint

2. Constraints that are both anti-monotone and succinct

� Can be pushed at preprocessing time: min(S.Price) ≥≥≥≥ v just start the
computation with candidates all singleton items having price ≥ v

3. Constraints that are succinct but not anti-monotone

� Use the special candidate-generation function

4. Constraints that are neither

� Induce a weaker constraint which is either anti-monotone and/or
succinct

TDM -11/05 24

Converting “Tough” Constraints

� Introduced in [Pei and Han KDD’00, ICDE’01]

� Let R be an order of items

� Convertible anti-monotone

� If an itemset S violates a constraint C, so does every itemset

having S as a prefix w.r.t. R

� Ex. avg(S) ≤ v w.r.t. item value descending order

� Convertible monotone

� If an itemset S satisfies constraint C, so does every itemset having

S as a prefix w.r.t. R

� Ex. avg(S) ≥ v w.r.t. item value descending order

TDM -11/05 25

Converting “Tough” Constraints

� Examine C: avg(S.profit) ≥ 25

� Order items in value-descending order

� <a, f, g, d, b, h, c, e>

� If an itemset afb violates C

� So does afbh, afb*

� It becomes anti-monotone!

� Authors state that convertible constraints can not be pushed

in Apriori but they can be handled by FP-Growth approach.

� Two FP-Growth-based algorithms:

� FICA and FICM

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

TDM -11/05 26

Strongly Convertible Constraints

� avg(X) ≥ 25 is convertible anti-monotone w.r.t. item
value descending order R: <a, f, g, d, b, h, c, e>

� If an itemset af violates a constraint C, so does
every itemset with af as prefix, such as afd

� avg(X) ≥ 25 is convertible monotone w.r.t. item
value ascending order R-1: <e, c, h, b, d, g, f, a>

� If an itemset d satisfies a constraint C, so does
itemsets df and dfa, which having d as a prefix

� Thus, avg(X) ≥ 25 is strongly convertible

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

TDM -11/05 27

Monotonicity in Constraint-Based Mining

� Monotonicity

� When an intemset S satisfies the constraint, so does any

of its superset

� sum(S.Price) ≥ v is monotone

� min(S.Price) ≤ v is monotone

� They behave exactly the opposite of frequency …

� How to push them in the Apriori computation?

TDM -11/05 28

Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly

convertible

Inconvertible

Succinct

Antimonotone
Monotone

TDM -11/05 29

ExAnte
ExAMiner

TDM -11/05 30

Our Problem …

… to compute itemsets which satisfy a conjunction of
anti-monotone and monotone constraints.

Why MonotoneMonotone Constraints?

1. They’re the mostmost usefuluseful in order to discover local high-value patterns (for
instance very expansive or very large itemsets which can be found only
with a very small min-sup)

2. We know how to exploit the other kinds of constraints (antimonotone,
succinct) since ’98 [Ng et al. SIGMOD’98], while for monotone constraints

the situation is more complex …

TDM -11/05 31

Characterizing the search space

Cfreq

CM

TDM -11/05 32

AM Vs. M

� State of art before ExAnte: when dealing with a conjunction of AM and M
constraints we face a tradeoff between AM and M pruning.

� Tradeoff: pushing M constraints into the computation can help pruning the
search space, but at the same time can lead to a reduction of AM pruning
opportunities.

� Our observation: this is true only if we focus exclusively on the search
space of itemsets. Reasoning on both the search space and the input TDB
together we can find the real sinergy of AM and M pruning.

� The real sinergy: do not exploit M constraints directly to prune the search
space, but use them to prune the data, which in turn induces a much
stronger pruning of the search space.

� The real sinergy of AM and M pruning lies in Data Reduction …

TDM -11/05 33

ExAnte µµµµ-reduction

Definition [µ-reduction]:

Given a transaction database TDB and a monotone constraint CM,

we define the µ-reduction of TDB as the dataset resulting from
pruning the transactions that do not satisfy CM.

Example: CM ≡ sum(X.price) ≥ 55

TDM -11/05 34

ExAnte αααα-reduction

Definition [α-reduction]:

Given a transaction database TDB, a transaction <tID,X> and a

frequency constraint Cfreq[TDB], we define the α-reduction <tID,X>
as the subset of items in X that satisfy Cfreq[TDB].

Where:

We define the α-reduction of TDB as the dataset resulting from the
α-reduction of all transactions in TDB.

Example:

TDM -11/05 35

ExAnte Properties

TDM -11/05 36

ExAnte Properties

TDM -11/05 37

A Fix-Point Computation

Shorter
transactions

Less frequent
1-itemsets

Less
Transactions

in TDB

α

µ

TDB
Less

transactions
which satisfy CM

… and so on …

until a fix-point

is reached

TDM -11/05 38

ExAnte Algorithm

TDM -11/05 39h

g

f

e

d

c

b

a

SupportItem

4

7
5

7
4

3

6

2

†

4
4

4
†

†

†

†

X

X

X

38
58

52

X

3

7
5

7
3

3

5

2

X X
X

X X
X X

X

X

X

X

50

44

14

†

4
5

5
†

†

3

†
X

X

X

X

52

44

52

ExAnte Preprocessing Example

� Min_sup = 4

� CM ≡ sum(X.price) ≥ 45

TDM -11/05 40

Experimental Results

TDM -11/05 41

Experimental Results

TDM -11/05 42

Experimental Results

TDM -11/05 43

Experimental Results

TDM -11/05 44

ExAnte Property (Monotone Data Reduction)

� ExAnte Property: a transaction which does not satisfy a M
constraint can be pruned away from TDB, since it will never
contribute to the support of any solution itemset.

� We call it Monotone Data Reduction and indicate it as µµµµ-reduction.

� Level 1 - Antimonotone Data Reduction of Items (αααα-reduction): a
singleton item which is not frequent can be pruned away from all
transactions in TDB.

� The two components strengthen each other !!!

� ExAnte fixpoint computation.

Shorter

transactions

Less frequent

itemsets

Less

Transactions
in TDB

αααα

µµµµ
Less

transactions
which satisfy CM

The
Virtuous
Cycle

TDM -11/05 45

EExxAMAMineriner:: key idea and basic data reductions

� To exploit the real sinergy of AM and M pruning at all levels of a level-
wise computation (generalizing Apriori algorithm with M constraints).

� Coupling µµµµ-reduction with AM data reductions at all levels .

� At the generic level k:

[Gααααk] Global Antimonotone Data Reduction of Items: a singleton item

which is not subset of at least k frequent k-itemsets can be pruned away
from all transactions in TDB.

[Tααααk] Antimonotone Data Reduction of Transactions: a transaction

which is not superset of at least k+1 frequent k-itemsets can be pruned
away from TDB.

candidate

[Lααααk] Local Antimonotone Data Reduction of Items: given an item i and a

transaction X, if the number of candidate k-itemsets which are superset of i
and subset of X is less than k, then i can be pruned away from transaction
X.

TDM -11/05 46

EExxAMAMineriner – Count & Reduce

TDBk

Read trans T

T → T’Gααααk-1

|T’| ≥ k?

yes

Count supportsCM(T’)?

µµµµ-reduction

yes

|T’| > k?

yes

Prune T’? Tααααk

T’ → T’’

no

Lααααk

|T’’| > k?
yes

CM(T’’)?

µµµµ-reduction

TDBk+1

Write trans T’’

yes

� EExxAMAMineriner Algorithm ≡ Apriori-like computation where the usual “Count”

routine is substituted by a “Count & Reduce” routine.

� “Count & Reduce”: each transaction, when fetched from TDBk , passes
through two series of reductions and tests:

�only if it survives the first phase, it is used to count the support of
candidate itemsets;

� each transaction which arrives to the counting phase, is then reduced
again as much as possible, and only if it survives this second phase it is
written to TDBk+1

TDM -11/05 47

Further Pruning Opportunities

� When dealing with the Cardinality Monotone Constraint: CCMM ≡≡≡≡≡≡≡≡ card(S) card(S) ≥≥≥≥≥≥≥≥ nn
we can exploit stronger pruning at very low computational price.

� At the generic level k:

- Enhanced Data Reduction of Items: a singleton item which is not

subset of at least frequent k-itemsets can be pruned away from all

transactions in TDB.

- Generators Pruning: let Lk be the set of frequent k-itemsets, and let Sk

be the set of itemsets in Lk which contain at least a singleton item which

does not appear in at least frequent k-itemsets.

In order to generate the set of candidates for the next iteration Ck+1 do not

use the whole set of generators Lk ; use Lk\ Sk instead.

� This is the first proposal of pruning of the generators ...

TDM -11/05 48

Further Pruning Opportunities

� Enhanced Local Antimonotone Data Reduction of Items: given an item
i and a transaction X, if the number of candidate k-itemsets which are
superset of i and subset of X is less than then i can be pruned
away from transaction X.

� Similar pruning enhancement can be obtained also for all other monotone
constraints, inducing weaker conditions from the cardinality based
condition.

� Example: CCMM ≡≡≡≡≡≡≡≡ sumsum(S.price) (S.price) ≥≥≥≥≥≥≥≥ mm

For each item i:

1. Compute the maximum value of n for which the number of frequent k-itemsets

containing i is greater than

(this value is an upper bound for the maximum size of a frequent itemset containing i)

1. From this value induce the maximum sum of price for a frequent itemset containing i

2. If this sum is less than m, prune away i from all transactions.

TDM -11/05 49

EExxAMAMineriner implementations

.....1 62 3 4 5

Count:

Count and AM reduce:

Count, AM and M reduce:

Count, AM and M reduce (fixpoint):

G&T (Apriori)AM pruningExAnte - G&TExAMinerExAMiner00ExAMinerExAMiner11ExAMinerExAMiner22

TDM -11/05 50

Dataset Synt, min_sup = 1100, sum(prices) > 2500

Iteration

0 2 4 6 8 10 12

N
u
m

b
e
r

o
f
tr

a
n
s
a

c
ti
o

n
s

0

500000

1000000

1500000

2000000

2500000

G&T

ExAnte - G&T

AMpruning

ExAMiner2

TDM -11/05 51

Dataset Synt, min_sup = 1200, sum(prices) > m

m

2200 2300 2400 2500 2600 2700 2800

R
u

n
 T

im
e

 (
m

s
e

c
)

600000

800000

1000000

1200000

1400000

1600000

G&T

ExAnte - G&T

ExAMiner0

ExAMiner1

ExAMiner2

DualMiner

ExAnte-DualMiner

TDM -11/05 52

A very general idea

� Mine frequent connected subgraphs

� Containing at least 4 nodes

TDM -11/05 53

A very general idea

� Mine frequent connected subgraphs

� Containing at least 4 nodes

TDM -11/05 54

A very general idea

� Mine frequent connected subgraphs

� Containing at least 4 nodes

TDM -11/05 55

A New Class of Constraints
(on-going work)

TDM -11/05 56

Loose Anti-monotone Constraints

� Motivations:

1. There are interesting constraints which are not convertible (e.g. variance,
standard deviation etc…): can we push them in the frequant pattern
computation?

2. For convertible constraints FICA and FICM solutions not really satisfactory

3. Is it really true that we can not push tough (e.g. convertible) constraints in an
Ariori-like frequent pattern computation?

� A new class of constraints …

Anti-monotonicity:

When an intemset S satisfies the constraint, so does any of its subset …

Loose Anti-monotonicity:

When an (k+1)-intemset S, satisfies the constraint, so does at least one
of its k-subset…

TDM -11/05 57

Class Characterization

� Convertibe Anti-monotone constraints are Loose Anti-monotone
constraints.

� There are many interesting constraints which are not Convertible but
are Loose Anti-monotone

� Example: var(X.profit) ≤ n

Not Convertible …

Loose Anti-monotone:

given an itemset X which satisfies the constraint, let i ∈ X be the
element of X with larger distance for the avg(X), then the itemset
X \{i} has a variance which smaller than var(X), thus it satisfies
the constraint.

TDM -11/05 58

Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly
convertible

Loose Anti-Monotone

Succinct

Antimonotone
Monotone

TDM -11/05 59

Classification of Constraints

TDM -11/05 60

A First Interesting Property

Given the conjunction of frequency with a Loose Anti-monotone
constraint.

At iteration k:

Loose Antimonotone Data Reduction of Transactions: a transaction
which is not superset of at least one solution k-itemsets can be pruned
away from TDB.

Example: avg(X.profit) ≥ 15

t = < a,b,c,d,e,f>

avg(t) = 20

k= 3

t covers 3 frequent itemsets: <b,c,d>, <b,d,e>, <c,d,e>

t can be pruned away from TDB
10h

20g

35f

15e

5d

20c

5b

40a

ProfitItem

TDM -11/05 61

TDM -11/05 62

TDM -11/05 63

References

� Bonchi, Lucchese “Pushing Tougher Constraints” (PAKDD’05)

� Bonchi, Goethals “FP-Bonsai: the Art of Growing and Pruning Small FP-
Trees” (PAKDD'04)

� Bonchi, Giannotti, Mazzanti, Pedreschi. “ExAnte: a Preprocessing Algorithm
for Constrained Frequent Pattern Mining” (PKDD’03)

� Bonchi, Giannotti, Mazzanti, Pedreschi. “Adaptive Constraint Pushing in
Frequent Pattern Mining” (PKDD03)

� Bonchi, Giannotti, Mazzanti, Pedreschi. “ExAMiner: Optimized Level-wise
Frequent Pattern Mining with Monotone Constraints” (ICDM’03)

� Han, Pei, Yin: “Mining frequent patterns without candidate generation”
(SIGMOD’00)

� Pei, Han "Can We Push More Constraints into Frequent Pattern Mining?“
(KDD’00)

� Ng, Lakshmanan, Han, Pang “Exploratory Mining and Pruning Optimizations
of Constrained Association Rules” (SIGMOD’98)

