
Definitions Existence and optimality Scalarization Goal method

Multiobjective optimization

Mauro Passacantando

Department of Computer Science, University of Pisa
mauro.passacantando@unipi.it

Optimization Methods
Master of Science in Embedded Computing Systems – University of Pisa

http://pages.di.unipi.it/passacantando/om/OM.html

M. Passacantando Optimization Methods 1 / 21 –



Definitions Existence and optimality Scalarization Goal method

Pareto order

In a multiobjective optimization problem the objective function f
is a vector of p elements: f (x) = (f1(x), f2(x), . . . , fp(x)).

There are often conflicting objectives −→ definition of optimality is not obvious.
We need to define an order in Rp.

Pareto order
Given x , y ∈ Rp, we say that

x ≥ y ⇐⇒ xi ≥ yi for any i = 1, . . . , p.

This relation is a partial order in Rp: it is

I reflexive: x ≥ x

I asymmetric: if x ≥ y and y ≥ x then x = y

I transitive: if x ≥ y and y ≥ z then x ≥ z

but it is not a total order: if x = (1, 4) and y = (3, 2) then x � y and y � x
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Minimum definitions for a set of vectors

Definition Given a subset A ⊆ Rp, we say

I x ∈ A is a Pareto ideal minimum (or ideal efficient point) of A if y ≥ x for
any y ∈ A.

I x ∈ A is a Pareto minimum (or efficient point) of A if there is no y ∈ A,
y 6= x such that x ≥ y .

I x ∈ A is a Pareto weak minimum (or weakly efficient point) of A if there is
no y ∈ A, y 6= x such that x > y , i.e., xi > yi for any i = 1, . . . , p.

IMin(A), Min(A) and WMin(A) denote the set of ideal minima, minima, weak
minima of A, respectively.

Example 1. A = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.
IMin(A) = Min(A) = {(0, 0)}, WMin(A) = {x ∈ A : x1 = 0 or x2 = 0}.

Example 2. B = {x ∈ R2 : 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, x1 + x2 ≥ 1}.
IMin(B) = ∅, Min(B) = {x ∈ B : x1 + x2 = 1},
WMin(B) = {x ∈ B : x1 = 0 or x2 = 0 or x1 + x2 = 1}.

Proposition. IMin(A) ⊆ Min(A) ⊆WMin(A).
If IMin(A) 6= ∅, then IMin(A) = Min(A) = {x̄}.
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Minimum definitions for an optimization problem

Definition
Given a multiobjective optimization problem{

min f (x) = (f1(x), f2(x), . . . , fp(x))
x ∈ Ω

(P)

I x∗ ∈ Ω is a Pareto ideal minimum of (P) if f (x∗) is an Pareto ideal minimum
of f (Ω), i.e., f (x) ≥ f (x∗) for any x ∈ Ω.

I x∗ ∈ Ω is a Pareto minimum of (P) if f (x∗) is a Pareto minimum of f (Ω),
i.e., if there is no x ∈ Ω such that

fi (x
∗) ≥ fi (x) for any i = 1, . . . , p,

fj(x
∗) > fj(x) for some j ∈ {1, . . . , p}.

I x∗ ∈ Ω is a Pareto weak minimum of (P) if f (x∗) is a Pareto weak minimum
of f (Ω), i.e., if there is no x ∈ Ω such that

fi (x
∗) > fi (x) for any i = 1, . . . , p.
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Minimum definitions for an optimization problem

Example. Consider 
min (x1 − x2, −2x1 + x2)
x1 ≤ 1
−x1 ≤ 0
−x1 + x2 ≤ 2
2x1 − x2 ≤ 0

(P)

The image f (Ω) = {(y1, y2) : y1 = x1 − x2, y2 = −2x1 + x2, x ∈ Ω}.
We obtain x1 = −y1 − y2 and x2 = −2y1 − y2, hence
f (Ω) = {(y1, y2) : −y1 − y2 ≤ 1, y1 + y2 ≤ 0, −y1 ≤ 2, −y2 ≤ 0}.
IMin(f (Ω)) = ∅. Min(f (Ω)) = {y ∈ f (Ω) : −y1 − y2 = 1}, thus

{minima of (P)} = {x ∈ Ω : −x1 + x2 + 2x1 − x2 = 1} = {x ∈ Ω : x1 = 1}.

WMin(f (Ω)) = {y ∈ f (Ω) : −y1 − y2 = 1 or y1 = −2 or y2 = 0}, thus

{weak minima of (P)} = {x ∈ Ω : x1 = 1 or x1 − x2 = −2 or− 2x1 + x2 = 0}.
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Existence results

Generalized Weierstrass Theorem
If fi is continuous for any i = 1 . . . , p and Ω is closed and bounded, then there
exists a minimum of (P).

Theorem
If fi is continuous for any i = 1 . . . , p, Ω is closed and there are v ∈ R and
j ∈ {1, . . . , p} such that the sublevel set

{x ∈ Ω : fj(x) ≤ v}

is nonempty and bounded, then there exists a minimum of (P).

Corollary. If fi is continuous for any i = 1 . . . , p, Ω is closed and fj is coercive for
some j ∈ {1, . . . , p}, then there exists a minimum of (P).
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Optimality conditions
Theorem
x∗ ∈ Ω is a minimum of (P) if and only if the auxiliary optimization problem

max
p∑

i=1

εi

fi (x) + εi ≤ fi (x
∗) ∀ i = 1, . . . , p

x ∈ Ω
ε ≥ 0

has optimal value equal to 0.

Theorem
x∗ ∈ Ω is a weak minimum of (P) if and only if the auxiliary optimization problem

max v
v ≤ εi ∀ i = 1, . . . , p
fi (x) + εi ≤ fi (x

∗) ∀ i = 1, . . . , p
x ∈ Ω
ε ≥ 0

has optimal value equal to 0.
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Optimality conditions

Exercise 1. Consider the linear multiobjective problem
min (x1 + 2x2 − 3x3 , −x1 − x2 − x3 , −4x1 − 2x2 + x3)
x1 + x2 + x3 ≤ 10
x3 ≤ 5
x1, x2, x3 ≥ 0

Check if the points u = (5, 0, 5), v = (4, 4, 2) and w = (1, 4, 4) are minima or
weak minima by solving the corresponding auxiliary problems.
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First-order optimality conditions: unconstrained problems

Consider an unconstrained multiobjective problem{
min f (x) = (f1(x), f2(x), . . . , fp(x))
x ∈ Rn (P)

where fi is continuously differentiable for any i = 1, . . . , p.

Necessary optimality condition

If x∗ is a weak minimum of (P), then there exists ξ∗ ∈ Rp such that
p∑

i=1

ξ∗i ∇fi (x∗) = 0

ξ∗ ≥ 0,
p∑

i=1

ξ∗i = 1
(S)

Sufficient optimality condition

If the problem (P) is convex, i.e., fi is convex for any i = 1, . . . , p,
and (x∗, ξ∗) is a solution of the system (S), then x∗ is a weak minimum of (P).
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First-order optimality conditions: unconstrained problems

Exercise 2. Consider the nonlinear multiobjective problem{
min (x2

1 + x2
2 , (x1 − 1)2 + (x2 − 1)2)

x ∈ R2

1. Find the set of weak minima exploiting the first-order optimality conditions.

2. Find the set of minima.
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First-order optimality conditions: constrained problems

Consider a constrained multiobjective problem min f (x) = (f1(x), f2(x), . . . , fp(x))
gj(x) ≤ 0 ∀ j = 1, . . . ,m
hk(x) = 0 ∀ k = 1, . . . , q

(P)

where fi , gj and hk are continuously differentiable for any i , j , k .

Necessary optimality condition

If x∗ is a weak minimum of (P) and ACQ holds at x∗, then there exist ξ∗ ∈ Rp,
λ∗ ∈ Rm and µ∗ ∈ Rq such that (x∗, ξ∗, λ∗, µ∗) solves the KKT system

p∑
i=1

ξ∗i ∇fi (x∗) +
m∑
j=1

λ∗j ∇gj(x∗) +
q∑

k=1

µ∗k∇hk(x∗) = 0

ξ∗ ≥ 0,
p∑

i=1

ξ∗i = 1

λ∗ ≥ 0
λ∗j gj(x

∗) = 0 ∀ j = 1, . . . ,m

Sufficient optimality condition

If (P) is convex, i.e., fi convex, gj convex and hk affine, and (x∗, ξ∗, λ∗, µ∗) solves
the KKT system, then x∗ is a weak minimum of (P).
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First-order optimality conditions: constrained problems

Exercise 3. Consider the nonlinear multiobjective problem{
min (x1 + x2, −x1 + x2)

x2
1 + x2

2 − 1 ≤ 0

1. Find the set of weak minima by solving the KKT system.

2. Find the set of minima.
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Scalarization method

Define a vector of weights associated to the objectives:

α = (α1, . . . , αp) ≥ 0 such that

p∑
i=1

αi = 1

and consider the following scalar optimization problem min

p∑
i=1

αi fi (x)

x ∈ Ω

(Pα)

Let Sα be the set of optimal solutions of (Pα).

Theorem

I
⋃
α≥0

Sα ⊆ { weak minima of (P) }

I
⋃
α>0

Sα ⊆ { minima of (P) }

I If α ≥ 0 and x∗ is the unique optimal solution of (Pα), then x∗ is a minimum
of (P).
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Scalarization method

Solving (Pα) for any possible choice of α does not allow finding all the minima
and weak minima.
Example. Consider 

min (x1, x2)
x2

1 + x2
2 − 4 ≤ 0

−x2
1 − x2

2 + 1 ≤ 0
x1 ≥ 0, x2 ≥ 0⋃

α≥0

Sα = {(0, x2) : x2 ∈ [1, 2]} ∪ {(x1, 0) : x1 ∈ [1, 2]},

while

{ weak minima of (P) } =
{(0, x2) : x2 ∈ [1, 2]} ∪ {(x1, 0) : x1 ∈ [1, 2]} ∪ {x ∈ R2

+ : x2
1 + x2

2 = 1}.

Furthermore, ⋃
α>0

Sα = {(0, 1), (1, 0)},

while
{ minima of (P) } = {x ∈ R2

+ : x2
1 + x2

2 = 1}.
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Scalarization method

Theorem

I If (P) is convex, then
⋃
α≥0

Sα = { weak minima of (P) }

I If (P) is linear, then
⋃
α>0

Sα = { minima of (P) }

Exercise 4. Consider the linear multiobjective problem
min (x1 − x2 , x1 + x2)
−2 x1 + x2 ≤ 0
−x1 − x2 ≤ 0
5 x1 − x2 ≤ 6

Find the set of minima and weak minima by means of the scalarization method.
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Scalarization method

Exercise 5. Consider the nonlinear multiobjective problem
min (x2

1 + x2
2 + 2x1 − 4x2 , x

2
1 + x2

2 − 6x1 − 4x2)
−x2 ≤ 0
−2x1 + x2 ≤ 0
2x1 + x2 ≤ 4

a) Find a subset of minima by means of the scalarization method.

b) Find the set of all weak minima by means of the scalarization method.

c) Find the set of all minima.
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Goal method

In the objective space Rp define the ideal point z as

zi = min
x∈Ω

fi (x), ∀ i = 1, . . . , p.

Since very often (P) has no ideal minimum, i.e., z /∈ f (Ω), we want to find the
point of f (Ω) which is as close as possible to z :{

min ‖f (x)− z‖s
x ∈ Ω

with s ∈ [1,+∞]. (G)

Theorem

I If s ∈ [1,+∞), then any optimal solution of (G) is a minimum of (P).

I If s = +∞, then any optimal solution of (G) is a weak minimum of (P).
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Goal method

Assume that (P) is a linear multiobjective optimization problem, i.e.,{
min Cx
Ax ≤ b

(P)

where C is a p × n matrix.

If s = 2, then (G) is equivalent to a quadratic programming problem:{
min 1

2‖Cx − z‖2
2 = 1

2x
TCTCx − xTCTz + 1

2z
Tz

Ax ≤ b
(G2)
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Goal method

If s = 1, then (G) is equivalent to the linear programming problem
min
x,y

p∑
i=1

yi

yi ≥ Cix − zi ∀ i = 1, . . . , p
yi ≥ zi − Cix ∀ i = 1, . . . , p
Ax ≤ b

(G1)

If s = +∞, then (G) is equivalent to the linear programming problem
min
x,y

y

y ≥ Cix − zi ∀ i = 1, . . . , p
y ≥ zi − Cix ∀ i = 1, . . . , p
Ax ≤ b

(G∞)
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Goal method
Example. Consider 

min (x1 − x2 , x1 + x2)
−2 x1 + x2 ≤ 0
−x1 − x2 ≤ 0
5 x1 − x2 ≤ 6

The set f (Ω) is shown in the figure below.
The ideal point is z = (−2, 0) (black point).
The optimal solution of (G2) is x∗ = (1/5, 2/5) and f (x∗) = (−1/5, 3/5).
The optimal solution of (G1) is x̃ = (0, 0) and f (x̃) = (0, 0).
The optimal solution of (G∞) is x̄ = (1/2, 1) and f (x̄) = (−1/2, 3/2).

-3 -2 -1 0 1 2 3
-1

0
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2
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Goal method

Exercise 6. Consider the linear multiobjective problem
min (x1 + 2x2 − 3x3 , −x1 − x2 − x3 , −4x1 − 2x2 + x3)
x1 + x2 + x3 ≤ 10
x3 ≤ 5
x1, x2, x3 ≥ 0

a) Find the ideal point.

b) Apply the goal method with s = 1.

c) Apply the goal method with s = 2.

d) Apply the goal method with s = +∞. Is the found point a minimum?
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