Multiobjective optimization

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods Master of Science in Embedded Computing Systems – University of Pisa http://pages.di.unipi.it/passacantando/om/OM.html

Scalarization

Goal method

Pareto order

In a multiobjective optimization problem the objective function f is a vector of p elements: $f(x) = (f_1(x), f_2(x), \dots, f_p(x))$.

There are often conflicting objectives \longrightarrow definition of *optimality* is not obvious. We need to define an order in \mathbb{R}^{p} .

Pareto order

Given $x, y \in \mathbb{R}^p$, we say that

$$x \ge y \quad \Longleftrightarrow \quad x_i \ge y_i \quad \text{ for any } i = 1, \dots, p.$$

This relation is a partial order in \mathbb{R}^{p} : it is

- reflexive: $x \ge x$
- asymmetric: if $x \ge y$ and $y \ge x$ then x = y
- transitive: if $x \ge y$ and $y \ge z$ then $x \ge z$

but it is not a total order: if x = (1, 4) and y = (3, 2) then $x \not\geq y$ and $y \not\geq x$

Optimization Methods

2 / 21 -

Minimum definitions for a set of vectors

Definition Given a subset $A \subseteq \mathbb{R}^p$, we say

- x ∈ A is a Pareto ideal minimum (or ideal efficient point) of A if y ≥ x for any y ∈ A.
- ▶ $x \in A$ is a Pareto minimum (or efficient point) of A if there is no $y \in A$, $y \neq x$ such that $x \geq y$.
- x ∈ A is a Pareto weak minimum (or weakly efficient point) of A if there is no y ∈ A, y ≠ x such that x > y, i.e., x_i > y_i for any i = 1,..., p.

IMin(A), Min(A) and WMin(A) denote the set of ideal minima, minima, weak minima of A, respectively.

Example 1.
$$A = \{x \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1\}.$$

 $IMin(A) = Min(A) = \{(0,0)\}, WMin(A) = \{x \in A : x_1 = 0 \text{ or } x_2 = 0\}.$

Example 2.
$$B = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 2, 0 \le x_2 \le 2, x_1 + x_2 \ge 1\}$$
.
 $IMin(B) = \emptyset, Min(B) = \{x \in B : x_1 + x_2 = 1\},$
 $WMin(B) = \{x \in B : x_1 = 0 \text{ or } x_2 = 0 \text{ or } x_1 + x_2 = 1\}.$

Proposition. $IMin(A) \subseteq Min(A) \subseteq WMin(A)$. If $IMin(A) \neq \emptyset$, then $IMin(A) = Min(A) = \{\bar{x}\}$.

M. Passacantando

Optimization Methods

Minimum definitions for an optimization problem

Definition

Given a multiobjective optimization problem

$$\begin{pmatrix} \min f(x) = (f_1(x), f_2(x), \dots, f_p(x)) \\ x \in \Omega \end{pmatrix} (P)$$

- x* ∈ Ω is a Pareto ideal minimum of (P) if f(x*) is an Pareto ideal minimum of f(Ω), i.e., f(x) ≥ f(x*) for any x ∈ Ω.
- $x^* \in \Omega$ is a Pareto minimum of (P) if $f(x^*)$ is a Pareto minimum of $f(\Omega)$, i.e., if there is no $x \in \Omega$ such that
 - $f_i(x^*) \ge f_i(x)$ for any $i = 1, \dots, p$, $f_j(x^*) > f_j(x)$ for some $j \in \{1, \dots, p\}$.
- x^{*} ∈ Ω is a Pareto weak minimum of (P) if f(x^{*}) is a Pareto weak minimum of f(Ω), i.e., if there is no x ∈ Ω such that

$$f_i(x^*) > f_i(x) \qquad \text{for any } i=1,\ldots,p.$$

Optimization Methods

4 / 21 -

Minimum definitions for an optimization problem

Example. Consider

$$\min (x_1 - x_2, -2x_1 + x_2) x_1 \le 1 -x_1 \le 0 -x_1 + x_2 \le 2 2x_1 - x_2 \le 0$$
 (P)

The image $f(\Omega) = \{(y_1, y_2): y_1 = x_1 - x_2, y_2 = -2x_1 + x_2, x \in \Omega\}.$ We obtain $x_1 = -y_1 - y_2$ and $x_2 = -2y_1 - y_2$, hence $f(\Omega) = \{(y_1, y_2): -y_1 - y_2 \leq 1, y_1 + y_2 \leq 0, -y_1 \leq 2, -y_2 \leq 0\}.$ $IMin(f(\Omega)) = \emptyset. Min(f(\Omega)) = \{y \in f(\Omega): -y_1 - y_2 = 1\},$ thus

 $\{\text{minima of }(\mathsf{P})\} = \{x \in \Omega: \ -x_1 + x_2 + 2x_1 - x_2 = 1\} = \{x \in \Omega: \ x_1 = 1\}.$

$$WMin(f(\Omega)) = \{y \in f(\Omega) : -y_1 - y_2 = 1 \text{ or } y_1 = -2 \text{ or } y_2 = 0\}, \text{ thus}$$

{weak minima of (P)} = { $x \in \Omega : x_1 = 1$ or $x_1 - x_2 = -2$ or $-2x_1 + x_2 = 0$ }.

Optimization Methods

Scalarization

Existence results

Generalized Weierstrass Theorem

If f_i is continuous for any $i = 1 \dots, p$ and Ω is closed and bounded, then there exists a minimum of (P).

Theorem

If f_i is continuous for any i = 1 ..., p, Ω is closed and there are $v \in \mathbb{R}$ and $j \in \{1, ..., p\}$ such that the sublevel set

$$\{x \in \Omega : f_j(x) \leq v\}$$

is nonempty and bounded, then there exists a minimum of (P).

Corollary. If f_i is continuous for any i = 1 ..., p, Ω is closed and f_j is coercive for some $j \in \{1, ..., p\}$, then there exists a minimum of (P).

Optimality conditions Theorem

 $x^* \in \Omega$ is a minimum of (P) if and only if the auxiliary optimization problem

$$\begin{cases} \max \sum_{i=1}^{p} \varepsilon_i \\ f_i(x) + \varepsilon_i \le f_i(x^*) \quad \forall i = 1, \dots, p \\ x \in \Omega \\ \varepsilon \ge 0 \end{cases}$$

has optimal value equal to 0.

Theorem

 $x^* \in \Omega$ is a weak minimum of (P) if and only if the auxiliary optimization problem

$$\begin{cases} \max v \\ v \leq \varepsilon_i \\ f_i(x) + \varepsilon_i \leq f_i(x^*) \\ x \in \Omega \\ \varepsilon \geq 0 \end{cases} \quad \forall i = 1, \dots, p$$

has optimal value equal to 0.

M. Passacantando

Optimization Methods

Optimality conditions

Exercise 1. Consider the linear multiobjective problem

$$\begin{cases} \min \left(x_1 + 2x_2 - 3x_3 \ , \ -x_1 - x_2 - x_3 \ , \ -4x_1 - 2x_2 + x_3 \right) \\ x_1 + x_2 + x_3 \le 10 \\ x_3 \le 5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Check if the points u = (5, 0, 5), v = (4, 4, 2) and w = (1, 4, 4) are minima or weak minima by solving the corresponding auxiliary problems.

First-order optimality conditions: unconstrained problems Consider an unconstrained multiobjective problem

$$\begin{cases} \min f(x) = (f_1(x), f_2(x), \dots, f_p(x)) \\ x \in \mathbb{R}^n \end{cases}$$
(P)

where f_i is continuously differentiable for any i = 1, ..., p.

Necessary optimality condition

If x^* is a weak minimum of (P), then there exists $\xi^* \in \mathbb{R}^p$ such that

$$\begin{cases} \sum_{i=1}^{p} \xi_{i}^{*} \nabla f_{i}(x^{*}) = 0\\ \xi^{*} \ge 0, \quad \sum_{i=1}^{p} \xi_{i}^{*} = 1 \end{cases}$$
(S)

Sufficient optimality condition

If the problem (P) is convex, i.e., f_i is convex for any i = 1, ..., p, and (x^*, ξ^*) is a solution of the system (S), then x^* is a weak minimum of (P).

M. Passacantando

Optimization Methods

9 / 21

First-order optimality conditions: unconstrained problems

Exercise 2. Consider the nonlinear multiobjective problem

$$\left\{ egin{array}{l} {
m min} \ (x_1^2+x_2^2, \ (x_1-1)^2+(x_2-1)^2) \ x\in \mathbb{R}^2 \end{array}
ight.$$

Find the set of weak minima exploiting the first-order optimality conditions.
 Find the set of minima.

First-order optimality conditions: constrained problems

Consider a constrained multiobjective problem

$$\begin{cases} \min f(x) = (f_1(x), f_2(x), \dots, f_p(x)) \\ g_j(x) \le 0 \quad \forall \ j = 1, \dots, m \\ h_k(x) = 0 \quad \forall \ k = 1, \dots, q \end{cases}$$
(P)

where f_i , g_j and h_k are continuously differentiable for any i, j, k.

Necessary optimality condition

If x^* is a weak minimum of (P) and ACQ holds at x^* , then there exist $\xi^* \in \mathbb{R}^p$, $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^q$ such that $(x^*, \xi^*, \lambda^*, \mu^*)$ solves the KKT system

$$\begin{cases} \sum_{i=1}^{p} \xi_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{j=1}^{m} \lambda_{j}^{*} \nabla g_{j}(x^{*}) + \sum_{k=1}^{q} \mu_{k}^{*} \nabla h_{k}(x^{*}) = 0 \\ \xi^{*} \geq 0, \quad \sum_{i=1}^{p} \xi_{i}^{*} = 1 \\ \lambda^{*} \geq 0 \\ \lambda_{i}^{*} g_{j}(x^{*}) = 0 \qquad \forall j = 1, \dots, m \end{cases}$$

Sufficient optimality condition

If (P) is convex, i.e., f_i convex, g_j convex and h_k affine, and $(x^*, \xi^*, \lambda^*, \mu^*)$ solves the KKT system, then x^* is a weak minimum of (P).

M. Passacantando

Optimization Methods

11 / 21

First-order optimality conditions: constrained problems

Exercise 3. Consider the nonlinear multiobjective problem

$$\begin{cases} \min (x_1 + x_2, -x_1 + x_2) \\ x_1^2 + x_2^2 - 1 \le 0 \end{cases}$$

1. Find the set of weak minima by solving the KKT system.

2. Find the set of minima.

Scalarization method

Define a vector of weights associated to the objectives:

$$lpha = (lpha_1, \dots, lpha_p) \geq 0$$
 such that $\sum_{i=1}^p lpha_i = 1$

and consider the following scalar optimization problem

$$\begin{cases} \min \sum_{i=1}^{p} \alpha_i f_i(x) \\ x \in \Omega \end{cases}$$
 (P_{\alpha})

Let S_{α} be the set of optimal solutions of (P_{α}) .

Theorem

•
$$\bigcup_{\alpha \ge 0} S_{\alpha} \subseteq \{ \text{ weak minima of (P)} \}$$

•
$$\bigcup_{\alpha>0} S_{\alpha} \subseteq \{ \text{ minima of (P)} \}$$

If α ≥ 0 and x* is the unique optimal solution of (P_α), then x* is a minimum of (P).

1

Scalarization method

Solving (P_{α}) for any possible choice of α does not allow finding all the minima and weak minima.

Example. Consider

$$\left\{egin{array}{l} \min{(x_1,\ x_2)}\ x_1^2+x_2^2-4\leq 0\ -x_1^2-x_2^2+1\leq 0\ x_1\geq 0,\ x_2\geq 0\end{array}
ight.$$
 $\bigcup_{lpha\geq 0} \mathcal{S}_lpha=\{(0,x_2):\ x_2\in [1,2]\}\cup\{(x_1,0):\ x_1\in [1,2]\},$

while

$$\{ \text{ weak minima of (P) } \} = \\ \{ (0, x_2) : \ x_2 \in [1, 2] \} \cup \{ (x_1, 0) : \ x_1 \in [1, 2] \} \cup \{ x \in \mathbb{R}^2_+ : \ x_1^2 + x_2^2 = 1 \}.$$

Furthermore,

$$\bigcup_{\alpha>0}S_{\alpha}=\{(0,1),(1,0)\},$$

while

$$\{ \text{ minima of (P)} \} = \{ x \in \mathbb{R}^2_+ : x_1^2 + x_2^2 = 1 \}.$$

M. Passacantando

Optimization Methods

Scalarization method

Theorem

Exercise 4. Consider the linear multiobjective problem

 $\alpha > 0$

$$\left\{\begin{array}{l} \min\left(x_1 - x_2 \ , \ x_1 + x_2\right) \\ -2 \, x_1 + x_2 \leq 0 \\ -x_1 - x_2 \leq 0 \\ 5 \, x_1 - x_2 \leq 6 \end{array}\right.$$

Find the set of minima and weak minima by means of the scalarization method.

Scalarization method

Exercise 5. Consider the nonlinear multiobjective problem

$$\left\{\begin{array}{l} \min\left(x_1^2+x_2^2+2x_1-4x_2\;,\; x_1^2+x_2^2-6x_1-4x_2\right)\\ -x_2 \leq 0\\ -2x_1+x_2 \leq 0\\ 2x_1+x_2 \leq 4\end{array}\right.$$

- a) Find a subset of minima by means of the scalarization method.
- b) Find the set of all weak minima by means of the scalarization method.
- c) Find the set of all minima.

In the objective space \mathbb{R}^{p} define the ideal point z as

$$z_i = \min_{x \in \Omega} f_i(x), \quad \forall i = 1, \dots, p.$$

Since very often (P) has no ideal minimum, i.e., $z \notin f(\Omega)$, we want to find the point of $f(\Omega)$ which is as close as possible to z:

$$\begin{cases} \min \|f(x) - z\|_s \\ x \in \Omega \end{cases} \quad \text{with } s \in [1, +\infty]. \tag{G}$$

Theorem

- If $s \in [1, +\infty)$, then any optimal solution of (G) is a minimum of (P).
- If $s = +\infty$, then any optimal solution of (G) is a weak minimum of (P).

Assume that (P) is a linear multiobjective optimization problem, i.e.,

$$\begin{cases} \min Cx \\ Ax \le b \end{cases}$$
(P)

where C is a $p \times n$ matrix.

If s = 2, then (G) is equivalent to a quadratic programming problem:

$$\begin{cases} \min \frac{1}{2} \|Cx - z\|_2^2 = \frac{1}{2} x^{\mathsf{T}} C^{\mathsf{T}} Cx - x^{\mathsf{T}} C^{\mathsf{T}} z + \frac{1}{2} z^{\mathsf{T}} z \\ Ax \le b \end{cases}$$
(G₂)

If s = 1, then (G) is equivalent to the linear programming problem

If $s = +\infty$, then (G) is equivalent to the linear programming problem

$$\begin{cases} \min_{x,y} y \\ y \ge C_i x - z_i & \forall i = 1, \dots, p \\ y \ge z_i - C_i x & \forall i = 1, \dots, p \\ Ax \le b \end{cases}$$
 (G_{\infty})

Example. Consider

$$\left(\begin{array}{c} \min\left(x_{1}-x_{2} \ , \ x_{1}+x_{2}\right) \\ -2 \, x_{1}+x_{2} \leq 0 \\ -x_{1}-x_{2} \leq 0 \\ 5 \, x_{1}-x_{2} \leq 6 \end{array}\right)$$

The set $f(\Omega)$ is shown in the figure below. The ideal point is z = (-2, 0) (black point). The optimal solution of (G₂) is $x^* = (1/5, 2/5)$ and $f(x^*) = (-1/5, 3/5)$. The optimal solution of (G₁) is $\tilde{x} = (0, 0)$ and $f(\tilde{x}) = (0, 0)$. The optimal solution of (G_{∞}) is $\bar{x} = (1/2, 1)$ and $f(\bar{x}) = (-1/2, 3/2)$.

M. Passacantando

Optimization Methods

20 / 21 -

Exercise 6. Consider the linear multiobjective problem

$$\begin{cases} \min \left(x_1 + 2x_2 - 3x_3 \ , \ -x_1 - x_2 - x_3 \ , \ -4x_1 - 2x_2 + x_3 \right) \\ x_1 + x_2 + x_3 \le 10 \\ x_3 \le 5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- a) Find the ideal point.
- **b)** Apply the goal method with s = 1.
- c) Apply the goal method with s = 2.
- d) Apply the goal method with $s = +\infty$. Is the found point a minimum?