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Gradient method

Gradient method

Current point x¥, search direction d¥ = —Vf(x*) (steepest descent direction)

Gradient method

Choose x? e R", set k =0

while V£ (x¥) # 0 do
dk = —Vf(x¥)
compute an optimal solution t; of the problem: rp>|(r)1 f(xk 4+ td*)
Xkl = xk 4+t d* k=k+1

end

Example. f(x) = x§ +2x3 — 3x1 — 2x», starting point x° = (2,1).
Vi(x°) =(1,2), d® = (-1,-2), f(x" +td®) =9t> -5t — 2, to = 5/18,
- 5 (31 4
x =(2,1) 18(1,2)—< )

i %9
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Gradient method
Gradient method - convergence

Exercise 1. Prove that (d*)Td**! = 0 for any iteration k.

Exercise 2. Prove that if {x} converges to x*, then Vf(x*) =0, i.e. x* is a
stationary point of f.

Theorem

If f is coercive, then for any starting point x° the generated sequence {x} is
bounded and any of its cluster points is a stationary point of f.

Corollary

If f is coercive and convex, then for any starting point x° the generated sequence
{x¥} is bounded and any of its cluster points is a global minimum of f.
Corollary

If f is strongly convex, then for any starting point x° the generated sequence {x*}
converges to the global minimum of f.



Gradient method

Gradient method - step size

If £(x) = 2xTQx + c"x, with Q positive definite matrix, then

k4 1%) = £t — 1) = 5 ()T Q" 2 — (478" £+ F(x¥)

where gk = Vf(xK) = Q x* + c. Thus the step size is

(g)7g" _ (gM)Td*

te = €)TQgr  (dN)TQdF
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Gradient method

Gradient method - exercises

Exercise 3. Implement in MATLAB the gradient method for solving the problem

min %XTQX—F cTx
x e R"”

where Q is a positive definite matrix.

Exercise 4. Run the gradient method for solving the problem

{ min 3x2 + 3x3 + 3x3 + 3x2 — dxyxs — dxoxg + x1 — X2 + 2x3 — 3x4
x € R*

starting from the point (0,0,0,0). [Use |[Vf(x)|| < 107 as stopping criterion.]
Exercise 5. Consider the following data fitting problem: given the experimental
data in fitting.txt, find the best approximating polynomial of degree 3 w.r.t. the

Euclidean norm. Solve the problem by means of the gradient method starting
from x° = 0. [Use ||Vf(x)|| < 1073 as stopping criterion.]

M. Passacantando Optimization Methods 5/ 36 -



Gradient method

Gradient method - step size
If f is a general nonlinear function, how to find the step size tx?

Assume that the restriction o(t) = f(x* + td*) is strongly convex, so we have to
find t* s.t. ¢'(t*) = 0.

Bisection method
Find b > 0 s.t. ¢/(b) > 0 (we know that ¢’(0) < 0).
ag + bo i—0

a =0, bp:=b, tp:=
while ¢/(t;) # 0 do
if o'(t;) >0
then a;,; ;= a;, bjy1 = t;
else a; 1 :=t;, biy1 := b;
i biy1 . .
tiy1 = %, i=i+1
end

Theorem
The sequence {t;} converges to t* and |t; — t*| < (b — ag)/2' .
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Gradient method

Gradient method - step size

Example. p(t) = t* +2t> -3t

M. Passacantando

¢'(0) = =3, ¢'(1) = 5.

i aj b; t ©'(t)
0 | 0.000000 1.000000 | 0.500000 | —0.500000
1 | 0.500000 1.000000 | 0.750000 1.687500
2 | 0.500000 0.750000 | 0.625000 0.476563
3 | 0.500000 0.625000 | 0.562500 | —0.038086
4 | 0.562500 0.625000 | 0.593750 0.212280
5 1 0.562500 0.593750 | 0.578125 0.085403
6 | 0.562500 0.578125 | 0.570313 0.023241
7 | 0.562500 0.570313 | 0.566406 | —0.007526
8 | 0.566406 0.570313 | 0.568359 0.007831
9 | 0.566406 0.568359 | 0.567383 0.000146
10 | 0.566406 0.567383 | 0.566895 | —0.003692
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Gradient method
Gradient method - step size

Newton method (tangent method): write the first order approximation of ¢’ at t;:

¢'(t) ~ ¢'(t) + " (8i)(t — 1)

and solve the linear equation ¢'(t;) + ¢”(t;)(t — t;) = 0.

Newton method
Choose tg >0, set i : =0
while ¢'(t;) # 0 do
/
t . .
tiy1 =t — i ),/::I—|—1

@ (t)

end

Theorem

If "’ (t*) # 0, then there exist 6 > 0 and C > 0 such that for any
to € (t* — 0, t* + 0) the sequence {t;} converges to t* and
|tiv — t*] < Clt; — 2.
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Gradient method

Gradient method - step size

Example. o(t) = t* + 21t - 3t,

M. Passacantando

to = 1.

ti

¢ (i)

A WON RO -

1.0000000
0.6875000
0.5789580
0.5674799
0.5673642

5.0000000
1.0498047
0.0920812
0.0009093
0.0000001
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Gradient method

Gradient method - zig-zag behaviour

Two subsequent directions are orthogonal: (d*)Td**1 =0

Theorem
If f(x) = %XTQX + c"x, with Q positive definite matrix, then

I = x"lg < [ | lIx* = x"[le,
n

where ||x|lo = VXT@x and 0 < A\; < Xy < --- < )\, are the eigenvalues of Q.
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Gradient method

Gradient method - zig-zag behaviour
Example. f(x) = x? + 10 x2, global minimum is x* = (0, 0).

If the starting point is x° = (10, 1), then

) () e

9
ot — ) = =

hence
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Gradient method

Gradient method - Armijo inexact line search

Gradient method with the Armijo inexact line search
Set o,y € (0,1), £ > 0. Choose x° € R”, set k = 0.

while V£ (x*) # 0 do
dk = —Vf(x¥)
t = t
while f(x* + t, d¥) > f(x¥) + a t, (dX)TVF(x¥) do
te = vtk
end
Kl =xk 4+ tid, k=k+1
end

Theorem
If f is coercive, then for any starting point x° the generated sequence {x} is
bounded and any of its cluster points is a stationary point of f.
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Gradient method

Gradient method - Armijo inexact line search

Example. Let f(x1,x0) = x{ +x¥ + x3. Set a = 107%, v = 0.5, £ = 1, choose
x0 = (1,1).
d% = —VF(x%) = (-6, -2).
Line search. If tg = 1 then
f(x° 4 tod®) = 651 > f(x°) + a to(d°) TV F(x°) = 2.996,

if tp = 0.5 then
F(x0 + tod®) = 20 > F(x°) + a to(d®) TV F(x%) = 2.998,
if to = 0.25 then
f(x° 4 tod®) = 0.5625 < f(x°) + a to(d°®) TV F(x°) = 2.999

hence the step size is tg = 0.25 and the new iterate is

1 11
1_,0 0 _ 2(—6. 2= [_= =
X" =X —|—t0df(1,1)+4( 6, —2) ( 272).
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Gradient method

Gradient method - Armijo inexact line search

Exercise 6. Solve the problem

min 2x7 +3x5 +2x2 +4x3 +x1 % —3x1 — 2x
x € R?

by means of the gradient method with the Armijo inexact line search setting
a=0.1,y=0.9, t =1 and starting from the point (0, 0).
[Use || Vf(x)|| < 1073 as stopping criterion.]
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Conjugate gradient method
Conjugate gradient method
Search direction involves directions computed at previous iterations.

First, consider the quadratic case:

f(x) = %XTQX +c'x,
where @ is positive definite. Set g = Vf(x) = Qx + c.

At iteration k, the search direction is

g[8 if k =0,
—gh+ Brd Tt if k> 1,

where f3 is such that d* and d*~! are conjugate with respect to Q, i.e.

(dk)TQ dk—l =0.
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Conjugate gradient method

Conjugate gradient method
> it easy to compute [i:
B (g)TQd+1
= eyt
> if we perform exact line search, then d* is a descent direction
(gX)Td
> the step size given by exact line search is tx = _W
Conjugate gradient method (quadratic functions)
Choose x° € R", set g% = Qx% + ¢, k:=0
while gk # 0 do
if Kk =0 then d¥ = —gk
(g)TQd 1
(dD)TQ gk 1"
(gX)Td¥
(dA)TQ d*
k= xkp e dk, ghl = QxF 1+, k=k+1
end
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else 3 = d* = —gk + B d-?
end

ty = —
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Conjugate gradient method

Conjugate gradient method

Example. f(x) = x? + 10 x3, starting point x° = (10, 1).

k =0: g°=(20,20), d® = —g° = (—20, —20),
to=—((g°)Td®)/((d®)TQd°) = 1/11, hence x* = x® + t,d® = (90/11, —9/11)

k=1: g'=(180/11,-180/11), B1 = ((g})"Q d°)/((d°)T Q d°) = 81/121,

dt = —g! + 31 d° = (—-3600/121,360/121),

t1=—((gh)Td")/((d")TQ dt) = 11/40, hence x> = x* + t; d* = (0,0) which is
the global minimum of f.
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Conjugate gradient method

Conjugate gradient method

Proposition

- o lg“|I?
> An alternative formula for the step size is t, = W
- S -l
» An alternative formula for By is Bx = g1
g

> If we did not find the global minimum after k iterations, then the gradients
{g°% gl,..., g} are orthogonal

» If we did not find the global minimum after k iterations, then the directions
{d® d', ..., d*} are conjugate w.r.t. @ and x* is the minimum of f on
x% 4+ Span(d®, dt, ..., d")

Theorem (Convergence)

» The CG method finds the global minimum in at most n iterations.

» If Q has r distinct eigenvalues, then CG method finds the global minimum in
at most r iterations.
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Conjugate gradient method

Conjugate gradient method

Theorem (Error bound)
If 0 <A1 < Ay <--- <\, are the eigenvalues of Q, then

| 4
k * V%_l 0 *
I =xTle <2 | T =] I =xlle
2+1
| 4

An_ —A

k k+1 1

I = xlo < (Y23 ) 19 - Xl
.
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Conjugate gradient method

Conjugate gradient method - Exercises

Exercise 7. Implement in MATLAB the conjugate gradient method for solving
the problem

min %XTQXJr c'x
x e R"”

where Q is a positive definite matrix.

Exercise 8. Run the conjugate gradient method for solving the problem

{ min 3x2 + 3x3 + 3x3 + 3x2 — dxyx3 — dxaxa +x1 — X2 + 2x3 — 3x4
x € R*

starting from the point (0,0,0,0). [Use |[Vf(x)|| < 107 as stopping criterion.]

Exercise 9. Consider the following data fitting problem: given the experimental
data in fitting.txt, find the best approximating polynomial of degree 3 w.r.t. the
Euclidean norm. Solve the problem by means of the conjugate gradient method
starting from xp = 0. [Use ||Vf(x)|| < 103 as stopping criterion.]
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Conjugate gradient method

Conjugate gradient method - nonlinear functions

Conjugate gradient method (nonlinear functions)
Choose x? € R”, set k:=0

while V(x¥) # 0 do
if k=0 then d* = —Vf(xk)

_ VNI K _ K k-1
else Bk = VD) d“ = —=VF(x*)+ Bk d
end
Compute the step size t
xkl =Xkt d*, k=k+1
end
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Conjugate gradient method

Conjugate gradient method - nonlinear functions

Proposition

> If t, is computed by exact line search, then d* is a descent direction.

» If t, satisfies the following conditions:
F(x* + ti d¥) < F(xK) + a ty VF(x¥)Tdk,
|VF(xK 4+t d)Td | < —BVF(x¥)Tdk,
with 0 < a < 8 < 1/2, then d* is a descent direction.
Theorem
If f is coercive, then the conjugate gradient method, where (1) holds, generates a

sequence {x*} such that
liminf V£ (x¥)|| = 0.
—00
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(Quasi) Newton methods

Newton method

We want to find a stationary point V£(x) = 0.

At iteration k, make a linear approximation of Vf(x) at x*, i.e.
V(x) = VF(x¥) + V2F(x*) (x — x¥),
the new iterate x**1 is the solution of the linear system

VF(x¥) + V2 (x¥)(x — x¥) = 0.

Note that x**1 is a stationary point of the quadratic approximation of f at x:

f(x) ~ F(x*) + (x = x)TVF(xF) + % (x — x*)TV2F(x5) (x — xM).
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(Quasi) Newton methods

Newton method

Newton method (basic version)

Choose x° € R”, set k =0

while V£(x¥) # 0 do
Solve the linear system V2f(x¥)d* = —Vf(x¥)
XK= xk 4 dX k=k+1

end

Theorem (Convergence)

If x* is a local minimum of f and V2f(x*) is positive definite, then there exists
§ > 0 such that for any x° € B(x*, §) the generated sequence {x*} converges to
x* and

Xt — x*|| < C|lx* — x*|2 ¥ k >k, (quadratic convergence)

for some C > 0 and k € N.
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(Quasi) Newton methods
Newton method

Example. f(x) =2x7 +3x5 +2x2 +4x3 + x; xo — 3x1 — 2 xp is strongly convex

because )
5 _ (24x7 4+ 4 1
Vf(x)‘( 1 362 + 8

0.492175 0.179815 0.1022945
0.481639 0.180914 0.0013018
0.481502 0.180928 0.0000002

k x V(]
0 | 10.000000 5.000000 | 8189.6317378
1| 6.655450 3.298838 | 2429.6437291
2 | 4.421132 2.149158 | 721.6330686
3| 2925965 1.361690 | 214.6381594
4 | 1.923841 0.811659 63.7752575
5| 1.255001 0.428109 18.6170045
6 | 0.823359 0.209601 5.0058040
7| 0.580141 0.171251 1.0538969
8

9

0

—
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(Quasi) Newton methods

Newton method

Drawbacks of Newton method:

» at each iteration we need to compute both the gradient V£(x*) and the
hessian matrix V2f(x*)

> local convergence: if x° is too far from the optimum x*, then the generated
sequence can be not convergent to x*

2

1
Example. Let f(x) = —1—6x4 + gx
5

1
Then f'(x) = _ZX3 + %x and "'(x) = —§x2 oy
x* =0 is a local minimum of f with f”(x*) =5/4 > 0.

The sequence does not converge to x* if the method starts from x° = 1:
x1=—-1x2=1,x3=-1, ...
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(Quasi) Newton methods

Newton method with line search

If f is strongly convex, we get global convergence because d¥ is a descent
direction: V£ (x¥)Tdk = —VF(x*)T[V2f(x})] L VF(x¥) < 0.

Newton method with line search
Set o,y € (0,1), £ > 0. Choose x° € R”, set k =0
while V£(x¥) # 0 do

Solve the linear system V2f(x*)d* = —Vf(x¥)

ty =t
while f(x* + t, d*) > f(x*) + a t, (dX)TVF(x) do
te = vtk
end
Xkl =xk e df, k=k+1
end

Theorem (Convergence)

If f is strongly convex, then for any starting point x° € R” the sequence {x*}
converges to the global minimum of . Moreover, if & € (0,1/2) and t =1 then
the convergence is quadratic.
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(Quasi) Newton methods

Newton method with line search

Exercise 10. Solve the problem

min 2Xf—|—3x§—|—2x12—|—4x22—|—x1X2 —3x1 —2x
x € R?

by means of the Newton method with line search setting « =0.1, v =0.9, t =1
and starting from the point (0, 0).
[Use || Vf(x)|| < 1073 as stopping criterion.]
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(Quasi) Newton methods

Quasi-Newton methods

At each iteration [V2f(x*)]~! is approximated by a positive definite matrix Hy

Quasi-Newton method
Choose x° € R”, a positive definite matrix Hy, k =0

while V£(x*) # 0 do

dk = —Hk Vf(Xk)

Compute step size tx

Xkt = xk 4 ¢, dk, update Hyy1, k=k+1
end

How to update matrix Hy?
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(Quasi) Newton methods

Quasi-Newton methods

Vf(Xk) ~ vf(xk—H) + v2f(xk+1) (Xk _ Xk+1).
Set pk = x*1 — xk and gk = VF(x 1) — V£(x), then

v2f(Xk+1)pk ~ gk7 ie. [VZf(XkJrl)]—lgk ~ Pk.

We choose Hy1 such that
Hii18" = p*.

Davidon-Fletcher-Powell (DFP) method:

pk( k)T Hkgk( k)T Hk
k

His1 = Hi +
T TR () Tgk T (k)T Hi g
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(Quasi) Newton methods

Quasi-Newton methods

Another approach: find a matrix By = (Hx)~! approximating V2f(x*).
Since V2f(x**1) pk ~ gk, we impose that Bi,1 p¥ = g*

Update By as
Beoi— Bt gk(gk T - By pk(pk)T By
+ (pk)T gk (pk)TBk pk

hence

Hiy1 = Hi + (1 + (") H gk) PH(p)T _ P (g*)THi + Hy g (p*)T
(P¥)Tgk (pF)Tgk (p)Tgk

(Broyden—Fletcher—Goldfarb-Shanno (BFGS) method).
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Derivative-free methods

Derivative-free methods

There are situations where derivatives of the objective function do not exist or are
computationally expensive.

Derivative-free methods sample the objective function at a finite number of points
at each iteration, without any explicit or implicit derivative approximation.

Definition
A positive basis is a set of vectors {v!,... vP} C R" such that:
» any x € R is a conic combination of v1,... v, i.e., there exist
P .
a1,...,0p > 0such that x = 3~ ;v
i=1
» forany i=1,...,p, v/ is not a conic combination of others v!,... vP.
Examples: {e,...,e, —e1,...,—e,} is a positive basis of R";

{(1,0),(0,1),(—1,—1)} is a positive basis of R.

Proposition. If {v!,... vP} is a positive basis, then for any w € R"\ {0} there
isi€{l,...,p} such that w'v' <O0.
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Derivative-free methods

Directional direct-search method

Directional direct-search method
Choose starting point x° € R, step size to > 0, 3 € (0,1), tolerance ¢ > 0 and a
positive basis D. Set k = 0.

while t, > ¢ do
Order the poll set {x* + t,d, d € D}
Evaluate f at the poll points following the chosen order
If there is a poll point s.t. f(x* + tid) < f(x¥)
then x**1 = x* + t,d, t,,1 = tx (successful iteration)
else x**1 = xk t, .1 = Bty (step size reduction)
end
k=k+1
end

The method is called coordinate-search method if D = {ey,...,e,, —e€1,...,—€n}.
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Derivative-free methods

Directional direct-search method

Theorem
Assume that all the vectors of the positive basis D are in Z". If f is coercive and

continuously differentiable, then the generated sequence {x*} has a cluster point
x* such that Vf(x*) = 0.

Remark 1. The assumption that vectors of D are in Z" can be deleted if we
accept new iterates which satisfy a “sufficient” decrease condition:

F(x ) < F(xF) — 2.

Remark 2. If a complete poll step is performed, i.e.,
F(x* Y < f(x*+t,d) VdeD,

then any cluster point of {x} is a stationary point of f and klim [V£(x*)|| = 0.
—00
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Derivative-free methods

Variants of the Directional direct-search method

Directional direct-search method
Choose starting point x° € R”, step size ty > 0, 3 € (0,1), tolerance ¢ >0, v > 1
and a set of positive bases D. Set k = 0.

while t, > ¢ do
Choose a positive basis D € D
Order the poll set {x* + t,d, d € D}
Evaluate f at the poll points following the chosen order
If there is a poll point s.t. f(x* + tyd) < f(x¥)
then x**1 = xk + t,d, t,,1 = 7tx (successful iteration)
else x**1 = x¥, t, .1 = Bty (step size reduction)
end
k=k+1
end
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Derivative-free methods

Directional direct-search method - Exercises

Exercise 11. Solve the problem

{ min 2x¢ +3x5 +2x2 +4x3 +x1x0 —3x1 —2x

x € R?
by means of the directional direct-search method setting x° = (0,0), to = 5,
B =10.5 ¢ =1075 and the positive basis D = {(1,0),(0,1),(-1,0), ( -1)}.

Exercise 12. Solve the previous problem by means of the directional direct-search
method setting x° = (0,0), to =5, 3 = 0.5, ¢ = 107> and the positive basis

D ={(1,0),(0,1),(-1,-1)}.
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