Solution methods for unconstrained optimization problems

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods

Master of Science in Embedded Computing Systems – University of Pisa
http://pages.di.unipi.it/passacantando/om/OM.html

M. Passacantando Optimization Methods $1 \ / \ 36 \ -$

Current point x^k , search direction $d^k = -\nabla f(x^k)$ (steepest descent direction)

Gradient method

Choose
$$x^0 \in \mathbb{R}^n$$
, set $k = 0$

while
$$\nabla f(x^k) \neq 0$$
 do

 $d^k = -\nabla f(x^k)$ compute an optimal solution t_k of the problem: $\min_{t>0} f(x^k + t d^k)$

$$x^{k+1} = x^k + t_k d^k, k = k+1$$

end

Example.
$$f(x) = x_1^2 + 2x_2^2 - 3x_1 - 2x_2$$
, starting point $x^0 = (2, 1)$.

$$\nabla f(x^0) = (1,2), \ d^0 = (-1,-2), \ f(x^0 + td^0) = 9 \ t^2 - 5 \ t - 2, \ t_0 = 5/18,$$

$$x^1 = (2,1) - \frac{5}{18}(1,2) = \left(\frac{31}{18}, \frac{4}{9}\right).$$

M. Passacantando Optimization Methods 2 / 36 -

Exercise 1. Prove that $(d^k)^T d^{k+1} = 0$ for any iteration k.

Exercise 2. Prove that if $\{x^k\}$ converges to x^* , then $\nabla f(x^*) = 0$, i.e. x^* is a stationary point of f.

(Quasi) Newton methods

Theorem

Gradient method

If f is coercive, then for any starting point x^0 the generated sequence $\{x^k\}$ is bounded and any of its cluster points is a stationary point of f.

Corollary

If f is coercive and convex, then for any starting point x^0 the generated sequence $\{x^k\}$ is bounded and any of its cluster points is a global minimum of f.

Corollary

If f is strongly convex, then for any starting point x^0 the generated sequence $\{x^k\}$ converges to the global minimum of f.

Gradient method - step size

If $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$, with Q positive definite matrix, then

$$f(x^k + td^k) = f(x^k - tg^k) = \frac{1}{2} (g^k)^T Q g^k t^2 - (g^k)^T g^k t + f(x^k),$$

where $g^k = \nabla f(x^k) = Qx^k + c$. Thus the step size is

$$t_k = \frac{(g^k)^T g^k}{(g^k)^T Q g^k} = -\frac{(g^k)^T d^k}{(d^k)^T Q d^k}.$$

M. Passacantando 4 / 36 Optimization Methods

Gradient method - exercises

Exercise 3. Implement in MATLAB the gradient method for solving the problem

$$\begin{cases}
\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
x \in \mathbb{R}^n
\end{cases}$$

where Q is a positive definite matrix.

Exercise 4. Run the gradient method for solving the problem

$$\left\{\begin{array}{l} \min \ 3x_1^2+3x_2^2+3x_3^2+3x_4^2-4x_1x_3-4x_2x_4+x_1-x_2+2x_3-3x_4 \\ x \in \mathbb{R}^4 \end{array}\right.$$

starting from the point (0,0,0,0). [Use $\|\nabla f(x)\| < 10^{-6}$ as stopping criterion.]

Exercise 5. Consider the following data fitting problem: given the experimental data in fitting.txt, find the best approximating polynomial of degree 3 w.r.t. the Euclidean norm. Solve the problem by means of the gradient method starting from $x^0 = 0$. [Use $\|\nabla f(x)\| < 10^{-3}$ as stopping criterion.]

M. Passacantando Optimization Methods 5 / 36 -

Gradient method - step size

If f is a general nonlinear function, how to find the step size t_k ?

Assume that the restriction $\varphi(t) = f(x^k + td^k)$ is strongly convex, so we have to find t^* s.t. $\varphi'(t^*) = 0$.

Bisection method

Find
$$b>0$$
 s.t. $\varphi'(b)>0$ (we know that $\varphi'(0)<0$). $a_0:=0,\ b_0:=b,\ t_0:=\frac{a_0+b_0}{2},\ i:=0.$ while $\varphi'(t_i)\neq 0$ do if $\varphi'(t_i)>0$ then $a_{i+1}:=a_i,\ b_{i+1}:=t_i$ else $a_{i+1}:=t_i,\ b_{i+1}:=b_i$ $t_{i+1}:=\frac{a_{i+1}+b_{i+1}}{2},\ i:=i+1$

end

Theorem

The sequence $\{t_i\}$ converges to t^* and $|t_i - t^*| < (b_0 - a_0)/2^{i+1}$.

M. Passacantando Optimization Methods 6 / 36 -

Gradient method - step size

Example.
$$\varphi(t) = t^4 + 2t^2 - 3t$$
. $\varphi'(0) = -3$, $\varphi'(1) = 5$.

i	a _i	b _i	t _i	$\varphi'(t_i)$
0	0.000000	1.000000	0.500000	-0.500000
1	0.500000	1.000000	0.750000	1.687500
2	0.500000	0.750000	0.625000	0.476563
3	0.500000	0.625000	0.562500	-0.038086
4	0.562500	0.625000	0.593750	0.212280
5	0.562500	0.593750	0.578125	0.085403
6	0.562500	0.578125	0.570313	0.023241
7	0.562500	0.570313	0.566406	-0.007526
8	0.566406	0.570313	0.568359	0.007831
9	0.566406	0.568359	0.567383	0.000146
10	0.566406	0.567383	0.566895	-0.003692

M. Passacantando Optimization Methods 7 / 36 Newton method (tangent method): write the first order approximation of φ' at t_i :

$$\varphi'(t) \simeq \varphi'(t_i) + \varphi''(t_i)(t-t_i)$$

and solve the linear equation $\varphi'(t_i) + \varphi''(t_i)(t - t_i) = 0$.

Newton method

Choose $t_0 > 0$, set i := 0

while $\varphi'(t_i) \neq 0$ do

$$t_{i+1} := t_i - \frac{\varphi'(t_i)}{\varphi''(t_i)}, \ i := i+1$$

end

Theorem

If $\varphi''(t^*) \neq 0$, then there exist $\delta > 0$ and C > 0 such that for any $t_0 \in (t^* - \delta, t^* + \delta)$ the sequence $\{t_i\}$ converges to t^* and $|t_{i+1} - t^*| \leq C|t_i - t^*|^2$.

Gradient method - step size

Example.
$$\varphi(t) = t^4 + 2t^2 - 3t$$
, $t_0 = 1$.

i	tį	$\varphi'(t_i)$
0	1.0000000	5.0000000
1	0.6875000	1.0498047
2	0.5789580	0.0920812
3	0.5674799	0.0009093
4	0.5673642	0.0000001

M. Passacantando Optimization Methods 9 / 36 Two subsequent directions are orthogonal: $(d^k)^T d^{k+1} = 0$

Theorem

If $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$, with Q positive definite matrix, then

$$\|x^{k+1} - x^*\|_{Q} \le \left(\frac{\frac{\lambda_n}{\lambda_1} - 1}{\frac{\lambda_n}{\lambda_1} + 1}\right) \|x^k - x^*\|_{Q},$$

where $||x||_Q = \sqrt{x^T Q x}$ and $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ are the eigenvalues of Q.

Optimization Methods 10 / 36

Gradient method - zig-zag behaviour

Example. $f(x) = x_1^2 + 10 x_2^2$, global minimum is $x^* = (0, 0)$.

If the starting point is $x^0 = (10, 1)$, then

$$x^k = \left(10 \left(\frac{9}{11}\right)^k, \left(-\frac{9}{11}\right)^k\right), \qquad \forall \ k \ge 0,$$

hence

$$||x^{k+1} - x^*|| = \frac{9}{11} ||x^k - x^*|| \quad \forall k \ge 0.$$

M. Passacantando 11 / 36 Optimization Methods

Gradient method with the Armijo inexact line search

Set $\alpha, \gamma \in (0,1)$, $\bar{t} > 0$. Choose $x^0 \in \mathbb{R}^n$, set k = 0.

while
$$\nabla f(x^k) \neq 0$$
 do $d^k = -\nabla f(x^k)$ $t_k = \overline{t}$ while $f(x^k + t_k d^k) > f(x^k) + \alpha t_k (d^k)^\mathsf{T} \nabla f(x^k)$ do $t_k = \gamma t_k$ end $x^{k+1} = x^k + t_k d, \ k = k+1$ end

Theorem

If f is coercive, then for any starting point x^0 the generated sequence $\{x^k\}$ is bounded and any of its cluster points is a stationary point of f.

M. Passacantando Optimization Methods 12 / 36 -

Gradient method - Armijo inexact line search

Example. Let $f(x_1, x_2) = x_1^4 + x_1^2 + x_2^2$. Set $\alpha = 10^{-4}$, $\gamma = 0.5$, $\overline{t} = 1$, choose $x^0 = (1, 1)$. $d^0 = -\nabla f(x^0) = (-6, -2)$.

Line search. If $t_0 = 1$ then

$$f(x^0 + t_0 d^0) = 651 > f(x^0) + \alpha t_0 (d^0)^{\mathsf{T}} \nabla f(x^0) = 2.996,$$

if $t_0 = 0.5$ then

$$f(x^0 + t_0 d^0) = 20 > f(x^0) + \alpha t_0 (d^0)^\mathsf{T} \nabla f(x^0) = 2.998,$$

if $t_0 = 0.25$ then

$$f(x^0 + t_0 d^0) = 0.5625 < f(x^0) + \alpha t_0 (d^0)^T \nabla f(x^0) = 2.999$$

hence the step size is $t_0 = 0.25$ and the new iterate is

$$x^{1} = x^{0} + t_{0} d^{0} = (1,1) + \frac{1}{4}(-6,-2) = \left(-\frac{1}{2},\frac{1}{2}\right).$$

M. Passacantando Optimization Methods 13 / 36 -

Gradient method - Armijo inexact line search

Exercise 6. Solve the problem

$$\begin{cases} \min 2x_1^4 + 3x_2^4 + 2x_1^2 + 4x_2^2 + x_1x_2 - 3x_1 - 2x_2 \\ x \in \mathbb{R}^2 \end{cases}$$

by means of the gradient method with the Armijo inexact line search setting $\alpha = 0.1$, $\gamma = 0.9$, $\bar{t} = 1$ and starting from the point (0,0). [Use $\|\nabla f(x)\| < 10^{-3}$ as stopping criterion.]

14 / 36 Optimization Methods

15 / 36

Search direction involves directions computed at previous iterations.

First, consider the quadratic case:

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x,$$

where Q is positive definite. Set $g = \nabla f(x) = Qx + c$.

At iteration k, the search direction is

$$d^k = \begin{cases} -g^0 & \text{if } k = 0, \\ -g^k + \beta_k d^{k-1} & \text{if } k \ge 1, \end{cases}$$

where β_k is such that d^k and d^{k-1} are conjugate with respect to Q, i.e.

$$(d^k)^\mathsf{T} Q d^{k-1} = 0.$$

Optimization Methods

• it easy to compute β_k :

$$\beta_k = \frac{(g^k)^{\mathsf{T}} Q \, d^{k-1}}{(d^{k-1})^{\mathsf{T}} Q \, d^{k-1}}$$

- ightharpoonup if we perform exact line search, then d^k is a descent direction
- ▶ the step size given by exact line search is $t_k = -\frac{(g^k)^T d^k}{(d^k)^T Q d^k}$

Conjugate gradient method (quadratic functions)

Choose
$$x^0 \in \mathbb{R}^n$$
, set $g^0 = Q \, x^0 + c$, $k := 0$ while $g^k \neq 0$ do

if $k = 0$ then $d^k = -g^k$

else $\beta_k = \frac{(g^k)^T Q \, d^{k-1}}{(d^{k-1})^T Q \, d^{k-1}}$, $d^k = -g^k + \beta_k \, d^{k-1}$

end

 $t_k = -\frac{(g^k)^T d^k}{(d^k)^T Q \, d^k}$
 $x^{k+1} = x^k + t_k \, d^k$, $g^{k+1} = Q \, x^{k+1} + c$, $k = k+1$

end

Example. $f(x) = x_1^2 + 10 x_2^2$, starting point $x^0 = (10, 1)$.

$$k = 0$$
: $g^0 = (20, 20)$, $d^0 = -g^0 = (-20, -20)$, $t_0 = -((g^0)^T d^0)/((d^0)^T Q d^0) = 1/11$, hence $x^1 = x^0 + t_0 d^0 = (90/11, -9/11)$

$$k=1$$
: $g^1=(180/11,-180/11)$, $\beta_1=((g^1)^TQ\ d^0)/((d^0)^TQ\ d^0)=81/121$, $d^1=-g^1+\beta_1\ d^0=(-3600/121,360/121)$, $t_1=-((g^1)^Td^1)/((d^1)^TQ\ d^1)=11/40$, hence $x^2=x^1+t_1\ d^1=(0,0)$ which is the global minimum of f .

17 / 36 M. Passacantando Optimization Methods

Proposition

- An alternative formula for the step size is $t_k = \frac{\|g^k\|^2}{(d^k)^T Q d^k}$
- ► An alternative formula for β_k is $\beta_k = \frac{\|g^k\|^2}{\|g^{k-1}\|^2}$
- ▶ If we did not find the global minimum after k iterations, then the gradients $\{g^0, g^1, \ldots, g^k\}$ are orthogonal
- If we did not find the global minimum after k iterations, then the directions $\{d^0, d^1, \ldots, d^k\}$ are conjugate w.r.t. Q and x^k is the minimum of f on $x^0 + \operatorname{Span}(d^0, d^1, \ldots, d^k)$

Theorem (Convergence)

- ▶ The CG method finds the global minimum in at most *n* iterations.
- ▶ If *Q* has *r* distinct eigenvalues, then CG method finds the global minimum in at most *r* iterations.

M. Passacantando Optimization Methods 18 / 36 -

Theorem (Error bound)

If $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n$ are the eigenvalues of Q, then

$$\|x^k - x^*\|_Q \le 2 \left(\frac{\sqrt{\frac{\lambda_n}{\lambda_1}} - 1}{\sqrt{\frac{\lambda_n}{\lambda_1}} + 1}\right)^k \|x^0 - x^*\|_Q$$

$$||x^k - x^*||_Q \le \left(\frac{\lambda_{n-k+1} - \lambda_1}{\lambda_{n-k+1} + \lambda_1}\right) ||x^0 - x^*||_Q.$$

M. Passacantando 19 / 36 Optimization Methods

Exercise 7. Implement in MATLAB the conjugate gradient method for solving the problem

$$\begin{cases}
\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
x \in \mathbb{R}^n
\end{cases}$$

where Q is a positive definite matrix.

Exercise 8. Run the conjugate gradient method for solving the problem

$$\left\{ \begin{array}{l} \min \ 3x_1^2 + 3x_2^2 + 3x_3^2 + 3x_4^2 - 4x_1x_3 - 4x_2x_4 + x_1 - x_2 + 2x_3 - 3x_4 \\ x \in \mathbb{R}^4 \end{array} \right.$$

starting from the point (0,0,0,0). [Use $\|\nabla f(x)\| < 10^{-6}$ as stopping criterion.]

Exercise 9. Consider the following data fitting problem: given the experimental data in fitting.txt, find the best approximating polynomial of degree 3 w.r.t. the Euclidean norm. Solve the problem by means of the conjugate gradient method starting from $x_0 = 0$. [Use $\|\nabla f(x)\| < 10^{-3}$ as stopping criterion.]

(Quasi) Newton methods

Conjugate gradient method - nonlinear functions

Conjugate gradient method (nonlinear functions)

while $\nabla f(x^k) \neq 0$ do

Choose $x^0 \in \mathbb{R}^n$, set k := 0

if
$$k = 0$$
 then $d^k = -\nabla f(x^k)$
else $\beta_k = \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2}$, $d^k = -\nabla f(x^k) + \beta_k d^{k-1}$

end

Compute the step size t_k

$$x^{k+1} = x^k + t_k d^k$$
, $k = k+1$

end

M. Passacantando 21 / 36 Optimization Methods

Conjugate gradient method - nonlinear functions

Proposition

- ▶ If t_k is computed by exact line search, then d^k is a descent direction.
- ▶ If t_k satisfies the following conditions:

$$f(x^k + t_k d^k) \le f(x^k) + \alpha t_k \nabla f(x^k)^{\mathsf{T}} d^k, |\nabla f(x^k + t_k d^k)^{\mathsf{T}} d^k| \le -\beta \nabla f(x^k)^{\mathsf{T}} d^k,$$
(1)

with $0 < \alpha < \beta < 1/2$, then d^k is a descent direction.

Theorem

If f is coercive, then the conjugate gradient method, where (1) holds, generates a sequence $\{x^k\}$ such that

$$\liminf_{k\to\infty} \|\nabla f(x^k)\| = 0.$$

M. Passacantando Optimization Methods 22 / 36 -

We want to find a stationary point $\nabla f(x) = 0$.

At iteration k, make a linear approximation of $\nabla f(x)$ at x^k , i.e.

$$\nabla f(x) \simeq \nabla f(x^k) + \nabla^2 f(x^k)(x - x^k),$$

the new iterate x^{k+1} is the solution of the linear system

$$\nabla f(x^k) + \nabla^2 f(x^k)(x - x^k) = 0.$$

Note that x^{k+1} is a stationary point of the quadratic approximation of f at x^k :

$$f(x) \simeq f(x^k) + (x - x^k)^{\mathsf{T}} \nabla f(x^k) + \frac{1}{2} (x - x^k)^{\mathsf{T}} \nabla^2 f(x^k) (x - x^k).$$

M. Passacantando Optimization Methods 23 / 36

Newton method (basic version)

Choose $x^0 \in \mathbb{R}^n$, set k = 0while $\nabla f(x^k) \neq 0$ do Solve the linear system $\nabla^2 f(x^k) d^k = -\nabla f(x^k)$ $x^{k+1} = x^k + d^k$, k = k+1

end

Theorem (Convergence)

If x^* is a local minimum of f and $\nabla^2 f(x^*)$ is positive definite, then there exists $\delta > 0$ such that for any $x^0 \in B(x^*, \delta)$ the generated sequence $\{x^k\}$ converges to x^* and

$$\|x^{k+1} - x^*\| \le C \|x^k - x^*\|^2 \qquad \forall \ k > \bar{k},$$
 (quadratic convergence)

for some C > 0 and $\bar{k} \in \mathbb{N}$.

M. Passacantando 24 / 36 Optimization Methods

Example. $f(x) = 2x_1^4 + 3x_2^4 + 2x_1^2 + 4x_2^2 + x_1x_2 - 3x_1 - 2x_2$ is strongly convex because

$$\nabla^2 f(x) = \begin{pmatrix} 24 x_1^2 + 4 & 1\\ 1 & 36 x_2^2 + 8 \end{pmatrix}$$

k	x [']	$\ \nabla f(x^k)\ $	
0	10.000000	5.000000	8189.6317378
1	6.655450	3.298838	2429.6437291
2	4.421132	2.149158	721.6330686
3	2.925965	1.361690	214.6381594
4	1.923841	0.811659	63.7752575
5	1.255001	0.428109	18.6170045
6	0.823359	0.209601	5.0058040
7	0.580141	0.171251	1.0538969
8	0.492175	0.179815	0.1022945
9	0.481639	0.180914	0.0013018
10	0.481502	0.180928	0.0000002

M. Passacantando Optimization Methods 25 / 36 -

Drawbacks of Newton method:

- ▶ at each iteration we need to compute both the gradient $\nabla f(x^k)$ and the hessian matrix $\nabla^2 f(x^k)$
- ▶ local convergence: if x^0 is too far from the optimum x^* , then the generated sequence can be not convergent to x^*

Example. Let
$$f(x) = -\frac{1}{16}x^4 + \frac{5}{8}x^2$$
.
 Then $f'(x) = -\frac{1}{4}x^3 + \frac{5}{4}x$ and $f''(x) = -\frac{3}{4}x^2 + \frac{5}{4}$.
 $x^* = 0$ is a local minimum of f with $f''(x^*) = 5/4 > 0$.
 The sequence does not converge to x^* if the method starts from $x^0 = 1$: $x^1 = -1$, $x^2 = 1$, $x^3 = -1$.

M. Passacantando Optimization Methods 26 / 36 If f is strongly convex, we get global convergence because d^k is a descent direction: $\nabla f(x^k)^\mathsf{T} d^k = -\nabla f(x^k)^\mathsf{T} [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) < 0$.

Newton method with line search

Set
$$\alpha, \gamma \in (0,1)$$
, $\overline{t} > 0$. Choose $x^0 \in \mathbb{R}^n$, set $k = 0$ while $\nabla f(x^k) \neq 0$ do

Solve the linear system $\nabla^2 f(x^k) d^k = -\nabla f(x^k)$
 $t_k = \overline{t}$

while $f(x^k + t_k d^k) > f(x^k) + \alpha t_k (d^k)^T \nabla f(x^k)$ do

 $t_k = \gamma t_k$

end

 $x^{k+1} = x^k + t_k d^k$, $k = k+1$

end

Theorem (Convergence)

If f is strongly convex, then for any starting point $x^0 \in \mathbb{R}^n$ the sequence $\{x^k\}$ converges to the global minimum of f. Moreover, if $\alpha \in (0,1/2)$ and $\bar{t}=1$ then the convergence is quadratic.

Newton method with line search

Exercise 10. Solve the problem

$$\begin{cases} \min 2x_1^4 + 3x_2^4 + 2x_1^2 + 4x_2^2 + x_1x_2 - 3x_1 - 2x_2 \\ x \in \mathbb{R}^2 \end{cases}$$

by means of the Newton method with line search setting $\alpha=0.1$, $\gamma=0.9$, $\bar{t}=1$ and starting from the point (0,0).

[Use $\|\nabla f(x)\| < 10^{-3}$ as stopping criterion.]

M. Passacantando Optimization Methods 28 / 36 -

Quasi-Newton methods

At each iteration $[\nabla^2 f(x^k)]^{-1}$ is approximated by a positive definite matrix H_k

Quasi-Newton method

Choose $x^0 \in \mathbb{R}^n$, a positive definite matrix H_0 , k=0

while
$$\nabla f(x^k) \neq 0$$
 do $d^k = -H_k \nabla f(x^k)$ Compute step size t_k $x^{k+1} = x^k + t_k d^k$, update H_{k+1} , $k = k+1$

end

How to update matrix H_k ?

Quasi-Newton methods

$$\nabla f(x^k) \simeq \nabla f(x^{k+1}) + \nabla^2 f(x^{k+1}) (x^k - x^{k+1}).$$
 Set $p^k = x^{k+1} - x^k$ and $g^k = \nabla f(x^{k+1}) - \nabla f(x^k)$, then
$$\nabla^2 f(x^{k+1}) p^k \simeq g^k, \text{ i.e. } [\nabla^2 f(x^{k+1})]^{-1} g^k \simeq p^k.$$

We choose H_{k+1} such that

$$H_{k+1}\,g^k=p^k.$$

Davidon-Fletcher-Powell (DFP) method:

$$H_{k+1} = H_k + \frac{p^k (p^k)^T}{(p^k)^T g^k} - \frac{H_k g^k (g^k)^T H_k}{(g^k)^T H_k g^k},$$

M. Passacantando 30 / 36 Optimization Methods

Quasi-Newton methods

Another approach: find a matrix $B_k = (H_k)^{-1}$ approximating $\nabla^2 f(x^k)$.

Since $abla^2 f(x^{k+1}) \, p^k \simeq g^k$, we impose that $B_{k+1} \, p^k = g^k$

Update B_k as

$$B_{k+1} = B_k + \frac{g^k(g^k)^T}{(p^k)^T g^k} - \frac{B_k p^k(p^k)^T B_k}{(p^k)^T B_k p^k},$$

hence

$$H_{k+1} = H_k + \left(1 + \frac{(g^k)^\mathsf{T} H_k g^k}{(p^k)^\mathsf{T} g^k}\right) \frac{p^k (p^k)^\mathsf{T}}{(p^k)^\mathsf{T} g^k} - \frac{p^k (g^k)^\mathsf{T} H_k + H_k g^k (p^k)^\mathsf{T}}{(p^k)^\mathsf{T} g^k}.$$

 $(Broyden-Fletcher-Goldfarb-Shanno\ (BFGS)\ method).$

M. Passacantando Optimization Methods 31 / 36 -

Derivative-free methods

There are situations where derivatives of the objective function do not exist or are computationally expensive.

(Quasi) Newton methods

Derivative-free methods sample the objective function at a finite number of points at each iteration, without any explicit or implicit derivative approximation.

Definition

A positive basis is a set of vectors $\{v^1, \dots, v^p\} \subset \mathbb{R}^n$ such that:

- ▶ any $x \in \mathbb{R}^n$ is a conic combination of v^1, \dots, v^p , i.e., there exist $\alpha_1,\ldots,\alpha_p\geq 0$ such that $x=\sum_{i=1}^p\alpha_iv^i$
- for any $i = 1, ..., p, v^i$ is not a conic combination of others $v^1, ..., v^p$.

Examples: $\{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}$ is a positive basis of \mathbb{R}^n ; $\{(1,0),(0,1),(-1,-1)\}\$ is a positive basis of \mathbb{R}^2 .

Proposition. If $\{v^1, \dots, v^p\}$ is a positive basis, then for any $w \in \mathbb{R}^n \setminus \{0\}$ there is $i \in \{1, \dots, p\}$ such that $w^{\mathsf{T}} v^i < 0$.

Directional direct-search method

Directional direct-search method

Choose starting point $x^0 \in \mathbb{R}^n$, step size $t_0 > 0$, $\beta \in (0,1)$, tolerance $\varepsilon > 0$ and a positive basis D. Set k=0.

(Quasi) Newton methods

```
while t_k > \varepsilon do
     Order the poll set \{x^k + t_k d, d \in D\}
     Evaluate f at the poll points following the chosen order
     If there is a poll point s.t. f(x^k + t_k d) < f(x^k)
          then x^{k+1} = x^k + t_k d, t_{k+1} = t_k (successful iteration)
     else x^{k+1} = x^k, t_{k+1} = \beta t_k (step size reduction)
     end
     k = k + 1
end
```

The method is called coordinate-search method if $D = \{e_1, \dots, e_n, -e_1, \dots, -e_n\}$.

M. Passacantando 33 / 36 Optimization Methods

Directional direct-search method

Theorem

Assume that all the vectors of the positive basis D are in \mathbb{Z}^n . If f is coercive and continuously differentiable, then the generated sequence $\{x^k\}$ has a cluster point x^* such that $\nabla f(x^*) = 0$.

Remark 1. The assumption that vectors of D are in \mathbb{Z}^n can be deleted if we accept new iterates which satisfy a "sufficient" decrease condition:

$$f(x^{k+1}) \le f(x^k) - t_k^2.$$

Remark 2. If a complete poll step is performed, i.e.,

$$f(x^{k+1}) \le f(x^k + t_k d) \quad \forall \ d \in D,$$

then any cluster point of $\{x^k\}$ is a stationary point of f and $\lim_{k\to\infty}\|\nabla f(x^k)\|=0$.

M. Passacantando Optimization Methods 34 / 36 -

Variants of the Directional direct-search method

Directional direct-search method

Choose starting point $x^0 \in \mathbb{R}^n$, step size $t_0 > 0$, $\beta \in (0,1)$, tolerance $\varepsilon > 0$, $\gamma \ge 1$ and a set of positive bases \mathcal{D} . Set k=0.

```
while t_k > \varepsilon do
     Choose a positive basis D \in \mathcal{D}
     Order the poll set \{x^k + t_k d, d \in D\}
     Evaluate f at the poll points following the chosen order
     If there is a poll point s.t. f(x^k + t_k d) < f(x^k)
           then x^{k+1} = x^k + t_k d, t_{k+1} = \gamma t_k (successful iteration)
     else x^{k+1} = x^k. t_{k+1} = \beta t_k (step size reduction)
     end
     k = k + 1
end
```

M. Passacantando 35 / 36 Optimization Methods

Exercise 11. Solve the problem

$$\begin{cases}
\min 2 x_1^4 + 3 x_2^4 + 2 x_1^2 + 4 x_2^2 + x_1 x_2 - 3 x_1 - 2 x_2 \\
x \in \mathbb{R}^2
\end{cases}$$

by means of the directional direct-search method setting $x^0=(0,0)$, $t_0=5$, $\beta=0.5$, $\varepsilon=10^{-5}$ and the positive basis $D=\{(1,0),(0,1),(-1,0),(0,-1)\}$.

Exercise 12. Solve the previous problem by means of the directional direct-search method setting $x^0=(0,0)$, $t_0=5$, $\beta=0.5$, $\varepsilon=10^{-5}$ and the positive basis $D=\{(1,0),(0,1),(-1,-1)\}.$

M. Passacantando Optimization Methods 36 / 36 -