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Optimization problem in standard form

 min f (x)
g(x) ≤ 0
h(x) = 0

I f : Rn → R is the objective function

I gi : Rn → R, i = 1, . . . ,m are the inequality constraints functions

I hj : Rn → R, j = 1, . . . , p are the equality constraints functions

Domain: D = dom(f ) ∩
m⋂
i=1

dom(gi ) ∩
p⋂

j=1

dom(hj)

Feasible region: Ω = {x ∈ D : g(x) ≤ 0, h(x) = 0}

implicit constraint: x ∈ D
explicit constraints: g(x) ≤ 0, h(x) = 0
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Global and local optima

Global optimal solution: a feasible point x∗ s.t. f (x∗) ≤ f (x) for all x ∈ Ω

Local optimal solution: a feasible point x∗ s.t. f (x∗) ≤ f (x) for all
x ∈ Ω ∩ B(x∗,R) for some R > 0

Optimal value:
v∗ = inf{f (x) : x ∈ Ω}

v∗ = −∞ if the problem is unbounded below
v∗ = +∞ if the problem is infeasible

Examples

I f (x) = log(x), v∗ = −∞, no optimal solution

I f (x) = ex , v∗ = 0, no optimal solution

I f (x) = x log(x), v∗ = −1/e, x∗ = 1/e is global optimum

I f (x) = x3 − 3x , v∗ = −∞, x∗ = 1 is local optimum
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Convex optimization problems

An optimization problem  min f (x)
g(x) ≤ 0
h(x) = 0

is convex if f is convex, g1, . . . , gm are convex and h1, . . . , hp are affine.

Examples

a)

 min x2
1 + x1x2 + 3x2

2 + 4x1 + 5x2

x2
1 + x2

2 − 4 ≤ 0
x1 + x2 − 2 = 0

is convex

b)

 min x2
1 + x2

2

x1/(1 + x2
2 ) ≤ 0

(x1 + x2)2 = 0
is NOT convex, but it is equivalent to:

 min x2
1 + x2

2

x1 ≤ 0
x1 + x2 = 0

which is convex
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Convex optimization problems

Why convex problems are important?

Theorem 1
In a convex optimization problem the feasible region is convex

Theorem 2
In a convex optimization problem any local optimal solution is a global one

Proof. Let x∗ be a local optimum, i.e. there is R > 0 s.t.

f (x∗) ≤ f (z) ∀ z ∈ Ω ∩ B(x∗,R).

By contradiction, assume that x∗ is not a global optimum, i.e., there is y ∈ Ω s.t.
f (y) < f (x∗). Take α ∈ (0, 1) s.t. αx∗ + (1− α)y ∈ B(x∗,R). Then we have

f (x∗) ≤ f (αx∗ + (1− α)y) ≤ αf (x∗) + (1− α)f (y) < f (x∗),

which is impossible.
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Existence of global optima

Theorem (Weierstrass)

If the objective function f is continuous and the feasible region Ω is closed and
bounded, then there exists a global optimum.

Proof. Let v∗ = inf
x∈Ω

f (x). Define a minimizing sequence {xk} ⊆ Ω s.t. f (xk)→ v∗.

Since {xk} is bounded, the Bolzano-Weierstrass theorem guarantees that there exists a

subsequence {xkp} converging to some point x∗. Since Ω is closed, we get x∗ ∈ Ω.

Finally, f (xkp )→ f (x∗) since f is continuous. Therefore, f (x∗) = v∗, i.e., x∗ is a global

optimum.

Corollary

If all the functions f , gi , hj are continuous, the domain D is closed and the feasible
region Ω is bounded, then there exists a global optimum.

Example {
min x1 + x2

x2
1 + x2

2 − 4 ≤ 0

admits a global optimum. Where?
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Existence of global optima

Corollary

If the objective function f is continuous, the feasible region Ω is closed and
there exists α ∈ R such that the α-sublevel set

{x ∈ Ω : f (x) ≤ α}

is nonempty and bounded, then there exists a global optimum.

Example  min ex1+x2

x1 − x2 ≤ 0
−2x1 + x2 ≤ 0

Ω is closed and unbounded. The sublevel set {x ∈ Ω : f (x) ≤ 2} is nonempty
and bounded, thus there exists a global optimum.
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Existence of global optima

Corollary

If the objective function f is continuous and coercive, i.e.,

lim
‖x‖→∞

f (x) = +∞,

and the feasible region Ω is closed, then there exists a global optimum.

Example {
min x4 + 3x3 − 5x2 + x − 2
x ∈ R

Since f is coercive, there exists a global optimum.
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Existence and uniqueness of global optima

Corollary

I If f is strongly convex and Ω is closed, then there exists a global optimum.

I If f is strongly convex and Ω is closed and convex, then there exists a unique
global optimum.

Example. Any quadratic programming problem{
min 1

2x
TQx + cTx

Ax ≤ b

where Q is a positive definite matrix has a unique global minimum.

What if Q is positive semidefinite or indefinite?
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Existence of global optima for quadratic programming problems

Consider {
min 1

2x
TQx + cTx

Ax ≤ b
(P)

The recession cone of Ω is rec(Ω) = {d : Ad ≤ 0}.

Theorem (Eaves)

(P) has a global optimal solution if and only if the following conditions hold:

(a) dTQ d ≥ 0 for any d ∈ rec(Ω);

(b) dT(Qx + c) ≥ 0 for any x ∈ Ω and any d ∈ rec(Ω) s.t. dTQ d = 0.
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Existence of global optima for quadratic programming problems

Special cases:

I If Q = 0 (i.e., linear programming) then
(P) has an optimal solution iff dTc ≥ 0 ∀ d ∈ rec(Ω)

I If Q is positive definite then (a) and (b) are satisfied.

I If Ω is bounded then (a) and (b) are satisfied.

Exercise. Prove that the quadratic programming problem
min

1

2
x2

1 −
1

2
x2

2 + x1 − 2 x2

−x1 + x2 ≤ −1
−x2 ≤ 0

has a global optimal solution.
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Unconstrained problems

Consider min
x∈Rn

f (x)

Theorem (Necessary optimality condition)

If x∗ is a local optimal solution, then

∇f (x∗) = 0.

Proof. By contradiction, assume that ∇f (x∗) 6= 0. Choose direction d = −∇f (x∗),
define ϕ(t) = f (x∗ + td),

ϕ′(0) = dT∇f (x∗) = −‖∇f (x∗)‖2 < 0,

thus f (x∗ + td) < f (x∗) for all t small enough, which is impossible because x∗ is a local

optimum.

Optimality condition for unconstrained convex problems

If f is convex, then x∗ is a global minimum if and only if ∇f (x∗) = 0.
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Constrained problems

Example. {
min x1 + x2

x2
1 + x2

2 − 4 ≤ 0

Ω = B(0, 2), global optimum is x∗ = (−
√

2,−
√

2), ∇f (x∗) = (1, 1).

Definition – Tangent cone

TΩ(x) =

{
d ∈ Rn : ∃ {zk} ⊂ Ω, ∃ {tk} > 0, zk → x , tk → 0, lim

k→∞

zk − x

tk
= d

}

Example (continued). What is TΩ(x∗)?
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First order necessary optimality condition

Theorem
If x∗ is a local optimal solution, then

dT∇f (x∗) ≥ 0, ∀ d ∈ TΩ(x∗).

Proof. By contradiction, assume that there exists d ∈ TΩ(x∗) s.t. dT∇f (x∗) < 0. Take
the sequences {zk} and {tk} s.t. lim

k→∞
(zk − x∗)/tk = d . Then zk = x∗ + tk d + o(tk),

where o(tk)/tk → 0. The first order approximation of f gives

f (zk) = f (x∗) + tk d
T∇f (x∗) + o(tk),

thus there is k̄ ∈ N s.t.

f (zk)− f (x∗)

tk
= dT∇f (x∗) +

o(tk)

tk
< 0 ∀ k > k̄,

i.e. f (zk) < f (x∗) for all k > k̄, which is impossible because x∗ is a local optimum.
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First order optimality condition for convex problems

Theorem
If Ω is convex, then Ω ⊆ TΩ(x) + x for any x ∈ Ω.

Optimality condition for constrained convex problems

If the optimization problem is convex, then x∗ is a global optimal solution if and
only if

(y − x∗)T∇f (x∗) ≥ 0, ∀ y ∈ Ω.

Exercise. Prove the latter result.

M. Passacantando Optimization Methods 15 / 27 –



Definitions Existence of optima First order optimality conditions Second order optimality conditions

Properties of the tangent cone

TΩ(x) is related to geometric properties of Ω.

Which is the relation between TΩ(x) and constraints g , h defining Ω?

Example (continued). g(x) = x2
1 + x2

2 − 4, ∇g(x∗) = (−2
√

2,−2
√

2),

TΩ(x∗) = {d ∈ R2 : dT∇g(x∗) ≤ 0}

Definition – First-order feasible direction cone
Given x ∈ Ω, A(x) = {i : gi (x) = 0} denotes the set of inequality constraints
which are active at x . The set

D(x) =

{
d ∈ Rn :

dT∇gi (x) ≤ 0 ∀ i ∈ A(x),
dT∇hj(x) = 0 ∀ j = 1, . . . , p

}
is called the first-order feasible direction cone at point x .
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Properties of the tangent cone

Theorem
TΩ(x) ⊆ D(x) for all x ∈ Ω.

Definition – Abadie Constraints Qualification (ACQ)

Abadie Constraints Qualification holds at x when TΩ(x) = D(x).

Remark
In general, ACQ does not hold at any x ∈ Ω.

Example  min x1 + x2

(x1 − 1)2 + (x2 − 1)2 − 1 ≤ 0
x2 ≤ 0

Ω = {(1, 0)}, TΩ(1, 0) = {(0, 0)}.

∇g1(1, 0) = (0,−2), ∇g2(1, 0) = (0, 1), D(1, 0) = {d ∈ R2 : d2 = 0}.
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Properties of the tangent cone

Theorem - Sufficient conditions for ACQ

a) (Affine constraints)
If gi and hj are affine for all i = 1, . . . ,m and j = 1, . . . , p, then ACQ holds
at any x ∈ Ω.

b) (Slater condition)
If gi are convex for all i = 1, . . . ,m, hj are affine for all j = 1, . . . , p and there
exists x̄ ∈ int(D) s.t. g(x̄) < 0 and h(x̄) = 0, then ACQ holds at any x ∈ Ω.

c) (Linear independence of the gradients of active constraints)
If x̄ ∈ Ω and the vectors{

∇gi (x̄) for i ∈ A(x̄),
∇hj(x̄) for j = 1, . . . , p

are linear independent, then ACQ holds at any x̄ .
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Karush-Kuhn-Tucker Theorem

Why ACQ is important?

Karush-Kuhn-Tucker Theorem
If x∗ is a local optimum and ACQ holds at x∗, then there exist λ∗ ∈ Rm and
µ∗ ∈ Rp s.t. (x∗, λ∗, µ∗) satisfies the KKT system:

∇f (x∗) +
m∑
i=1

λ∗i ∇gi (x∗) +

p∑
j=1

µ∗j ∇hj(x∗) = 0

λ∗i gi (x
∗) = 0 ∀ i = 1, . . . ,m

λ∗ ≥ 0
g(x∗) ≤ 0
h(x∗) = 0

Exercise. Use KKT system to solve{
min x1 − x2

x2
1 + x2

2 − 2 ≤ 0
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Karush-Kuhn-Tucker Theorem

Remark
ACQ assumption is crucial in the KKT Theorem.

Example.  min x1 + x2

(x1 − 1)2 + (x2 − 1)2 − 1 ≤ 0
x2 ≤ 0

x∗ = (1, 0) is the global optimum.

TΩ(x∗) = {0}, D(x∗) = {d ∈ R2 : d2 = 0}, hence ACQ does not hold at x∗.

∇g1(x∗) = (0,−2), ∇g2(x∗) = (0, 1), ∇f (x∗) = (1, 1), hence there is no λ∗ s.t.
(x∗, λ∗) solves KKT system.
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Karush-Kuhn-Tucker Theorem

KKT Theorem gives necessary optimality conditions, but not sufficient ones.

Example. {
min x1 + x2

−x2
1 − x2

2 + 2 ≤ 0

x∗ = (1, 1), λ∗ =
1

2
solves KKT system, but x∗ is not a local optimum.

KKT Theorem for convex problems

If the optimization problem is convex and (x∗, λ∗, µ∗) solves KKT system, then x∗

is a global optimum.

Exercise. Prove the latter result.

M. Passacantando Optimization Methods 21 / 27 –



Definitions Existence of optima First order optimality conditions Second order optimality conditions

Karush-Kuhn-Tucker Theorem

Exercise 1. Compute the distance between a point z ∈ Rn and the hyperplane
{x ∈ Rn : aTx = b}

Exercise 2. Compute the distance between two parallel hyperplanes

{x ∈ Rn : aTx = b1}, {x ∈ Rn : aTx = b2}, b1 6= b2.

Exercise 3. Compute the projection of a point z ∈ Rn on the ball with center x0

and radius r .

Exercise 4. Compute the projection of a point z ∈ R2 on the box

{x ∈ R2 : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}.
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Critical cone

Consider now a nonconvex optimization problem.

(x∗, λ∗, µ∗) solves KKT system. Is x∗ a local optimum?

Definition – Critical cone
(x∗, λ∗, µ∗) solves KKT system. The critical cone is

C (x∗, λ∗, µ∗) =

d ∈ Rn :
dT∇gi (x∗) = 0 ∀ i ∈ A(x∗) con λ∗i > 0
dT∇gi (x∗) ≤ 0 ∀ i ∈ A(x∗) con λ∗i = 0
dT∇hj(x∗) = 0 ∀ j = 1, . . . , p



Equivalent definition

C (x∗, λ∗, µ∗) = {d ∈ D(x∗) : dT∇f (x∗) = 0}
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Second order necessary optimality condition

Lagrangian function is defined as

L(x , λ, µ) := f (x) +
m∑
i=1

λi gi (x) +

p∑
j=1

µj hj(x)

Necessary condition

Assume that (x∗, λ∗, µ∗) solves KKT system and the gradients of active
constraints at x∗ are linear independent.
If x∗ is a local optimum, then

dT∇2
xxL(x∗, λ∗, µ∗) d ≥ 0 ∀ d ∈ C (x∗, λ∗, µ∗).

Special case: unconstrained problems

If x∗ is a local optimum, then ∇2f (x∗) is positive semidefinite.
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Second order necessary optimality condition

The previous theorem does not give a sufficient optimality condition.

Example. {
min x3

1 + x2

−x2 ≤ 0

x∗ = (0, 0), λ∗ = 1 is the unique solution of KKT system.
The linear constraint is active at x∗ and ∇g(x∗) = (0,−1) 6= 0.
Matrix ∇2

xxL(x∗, λ∗) = 0, but x∗ is not a local optimum because f (t, 0) < f (0, 0)
for all t < 0.
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Second order sufficient optimality condition

Sufficient condition
Assume that (x∗, λ∗, µ∗) solves KKT system and

dT∇2
xxL(x∗, λ∗, µ∗) d > 0 ∀ d ∈ C (x∗, λ∗, µ∗), d 6= 0,

then x∗ is a local optimum.

Special case: unconstrained problems.

If ∇f (x∗) = 0 and ∇2f (x∗) is positive definite then x∗ is a local optimum.

M. Passacantando Optimization Methods 26 / 27 –



Definitions Existence of optima First order optimality conditions Second order optimality conditions

Second order optimality conditions

Exercise. Find local and global optima of the following problems:

a)

{
min −2x3

2 + x1 x
2
2 + x2

1 − 2 x1 x2 + 3 x2
2

x ∈ R2

b)


min −x2

1 − 2 x2
2

−x1 + 1 ≤ 0
−x2 + 1 ≤ 0
x1 + x2 − 6 ≤ 0

c)

{
min −x1 + x2

2

−x2
1 − x2

2 + 4 ≤ 0

d)

 min x3
1 + x3

2

−x1 − 1 ≤ 0
−x2 − 1 ≤ 0
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