M. Passacantando

Existence of optimal solutions
and optimality conditions

Mauro Passacantando

Department of Computer Science, University of Pisa
mauro.passacantando@unipi.it

Optimization Methods
Master of Science in Embedded Computing Systems — University of Pisa
http://pages.di.unipi.it/passacantando/om/OM.html

Optimization Methods

1/27



Definitions

Optimization problem in standard form

min f(x)

g(x) <0

h(x)=0
» f:R" — R is the objective function
» gi:R" =R, i=1,..., m are the inequality constraints functions
> hi:R" = R, j=1,...,p are the equality constraints functions

m p
Domain: D = dom(f) N () dom(g;) N (1) dom(h;)
= =1

i=1 Jj=
Feasible region: Q ={x € D: g(x) <0, h(x) =0}

implicit constraint: x € D
explicit constraints: g(x) <0, h(x) =0
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Definitions

Global and local optima
Global optimal solution: a feasible point x* s.t. f(x*) < f(x) for all x € Q

Local optimal solution: a feasible point x* s.t. f(x*) < f(x) for all
x € QN B(x*, R) for some R >0

Optimal value:
=inf{f(x): x € Q}

v* = —oo if the problem is unbounded below
v* = 400 if the problem is infeasible

Examples
> f(x) = log(x), v* = —o0, no optimal solution
> f(x e, v* = 0, no optimal solution

)=
f(x)= Xlog( ), v =—1/e, x* =1/e is global optimum
)=

> f(x = x3 —3x, v* = —o0, x* = 1 is local optimum
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Definitions

Convex optimization problems

An optimization problem

min f(x)
g(x) <0
h(x)=0
is convex if f is convex, gi,...,8m are convex and hy, ..., h, are affine.
Examples
min X12 + x1x0 + 3X22 + 4x1 + 5x
a) { X¥*+x3-4<0 is convex
X1 + Xo — 2=0

min x2 + x3
b) ¢ x1/(1+x3) <0 is NOT convex, but it is equivalent to:
(Xl + X2)2 =0

min x2 + x3
x1 <0 which is convex
X1 + X = 0
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Definitions

Convex optimization problems

Why convex problems are important?

Theorem 1
In a convex optimization problem the feasible region is convex

Theorem 2
In a convex optimization problem any local optimal solution is a global one
Proof. Let x* be a local optimum, i.e. there is R > 0 s.t.

f(x*) < f(2) VzeQnB(x",R).

By contradiction, assume that x* is not a global optimum, i.e., there is y € Q s.t.
f(y) < f(x*). Take a € (0,1) s.t. ax™ + (1 —a)y € B(x*, R). Then we have

f(x") < flax” + (1= a)y) < af(x") + (1= a)f(y) < f(x7),

which is impossible.
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Existence of optima

Existence of global optima

Theorem (Weierstrass)
If the objective function f is continuous and the feasible region Q is closed and
bounded, then there exists a global optimum.
Proof. Let v* = im;2 f(x). Define a minimizing sequence {x*} C Q s.t. f(x¥) — v*.

X€e
Since {x*} is bounded, the Bolzano-Weierstrass theorem guarantees that there exists a
subsequence {x**} converging to some point x*. Since Q is closed, we get x* € Q.
Finally, f(x**) — f(x*) since f is continuous. Therefore, f(x*) = v*, i.e., x* is a global
optimum. O

Corollary

If all the functions f, g;, h; are continuous, the domain D is closed and the feasible
region Q is bounded, then there exists a global optimum.

Example
min x; + xo
X12 + x22 —4<0

admits a global optimum. Where?
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Existence of optima

Existence of global optima

Corollary

If the objective function f is continuous, the feasible region Q is closed and
there exists a € R such that the a-sublevel set

{xeQ: f(x)<a}
is nonempty and bounded, then there exists a global optimum.
Example
min eXtx

X1—X2§0
—2X1+X2§0

Q is closed and unbounded. The sublevel set {x € Q: f(x) <2} is nonempty
and bounded, thus there exists a global optimum.
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Existence of optima

Existence of global optima

Corollary

If the objective function f is continuous and coercive, i.e.,

lim f(x) = 4o0,
lIx[|—=o0

and the feasible region 2 is closed, then there exists a global optimum.

Example

min x* +3x3 —5x%+ x —2
x €R

Since f is coercive, there exists a global optimum.
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Existence of optima

Existence and uniqueness of global optima

Corollary

» If f is strongly convex and Q is closed, then there exists a global optimum.

» If f is strongly convex and Q is closed and convex, then there exists a unique
global optimum.
Example. Any quadratic programming problem

min %XTQX-I- c'x
Ax < b

where Q is a positive definite matrix has a unique global minimum.

What if Q is positive semidefinite or indefinite?
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Existence of optima

Existence of global optima for quadratic programming problems

Consider 1 .
min 5x Qx+c'x
{ Ax < b (P)

The recession cone of Q is rec(Q) = {d : Ad < 0}.

Theorem (Eaves)

(P) has a global optimal solution if and only if the following conditions hold:
(a) dTQd >0 for any d € rec(Q);
(b) d"(Qx+¢c) >0 forany x € Q and any d € rec(Q) s.t. dTQd =0.
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Existence of optima

Existence of global optima for quadratic programming problems

Special cases:
> If @ =0 (i.e., linear programming) then
(P) has an optimal solution iff dTc > 0V d € rec(Q)
> If Q is positive definite then (a) and (b) are satisfied.
> If Q is bounded then (a) and (b) are satisfied.

Exercise. Prove that the quadratic programming problem

1 1
min §X12 — §X22 +x1—2x
—X1 + Xo S -1

7X2§0

has a global optimal solution.
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First order optimality conditions

Unconstrained problems

Consider min f(x)

xeR

Theorem (Necessary optimality condition)
If x* is a local optimal solution, then

Vi(x*)=0.

Proof. By contradiction, assume that Vf(x™) # 0. Choose direction d = —Vf(x"),
define p(t) = f(x* + td),

¢'(0) = d"VF(x") = —|VF(x)|* <0,
thus f(x* + td) < f(x™) for all t small enough, which is impossible because x* is a local

optimum. (|

Optimality condition for unconstrained convex problems
If f is convex, then x* is a global minimum if and only if Vf(x*) = 0.
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First order optimality conditions

Constrained problems

Example.

min X1 + X
x12—|—x22—4§0

Q = B(0,2), global optimum is x* = (—v/2, —v/2), Vf(x*) = (1,1).

Definition — Tangent cone

Tg(x):{dGR”:El{zk}CQ, I{tx} >0, zx = x, tx — 0, kIer;ozkn(X:d}

Example (continued). What is Tqo(x*)?
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First order optimality conditions

First order necessary optimality condition

Theorem
If x* is a local optimal solution, then

dTVF(x*) >0, Vde To(x").

Proof. By contradiction, assume that there exists d € To(x*) s.t. d"Vf(x*) < 0. Take
the sequences {zc} and {tc} s.t. klim (zx — x*)/tk = d. Then zx = x* + ti d + o(t«),
— 00

where o(tx)/tx — 0. The first order approximation of f gives
f(z) = F(x*) + ted"VF(x") + o(t),

thus there is k € N s.t.
fz) = F7) - OO _ oGy + —o(ttk) <0 Vk>Kk
K K

i.e. f(zx) < f(x*) for all k > k, which is impossible because x* is a local optimum.  [J
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First order optimality conditions

First order optimality condition for convex problems

Theorem
If Q is convex, then Q C Tq(x) + x for any x € Q.

Optimality condition for constrained convex problems

If the optimization problem is convex, then x* is a global optimal solution if and
only if
(y —x*)TVF(x*) >0, VyeQ.

Exercise. Prove the latter result.
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First order optimality conditions

Properties of the tangent cone

Ta(x) is related to geometric properties of €.

Which is the relation between Tq(x) and constraints g, h defining Q7
Example (continued). g(x) = x? + x2 — 4, Vg(x*) = (-2v/2,-2V/2),

Ta(x*)={d € R?: dTVg(X*) <0}

Definition — First-order feasible direction cone
Given x € Q, A(x) = {i: gi(x) = 0} denotes the set of inequality constraints
which are active at x. The set

B . dTVgi(x) <0 Vie Ax),
D(X)_{deR' dTVh(x) =0 Vj=1,..p

is called the first-order feasible direction cone at point x.
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First order optimality conditions

Properties of the tangent cone

Theorem
Ta(x) C D(x) for all x € Q.

Definition — Abadie Constraints Qualification (ACQ)
Abadie Constraints Qualification holds at x when Tq(x) = D(x).

Remark

In general, ACQ does not hold at any x € Q.

Example
min x; + X
(1 —1)2+(x—-12-1<0
X2 S 0

Q= {(1,0)}. TQ(lvo) = {(an)}

Vgi(1,0) = (0, -2), Vgr(1,0) = (0,1), D(1,0) = {d € R? : dy

0}.
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First order optimality conditions

Properties of the tangent cone

Theorem - Sufficient conditions for ACQ

a)

b)

(Affine constraints)

If gi and h; are affine forall i =1,...,mand j=1,...,p, then ACQ holds
at any x € Q.

(Slater condition)

If gi are convex for all i =1,...,m, h; are affine for all j =1,...,p and there
exists X € int(D) s.t. g(X) <0 and h(x) =0, then ACQ holds at any x € Q.
(Linear independence of the gradients of active constraints)

If X € Q and the vectors

Vgi(x) forie A(x),
Vhi(x) forj=1,...,p

are linear independent, then ACQ holds at any X.
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First order optimality conditions

Karush-Kuhn-Tucker Theorem
Why ACQ is important?

Karush-Kuhn-Tucker Theorem

If x* is a local optimum and ACQ holds at x*, then there exist \* € R™ and

p* € RP st (x*, \*, u*) satisfies the KKT system:

— j=1
Ngi(x*)=0 Vi=1....m

>0
g(x*) <0
h(x*) =0

Exercise. Use KKT system to solve

min x; — xo
x24+x3-2<0
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First order optimality conditions

Karush-Kuhn-Tucker Theorem

Remark
ACQ assumption is crucial in the KKT Theorem.

Example.
min x; + Xo
(X1—1)2+(X2—1)2—1§0
X2 S 0

x* = (1,0) is the global optimum.
Ta(x*) = {0}, D(x*) = {d € R?: dy = 0}, hence ACQ does not hold at x*.

Veai(x*) =(0,-2), Vg (x*) = (0,1), VF(x*) = (1,1), hence there is no \* s.t.
(x*, \*) solves KKT system.
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First order optimality conditions

Karush-Kuhn-Tucker Theorem

KKT Theorem gives necessary optimality conditions, but not sufficient ones.
Example.

min X1 + Xo

— 12 — x22 +2<0

1
x*=(1,1), \* = 5 solves KKT system, but x* is not a local optimum.

KKT Theorem for convex problems
If the optimization problem is convex and (x*, \*, u*) solves KKT system, then x*
is a global optimum.

Exercise. Prove the latter result.
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First order optimality conditions

Karush-Kuhn-Tucker Theorem

Exercise 1. Compute the distance between a point z € R" and the hyperplane
{x€R": a'x = b}

Exercise 2. Compute the distance between two parallel hyperplanes

{xeR": a'x = b1}, {xeR": a'x = by}, by # bo.

Exercise 3. Compute the projection of a point z € R" on the ball with center x°
and radius r.

Exercise 4. Compute the projection of a point z € R? on the box

{xeR?: a1 <xi < by, a<x<bl}
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Second order optimality conditions

Critical cone
Consider now a nonconvex optimization problem.

(x*, A*, u*) solves KKT system. Is x* a local optimum?

Definition — Critical cone
(x*, A*, u*) solves KKT system. The critical cone is

d'Vgi(x*)=0 VieA(x*)con A\f >0

COx* M, u*)={deR": d'Vg(x*)<0 VieAx*)con A\ =0
dTVh(x*)=0 Vj=1,...,p

Equivalent definition
Clx" A", p*) = {d € D(x") : d"VF(x") =0}
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Second order optimality conditions
Second order necessary optimality condition

Lagrangian function is defined as
P
L(x, A ) - +Z>\ &)+ wihi(x)
j=1

Necessary condition

Assume that (x*, \*, u*) solves KKT system and the gradients of active
constraints at x* are linear independent.
If x* is a local optimum, then

dTV2 L(x* N, ) d >0 Yde C(x', A\, u).
Special case: unconstrained problems

If x* is a local optimum, then V2f(x*) is positive semidefinite.
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Second order optimality conditions

Second order necessary optimality condition

The previous theorem does not give a sufficient optimality condition.

Example.
min x13 + X
—X2 § 0
x* =(0,0), A* =1 is the unique solution of KKT system.
The linear constraint is active at x* and Vg(x*) = (0,—1) # 0.

Matrix V2, L(x*,A\*) = 0, but x* is not a local optimum because f(t,0) < f(0,0)
for all t < 0.
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Second order optimality conditions

Second order sufficient optimality condition

Sufficient condition
Assume that (x*, A*, u*) solves KKT system and

dT V2 L(x* N, u*)d >0 VdeC(x*,\,u*),d#0,

then x* is a local optimum.

Special case: unconstrained problems.

If VF(x*) =0 and V2f(x*) is positive definite then x* is a local optimum.
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Second order optimality conditions

Second order optimality conditions

Exercise. Find local and global optima of the following problems:

a){

|
Y
|

d)

M. Passacantando

min —2x3 + x1 x5 + x2 — 2x1 xo + 3 x3
x € R?

min —xZ — 2 x2
—X1+1§0
—-x+1<0
x1+x—6<0
min —x; + x2
2 —-x2+4<0
min x3 + x3
—X1—1§0
—XQ—].SO
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