Existence of optimal solutions and optimality conditions

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods Master of Science in Embedded Computing Systems – University of Pisa http://pages.di.unipi.it/passacantando/om/OM.html Existence of optima

Optimization problem in standard form

$$\begin{cases} \min f(x) \\ g(x) \le 0 \\ h(x) = 0 \end{cases}$$

- $f : \mathbb{R}^n \to \mathbb{R}$ is the objective function
- ▶ $g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ are the inequality constraints functions
- ▶ $h_j : \mathbb{R}^n \to \mathbb{R}$, $j = 1, \dots, p$ are the equality constraints functions

$$\begin{array}{l} \mathsf{Domain:} \ \mathcal{D} = \mathsf{dom}(f) \cap \bigcap_{i=1}^m \mathsf{dom}(g_i) \cap \bigcap_{j=1}^p \mathsf{dom}(h_j) \\ \\ \mathsf{Feasible region:} \ \Omega = \{x \in \mathcal{D} : \ g(x) \leq 0, \ h(x) = 0\} \end{array}$$

implicit constraint: $x \in D$ explicit constraints: $g(x) \le 0$, h(x) = 0

Global and local optima

Global optimal solution: a feasible point x^* s.t. $f(x^*) \leq f(x)$ for all $x \in \Omega$

Local optimal solution: a feasible point x^* s.t. $f(x^*) \le f(x)$ for all $x \in \Omega \cap B(x^*, R)$ for some R > 0

Optimal value:

$$v^* = \inf\{f(x): x \in \Omega\}$$

 $v^* = -\infty$ if the problem is unbounded below $v^* = +\infty$ if the problem is infeasible

Examples

•
$$f(x) = \log(x)$$
, $v^* = -\infty$, no optimal solution

•
$$f(x) = e^x$$
, $v^* = 0$, no optimal solution

•
$$f(x) = x \log(x)$$
, $v^* = -1/e$, $x^* = 1/e$ is global optimum

• $f(x) = x^3 - 3x$, $v^* = -\infty$, $x^* = 1$ is local optimum

Convex optimization problems

An optimization problem

$$\left(\begin{array}{c} \min f(x) \\ g(x) \leq 0 \\ h(x) = 0 \end{array}\right)$$

is convex if f is convex, g_1, \ldots, g_m are convex and h_1, \ldots, h_p are affine.

Examples

a)
$$\begin{cases} \min x_1^2 + x_1 x_2 + 3x_2^2 + 4x_1 + 5x_2 \\ x_1^2 + x_2^2 - 4 \le 0 \\ x_1 + x_2 - 2 = 0 \end{cases}$$
 is convex
b)
$$\begin{cases} \min x_1^2 + x_2^2 \\ x_1/(1 + x_2^2) \le 0 \\ (x_1 + x_2)^2 = 0 \end{cases}$$
 is NOT convex, but it is equivalent to
$$(x_1 + x_2)^2 = 0 \end{cases}$$
$$\begin{cases} \min x_1^2 + x_2^2 \\ x_1 \le 0 \\ x_1 + x_2 = 0 \end{cases}$$
 which is convex

Convex optimization problems

Why convex problems are important?

Theorem 1

In a convex optimization problem the feasible region is convex

Theorem 2

In a convex optimization problem any local optimal solution is a global one **Proof.** Let x^* be a local optimum, i.e. there is R > 0 s.t.

$$f(x^*) \leq f(z) \qquad \forall \ z \in \Omega \cap B(x^*, R).$$

By contradiction, assume that x^* is not a global optimum, i.e., there is $y \in \Omega$ s.t. $f(y) < f(x^*)$. Take $\alpha \in (0, 1)$ s.t. $\alpha x^* + (1 - \alpha)y \in B(x^*, R)$. Then we have

$$f(x^*) \leq f(\alpha x^* + (1-\alpha)y) \leq \alpha f(x^*) + (1-\alpha)f(y) < f(x^*),$$

which is impossible.

Existence of global optima

Theorem (Weierstrass)

If the objective function f is continuous and the feasible region Ω is closed and bounded, then there exists a global optimum.

Proof. Let $v^* = \inf_{x \in \Omega} f(x)$. Define a minimizing sequence $\{x^k\} \subseteq \Omega$ s.t. $f(x^k) \to v^*$. Since $\{x^k\}$ is bounded, the Bolzano-Weierstrass theorem guarantees that there exists a subsequence $\{x^{k_p}\}$ converging to some point x^* . Since Ω is closed, we get $x^* \in \Omega$. Finally, $f(x^{k_p}) \to f(x^*)$ since f is continuous. Therefore, $f(x^*) = v^*$, i.e., x^* is a global optimum.

Corollary

If all the functions f, g_i, h_j are continuous, the domain \mathcal{D} is closed and the feasible region Ω is bounded, then there exists a global optimum.

Example

$$\begin{cases} \min x_1 + x_2 \\ x_1^2 + x_2^2 - 4 \le 0 \end{cases}$$

admits a global optimum. Where?

M. Passacantando

Existence of global optima

Corollary

If the objective function f is continuous, the feasible region Ω is closed and there exists $\alpha \in \mathbb{R}$ such that the α -sublevel set

$$\{x \in \Omega : f(x) \le \alpha\}$$

is nonempty and bounded, then there exists a global optimum.

Example

$$\begin{cases} \min e^{x_1 + x_2} \\ x_1 - x_2 \le 0 \\ -2x_1 + x_2 \le 0 \end{cases}$$

 Ω is closed and unbounded. The sublevel set $\{x \in \Omega : f(x) \le 2\}$ is nonempty and bounded, thus there exists a global optimum.

Existence of global optima

Corollary

If the objective function f is continuous and coercive, i.e.,

$$\lim_{\|x\|\to\infty}f(x)=+\infty,$$

and the feasible region Ω is closed, then there exists a global optimum.

Example

$$\begin{cases} \min x^4 + 3x^3 - 5x^2 + x - 2\\ x \in \mathbb{R} \end{cases}$$

Since f is coercive, there exists a global optimum.

Existence and uniqueness of global optima

Corollary

- If f is strongly convex and Ω is closed, then there exists a global optimum.
- If f is strongly convex and Ω is closed and convex, then there exists a unique global optimum.

Example. Any quadratic programming problem

$$\begin{bmatrix} \min \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x \\ Ax \le b \end{bmatrix}$$

where Q is a positive definite matrix has a unique global minimum.

What if Q is positive semidefinite or indefinite?

Existence of global optima for quadratic programming problems

Consider

$$\begin{cases} \min \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x \\ Ax \le b \end{cases}$$
(P)

The recession cone of Ω is $rec(\Omega) = \{d : Ad \leq 0\}$.

Theorem (Eaves)

(P) has a global optimal solution if and only if the following conditions hold:
(a) d^TQ d ≥ 0 for any d ∈ rec(Ω);
(b) d^T(Qx + c) ≥ 0 for any x ∈ Ω and any d ∈ rec(Ω) s.t. d^TQ d = 0.

Existence of global optima for quadratic programming problems

Special cases:

- If Q = 0 (i.e., linear programming) then (P) has an optimal solution iff $d^{\mathsf{T}}c \ge 0 \ \forall \ d \in \operatorname{rec}(\Omega)$
- ▶ If *Q* is positive definite then (a) and (b) are satisfied.
- If Ω is bounded then (a) and (b) are satisfied.

Exercise. Prove that the quadratic programming problem

$$\begin{cases} \min \frac{1}{2}x_1^2 - \frac{1}{2}x_2^2 + x_1 - 2x_2 \\ -x_1 + x_2 \le -1 \\ -x_2 \le 0 \end{cases}$$

has a global optimal solution.

Unconstrained problems

Consider $\min_{x \in \mathbb{R}^n} f(x)$

Theorem (Necessary optimality condition)

If x^* is a local optimal solution, then

$$\nabla f(x^*)=0.$$

Proof. By contradiction, assume that $\nabla f(x^*) \neq 0$. Choose direction $d = -\nabla f(x^*)$, define $\varphi(t) = f(x^* + td)$,

$$\varphi'(0) = d^{\mathsf{T}} \nabla f(x^*) = - \| \nabla f(x^*) \|^2 < 0,$$

thus $f(x^* + td) < f(x^*)$ for all t small enough, which is impossible because x^* is a local optimum.

Optimality condition for unconstrained convex problems If *f* is convex, then x^* is a global minimum if and only if $\nabla f(x^*) = 0$.

M. Passacantando

Optimization Methods

12 / 27 -

Constrained problems

Example.

$$\begin{cases} \min x_1 + x_2 \\ x_1^2 + x_2^2 - 4 \le 0 \end{cases}$$

 $\Omega = B(0,2)$, global optimum is $x^* = (-\sqrt{2}, -\sqrt{2})$, $\nabla f(x^*) = (1,1)$.

Definition – Tangent cone

$$T_\Omega(x)=\left\{d\in \mathbb{R}^n: \exists \; \{z_k\}\subset \Omega,\; \exists \; \{t_k\}>0,\; z_k o x,\; t_k o 0,\; \lim_{k o\infty}rac{z_k-x}{t_k}=d
ight\}$$

Example (continued). What is $T_{\Omega}(x^*)$?

M. Passacantando

First order necessary optimality condition

Theorem

If x^* is a local optimal solution, then

$$d^{\mathsf{T}}
abla f(x^*) \geq 0, \qquad orall \ d \in T_\Omega(x^*).$$

Proof. By contradiction, assume that there exists $d \in T_{\Omega}(x^*)$ s.t. $d^{\mathsf{T}} \nabla f(x^*) < 0$. Take the sequences $\{z_k\}$ and $\{t_k\}$ s.t. $\lim_{k \to \infty} (z_k - x^*)/t_k = d$. Then $z_k = x^* + t_k d + o(t_k)$, where $o(t_k)/t_k \to 0$. The first order approximation of f gives

$$f(z_k) = f(x^*) + t_k d^{\mathsf{T}} \nabla f(x^*) + o(t_k),$$

thus there is $\bar{k} \in \mathbb{N}$ s.t.

$$\frac{f(z_k)-f(x^*)}{t_k}=d^{\mathsf{T}}\nabla f(x^*)+\frac{o(t_k)}{t_k}<0\qquad\forall\;k>\bar{k},$$

i.e. $f(z_k) < f(x^*)$ for all $k > \overline{k}$, which is impossible because x^* is a local optimum.

First order optimality condition for convex problems

Theorem

If Ω is convex, then $\Omega \subseteq T_{\Omega}(x) + x$ for any $x \in \Omega$.

Optimality condition for constrained convex problems

If the optimization problem is convex, then x^* is a global optimal solution if and only if

$$(y-x^*)^{\mathsf{T}} \nabla f(x^*) \geq 0, \qquad \forall \ y \in \Omega.$$

Exercise. Prove the latter result.

Properties of the tangent cone

 $T_{\Omega}(x)$ is related to geometric properties of Ω .

Which is the relation between $T_{\Omega}(x)$ and constraints g, h defining Ω ?

Example (continued).
$$g(x) = x_1^2 + x_2^2 - 4$$
, $\nabla g(x^*) = (-2\sqrt{2}, -2\sqrt{2})$,
 $T_{\Omega}(x^*) = \{ d \in \mathbb{R}^2 : d^{\mathsf{T}} \nabla g(x^*) \leq 0 \}$

Definition – First-order feasible direction cone

Given $x \in \Omega$, $\mathcal{A}(x) = \{i : g_i(x) = 0\}$ denotes the set of inequality constraints which are active at x. The set

$$D(x) = \left\{ d \in \mathbb{R}^n : \begin{array}{ll} d^{\mathsf{T}} \nabla g_i(x) \leq 0 & \forall \ i \in \mathcal{A}(x), \\ d^{\mathsf{T}} \nabla h_j(x) = 0 & \forall \ j = 1, \dots, p \end{array} \right\}$$

is called the *first-order feasible direction cone* at point *x*.

M. Passacantando

Optimization Methods

16 / 27 -

Properties of the tangent cone

Theorem $T_{\Omega}(x) \subseteq D(x)$ for all $x \in \Omega$.

Definition – Abadie Constraints Qualification (ACQ)

Abadie Constraints Qualification holds at x when $T_{\Omega}(x) = D(x)$.

Remark

In general, ACQ does not hold at any $x \in \Omega$.

Example

$$\begin{cases} \min x_1 + x_2 \\ (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0 \\ x_2 \le 0 \end{cases}$$

 $\Omega = \{(1,0)\}, \ T_{\Omega}(1,0) = \{(0,0)\}.$

 $abla g_1(1,0) = (0,-2), \
abla g_2(1,0) = (0,1), \ D(1,0) = \{d \in \mathbb{R}^2: \ d_2 = 0\}.$

Properties of the tangent cone

Theorem - Sufficient conditions for ACQ

- a) (Affine constraints) If g_i and h_j are affine for all i = 1, ..., m and j = 1, ..., p, then ACQ holds at any $x \in \Omega$.
- b) (Slater condition) If g_i are convex for all i = 1, ..., m, h_j are affine for all j = 1, ..., p and there exists $\bar{x} \in int(\mathcal{D})$ s.t. $g(\bar{x}) < 0$ and $h(\bar{x}) = 0$, then ACQ holds at any $x \in \Omega$.
- c) (Linear independence of the gradients of active constraints) If $\bar{x} \in \Omega$ and the vectors

$$\left(egin{array}{cc}
abla g_i(ar{x}) & ext{for } i \in \mathcal{A}(ar{x}), \\
abla b_j(ar{x}) & ext{for } j = 1, \dots, p \end{array}
ight.$$

are linear independent, then ACQ holds at any \bar{x} .

Karush-Kuhn-Tucker Theorem Why ACQ is important?

Karush-Kuhn-Tucker Theorem

If x^* is a local optimum and ACQ holds at x^* , then there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ s.t. (x^*, λ^*, μ^*) satisfies the KKT system:

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^{p} \mu_j^* \nabla h_j(x^*) = 0\\ \lambda_i^* g_i(x^*) = 0 \quad \forall i = 1, \dots, m\\ \lambda^* \ge 0\\ g(x^*) \le 0\\ h(x^*) = 0 \end{cases}$$

Exercise. Use KKT system to solve

$$\begin{cases} \min x_1 - x_2 \\ x_1^2 + x_2^2 - 2 \le 0 \end{cases}$$

M. Passacantando

Optimization Methods

Karush-Kuhn-Tucker Theorem

Remark

ACQ assumption is crucial in the KKT Theorem.

Example.

$$\begin{cases} \min x_1 + x_2 \\ (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0 \\ x_2 \le 0 \end{cases}$$

 $x^* = (1, 0)$ is the global optimum.

 $\mathcal{T}_\Omega(x^*)=\{0\},\ D(x^*)=\{d\in\mathbb{R}^2:\ d_2=0\},$ hence ACQ does not hold at $x^*.$

 $\nabla g_1(x^*) = (0, -2), \ \nabla g_2(x^*) = (0, 1), \ \nabla f(x^*) = (1, 1),$ hence there is no λ^* s.t. (x^*, λ^*) solves KKT system.

Karush-Kuhn-Tucker Theorem

KKT Theorem gives necessary optimality conditions, but not sufficient ones.

Example.

$$\min x_1 + x_2 \\ -x_1^2 - x_2^2 + 2 \le 0$$

 $x^* = (1, 1), \lambda^* = \frac{1}{2}$ solves KKT system, but x^* is not a local optimum.

KKT Theorem for convex problems

If the optimization problem is convex and (x^*, λ^*, μ^*) solves KKT system, then x^* is a global optimum.

Exercise. Prove the latter result.

Karush-Kuhn-Tucker Theorem

Exercise 1. Compute the distance between a point $z \in \mathbb{R}^n$ and the hyperplane $\{x \in \mathbb{R}^n : a^T x = b\}$

Exercise 2. Compute the distance between two parallel hyperplanes

$$\{x \in \mathbb{R}^n : a^{\mathsf{T}}x = b_1\}, \qquad \{x \in \mathbb{R}^n : a^{\mathsf{T}}x = b_2\}, \qquad b_1 \neq b_2.$$

Exercise 3. Compute the projection of a point $z \in \mathbb{R}^n$ on the ball with center x^0 and radius r.

Exercise 4. Compute the projection of a point $z \in \mathbb{R}^2$ on the box

$$\{x \in \mathbb{R}^2 : a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2\}.$$

Critical cone

Consider now a nonconvex optimization problem.

 (x^*, λ^*, μ^*) solves KKT system. Is x^* a local optimum?

Definition – Critical cone (x^*, λ^*, μ^*) solves KKT system. The critical cone is

$$C(x^*, \lambda^*, \mu^*) = \left\{ \begin{array}{ll} d^{\mathsf{T}} \nabla g_i(x^*) = 0 & \forall \ i \in \mathcal{A}(x^*) \ \text{con} \ \lambda_i^* > 0 \\ d \in \mathbb{R}^n : & d^{\mathsf{T}} \nabla g_i(x^*) \leq 0 & \forall \ i \in \mathcal{A}(x^*) \ \text{con} \ \lambda_i^* = 0 \\ & d^{\mathsf{T}} \nabla h_j(x^*) = 0 & \forall \ j = 1, \dots, p \end{array} \right\}$$

Equivalent definition

$$C(x^*, \lambda^*, \mu^*) = \{ d \in D(x^*) : d^{\mathsf{T}} \nabla f(x^*) = 0 \}$$

Optimization Methods

Second order necessary optimality condition

Lagrangian function is defined as

$$L(x,\lambda,\mu) := f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x)$$

Necessary condition

Assume that (x^*, λ^*, μ^*) solves KKT system and the gradients of active constraints at x^* are linear independent.

If x^* is a local optimum, then

$$d^{\mathsf{T}} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*, \mu^*) d \ge 0 \qquad \forall \ d \in \mathcal{C}(x^*, \lambda^*, \mu^*).$$

Special case: unconstrained problems

If x^* is a local optimum, then $\nabla^2 f(x^*)$ is positive semidefinite.

M. Passacantando

Optimization Methods

24 / 27 -

Second order necessary optimality condition

The previous theorem does not give a sufficient optimality condition.

Example.

$$\left\{\begin{array}{l} \min x_1^3 + x_2 \\ -x_2 \le 0 \end{array}\right.$$

 $x^* = (0,0), \ \lambda^* = 1$ is the unique solution of KKT system. The linear constraint is active at x^* and $\nabla g(x^*) = (0,-1) \neq 0$. Matrix $\nabla^2_{xx} L(x^*,\lambda^*) = 0$, but x^* is not a local optimum because f(t,0) < f(0,0) for all t < 0.

Second order sufficient optimality condition

Sufficient condition

Assume that (x^*,λ^*,μ^*) solves KKT system and

$$d^{\mathsf{T}} \,
abla^2_{xx} \mathcal{L}(x^*,\lambda^*,\mu^*) \, d > 0 \qquad orall \, d \in \mathcal{C}(x^*,\lambda^*,\mu^*), d
eq 0,$$

then x^* is a local optimum.

Special case: unconstrained problems.

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite then x^* is a local optimum.

Second order optimality conditions

Exercise. Find local and global optima of the following problems:

a)
$$\begin{cases} \min -2x_2^3 + x_1 x_2^2 + x_1^2 - 2 x_1 x_2 + 3 x_2^2 \\ x \in \mathbb{R}^2 \end{cases}$$

b)
$$\begin{cases} \min -x_1^2 - 2 x_2^2 \\ -x_1 + 1 \le 0 \\ -x_2 + 1 \le 0 \\ x_1 + x_2 - 6 \le 0 \end{cases}$$

c)
$$\begin{cases} \min -x_1 + x_2^2 \\ -x_1^2 - x_2^2 + 4 \le 0 \end{cases}$$

d)
$$\begin{cases} \min x_1^3 + x_2^3 \\ -x_1 - 1 \le 0 \\ -x_2 - 1 \le 0 \end{cases}$$