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Subspaces

Given x , y ∈ Rn.

A linear combination of x and y is a point αx + βy , where α, β ∈ R.

A set C ⊆ Rn is a subspace if it contains all the linear combinations of any two
points in C .

Examples:

I {0}
I any line which passes through zero

I the solution set of a homogeneous system of linear equations

C = {x ∈ Rn : Ax = 0},

where A is a m × n matrix.
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Affine sets

An affine combination of x and y is a point αx + βy , where α + β = 1.

A set C ⊆ Rn is an affine set if it contains all the affine combinations of any two
points in C .

Examples:

I any single point {x}
I any line

I the solution set of a system of linear equations

C = {x ∈ Rn : Ax = b},

where A is a m × n matrix and b ∈ Rm

I any subspace

M. Passacantando Optimization Methods 3 / 24 –



Convex sets Convex functions

Convex sets

A convex combination of two given points x and y is a point αx + βy , where
α + β = 1, α ≥ 0, β ≥ 0.

A set C ⊆ Rn is convex if it contains all the convex combinations of any two
points in C .

x

y

convex set

x

y

non-convex set

Exercise. Prove that if C is convex, then for any x1, . . . , xk ∈ C and

α1, . . . , αk ∈ (0, 1) s.t.
k∑

i=1

αi = 1, one has
k∑

i=1

αix
i ∈ C .
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Convex hull

The convex hull conv(C ) of a set C is the smallest convex set containing C .

C conv(C )

Exercise. Prove that conv(C ) = {all convex combinations of points in C}.

Exercise. Prove that C is convex if and only if C = conv(C ).
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Convex sets - Examples

Examples:

I subspace

I affine set

I line segment

I halfspace {x ∈ Rn : aTx ≤ b}
I polyhedron P = {x ∈ Rn : Ax ≤ b} solution set of a system of linear

inequalities
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Convex sets - Examples

I ball B(x , r) = {y ∈ Rn : ‖y − x‖ ≤ r}, where ‖ · ‖ is any norm, e.g.

‖x‖2 =

√
n∑

i=1

x2i (Euclidean norm)

‖x‖1 =
n∑

i=1

|xi | (Manhattan distance)

‖x‖∞ = max
i=1,...,n

|xi | (Chebyshev norm)

‖x‖p = p

√
n∑

i=1

|xi |p, with 1 ≤ p ≤ ∞

‖x‖A =
√
xTAx , where A is a symmetric and positive definite matrix, i.e.,

xTAx > 0 ∀ x 6= 0.

Exercise. Find B(0, 1) w.r.t. ‖ · ‖1, ‖ · ‖∞ and ‖ · ‖A where A =

(
2 0
0 1

)
.
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Operations that preserve convexity

Sum and difference
If C1 and C2 are convex, then C1 + C2 := {x + y : x ∈ C1, y ∈ C2} is convex.
If C1 and C2 are convex, then C1 − C2 := {x − y : x ∈ C1, y ∈ C2} is convex.

Intersection
If C1 and C2 are convex, then C1 ∩ C2 is convex.
Exercise. If {Ci}i∈I is a family of convex sets, then

⋂
i∈I

Ci is convex.

Union
If C1 and C2 are convex, then C1 ∪ C2 is convex?

Closure and interior
If C is convex, then cl(C ) is convex.
If C is convex, then int(C ) is convex.
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Operations that preserve convexity

Affine functions
Let f : Rn → Rm be affine, i.e. f (x) = Ax + b, with A ∈ Rm×n, b ∈ Rm.

I If C ⊆ Rn is convex, then f (C ) = {f (x) : x ∈ C} is convex

I If C ⊆ Rm is convex, then f −1(C ) = {x ∈ Rn : f (x) ∈ C} is convex

Examples:

I scaling, e.g. f (x) = α x , with α > 0

I translation, e.g. f (x) = x + b, with b ∈ Rn

I rotation, e.g. f (x) =

(
cos θ − sin θ
sin θ cos θ

)
x , with θ ∈ (0, 2π)
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Cones

A set C ⊆ Rn is a cone if α x ∈ C for any x ∈ C and α ≥ 0.

Examples:

I Rn
+ is a convex cone

I {x ∈ R2 : x1 x2 = 0} is a nonconvex cone

I Given a polyhedron P = {x : Ax ≤ b}, the recession cone of P is defined as

rec(P) := {d : x + α d ∈ P for any x ∈ P, α ≥ 0}.

It is easy to prove rec(P) = {x : Ax ≤ 0}, thus it is a polyhedral cone.

I {x ∈ R3 : x3 ≥
√
x21 + x22} is a non-polyhedral cone.
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Exercises

1. Write the vector (1, 1) as the convex combination of the vectors
(0, 0), (3, 0), (0, 2), (3, 2).

2. When does one halfspace contain another? Give conditions under which

{x ∈ Rn : aT1 x ≤ b1} ⊆ {x ∈ Rn : aT2 x ≤ b2},

where ‖a1‖2 = ‖a2‖2 = 1. Also find the conditions under which the two
halfspaces are equal.

3. Which of the following sets are polyhedra?

a) {y1a1 + y2a2 : −1 ≤ y1 ≤ 1, −1 ≤ y2 ≤ 1}, where a1, a2 ∈ Rn.

b)

{
x ∈ Rn : x ≥ 0,

n∑
i=1

xi = 1,
n∑

i=1

aixi = b1,
n∑

i=1

a2i xi = b2

}
, where

b1, b2, a1, . . . , an ∈ R.

c) {x ∈ Rn : x ≥ 0, aTx ≤ 1 for all a with ‖a‖2 = 1}.

d) {x ∈ Rn : x ≥ 0, aTx ≤ 1 for all a with ‖a‖1 = 1}.
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Convex functions

Given a convex set C ⊆ Rn, a function f : C → R is convex if

f (αy + (1− α)x) ≤ αf (y) + (1− α)f (x) ∀ x , y ∈ C ,∀ α ∈ (0, 1)

x αy + (1− α)x y

f (x)

f (y)

f (αy + (1− α)x)

α f (y) + (1− α) f (x)

f is said concave if −f is convex.

Exercise. Prove that if f is convex, then for any x1, . . . , xk ∈ C and

α1, . . . , αk ∈ (0, 1) s.t.
k∑

i=1

αi = 1, one has f

(
k∑

i=1

αix
i

)
≤

k∑
i=1

αi f (x i ).
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Strictly convex and strongly convex functions

Given a convex set C ⊆ Rn, a function f : C → R is strictly convex if

f (αy + (1− α)x) < αf (y) + (1− α)f (x) ∀ x , y ∈ C ,∀ α ∈ (0, 1)

Given a convex set C ⊆ Rn, a function f : C → R is strongly convex if there exists
τ > 0 s.t.

f (αy + (1− α)x) ≤ αf (y) + (1− α)f (x)− τ

2
α(1− α)‖y − x‖2

∀ x , y ∈ C ,∀ α ∈ (0, 1)

Thm. f is strongly convex if and only if ∃ τ > 0 s.t. f (x)− τ

2
‖x‖2 is convex

Exercise.
I Prove that: strongly convex =⇒ strictly convex =⇒ convex
I convex =⇒ strictly convex ?
I strictly convex =⇒ strongly convex ?
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First order conditions

Assume that C ⊆ Rn is open convex and f : C → R is continuously differentiable.

Theorem
f is convex if and only if

f (y) ≥ f (x) + (y − x)T∇f (x) ∀ x , y ∈ C .

x y

f (x)

f (y)

f (x) + (y − x)T∇f (x)

First-order approximation of f is a global understimator
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First order conditions

Theorem

I f is strictly convex if and only if

f (y) > f (x) + (y − x)T∇f (x) ∀ x , y ∈ C ,with x 6= y .

I f is strongly convex if and only if there exists τ > 0 such that

f (y) ≥ f (x) + (y − x)T∇f (x) +
τ

2
‖y − x‖22 ∀ x , y ∈ C .
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Second order conditions

Assume that C ⊆ Rn is open convex and f : C → R is twice continuously
differentiable.

Theorem

I f is convex if and only if for all x ∈ C the Hessian matrix ∇2f (x) is positive
semidefinite, i.e.

vT∇2f (x)v ≥ 0 ∀ v 6= 0,

or, equivalently, the eigenvalues of ∇2f (x) are ≥ 0.

I If ∇2f (x) is positive definite for all x ∈ C , then f is strictly convex.

I f is strongly convex if and only if there exists τ > 0 such that ∇2f (x)− τ I is
positive semidefinite for all x ∈ C , i.e.

vT∇2f (x)v ≥ τ‖v‖22 ∀ v 6= 0,

or, equivalently, the eigenvalues of ∇2f (x) are ≥ τ .
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Examples

f (x) = cTx is both convex and concave
f (x) = 1

2x
TQx + cTx is

I convex iff Q is positive semidefinite

I strongly convex iff Q is positive definite

I concave iff Q is negative semidefinite

I strongly concave iff Q is negative definite

f (x) = eax for any a ∈ R is strictly convex, but not strongly convex
f (x) = log(x) is strictly concave, but not strongly concave
f (x) = xa with x > 0 is strictly convex if a > 1 or a < 0. Is it strongly convex?
f (x) = xa with x > 0 is strictly concave if 0 < a < 1
f (x) = ‖x‖ is convex, but not strictly convex
f (x) = max{x1, . . . , xn} is convex, but not strictly convex
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Exercises

1. Prove that the function
f (x1, x2) =

x1 x2
x1 − x2

is convex on the set {x ∈ R2 : x1 − x2 > 0}.

2. Prove that f (x1, x2) =
1

x1 x2
is convex on the set {x ∈ R2 : x1, x2 > 0}.

3. Given a convex set C ⊆ Rn, the distance function is defined as follows:

dC (x) = inf
y∈C
‖y − x‖.

Prove that dC is a convex function.

4. Given C = {x ∈ R2 : x21 + x22 ≤ 1}, write the distance function dC explicitly.

5. Prove that the arithmetic mean of n positive numbers x1, . . . , xn is greater or
equal to their geometric mean, i.e.,

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 . . . xn.

(Hint: exploit the log function.)
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Operations that preserve convexity

Theorem

I If f is convex and α > 0, then αf is convex

I If f1 and f2 are convex, then f1 + f2 are convex

I If f is convex, then f (Ax + b) is convex

Examples

I Log barrier for linear inequalities:

f (x) = −
m∑
i=1

log(bi−aTi x) C = {x ∈ Rn : bi−aTi x > 0 ∀ i = 1, . . . ,m}

I Norm of affine function: f (x) = ‖Ax + b‖

Exercise. If f1 and f2 are convex, then is the product f1 f2 convex?
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Pointwise maximum

Theorem

I If f1, . . . , fm are convex, then f (x) = max{f1(x), . . . , fm(x)} is convex.

I If {fi}i∈I is a family of convex functions, then f (x) = sup
i∈I

fi (x) is convex.

Example. If L(x , λ) : Rn × Rm → R is convex in x and concave in λ, then

p(x) = sup
λ

L(x , λ) is convex

d(λ) = inf
x
L(x , λ) is concave
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Composition

f : Rn → R and g : R→ R.

Theorem

I If f is convex and g is convex and nondecreasing, then g ◦ f is convex.

I If f is concave and g is convex and nonincreasing, then g ◦ f is convex.

I If f is concave and g is concave and nondecreasing, then g ◦ f is concave.

I If f is convex and g is concave and nonincreasing, then g ◦ f is concave.

Examples

I If f is convex, then ef (x) is convex

I If f is concave and positive, then log f (x) is concave

I If f is convex, then − log(−f (x)) is convex on {x : f (x) < 0}

I If f is concave and positive, then
1

f (x)
is convex

I If f is convex and nonnegative, then f (x)p is convex for all p ≥ 1
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Sublevel sets

Given f : Rn → R and α ∈ R, the set

Sα(f ) = {x ∈ Rn : f (x) ≤ α}

is said the α-sublevel set of f .

Exericise. Prove that if f is convex, then Sα(f ) is a convex set for any α ∈ R.

Is the converse true?
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Quasiconvex functions

Given a convex set C ⊆ Rn, a function f : C → R is quasiconvex if the α-sublevel
sets are convex for all α ∈ R.

f is said quasiconcave if −f is quasiconvex.

Examples

I f (x) =
√
|x | is quasiconvex on R

I f (x1, x2) = x1 x2 is quasiconcave on {x ∈ R2 : x1 > 0, x2 > 0}
I f (x) = log x is quasiconvex and quasiconcave

I f (x) = ceil(x) = inf{z ∈ Z : z ≥ x} is quasiconvex and quasiconcave
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Exercise

Express each convex set defined below in the form
⋂
i∈I
{x : fi (x) ≤ 0}, where

fi : Rn → R are suitable convex functions:

a) conv{(−1,−1), (1, 0), (0, 2)}

b) conv{(0, 0), (1, 1)}

c) conv
({

x ∈ R2 : x21 + (x2 − 1)2 = 1
}
∪
{
x ∈ R2 : x21 + (x2 + 1)2 = 1

})
d) conv{x ∈ R2 : x1x2 = 1}
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