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Convex sets

Subspaces
Given x,y € R".

A linear combination of x and y is a point ax + 8y, where a, 8 € R.

A set C C R" is a subspace if it contains all the linear combinations of any two
points in C.

Examples:

> {0}
» any line which passes through zero

> the solution set of a homogeneous system of linear equations
C={xeR": Ax =0},

where A is a m X n matrix.

M. Passacantando Optimization Methods 2/24



Convex sets

Affine sets

An affine combination of x and y is a point ax + By, where o + 3 = 1.

A set C C R” is an affine set if it contains all the affine combinations of any two
points in C.

Examples:

> any single point {x}
> any line

> the solution set of a system of linear equations
C={xeR": Ax = b},

where A is a m X n matrix and b € R™

> any subspace
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Convex sets

Convex sets
A convex combination of two given points x and y is a point ax + 8y, where
a+B=10a2>0 82>0.

A set C C R" is convex if it contains all the convex combinations of any two
points in C.
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Exercise. Prove that if C is convex, then for any x!,...,x* € C and
k k

ag, ... ok € (0,1)s.t. Y a; =1, one has > a;x’ € C.

i=1 i=1
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Convex sets

Convex hull

The convex hull conv(C) of a set C is the smallest convex set containing C.

C conv(C)

Exercise. Prove that conv(C) = {all convex combinations of points in C}.

Exercise. Prove that C is convex if and only if C = conv(C).
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Convex sets

Convex sets - Examples

Examples:
» subspace
affine set
line segment
halfspace {x € R": a'x < b}

polyhedron P = {x € R": Ax < b} solution set of a system of linear
inequalities

vV vV v v
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Convex sets

Convex sets - Examples

> ball B(x,r) ={y € R": ||y — x|| < r}, where || - || is any norm, e.g.

n

Ix]l2 = /> x? (Euclidean norm)
i=1
n

IIx]l1 = >_ |x;| (Manhattan distance)

i=1

lI1X]l0 = _max |xi| (Chebyshev norm)
i=1,...,n

n
Ixllp = ¢/ > |xi|P, with 1 < p < o0
i-1

lIxlla = VxTAx, where A is a symmetric and positive definite matrix, i.e.,

xTAx >0 vV x #0.

Exercise. Find B(0,1) w.r.t. |- |1, || - loc and || - |4 where A — ( - >
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Convex sets

Operations that preserve convexity

Sum and difference

If G; and G, are convex, then G + G :={x+y: x € G, y € G} is convex.
If C; and G, are convex, then C; — G :={x—y: x€ G, y € G} is convex.

Intersection
If C; and G, are convex, then C; N G, is convex.

Exercise. If {C;}ic; is a family of convex sets, then [ C; is convex.

iel
Union

If C; and G, are convex, then C; U G is convex?

Closure and interior
If C is convex, then cl(C) is convex.
If C is convex, then int(C) is convex.
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Convex sets

Operations that preserve convexity

Affine functions

Let f : R" — R™ be affine, i.e. f(x) = Ax+ b, with A€ R™" b e R™.
> If C CR"is convex, then f(C) = {f(x): x € C} is convex
» If C CR™ is convex, then f1(C) = {x € R": f(x) € C} is convex

Examples:
> scaling, e.g. f(x) = ax, with a >0
> translation, e.g. f(x) = x+ b, with b € R"

> rotation, e.g. f(x) = ( C:jg _;')rs‘g >x, with 8 € (0,27)
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Convex sets

Cones

Aset CCR"isaconeif axe C forany x € C and a > 0.

Examples:

» RY is a convex cone

v

{x € R?: x; xo = 0} is a nonconvex cone

> Given a polyhedron P = {x : Ax < b}, the recession cone of P is defined as
rec(P):={d: x+adeP forany xe P, a>0}.

It is easy to prove rec(P) = {x : Ax < 0}, thus it is a polyhedral cone.
{x €R3: x3 > /x2 + x2} is a non-polyhedral cone.

v
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Convex sets

Exercises

1. Write the vector (1,1) as the convex combination of the vectors
(0,0),(3,0),(0,2),(3,2).
2. When does one halfspace contain another? Give conditions under which
{xER": ajx< b} C{xE€R": alx < by},
where ||a1]2 = ||az]|]2 = 1. Also find the conditions under which the two
halfspaces are equal.
3. Which of the following sets are polyhedra?
a) {yia1 +yra: —1<y1 <1, =1 <y, <1}, where a1, a € R".

n

n n
b) {x ER": x>0, > xi=1, Y aixi = by, Za?x; = bg}, where
=1 =1 =1

b1, b2, a1,...,a, € R.
c) {x€R": x>0, a'x <1 for all awith ||a]2 = 1}.

d) {x€R": x>0, a'x <1 for all awith ||a]j; = 1}.
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Convex functions

Convex functions
Given a convex set C C R”, a function f : C — R is convex if

flay + (1 — a)x) < af(y) + (1 — a)f(x) Vx,yeCVae(0,1)

f is said concave if —f is convex.

Exercise. Prove that if f is convex, then for any x*,...,x* € C and

K K , K _
01,...,ak € (0,1)sit. Y =1, one has f <Z a;x’) < ST aif(x').
i=1 i=1 i=1
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Convex functions

Strictly convex and strongly convex functions

Given a convex set C C R", a function f : C — R is strictly convex if

flay+ (1 —a)x) <af(y)+(1—a)f(x) Vx,yeC,Vaec(0,1)

Given a convex set C C R", a function f : C — R is strongly convex if there exists
7> 0s.t.

flay + (1 —a)x) < af(y) + (1 — a)f(x) — %a(l —a)|ly — x|]?

Vx,yeCVae(0,1)

Thm. f is strongly convex if and only if 3 7 > 0 s.t. f(x) — g [|x||? is convex

Exercise.
> Prove that:  strongly convex = strictly convex = convex
> convex = strictly convex 7
> strictly convex = strongly convex ?
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Convex functions

First order conditions

Assume that C C R" is open convex and f : C — R is continuously differentiable.
Theorem
f is convex if and only if

fly) > f(x)+ (y — x)TVF(x) Vx,yeC.

X y

First-order approximation of f is a global understimator
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Convex functions

First order conditions

Theorem

> f is strictly convex if and only if
fly) > f(x) + (y — x)TVF(x) YV x,y € C,with x # y.
> f is strongly convex if and only if there exists 7 > 0 such that

-
f(y) = f(x) + (v —x) VF(x) + EHY—XHE Vx,yeC
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Convex functions
Second order conditions

Assume that C C R" is open convex and f : C — R is twice continuously
differentiable.

Theorem

» f is convex if and only if for all x € C the Hessian matrix V2f(x) is positive
semidefinite, i.e.

vIV2f(x)v >0 Vv #0,

or, equivalently, the eigenvalues of V2f(x) are > 0.
» If V2f(x) is positive definite for all x € C, then f is strictly convex.

» f is strongly convex if and only if there exists 7 > 0 such that V2f(x) — 7/ is
positive semidefinite for all x € C, i.e.

vIV2E(x)v > 7|v|3 Yv#0,

or, equivalently, the eigenvalues of V2f(x) are > 7.

M. Passacantando Optimization Methods 16 / 24



Convex functions

Examples

f(x) = c"x is both convex and concave
f(x)= %XTQX +c'xis

convex iff @ is positive semidefinite
strongly convex iff Q is positive definite
concave iff @ is negative semidefinite

vV vV v v

strongly concave iff Q is negative definite

= e? for any a € R is strictly convex, but not strongly convex

= x? with x > 0 is strictly concave if 0 < a <1
= |Ix]| is convex, but not strictly convex
= max{xy,..., Xy} is convex, but not strictly convex
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Convex functions

Exercises

1. Prove that the function

X1 X2
flxa,xe)=——
X1 — X2

is convex on the set {x € R?: x; — x, > 0}.

1 .
2. Prove that f(x1, x) = is convex on the set {x € R?: x;,x > 0}.
X1 X2

3. Given a convex set C C R", the distance function is defined as follows:
dc(x) = inf —x||.
e(x) = inf Iy = x|

Prove that d¢ is a convex function.

4. Given C = {x € R?: x? 4+ x3 < 1}, write the distance function dc explicitly.
5. Prove that the arithmetic mean of n positive numbers xi, ..., x, is greater or
equal to their geometric mean, i.e.,
X1+X2+"'+Xn
n

> X1Xo ... Xp.

(Hint: exploit the log function.)
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Convex functions

Operations that preserve convexity

Theorem

» If f is convex and o« > 0, then af is convex
» If f; and f, are convex, then f; + f, are convex

> If f is convex, then f(Ax + b) is convex

Examples

» Log barrier for linear inequalities:
f(x) = Z/og i—aix)  C={x€R": bj—ajx>0 Vi=1,...,m}
» Norm of affine function: f(x) = ||Ax + b||

Exercise. If f; and £, are convex, then is the product f; f, convex?
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Convex functions

Pointwise maximum

Theorem
> If f1,..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex.

> If {f;}ic; is a family of convex functions, then f(x) = sup f;(x) is convex.
icl

Example. If L(x, ) : R" x R™ — R is convex in x and concave in A, then

p(x) =supL(x,\) is convex
A

d(A) =inf L(x,A) is concave
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Convex functions

Composition
f:R" >Rand g: R —=R.

Theorem

> If fis
> If fis

> If fis
> If fis

Examples
> If fis
> If fis
> If fis

> If fis
> If fis

M. Passacantando

convex and g is convex and nondecreasing, then g o f is convex.

concave and g is convex and nonincreasing, then g o f is convex.

concave and g is concave and nondecreasing, then g o f is concave.

convex and g is concave and nonincreasing, then g o f is concave.

convex, then ef) is convex
concave and positive, then log f(x) is concave
convex, then — log(—f(x)) is convex on {x: f(x) < 0}

.. 1 .
concave and positive, then —— is convex
f(x)

convex and nonnegative, then f(x)” is convex for all p >1
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Convex functions

Sublevel sets

Given f : R" — R and o € R, the set
So(f)={xeR": f(x) <a}

is said the a-sublevel set of f.

Exericise. Prove that if f is convex, then S,(f) is a convex set for any a € R.

Is the converse true?
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Convex functions

Quasiconvex functions

Given a convex set C C R”, a function f : C — R is quasiconvex if the a-sublevel
sets are convex for all o € R.

f is said quasiconcave if —f is quasiconvex.

Examples
» f(x) = y/|x| is quasiconvex on R
» f(x1,x2) = x1 xp is quasiconcave on {x € R2: x; > 0,x > 0}
> f(x) = log x is quasiconvex and quasiconcave

> f(x) = ceil(x) =inf{z € Z: z > x} is quasiconvex and quasiconcave
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Convex functions

Exercise

Express each convex set defined below in the form () {x : f;(x) < 0}, where
iel
f; : R™ — R are suitable convex functions:

a) conv{(—l,—l),(1,0),(0,2)}
b) conv{(0,0),(1,1)}
c) conv({x eR?: x+(—12=1}U{xeR?: x¥+ (x+1)2=1})

d) conv{x € R?: x;x, =1}
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