Convex sets and convex functions

Mauro Passacantando

Department of Computer Science, University of Pisa Largo Pontecorvo 3 mauro.passacantando@unipi.it

Optimization Methods Master of Science in Embedded Computing Systems – University of Pisa http://pages.di.unipi.it/passacantando/om/OM.html

Subspaces

Given $x, y \in \mathbb{R}^n$.

A linear combination of x and y is a point $\alpha x + \beta y$, where $\alpha, \beta \in \mathbb{R}$.

A set $C \subseteq \mathbb{R}^n$ is a subspace if it contains all the linear combinations of any two points in C.

Examples:

► {0}

- any line which passes through zero
- the solution set of a homogeneous system of linear equations

$$C = \{x \in \mathbb{R}^n : Ax = 0\},\$$

where A is a $m \times n$ matrix.

Affine sets

An affine combination of x and y is a point $\alpha x + \beta y$, where $\alpha + \beta = 1$.

A set $C \subseteq \mathbb{R}^n$ is an affine set if it contains all the affine combinations of any two points in C.

Examples:

- ▶ any single point {x}
- any line
- the solution set of a system of linear equations

$$C = \{x \in \mathbb{R}^n : Ax = b\},\$$

where A is a $m \times n$ matrix and $b \in \mathbb{R}^m$

any subspace

Convex sets

A convex combination of two given points x and y is a point $\alpha x + \beta y$, where $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$.

A set $C \subseteq \mathbb{R}^n$ is convex if it contains all the convex combinations of any two points in C.

Exercise. Prove that if *C* is convex, then for any $x^1, \ldots, x^k \in C$ and $\alpha_1, \ldots, \alpha_k \in (0, 1)$ s.t. $\sum_{i=1}^k \alpha_i = 1$, one has $\sum_{i=1}^k \alpha_i x^i \in C$.

M. Passacantando

Optimization Methods

Convex hull

The convex hull conv(C) of a set C is the smallest convex set containing C.

Exercise. Prove that $conv(C) = \{all convex combinations of points in C\}.$

Exercise. Prove that C is convex if and only if C = conv(C).

Convex sets - Examples

Examples:

- subspace
- affine set
- line segment
- ▶ halfspace $\{x \in \mathbb{R}^n : a^\mathsf{T} x \leq b\}$
- ▶ polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ solution set of a system of linear inequalities

Convex sets - Examples

▶ ball
$$B(x,r) = \{y \in \mathbb{R}^n : ||y - x|| \le r\}$$
, where $||\cdot||$ is any norm, e.g.

$$\begin{split} \|x\|_{2} &= \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \text{ (Euclidean norm)} \\ \|x\|_{1} &= \sum_{i=1}^{n} |x_{i}| \text{ (Manhattan distance)} \\ \|x\|_{\infty} &= \max_{i=1,...,n} |x_{i}| \text{ (Chebyshev norm)} \\ \|x\|_{p} &= \sqrt[p]{\sum_{i=1}^{n} |x_{i}|^{p}}, \text{ with } 1 \leq p \leq \infty \\ \|x\|_{A} &= \sqrt{x^{\mathsf{T}}Ax}, \text{ where } A \text{ is a symmetric and positive definite matrix, i.e.,} \\ &x^{\mathsf{T}}Ax > 0 \qquad \forall x \neq 0. \end{split}$$

Exercise. Find
$$B(0,1)$$
 w.r.t. $\|\cdot\|_1$, $\|\cdot\|_\infty$ and $\|\cdot\|_A$ where $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

M. Passacantando

Optimization Methods

Operations that preserve convexity

Sum and difference

If C_1 and C_2 are convex, then $C_1 + C_2 := \{x + y : x \in C_1, y \in C_2\}$ is convex. If C_1 and C_2 are convex, then $C_1 - C_2 := \{x - y : x \in C_1, y \in C_2\}$ is convex.

Intersection

```
If C_1 and C_2 are convex, then C_1 \cap C_2 is convex.
Exercise. If \{C_i\}_{i \in I} is a family of convex sets, then \bigcap_{i \in I} C_i is convex.
```

Union

```
If C_1 and C_2 are convex, then C_1 \cup C_2 is convex?
```

Closure and interior

If C is convex, then cl(C) is convex. If C is convex, then int(C) is convex.

Operations that preserve convexity

Affine functions

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be affine, i.e. f(x) = Ax + b, with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- If $C \subseteq \mathbb{R}^n$ is convex, then $f(C) = \{f(x) : x \in C\}$ is convex
- ▶ If $C \subseteq \mathbb{R}^m$ is convex, then $f^{-1}(C) = \{x \in \mathbb{R}^n : f(x) \in C\}$ is convex

Examples:

• scaling, e.g.
$$f(x) = \alpha x$$
, with $\alpha > 0$

• translation, e.g.
$$f(x) = x + b$$
, with $b \in \mathbb{R}^n$

► rotation, e.g.
$$f(x) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} x$$
, with $\theta \in (0, 2\pi)$

Cones

A set $C \subseteq \mathbb{R}^n$ is a cone if $\alpha x \in C$ for any $x \in C$ and $\alpha \ge 0$.

Examples:

- \mathbb{R}^n_+ is a convex cone
- $\{x \in \mathbb{R}^2 : x_1 x_2 = 0\}$ is a nonconvex cone

• Given a polyhedron $P = \{x : Ax \le b\}$, the recession cone of P is defined as

$$\operatorname{rec}(P) := \{ d : x + \alpha \, d \in P \quad \text{for any } x \in P, \, \alpha \geq 0 \}.$$

It is easy to prove $rec(P) = \{x : Ax \le 0\}$, thus it is a polyhedral cone. $\{x \in \mathbb{R}^3 : x_3 \ge \sqrt{x_1^2 + x_2^2}\}$ is a non-polyhedral cone.

Exercises

- 1. Write the vector (1,1) as the convex combination of the vectors (0,0), (3,0), (0,2), (3,2).
- 2. When does one halfspace contain another? Give conditions under which

$$\{x \in \mathbb{R}^n : a_1^\mathsf{T} x \le b_1\} \subseteq \{x \in \mathbb{R}^n : a_2^\mathsf{T} x \le b_2\},\$$

where $||a_1||_2 = ||a_2||_2 = 1$. Also find the conditions under which the two halfspaces are equal.

3. Which of the following sets are polyhedra?

a)
$$\{y_1a_1+y_2a_2: -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$$
, where $a_1, a_2 \in \mathbb{R}^n$.

b)
$$\begin{cases} x \in \mathbb{R}^{n} : x \ge 0, \sum_{i=1}^{n} x_{i} = 1, \sum_{i=1}^{n} a_{i}x_{i} = b_{1}, \sum_{i=1}^{n} a_{i}^{2}x_{i} = b_{2} \end{cases}$$
, where $b_{1}, b_{2}, a_{1}, \dots, a_{n} \in \mathbb{R}$.
c)
$$\{x \in \mathbb{R}^{n} : x \ge 0, a^{\mathsf{T}}x \le 1 \text{ for all } a \text{ with } \|a\|_{2} = 1\}.$$

d)
$$\{x \in \mathbb{R}^{n} : x \ge 0, a^{\mathsf{T}}x \le 1 \text{ for all } a \text{ with } \|a\|_{1} = 1\}.$$

Convex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f : C \to \mathbb{R}$ is convex if

f is said concave if -f is convex.

Exercise. Prove that if f is convex, then for any $x^1, \ldots, x^k \in C$ and $\alpha_1, \ldots, \alpha_k \in (0, 1)$ s.t. $\sum_{i=1}^k \alpha_i = 1$, one has $f\left(\sum_{i=1}^k \alpha_i x^i\right) \leq \sum_{i=1}^k \alpha_i f(x^i)$.

M. Passacantando

Optimization Methods

12 / 24

Strictly convex and strongly convex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f : C \to \mathbb{R}$ is strictly convex if

$$f(\alpha y + (1 - \alpha)x) < \alpha f(y) + (1 - \alpha)f(x) \qquad \forall x, y \in C, \forall \alpha \in (0, 1)$$

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f : C \to \mathbb{R}$ is strongly convex if there exists $\tau > 0$ s.t.

$$egin{aligned} f(lpha y + (1-lpha)x) &\leq lpha f(y) + (1-lpha)f(x) - rac{ au}{2}lpha(1-lpha)\|y-x\|^2 \ &orall x, y \in \mathcal{C}, orall \ lpha \in (0,1) \end{aligned}$$

Thm. f is strongly convex if and only if $\exists \tau > 0$ s.t. $f(x) - \frac{\tau}{2} ||x||^2$ is convex

Exercise.

- Prove that: strongly convex \implies strictly convex \implies convex
- convex ⇒ strictly convex ?
- strictly convex ⇒ strongly convex ?

M. Passacantando

Optimization Methods

13 / 24

First order conditions

Assume that $C \subseteq \mathbb{R}^n$ is open convex and $f : C \to \mathbb{R}$ is continuously differentiable. **Theorem**

f is convex if and only if

First-order approximation of f is a global understimator

First order conditions

Theorem

f is strictly convex if and only if

$$f(y) > f(x) + (y - x)^{\mathsf{T}} \nabla f(x) \qquad \forall x, y \in \mathcal{C}, \text{ with } x \neq y.$$

• f is strongly convex if and only if there exists $\tau > 0$ such that

$$f(y) \geq f(x) + (y-x)^{\mathsf{T}} \nabla f(x) + \frac{\tau}{2} \|y-x\|_2^2 \qquad \forall x, y \in \mathcal{C}.$$

Second order conditions

Assume that $C \subseteq \mathbb{R}^n$ is open convex and $f : C \to \mathbb{R}$ is twice continuously differentiable.

Theorem

f is convex if and only if for all *x* ∈ *C* the Hessian matrix ∇²*f*(*x*) is positive semidefinite, i.e.

$$v^{\mathsf{T}} \nabla^2 f(x) v \geq 0 \qquad \forall \ v \neq 0,$$

or, equivalently, the eigenvalues of $\nabla^2 f(x)$ are ≥ 0 .

- If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex.
- f is strongly convex if and only if there exists τ > 0 such that ∇²f(x) − τI is positive semidefinite for all x ∈ C, i.e.

$$v^{\mathsf{T}} \nabla^2 f(x) v \geq \tau \|v\|_2^2 \qquad \forall \ v \neq 0,$$

or, equivalently, the eigenvalues of $\nabla^2 f(x)$ are $\geq \tau$.

Examples

 $f(x) = c^{\mathsf{T}}x$ is both convex and concave $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$ is

- convex iff Q is positive semidefinite
- strongly convex iff Q is positive definite
- concave iff Q is negative semidefinite
- strongly concave iff Q is negative definite

 $f(x) = e^{ax}$ for any $a \in \mathbb{R}$ is strictly convex, but not strongly convex $f(x) = \log(x)$ is strictly concave, but not strongly concave $f(x) = x^a$ with x > 0 is strictly convex if a > 1 or a < 0. Is it strongly convex? $f(x) = x^a$ with x > 0 is strictly concave if 0 < a < 1 f(x) = ||x|| is convex, but not strictly convex $f(x) = \max\{x_1, \dots, x_n\}$ is convex, but not strictly convex

Exercises

1. Prove that the function

$$f(x_1, x_2) = \frac{x_1 x_2}{x_1 - x_2}$$

is convex on the set $\{x \in \mathbb{R}^2 : x_1 - x_2 > 0\}.$

- 2. Prove that $f(x_1, x_2) = \frac{1}{x_1 x_2}$ is convex on the set $\{x \in \mathbb{R}^2 : x_1, x_2 > 0\}$.
- **3.** Given a convex set $C \subseteq \mathbb{R}^n$, the distance function is defined as follows:

$$d_C(x) = \inf_{y \in C} \|y - x\|.$$

Prove that d_C is a convex function.

- 4. Given $C = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1\}$, write the distance function d_C explicitly.
- 5. Prove that the arithmetic mean of *n* positive numbers x_1, \ldots, x_n is greater or equal to their geometric mean, i.e.,

$$\frac{x_1+x_2+\cdots+x_n}{n} \geq \sqrt[n]{x_1x_2\ldots x_n}.$$

(Hint: exploit the log function.)

Operations that preserve convexity

Theorem

- If f is convex and $\alpha > 0$, then αf is convex
- If f_1 and f_2 are convex, then $f_1 + f_2$ are convex
- If f is convex, then f(Ax + b) is convex

Examples

Log barrier for linear inequalities:

$$f(x) = -\sum_{i=1}^{m} log(b_i - a_i^\mathsf{T} x) \qquad C = \{x \in \mathbb{R}^n : b_i - a_i^\mathsf{T} x > 0 \quad \forall i = 1, \dots, m\}$$

• Norm of affine function: f(x) = ||Ax + b||

Exercise. If f_1 and f_2 are convex, then is the product $f_1 f_2$ convex?

M. Passacantando

Optimization Methods

19 / 24

Pointwise maximum

Theorem

- If f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.
- If $\{f_i\}_{i \in I}$ is a family of convex functions, then $f(x) = \sup_{i \in I} f_i(x)$ is convex.

Example. If $L(x, \lambda) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is convex in x and concave in λ , then

$$p(x) = \sup_{\lambda} L(x, \lambda)$$
 is convex
 $d(\lambda) = \inf_{x} L(x, \lambda)$ is concave

Composition

 $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$.

Theorem

- If f is convex and g is convex and nondecreasing, then $g \circ f$ is convex.
- If f is concave and g is convex and nonincreasing, then $g \circ f$ is convex.
- If f is concave and g is concave and nondecreasing, then $g \circ f$ is concave.
- If f is convex and g is concave and nonincreasing, then $g \circ f$ is concave.

Examples

- If f is convex, then $e^{f(x)}$ is convex
- If f is concave and positive, then $\log f(x)$ is concave
- If f is convex, then $-\log(-f(x))$ is convex on $\{x : f(x) < 0\}$
- If f is concave and positive, then $\frac{1}{f(x)}$ is convex
- ▶ If f is convex and nonnegative, then $f(x)^p$ is convex for all $p \ge 1$

Sublevel sets

Given $f : \mathbb{R}^n \to \mathbb{R}$ and $\alpha \in \mathbb{R}$, the set

$$\mathcal{S}_{lpha}(f) = \{x \in \mathbb{R}^n : f(x) \leq lpha\}$$

is said the α -sublevel set of f.

Exericise. Prove that if f is convex, then $S_{\alpha}(f)$ is a convex set for any $\alpha \in \mathbb{R}$.

Is the converse true?

Quasiconvex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f : C \to \mathbb{R}$ is quasiconvex if the α -sublevel sets are convex for all $\alpha \in \mathbb{R}$.

f is said quasiconcave if -f is quasiconvex.

Examples

- $f(x) = \sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on $\{x \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}$
- $f(x) = \log x$ is quasiconvex and quasiconcave
- ▶ $f(x) = \operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} : z \ge x\}$ is quasiconvex and quasiconcave

Exercise

Express each convex set defined below in the form $\bigcap_{i \in I} \{x : f_i(x) \le 0\}$, where $f_i : \mathbb{R}^n \to \mathbb{R}$ are suitable convex functions:

a) conv{
$$(-1, -1), (1, 0), (0, 2)$$
}

b) conv $\{(0,0),(1,1)\}$

c) conv
$$\left(\left\{x \in \mathbb{R}^2: x_1^2 + (x_2 - 1)^2 = 1\right\} \cup \left\{x \in \mathbb{R}^2: x_1^2 + (x_2 + 1)^2 = 1\right\}\right)$$

d) conv $\{x \in \mathbb{R}^2 : x_1 x_2 = 1\}$