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Abstract We present a methodology for the modelling of spatially-aware biological
phenomena, based on the description of the movement of membranes in the Euclidean
space. The time evolution of the system is described by an iterative algorithm, which
determines the movement of the objects according to the actions they perform, and the
constraints they are subjected to.

We exemplify our approach with a model of the morphogenesis of Dictyostelium

discoideum, and present the results of its simulation.
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1 Introduction

Since a few decades, the constant increase of the power of computing hardware has
allowed the simulation of biophysical models which explicitly take into account the spa-
tial arrangement of the various biological entities. However, such models are mostly
developed using a bottom-up approach, which consists in the formalisation, using ap-
propriate tools, of the actual known low-level mechanisms, which are used to construct
more complex models on top of them. One shortcoming of this approach is that it
requires proper low-level knowledge of the biomechanics of membranes and cells.

In this paper, we develop an iterative algorithm for the simulation of spatial systems
of moving membranes, using a top-down approach to the modelling. The idea behind
our approach is to focus on the definition of a few high-level mechanisms which are able
to accurately model the observable behaviour that we want to reproduce. In particular,
we explicitly disregard the actual low-level interaction mechanisms among membranes,
whose effects are instead to be captured by proper high-level abstract mechanisms. Our
aim is to be able to shed light on the key mechanisms driving the particular behaviour
in which we are interested, avoiding the difficulty to identify and model the actual
biomechanical interactions.
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Membranes are used to model cells from the real world, which are embedded in a
3D continuous space, and are subjected to proper displacement actions which determine
how they move in space. Informally, a displacement action is described by a vector, and
the resulting movement of a membrane is the result of the sum of all the vectors of the
actions affecting the membrane.

We propose a generic framework modelling populations of moving membranes, based
on displacement actions and an iterative algorithm for updating the positions of mem-
branes as time passes. The framework includes a few basic common mechanisms which
underlie many interesting systems, namely (i) cell adhesion, (ii) substrate repulsion, and
(iii) action propagation through attached membranes.

Finally, we instantiate our framework to the development of an iterative algorithm
for the simulation of the morphogenesis of Dictyostelium discoideum (see, e.g. Maree
and Hogeweg (2001)). Normally, cells of the Dictyostelium discoideum are spread in the
environment, but they are able to aggregate into moving slugs in response to environ-
mental conditions. In particular, when the level of food available for the cells is low, they
aggregate to form a slug which moves towards a place suitable for culmination. When
a good place is found, the slug stops moving and transforms itself into a fruiting body,
composed of a thin stalk with a mound of spores on the top. Finally, the spores are re-
leased in the environment. Our iterative algorithm is proved to be able to reproduce the
essential logic of this morphogenetic dynamics, for suitable values of parameters which,
as shown in the following sections, encode specific aspects of membrane movements and
interactions.

2 The framework

Let It = {1, . . . , n} be the set of membrane indices at a given time t. We associate a
constant radius ri with each membrane i. This radius does not have a direct physical
meaning, but instead is used to derive a few other parameters, as follows:

– diameter distance: the distance, when the system is in a stable state, between two
attached cells i, j is the sum of their radii, i.e. ri + rj ;

– attraction distance: the maximum distance between two cells for which cells are con-
sidered attached.

For simplicity, we assume throughout the paper that the membranes have the same
radius of value 1. Therefore the diameter distance between a pair of membranes is 2.
Let us consider a coefficient θd-attr which allows us to derive the attraction distance
from the diameter distance, namely we assume the attraction distance to be equal to
θd-attr times the diameter distance.

Let Σ denote the set of possible displacement actions. Given the current time t,
and the corresponding positions p1[t], . . . , pn[t] ∈ R3 of each membrane, a displacement
vector Fσi (p1[t], . . . , pn[t], t) needs to be associated with each action σ ∈ Σ and each
membrane i ∈ It. All the displacements vectors affecting the membrane are summed
up to obtain the final displacement vector, which is used to compute the new position

p
(t+1)
i of the membrane at the following step, as follows:

pi[t+ 1] = pi[t] +Di[t]∆t = pi[t] +

(∑
σ∈Σ

Fσi (p1[t], . . . , pn[t], t)

)
∆t i ∈ It , (1)

where ∆t denotes the length of the step. In the rest of the paper, we denote by ‖·‖ the
Euclidean norm; thus, given a position x ∈ R3, ‖x‖ corresponds to the length of the
vector x.

In the following, we introduce the basic displacement actions that we consider,
namely: cell adhesion, substrate repulsion, gravity, jitter, and action propagation.
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Cell adhesion We model cell adhesion between two cells with a displacement vector
which either (i) pushes back the cells if they are colliding, namely if their distance is
below their diameter distance, or (ii) attracts the cells if they are not colliding but they
are still close enough. No displacement occurs if their distance is equal to their diameter
distance.

Given a cell i, the adhesion vector it is subjected to is computed as follows:

F adhesion
i [t] =

∑
j∈colliding(i,t)

θrep · vj,i[t] +
∑

j∈nearby(i,t)
θattr · vi,j [t]

where vi,j [t] = (pj [t] − pi[t])/‖pj [t] − pi[t]‖ denotes1 the direction from pi[t] to pj [t],
colliding(i, t) denotes the cells whose distance is less than their diameter distance,
nearby(i, t) denotes the non-colliding cells within the attraction distance, as defined
by the equations below. Parameters θrep and θattr specify the strength of the repulsion
and attraction vector, respectively.

colliding(i, t) = {j | ‖pi[t]− pj [t]‖ < ri + rj};
nearby(i, t) = {j | ri + rj ≤ ‖pi[t]− pj [t]‖ < θd-attr(ri + rj)}.

Substrate repulsion We assume a 3D space and a related Cartesian frame. For the sake
of simplicity, we also assume a planar “substrate” where a part of our cells lie. Precisely,
such a substrate is identified with the xy plane. The presence of this surface, which in
general can assume more complex forms, is a postulate for any effective movement. In
fact, no object can move without a support with respect to which the movement is
realised, where friction causes an opposite action tending to maintain fix the position
of the object on the support. Differently from the idealised motion in mechanics, where
motion is described with respect to a fixed point (namely, the origin of a Cartesian
frame), here we disregard friction, and instead we postulate the motion with respect to
the substrate. Thus, in our model, the substrate constitutes the initial entity necessary
for providing motion.

In order to prevent membranes from penetrating the substrate as the result of other
displacement vectors applied to them, we include a vector modelling the substrate re-
pulsion. This vector is directed along the surface normal, and its strength is determined
by the parameter θsubrep, as follows:

F substrate
i [t] =

{
θsubrep · [0, 0, 1]T if (pi[t])3 − r < 0

0 otherwise

where [0, 0, 1]T is the unit vector along the z axis. Note that vector F substrate
i is null

when the distance of cell from the substrate is greater than the radius.

Gravity We also need to consider gravity, which is simply modelled by the following
displacement vector:

F gravity[t] = θgravity · [0, 0,−1]T

where θgravity denotes the gravity strength.

1 Term ‖pj [t]− pi[t]‖ corresponds to the Euclidean distance between pj [t] and pi[t].
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Jitter We also introduce jitter in the movement of membranes, to capture the natural
Brownian motion to which all particles in the real world are subjected to. Precisely, we
consider a displacement vector for each membrane i having the following form:

F jitter
i [t] = θjit · ûi[t]

where θjit denotes the jitter amount, and ûi[t] is a random unit vector, corresponding to
a uniformly-distributed point in the surface of the unit sphere. Note that, at any given
time t, a random unit vector ûi[t] is generated for each membrane i in the system.

Action propagation Displacement actions which are exerted from a membrane to the
substrate must be handled in a special way, and we cannot simply consider the dis-
placement of a membrane as the sum of the various displacement vectors computed
separately. In fact, doing that would neglect the effect of the propagation of forces from
a membrane to all the membranes attached. In fact, the membranes which are attached
to the surface are the ones which actively exert a force on the substrate, and as a result
they tend to move in the opposite direction. The movement of a membrane causes all
the connected membranes to move and deform. In the following we formally define the
EFG algorithm, which ensures that the propagation of movements is handled correctly.

The EFG algorithm

In order to handle the propagation of displacement actions, it is necessary to relax some
constraints on the model. In particular, in order to derive the movement of the mem-
branes we need to take into account the position and displacement of all the membranes
attached. Therefore, the actual movement of the membranes, described by displacement
vectors, depends on the propagation of actions among attached membranes.

The EFG algorithm is used to compute the actual displacement of each membrane
in a step. Its name stems from the three kinds of displacements that it considers:

– Externally originated displacements: these encompass any displacement due to exter-
nal forces, which are not originated from the membrane itself in response to a signal.
This includes most of the displacements presented in the previous sections, namely
adhesion, substrate repulsion, gravity, and jitter.

– Fundamental population displacements: these displacements are originated from the
membrane themselves. For example, it includes the displacements due to forces ex-
erted by a membrane to the substrate, which causes its movement.

– propagation Generated displacements: these are the displacements derived from the
displacement of all the other membranes attached. Any displacement, irregardless
of how it originated, (namely any of E, F, and G), is propagated from one membrane
to all attached membranes according to the action propagation algorithm.

An important aspect of this model is that it does not take into account the energetic
balance involved in cell movements, as it instead happens in physical analysis. This is
because membranes can perform autonomous displacements, without considering any
notion of force (in the classical sense), as would be necessary.

As regards the propagation of actions through attached membranes, we consider a
linear propagation coefficient α such that 0 ≤ α ≤ 1. The value of parameter alpha
describes how the displacement is propagated from one cell to another. In particular,
α = 1 means that the displacement is propagated identically to all attached membranes,
while α = 0 means that only the component of the displacement projected onto the
direction connecting the centres of the membranes is propagated. Intermediate values
allows precise tuning of the displacement propagation.

Let F denote the displacement vector applied to a cell, corresponding to the sum
of all displacements, of any kind, it is subjected to. Moreover, let Fp be the projection
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Fig. 1 Propagation of displacement vectors.

of F along the direction connecting the centres of the two membranes, as depicted in
Figure 1. The displacement vector G applied to the attached cell, resulting from the
propagation of F , is the following:

G = αF + (1− α)Fp

Note that, if α = 1 then the displacement vector applied to the attached cell is the
same, i.e. G = F , while if α = 0 then the vector applied is just the projection Fp, i.e.
G = Fp. In the other cases, vector G is obtained as a linear combination of F and Fp.
Figure 1 depicts vector G when α = 0.5.

Let t be the current time, and let attached(x) denote the set of indices of membranes
directly attached to cell x. For the sake of conciseness, let F1, . . . , Fn be the vectors
applied to each cell, namely, for all i, Fi = Fmovement

i [t]. Vectors Fi’s can be non-null
only for membranes adjacent to the substrate. Note that we are only interested in the
case in which a displacement of a cell occurs with respect to the substrate (which is
fixed), and not when a displacement occurs with respect to another attached cell.

Algorithm 1 (propagateDisplacement) is used to compute each vector Gprop
α,i,j propa-

gated from a cell i to any other cell j, using propagation factor α. Algorithm propagate-
Displacement(i, Fi) computes the propagated displacement Gprop

α,i,j acting on each cell j,
assuming an initial displacement vector Fi applied to cell i. Vector Fi corresponds to
the sum of any of external (of kind (E)) and fundamental displacements (of kind (F ))
applied to the cell. Given such displacements, the total propagated displacement Gprop

α,i
acting on a cell is:

Gprop
α,i =

∑
j

Gprop
α,j,i .

Finally, the total displacement applied to a membrane i, denoted Di in Equation 1,
is given as the sum of all kinds of displacements, thus it includes both externally-
originated (E) and fundamental displacements (F ), and propagated displacements (G)
as computed above.

3 Case study: Dictyostelium Discoideum

In this section we present a model of the morphogenesis of the Dictyostelium Dis-
coideum, using the basic mechanisms presented in Section 2. We represent each cell as
a point in space representing its centre of mass, ignoring the actual shape of the cell’s
membrane. This is motivated by the fact that cell’s shape can be always approximated
by a sphere throughout the process, with low loss of precision.

The actual process can be described by the following three phases:
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Algorithm 1 propagateDisplacement(i, Fi)

1: ∀j 6= i. Gprop
α,i,j = 0

2: Gprop
α,i,i = Fi

3: visited = {i}
4: Q = {i}
5: while Q 6= ∅ do
6: let x = head(Q)
7: Dequeue(Q)
8: for each y ∈ attached(x) \ visited do
9: let H be the projection of Gprop

α,i,x onto direction py − px
10: Gprop

α,i,y = αGprop
α,i,x + (1− α)H

11: visited = visited ∪ {y}
12: Enqueue(Q, y)
13: end for
14: end while
15: return Gprop

α,i

1. aggregation: a group of cells start secreting a chemical signal in response to an
environmental condition, to which the other cells react by moving towards the source
of the signal;

2. slug motion: once a slug is formed, the slug wanders around in order to find a place
suitable for culmination;

3. formation of the fruiting body: the slug transforms for spore dispersal

In the real world, each switch from a phase to the subsequent is triggered by specific
conditions to which the cells react. In order to keep the model simple, we assume a fixed
duration for each of the phases, driving the behaviour of the complete system

In the following sections, we separately describe each phase, and show how they
can be modelled using the basic mechanisms presented in the previous section. For each
phase, we also present the results of the simulation of different systems, in order to study
the role played by the involved parameters in the resulting behaviour of the system.

3.1 Aggregation phase

Let us assume the membranes are initially disposed on the substrate, uniformly dis-
tributed on a circular area. The aggregation phase is modelled by assuming a constant
displacement vector for each cell, which is directed towards a fixed position representing
the centre for the aggregation. Given a proper selection of the parameters, cell adhesion
ensures that the cells form a single mound of attached cells. In fact, the constant aggre-
gation displacement vector, together with the substrate repulsion displacement vector
(which prevents the interpenetration of the cells), causes that upwards growth of the
mound.

Given a cell i, its aggregation vector is:

F aggregation
i [t] = θaggr · dir(pi[t],0)

where dir(pi[t],0) = −pi[t]/‖pi[t]‖ denotes the vector direction from pi to the centre of
aggregation, namely position 0. Similarly to cell adhesion, factor θaggr represents the
strength of the aggregation vector.

In order to obtain the aggregate of cells, it is sufficient to apply the aggregation vector
to each cell attached to the substrate. In particular, the total displacement acting on
each cell is obtained as the sum of the substrate repulsion vector, the adhesion vector,
and the aggregation vectors, as follows:

∀i. Di[t] = F gravity[t] + F jitter
i [t] + F substrate

i [t] + F adhesion
i [t] + F aggregation

i [t] . (2)
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3.2 Motion phase

The motion of the slug is coordinated by a small group of pacemaker cells, which are
positioned along the leading edge of the slug. They periodically secrete a chemical
signal which diffuses along the substrate, and which is received by cells attached to
the substrate. When those cells sense the signal, they move towards the source of the
signal, bringing with them all the other cells which are on top of them. This causes
the entire slug to move ahead in a pulsatile fashion which is driven by the signal waves
propagating from the pacemaker cells.

We explicitly model signal propagation from a selected pacemaker cell. When the
signal encounters a cell attached to the substrate, a displacement vector is applied to
such a cell, which models the movement of the cell in response to the signal. Formally,
we consider the following parameters: (i) signal speed θsig-speed; (ii) signal duration
θsig-duration; (iii) period of signal generation τsig. Each period a signal is generated from
the actual position pi of a pacemaker cell. Such a position is recorded as the source
position of that particular signal psrc. The movement vector for cells attached to the
substrate is the following:

Fmovement
i [t] =

{
θmov · vi,src if the signal reaches pi in the time interval [t, t+∆t]

0 otherwise

where vi,src = dir(pi, p
src) = (psrc − pi)/‖psrc − pi‖ denotes the direction from the

position of membrane i to the source position of the signal psrc.
The displacement vector must also include the displacement vectors propagated

through attachments:

∀i. Di[t] = F gravity[t] + F jitter
i [t] + F substrate

i [t] + F adhesion
i [t]

+Gprop
αmov,i

(t, Fmovement
1 , . . . , Fmovement

n ) . (3)

where Gprop
αmov,i

(t, . . .) denotes the sum of the movement vectors Fmovement
i [t] propagated

to the cell.

3.3 Formation of the fruiting body

In this phase, the mound of cells gradually changes shape, forming a stalk of cells which
support a globule of cells positioned on top of the stalk. Such a transformation is driven
by chemical signals secreted by cells on the top, which cause the upward movement of
the other cells. In particular, the globule of cells is formed very early in the process,
and it is pushed upwards by the elongation of the stalk beneath it.

In our model we use a different process to describe the formation of the fruiting body.
In particular, a small group of cells positioned at the top of the mound is selected. These
cells form the proliferating cells, from which the stalk grows. At constant time intervals,
these cells duplicate, and each new cell is positioned on top of the old one. Each cell
duplicates as long as there are no other cells on top of them, thus causing the stalk to
grow mainly from the top. The length of each duplicating period is τstalk-dup.

Duplicating cells represent a different kind of cells with respect to the others. Each
new cell is initially created of the duplicating kind, and remains such as long as there
are no other cells on top of it, i.e. only if is not hidden. This is ensured by a check,
performed at the beginning of the step, where a cell i is considered hidden iff there is
any other cell j such that (pj)3 > (pi)3 and their distance is less than a given parameter
dhiding.

The growth of the stalk begins from the position pcenter = [xcenter, ycenter, zcenter],
which is selected at the beginning of the step corresponding to the position of the highest
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cell (i.e. the position of the cell with the greatest z). Such a position is used to select
the initial proliferating cells, which correspond to the cells within distance dinit-dup from
pcenter. Moreover, pcenter is also used during the growth of the stalk, in order to ensure
that the growth is mainly vertical.

In particular, given the current position pi[t] of the cell, the position of a newly
created cell, with new index j, is computed as follows:

pj [t+ 1] = pi[t] + θcenter · dir(pi[t], [xcenter, ycenter, (pi[t])3]) + [x, y, dz]

where dir(q1, q2) = (q2 − q1)/‖q2 − q1‖ denotes the vector direction from q1 to position
q2, x, y are random variates of the uniform distribution U(−dxy,+dxy), and dz is a
parameter which determines the position along the z axis.

Two components are summed up to obtain the placement of the new cell: θcenter ·
dir(pi[t], [xcenter, ycenter, (pi[t])3]) means that the cell should be placed towards the cen-
tre, while [x, y, dz], with dz > 0, indicates that the new cell is positioned on top of the
other, with some randomisation of the actual (x, y)-position.

When the growth of the stalk terminates, the cells on the top of it start duplicating.
Differently from the cells forming the stalk, each cell continues to duplicate, at constant
intervals τglob-dup, until the phase is complete. Moreover, each new cell is positioned
randomly around the originating cell, which causes a rearrangement of the nearby cells
to accommodate for the space occupied by the new cell. The duplication causes the
formation of the final globule of cells, representing the spores. In this case, the position
of each new cell j, originating from cell i, is computed as follows:

pj [t+ 1] = pi[t] + dglob-dup û
′
j [t]

where dglob-dup denotes the distance of the new cell from the parent cell, and û′j [t] is
a random unit vector, corresponding to a uniformly-distributed point in the surface of
the unit sphere.

At each step, after the newly created cells are added to the system, the displacement
vectors are computed for all the cells, as follows:

∀i. Di[t] = F gravity[t] + F jitter
i [t] + F substrate

i [t] + F adhesion
i [t] . (4)

Note that the only mechanisms used are those of gravity, jitter, substrate repulsion, and
cell adhesion.

4 Simulation

In this section we present the result of the simulations obtained by varying the param-
eters of the model. This allows us to discuss the role played by the different parameters
of the model, and how they can be tuned to obtain the required behaviour. To this
purpose, we graphically show the configurations obtained by simulating different values
for the parameters.

The simulator has been implemented in the C++ programming language, using the
SDL (Simple DirectMedia Layer) multimedia library SDL Web page, and the Open-
SceneGraph OSG Web page (2013) 3D graphics toolkit. Typically, a complete simula-
tion using the reference parameters takes around 1 hour time, on an Intel Core i5 CPU
clocked at 2.40GHz.

The length of each phase is fixed, and set to 500 time units for the aggregation,
600 for the movement, 1200 for the stalk growth, and 250 for the globule formation.
Table 1 lists the values of the parameters for which there is a good agreement between
the expected behaviour and the simulation results.

The results of the simulation are depicted, at different time instants, in Figure 2. The
first figure (a) shows the initial configuration. Figure (b) shows an intermediate step in
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(a) t = 0 (b) t = 240 (c) t = 520

(d) t = 600 (e) t = 760 (f) t = 1040

(g) t = 1280 (h) t = 1920 (i) t = 2320

(j) t = 2420 (k) t = 2520 (l) t = 2800

Fig. 2 Snapshots of the simulation encompassing the initial aggregation (a-c), the movement of the
slug (d-f), the growth of the stalk (g-h), and the formation of the globule of cells (i-l). (Labels denote
simulation times.)
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Parameter Value Description

∆t 0.2 time step length
τ1 500 duration of aggregation phase
τ2 600 duration of movement phase
τ3 1200 duration of stalk growth
τ4 250 duration of globule formation
θgravity 0.003 gravity coefficient
θjitter 0.01 jitter coefficient
θsubrep 0.7 substrate repulsion coefficient
θrep 1 repulsion coefficient for cell adhesion
θattr 0.02 attraction coefficient for cell adhesion
dattr 2.4 attraction distance for cell adhesion
θaggr 0.1 (aggregation) strength of the aggregation vector
αmov 0.75 (movement) displacement propagation factor for movement phase
θmov 0.04 (movement) strength of signal-induced movements
θsig-speed 0.1 (movement) speed of propagating signals
θsig-duration 1.5 (movement) duration of propagating signals
τsig 10 (movement) period of propagating signals
τstalk-dup 20 (stalk formation) duplication period
dhiding 2.003 (stalk formation) maximum distance of upper hiding cells
dinit-dup 4 (stalk formation) distance of initial duplicating cells from the top
θcenter 0.1 (stalk formation) tendency to align new cells to the center
dz 0.4 (stalk formation) z-displacement of new cells
dxy 0.2 (stalk formation) maximum x, y-displacement of new cells
τglob-dup 30 (globule formation) duplication period
dglob-dup 0.1 (globule formation) distance of newly created cells

Table 1 Values of the parameters used in the simulation.

(a) (b) (c) (d) (e) (f)

Fig. 3 The resulting shapes, at time t = 2800 of different simulations performed with the reference
parameters shown in Table 1. (Figure 3-a is the same as Figure 2-l, for reference.)

which the cells are aggregating, forming the slug (c). During the subsequent movement
phase (d-f), the shape of the slug changes slightly because of action propagation, which
is caused by the different displacement vectors which act upon the cells. The growth
of the stalk is depicted in figures (g-h), where the duplicating cells are shown in red.
Finally, figures (i-k) show the globule formation, where the duplicating cells forming the
globule are shown in blue (in a blank-and-white print they appear darker than those
forming the stalk). In figure (l), the cells forming the globule have stopped duplicating
(shown in red).

Figure 3 shows the resulting shapes of six different simulations using the parameters
shown in Table 1 (Figure 3-a is the same as Figure 2-l for comparison). We recall that
there are two sources of randomness involved in the model, namely in jitter and in the
positioning of new cells during duplication. Therefore, albeit each simulation is different
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from the others, the results look very similar in all the cases considered. In particular,
the size of the stalk is more or less the same, except for Figure 3-b where it is visibly
thicker than the other simulations. On the other hand, there is a greater variability in
the size of the globule of cells. In fact, globules in Figures (a,b,e) are bigger than those
in Figures (c,d,f).

The differences in the size of the stalk depend on the number of cells which are
selected as duplicating at the beginning of the growth phase. In fact, their number is
not fixed, but can randomly vary since it depends on how many cells are within dinit-dup
distance from the highest cell. Moreover, the size of the stalk may also change during
the growth, usually decreasing to a certain thickness as in Figures (a,c).

The phase of stalk growth and globule formation does not use any other mechanism
besides the ones we have already seen, thus cell proliferation is sufficient to form a
structures similar to the fruiting body as observed in the real world. Note that the
positioning of the new cells created by the duplication, with respect to the originating
cells, determines the resulting shape. In fact, by positioning the new cell either on top
of the old one, or randomly around the old one, we obtain two very different structures,
i.e. the stalk and the globule on top of it.

4.1 Role of common parameters

We discuss in this section how the parameters common to all the phases affect the
resulting shape. In the subsequent sections we separately discuss the role of the most
important parameters involved in each phase, namely the aggregation and movement
phases, and the formation of the stalk. As regards the formation of globule of cells, we
have not performed any simulations because the parameters involved affect only the
size of the resulting globule.

Gravity coefficient Figure 4 shows the resulting shapes obtained using the following
values of gravity coefficients: 0, 0.003, 0.01, 0.1. The height differences between the
simulations agree with the intuition, that higher gravity implies shorter structures.
Moreover, gravity coefficient 0.1 prevents the growth, while the lower values still permit
it. On the other hand, we note that the higher gravity causes a greater displacement
of the slug during the movement phase. This is caused by the greater number of cells
which are attached to the substrate; in fact, since they are the only ones which push
the slug ahead, having more of them causes the slug to move faster.

Jitter coefficient As regards the jitter, Figure 5 shows the results of the simulation using
values 0, 0.01, and 0.1. In particular, Figure (c,d) are relative to the simulation using
θjitter = 0.1, and depict the slug at times t = 1480 and t = 2520. Clearly, the values 0
and 0.01 allow the formation of the fruiting body, while 0.1 prevents it.

Substrate repulsion coefficient The substrate repulsion coefficient does not play an im-
portant role in the formation of the fruiting body. In particular, we tested values 0.01,
0.1, 0.7, 2 (Figure 6) and in all those cases the resulting shape is analogous to those
obtained with the reference parameters and shown in Figure 3. Nevertheless, during
aggregation, the lower values 0.01 and 0.1 are not sufficient to prevent the interpene-
tration of the cells into the substrate, as depicted in Figures (a,b), since the substrate
repulsion displacements are overcome by the aggregation displacements. Finally, in all
those cases, during the subsequent movement phase, since the aggregation displace-
ments disappear, substrate repulsion causes the cells to be pushed upwards, resolving
the interpenetrations into the substrate.
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Attraction coefficient for cell adhesion Figure 7 shows snapshots of three simulations,
performed using values 0.002, 0.02, 0.2 for the attraction coefficient for cell adhesion.
Figures (a-c) depict the slug during the movement phase at time t = 760, while fig-
ures (d-f) show the resulting shapes. As regards the movement phase, using the smallest
value 0.002, the slug is quite rough, while in the other cases it is smoother. The final
shape is also quite different in the first case than the others, as the stalk is thicker and
rougher.

Repulsion coefficient for cell adhesion As regards the repulsion coefficient for cell adhe-
sion, Figure 8 shows snapshots of simulations performed using values 0.1, 1, 3. The
moving slug looks the same in all those cases, however the final shape of the fruiting
body is quite different from one case to another. In particular, the smallest value 0.1
produces a smaller fruiting body, with a very thin stalk with a diameter of less than
two cells (and, consequently, with a small globule of spores on the top). On the other
hand, using value 3 causes the formation of a bigger structure (see figure (f)), in which,
however, the stalk and the globule on the top are still clearly separated.

4.2 Role of parameters for aggregation phase

Strength of the aggregation vector Increasing the strength of the aggregation vector causes
the cells to move faster towards the centre. Figure 9 shows the formation of the slug
using value θaggr = 1. In this case, the fast moving cells cause a downward displace-
ment which is not completely counteracted by the substrate repulsion. In fact, at least
initially (Figures (a-d)), there are cells interpenetrated into the substrate. However, the
conflicts are automatically resolved before the end of the aggregation phase, as shown
in Figure (e).

4.3 Role of parameters for movement phase

As regards the movement phase, we have performed various simulations for investigating
the role of the displacement propagation factor. Figure 10 depict the slug during the
movement phase, using five different values for the propagation factor: 0, 0.1, 0.3, 0.75,
0.9. The simulation using value 0.3 have been performed twice, and the results are shown
in figures (k-o) and (p-t). As we can see from the figures, the shape of the slug is not
affected by the propagation factor. The only visible difference among the simulations, is
that, by increasing the propagation factor, the slug moves faster, which agrees with the
intuition behind displacement propagation. The simulations in figures (k-o) and (p-t),
both performed using value α = 0.3, show that there can be some variability in the
actual displacement of the slug among different simulations.

4.4 Role of parameters for stalk formation

Duplication period Varying the duplication period of cell during stalk formation causes
the formation of fruiting body having different heights, assuming that the duration of
the stalk formation phase remains the same. This is shown in Figure 11, where we
have simulated values 1, 5, 50. The smaller values 1, 5 cause the stalk to grow faster,
which also causes it having a smaller diameter. On the other hand, by using the bigger
period 50, the cells have more time to settle between each duplication, under the effect
of gravity. This causes the stalk to become thicker. To enhance the visibility of this
effect, we have performed a simulation with τstalk-dup = 50 using an extended length
τ3 = 3000 (instead of τ3 = 1200) for the stalk formation phase. The resulting shape of
the extended simulation is depicted in Figure (d).
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Maximum distance of upper hiding cells This parameter is also very important in deter-
mining the resulting shape. We have performed simulation using values 1.99, 1.995, 2,
2.05, 2.1. As shown in Figure 12, using a value lower than 2 (which corresponds to the
diameter distance between two cells, given as the sum of the radii of the cells) does not
allow the correct formation of the fruiting body. On the other hand, values 2, 2.05, 2.1
permit the formation of the fruiting body. Moreover, value 2 (Figure (c)) causes the
formation of a thicker stalk than the other two cases 2.05, 2.1 (Figures (d,e)).

Distance of initial duplicating cells from the highest cell Figure 13 shows the results of the
simulation performed using values 1, 3, 5, 6, 10 for parameter dinit-dup, where simulation
using value 10 has also been performed with an extended third phase (τ3 = 1800,
Figure (f)). As regards values 1, 3, 5, 6, the resulting shapes are very similar. On the
other hand, using the bigger value 10, since many cells are selected as duplicating, this
causes the base of the stalk to be very big. However, the diameter of the stalk decreases
as it grows until it settles to a diameter similar to the other simulations depicted in
figures (a-d). This is particularly evident in Figure (f), where the length of the stalk
growth phase has been extended to τ3 = 1800. In fact, in this case, the upper half of
the stalk is similar to the stalk of figures (a-d).

Tendency to align new cells to the centre Figure 14 shows the results of the simulation
performed using values 0, 0.1, 0.4, 0.5, 1 for parameter θcenter. An interesting result is
that, using value 0, allows the fruiting body to form correctly, with just a thicker stalk.
Using value 0.1 (Figure (b)) causes the stalk to become thinner. Further increasing the
tendency to align to the centre for the duplicating cells causes the stalk to become
thinner and shorter, as depicted in Figures (c-e).

Maximum x, y-displacement of new cells Figure 15 shows the simulation performed vary-
ing the maximum x, y-displacement of new cells. In particular, we have performed simu-
lations using values 0.05, 0.1, 0.3, 0.4, 0.5. The effect of this parameter on the resulting
shape of the fruiting body is limited. In particular, we notice a slight decrease of the
height of the stalk as the parameter is increased. This is caused by the gravity, whose
effect is more noticeable when the maximum x, y-displacement is bigger.

5 Related works

One of the earliest approaches in the modelling of spatial systems has involved the use
of differential equation models. These models have been used to describe many different
spatially-aware biological processes, such as reaction diffusion systems, chemotaxis, and
the formation of spatial patterns (Murray, 2002, 2003). One shortcoming of models
based on differential equations is due to the fact that they are based on continuous
variables, thus they may not be adequate to describe discrete biological entities.

In the field of systems biology, many spatial modelling formalisms have been pro-
posed in the last years which include the ability to describe the position of the elements
of a system, with respect to some more or less abstract notion of space. The most ab-
stract notion of space is given by compartments, often entailed by membranes, which
allow the representation of different locations for the elements of the system. Since
membranes play an important role in many biological processes, most computer science
formalisms for biology allow some form of compartmental modelling (see, e.g. Regev
et al, 2004; Cardelli, 2005).

Cellular Automata (Neumann, 1966) are a computational formalism inspired by
biological behaviours, composed of a finite regular grid of cells which evolve in a syn-
chronous way by means of a deterministic rule. Such a rule is characteristic of the
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particular cellular automaton model, and it is used to determine the state of a cell with
respect to the states of nearby cells. Cellular Automata, and their extensions, are par-
ticularly suitable for modelling populations of many similar entities, whose behaviour
is based on local interactions (e.g. Patel and Nagl, 2006). In order to increase the ex-
pressiveness of cellular automata for the modelling of biological systems, a stochastic
extension has been proposed in Patel and Nagl (2006).

P systems (Păun, 2000) are a computational and modelling formalism inspired by
the functioning of living cells. A P system is composed of a hierarchy of membranes,
where each membranes contains both a multiset of objects and the evolution rules which
act on them. Many variants and extensions of P systems (Păun, 2002; P Systems Web
page, 2013) exist that include features which increase their expressiveness and which
are based on different evolution strategies. An extension of P system providing a more
concrete representation of the space is the Spatial P System (Barbuti et al, 2011b),
in which objects and membranes are embedded into a two-dimensional discrete space,
similar to the space representation used in cellular automata. In Pardini (2011), a Spatial
P system model, based on the Boids model (Reynolds, 1987), capturing the collective
movement of herring schools is presented.

Another formalism which has some similarities with the approach proposed in this
paper is the Spatial Calculus of Looping Sequences (Spatial CLS) (Barbuti et al, 2011a),
an extension of the Calculus of Looping Sequences (CLS) (Barbuti et al, 2006, 2008)
which allows both stochastic and spatial modelling. Membranes, which can be nested,
may be associated with a precise position in a 2D/3D Euclidean space, and the space
occupied by each membrane can be described. In case of conflicts objects and mem-
branes are automatically rearranged. Nevertheless, complex global behaviours such as
the propagation of actions among adjacent cells cannot be described. Finally, as re-
gards extensions of computer science formalisms for the modelling of biological systems
we cite SpacePI (John et al, 2008) and the 3π process algebra (Cardelli and Gardner,
2010), both extensions of the π-calculus (Milner, 1999). In both formalisms, processes
are embedded in a 2D/3D continuous space, with different communication mechanisms.
In contrast to the approach proposed in this paper, which supports the use of high-
level interaction mechanisms, both SpacePI and 3π provide only low-level interaction
capabilities.

Boids model The Boids model has been proposed in Reynolds (1987) as a model for the
collective movement of groups of autonomous individuals which occurs in nature, such
as fish schools and flocks of birds. The key feature of this model is that the collective
motion emerges as the result of local interactions between the individuals, since there
is no external entity which controls the behaviour of the single individuals. Using this
model, a group of individuals positioned randomly in the space is able to organise itself
into a single group, in which individuals move in a coordinated manner.

In the Boids model, individuals can “see” only a small space around themselves,
in order to determine the relative distance and behaviour of nearby individuals. Then,
the distance and direction of movement of nearby individuals is used to compute three
different (vector) forces, which are then summed up to compute the resulting movement
of the individual. The three forces acting on an individual are the following: a repulsive
separation force that causes the individual to move away from nearby individuals; an
attractive cohesion force which drives the individual towards the most crowded direction;
and an alignment force, which tends to align the direction of the individual to the most
common direction among nearby individuals.

The Boids models has some similarities with our model. In particular, the way the
direction of an individual is determined in the Boids model is similar to our approach.
In fact, in both cases, the resulting position is obtained by summing up some displace-
ment vectors obtained by taking into account the position of the other individuals.
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Nevertheless, the Boids model uses only purely local rules, namely each conceptual rule
driving the behaviour of each individual takes into account the parameters (position
and direction) of the only individuals within its visibility distance. On the other hand,
in our model, the global effect of the displacement propagation mechanism cannot be
described by local rules, since a displacement action can propagate to an unbounded
distance, depending on the relative positions of the cells.

Cellular Potts model A model which has seen a widespread use for the modelling of
morphogenesis is the cellular Potts model (Graner and Glazier, 1992). The cellular Potts
model is composed of a lattice of discrete sites (similar to cellular automata (Neumann,
1966)), such as a square grid, where a spin is associated with each site. The set of
sites with the same spin represent a cell. Moreover, there can be a finite number of
cell types. The key concept of the Potts model is the Hamiltonian, namely a function
which computes the total energy of the entire system, obtained by summing up the
local energy between the spins of each pair of adjacent sites in the lattice. For example,
a simple Hamiltonian is H =

∑
(i,j)(i′,j′)neighbors 1− δσ(i,j)σ(i′,j′); in this case sites with

different spins (i.e. belonging to different cells) have energy 1, while energy between
internal sites is null.

A Potts model is expected to evolve towards configurations with minimal energy.
The simulation can be performed by using the Metropolis algorithm, namely an it-
erative procedure where in each iteration the spin of a random site is modified, and
the consequent variation of system energy ∆H is used to decide if the new configu-
ration is accepted or not. In particular, if ∆H ≤ 0, then the configuration is always
accepted, since the total energy decreases. On the other hand, an increase of the to-
tal energy (i.e. ∆H > 0) is probabilistically accepted with Monte Carlo probability
P (σ(i, j)→ σ′(i, j)) = exp(−∆H/T ), where T > 0 is the temperature, a parameter used
to describe the volatility of the system. Note that, the higher the temperature, the
higher the probability of accepting a configuration which increases the total energy.

A model of cell sorting with differential adhesivity is presented in Graner and Glazier
(1992). This model, known as the Glazier and Graner model, considers three cell types
(there can be many cells with the same type) which are used to describe differential
surface energies depending on the types of adjacent cells. That is, according to differen-
tial adhesivity, the free energy between each pair of adjacent sites belonging to different
cells depends on the actual type of the cells.

In Savill and Hogeweg (1997), a variation of the Glazier and Graner model is also
used to model the morphogenesis of Dictyostelium discoideum in a 3D setting, from the
aggregation phase to the migrating slugs. The aggregation is driven by cAMP signalling,
where the cAMP diffusion is described by a partial differential equation (PDE), asso-
ciated with sites corresponding to the 2D substrate. The movement of cells is based
on differential cell adhesivity with volume conservation, together with chemotactic mo-
tion depending on local cAMP concentration. Such a model is extended in Maree and
Hogeweg (2001) to provide a model of the entire process, from the aggregation phase
to the culmination. In this case, the model also includes cell differentiation.

The main difference between our model and the one proposed in Savill and Hogeweg
(1997) and Maree and Hogeweg (2001) is methodological: in Maree and Hogeweg (2001)
the authors develop a model which accurately captures and reproduces the experimen-
tally elucidated mechanisms known to be involved in the process. Therefore, such an
approach is mainly bottom-up, namely their model has been developed by accurately
modelling the known biomechanical interactions using an extension of the Glazier and
Graner model (Graner and Glazier, 1992). On the other hand, our approach is mainly
top-down, since we proposed a few basic high-level mechanisms which are able to repro-
duce the real behaviour, albeit with less correspondence to the reality. In our opinion,
the top-down approach should allow a better understanding of the key mechanisms
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driving the process of morphogenesis. Moreover, reusing the mechanisms to describe
other systems would allow an empirical validation of the mechanisms chosen.

Biomechanical models A different approach to the description of the movement of cells
in Dictyostelium discoideum is followed in Palsson and Othmer (2000). The authors
propose a model of both the individual and collective movement of cells. The model is
based on individual cells embedded in a continuous 3D space, where cells are modelled
as deformable ellipsoids, which move under the effect of the forces acting on them. A
cell is formally characterised by four parameters: (i) its position, corresponding to its
centre of mass; (ii) its orientation; (iii) its stress level; (iv) the active forces it can exert.
This modelling allows an accurate description of the observed viscoelastic behaviour of a
cell when it is subjected to a force (originating either internally or externally), namely
it initially responds in an elastic way to stress, up to a certain level, but under sustained
force it produces a viscous response. They simulate both the aggregation phase, where
cells move individually, and the subsequent slug movement, both phases being driven
by the cAMP signalling of pacemaker cells. Since the behaviour is driven by the biome-
chanical forces acting on the cells, this constitutes a low-level realistic model. Therefore,
the main difference with our approach, similarly to Savill and Hogeweg (1997); Maree
and Hogeweg (2001), lies in the point of view used for the modelling, which also in this
case is based on a low-level bottom-up approach.

6 Conclusions

We have proposed a top-down approach to the modelling of spatial biological systems, in
which it is necessary to take into account the exact position of membranes in the space.
Our top-down approach explicitly disregards the actual low-level biomechanical inter-
actions which happen in the reality, but instead relies on a few high-level mechanisms.
To this aim, we have developed a generic framework for the modelling of populations
of moving membranes, based on a few high-level mechanisms: (i) cell adhesion, (ii) sub-
strate repulsion, (iii) propagation of displacement actions through attached cells. These
mechanisms are formalised by means of an iterative simulation algorithm, which have
been used for the simulation of the morphogenesis of the Dictyostelium Discoideum
amoeba.

In our opinion, an abstract top-down approach to the modelling of morphogenetic
systems could enable a deeper knowledge of the actual high-level capabilities expressed
by spatial biological processes. This approach shares some similarities with the devel-
opment, in the seminal paper by Turing (1952), of an abstract model of morphogenesis
of the growing embryo. In fact, in such a paper the mechanical aspects are explicitly ig-
nored, by focussing instead on the study of role played by morphogens, i.e. the chemicals
driving the morphogenetic process which diffuse from one cell to another.

An advantage of our modelling approach with respect to other models, such as Savill
and Hogeweg (1997); Maree and Hogeweg (2001); Palsson and Othmer (2000) for the
Dictyostelium discoideum, lies in the simplicity of the mechanisms involved in the model.
We believe this will allow to shed some light on the mechanisms driving the behaviour
of complex systems and, in particular, similarities among different spatial systems to
be revealed and recognised more easily.

We have shown how the abstract framework can be exploited for modelling the
morphogenesis of the Dictyostelium Discoideum amoeba, and that it is able to produce
spatial structures of the amoeba similar to those observed in nature. This results is
achieved in spite of the fact that we use only simple high-level mechanisms, and that
some modelling decisions do not precisely agree with the real-world behaviour (namely
the fact that the globule of cells is formed during the final phase instead of growing
earlier and being pushed upwards by stalk growth). Nevertheless, by proper tuning the
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parameters, we have shown that it is possible to obtain a final spatial structure which
resembles the real-world shape of the amoeba with good accuracy.

The key aspect of this result is due to the correct choice of the values for the param-
eters involved in the simulation. As we have shown, even small variations in the values
of the parameters can result in very different shapes being formed. In other words, pa-
rameters determine the actual morphogenetic process. This is in agreement with Manca
(2013), where the role of parameters in determining the outcome of biological dynamics
is discussed.

This work constitutes an initial application of the high-level approach to the mod-
elling of biological systems with spatiality. The framework, since it is based on a few
mechanisms, naturally allows the inclusion of many different extensions, which would al-
low greater expressiveness. A simple extension could allow cells to be distinguished into
different kinds, which would react differently when subjected to the available mecha-
nisms. This could be exploited, for example, to extend the model with multiple aggrega-
tion points, identified by cells of a different kind (instead of fixed positions), where each
cell moves towards their relative nearest aggregation point. Another possible extension
would be to allow deformable membranes, for example by adding volume conservation
constraints.

An interesting application of the framework, that we leave as a future work, is the
modelling of the embryogenesis in animals. This morphogenesis process consists in the
initial phases after the zygote, i.e. the fertilised egg, has been formed, which in the end
allows the formation of the embryo. An interesting step in this process is the gastrulation
phase. We leave as a future work the development, using the framework proposed in this
paper, of a model for the gastrulation in the sea urchin and similar animals, for which
much literature is available (Kominami and Takata, 2004; Davidson et al, 1995; Hardin
and Cheng, 1986; Tamulonis et al, 2011; Drasdo and Forgacs, 2000). Finally, another
interesting aspect to be investigated involves the relation between our high-level model
of the Dictyostelium discoideum and other low-level models, in particular as regards the
correlation between the values of parameters in the two cases.
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(a) θgrav. = 0,
t = 2800

(b) θgrav. = 0.003,
t = 2800

(c) θgrav. = 0.01,
t = 2800

(d) θgrav. = 0.1, t = 2800

Fig. 4 Resulting shapes with varying gravity coefficient, at time 2800. (Figures are aligned to the
left.)

(a) θjitter = 0,
t = 2800

(b) θjitter = 0.01,
t = 2800

(c) θjitter = 0.1,
t = 1480

(d) θjitter = 0.1,
t = 2520

Fig. 5 Resulting shapes with varying jitter coefficient.

(a) θsubrep = 0.01,
t = 520

(b) θsubrep = 0.1,
t = 520

(c) θsubrep = 0.7,
t = 520

(d) θsubrep = 2,
t = 520

Fig. 6 Shape of the slug during aggregation, with varying substrate repulsion coefficient.
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(a) θattr = 0.002, t = 760 (b) θattr = 0.02, t = 760 (c) θattr = 0.2, t = 760

(d) θattr = 0.002, t = 2800 (e) θattr = 0.02, t = 2800 (f) θattr = 0.2, t = 2800

Fig. 7 Shape of the slug during movement (a-c) and resulting shapes (d-f), with varying attraction
coefficients for cell adhesion.

(a) θrep = 0.1, t = 760 (b) θrep = 1, t = 760 (c) θrep = 3, t = 760

(d) θrep = 0.1, t = 2800 (e) θrep = 1, t = 2800 (f) θrep = 3, t = 2460

Fig. 8 Shape of the slug during movement (a-c) and resulting shapes (d-f), with varying repulsion
coefficients for cell adhesion.
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(a) θaggr = 1,
t = 33

(b) θaggr = 1,
t = 40

(c) θaggr = 1,
t = 50

(d) θaggr = 1,
t = 220

(e) θaggr = 1,
t = 510

Fig. 9 Shape of the slug during aggregation with aggregation factor θaggr = 1.

(a) α = 0,
t = 520

(b) α = 0,
t = 620

(c) α = 0,
t = 820

(d) α = 0,
t = 920

(e) α = 0,
t = 1020

(f) α = 0.1,
t = 520

(g) α = 0.1,
t = 620

(h) α = 0.1,
t = 820

(i) α = 0.1,
t = 920

(j) α = 0.1,
t = 1020

(k) α = 0.3,
t = 520

(l) α = 0.3,
t = 620

(m) α = 0.3,
t = 820

(n) α = 0.3,
t = 920

(o) α = 0.3,
t = 1020

(p) α = 0.3,
t = 520

(q) α = 0.3,
t = 620

(r) α = 0.3,
t = 820

(s) α = 0.3,
t = 920

(t) α = 0.3,
t = 1020

(u) α = 0.75,
t = 520

(v) α = 0.75,
t = 620

(w) α = 0.75,
t = 820

(x) α = 0.75,
t = 920

(y) α = 0.75,
t = 1020

(z) α = 0.9,
t = 520

(aa) α = 0.9,
t = 620

(ab) α = 0.9,
t = 820

(ac) α = 0.9,
t = 920

(ad) α = 0.9,
t = 1020

Fig. 10 Shape of the slug during movement with varying propagation factor.
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(a) τstalk-dup = 1,
τ3 = 1200, t = 620

(b) τstalk-dup = 5,
τ3 = 1200, t = 1000

(c) τstalk-dup = 50,
τ3 = 1200, t = 2220

(d) τstalk-dup = 50,
τ3 = 3000, t = 4020

Fig. 11 Snapshots of simulations with varying duplication period for stalk formation. In figure (a,b),
the stalk is still growing. (Simulations performed with τ2 = 10.)

(a) dhid. = 1.99,
t = 940

(b) dhid. = 1.995,
t = 940

(c) dhid. = 2,
t = 2220

(d) dhid. = 2.05,
t = 2220

(e) dhid. = 2.1,
t = 2220

Fig. 12 Snapshots of simulations with varying parameter dhiding, denoting the distance for an upper
cell to be considered hiding an underlying cell, during stalk formation. (Simulations performed with
τ2 = 10.)
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(a) di.-dup = 1,
t = 2220

(b) di.-dup = 3,
t = 2220

(c) di.-dup = 5,
t = 2220

(d) di.-dup = 6,
t = 2220

(e) di.-dup=10,
t = 2220

(f) di.-dup=10,
τ3 = 1800,
t = 2340

Fig. 13 Resulting shapes with varying parameter dinit-dup, denoting the distance of the initial
duplicating cell from the highest cell, for stalk formation. (Simulations performed with τ2 = 10.)

(a) θcenter = 0,
t = 2220

(b) θcenter = 0.1,
t = 2800

(c) θcenter = 0.4,
t = 2220

(d) θcenter = 0.5,
t = 2220

(e) θcenter = 1,
t = 2220

Fig. 14 Resulting shapes with varying tendency of new cells to be aligned towards the center
during stalk formation. (Simulations (a,c-e) performed with τ2 = 10; simulation (b) performed with
τ2 = 600.)

(a) dxy = 0.05,
t = 2220

(b) dxy = 0.1,
t = 2220

(c) dxy = 0.3,
t = 2220

(d) dxy = 0.4,
t = 2220

(e) dxy = 0.5,
t = 2220

Fig. 15 Resulting shapes with varying maximum x, y-displacement of new cells during stalk forma-
tion. (Simulations performed with τ2 = 10.)
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