
DOCKERFINDER: Multi-attribute search of
Docker images

Antonio Brogi, Davide Neri, and Jacopo Soldani
Department of Computer Science, University of Pisa, Italy

{name.surname}@di.unipi.it

Abstract—Docker containers run from Docker images, which
can be distributed through so-called Docker registries. The
currently available support for searching images in registries
is however limited. Available registries (e.g., Docker Hub) only
permit searching images “by name”, i.e. by specifying a term
occurring in the image name, in the image description or in the
name of the user that created such image.

In this paper we try to enhance the support for discovering
Docker images by introducing DOCKERFINDER, a microservice-
based prototype that permits searching for images based on
multiple attributes, e.g., image name, image size, or supported
software distributions. DOCKERFINDER crawls images from a
remote Docker registry, it automatically analyses such images
to produce multi-attribute descriptions to be stored in a local
repository, and it permits searching for images by querying the
local repository.

Index Terms—Docker, image search, microservices.

I. INTRODUCTION

DevOps [11] practices aim at easing the collaboration and
communication of software developers (Dev) and operators
(Ops). Correspondingly, new technologies are emerging with
the objective of supporting developers in building, testing,
deploying and managing their software [13].

A notable example of such emerging technologies is
Docker [3], a platform for building, shipping, and running
applications, together with their dependencies, in lightweight
virtual environments (called containers). Docker containers
run from Docker images, which are the read-only templates
used to create them.

A Docker image permits packaging a software component
(e.g., the source code of an application, or its binaries) together
with all software dependencies needed to run it. Images
hence play a crucial role within Docker, and to ease images
distribution Docker permits sharing them through so-called
Docker registries (e.g., Docker Hub [5], which is the official
registry for storing and retrieving Docker images).

As Docker registries may contain a huge amount of heteroge-
neous images [6], powerful search methods are needed to ease
the search of images within registries. For instance, suppose
that we wish to deploy an application component, and that
such component requires certain software distributions to run
(e.g., python 2.7 and java 1.8). We would need a way
to search for Docker images from which to run containers that
actually support such software distributions.

Unfortunately, the current support for searching Docker
images is limited, as Docker registries only permit looking

for images “by name”, i.e. by specifying a term, which is
then exploited to return all images where such term occurs
in the name, in the description or in the name of the user
that built the image. As a consequence, users cannot specify
more complex queries, e.g., by imposing requirements on the
software distributions that an image must support (such as in
the aforementioned example), on its size, or on "how much"
it is recommended by the Docker community.

The main objective of this article is to try to overcome the
aforementioned limitations, by proposing an enhanced discov-
ery of Docker images. More precisely, we aim at permitting
to search Docker images not only “by name”, but also based
on the software distributions they support, their size, and their
popularity (viz., the amounts of pulls and of stars gained within
Docker community).

Currently available search approaches are based on metadata
that is either manually specified by the image developers
(e.g., names and natural language descriptions of images),
or automatically extracted from images by treating them as
“black-boxes" (e.g., size of images, and "how much" they
are recommended by the Docker community). Our approach
instead relies on the very idea of automatically extracting the
runtime features of images (e.g., the software distributions
they support). To extract such features, we start containers
from Docker images, and we directly check which features are
actually supported in the containers’ runtime environments.

To present our approach and to demonstrate its feasibility,
we hereafter present the design and the implementation of
DOCKERFINDER. DOCKERFINDER is a prototype that per-
mits searching Docker images based on multiple attributes
(e.g., image name, image size, supported software distribu-
tions). DOCKERFINDER crawls images from a Docker registry,
and it automatically analyses them to produce multi-attribute
descriptions. DOCKERFINDER stores the obtained image de-
scriptions in a local repository, and it permits searching for
images by submitting multi-attribute queries both through a
remotely accessible API and through a graphical user interface.

DOCKERFINDER is designed by adopting the microservice-
based architectural style [10], which is proven to improve
scalability, manageability, and integrability of software sys-
tems [9]. The DOCKERFINDER prototype is then implemented
and shipped as a multi-container Docker application [4].

It is worth noting that DOCKERFINDER is not intended to be
an alternative to existing Docker registries, but it is rather a

novel approach for improving their image discovery capabili-
ties. The inspection approach of DOCKERFINDER can indeed
be directly exploited within Docker registries (e.g., Docker
Hub [5]) to enrich the description of the images they contain.

The rest of the paper is organised as follows. Sect. II illustrates
the architecture of DOCKERFINDER. Sect. III introduces the
DOCKERFINDER prototype. Sects. IV and V discuss related
work and draw some concluding remarks.

II. ARCHITECTURE OF DOCKERFINDER

Given a remote registry of Docker images, the objective of
DOCKERFINDER is to permit searching such images not only
“by name”, but also based on additional information (e.g., the
software distributions they support, their size, and their pop-
ularity). In this perspective, DOCKERFINDER is designed to
provide the following three main functionalities:

• Analysis → DOCKERFINDER pulls and analyses each
image in the registry it is connected to. The analysis of
each image consists in retrieving all the metadata already
available in the registry, and in running a container to au-
tomatically extract its runtime features (e.g., the software
distributions it support). All collected information is used
to build the multi-attribute description of an image.

• Storage → DOCKERFINDER stores all produced image
descriptions in a local repository.

• Discovery → DOCKERFINDER allows users to search for
images. Users can indeed submit multi-attribute queries to
DOCKERFINDER, which are then evaluated with respect
to the image descriptions stored in its local repository.

We choose to implement the above functionalities as a suite of
interacting microservices [9], as the microservice-based archi-
tectural style is proven to improve scalability, manageability,
and integrability of software systems [9], [10].

We now detail the microservices in the architecture of
DOCKERFINDER, which is depicted1 in Fig.1. We separately
discuss the microservices in the analysis group (Sect. II-A),
those in the storage group (Sects. II-B), and those in the
discovery group (Sect. II-C).

A. Microservices in the analysis group

As illustrated in Fig. 1, the analysis functionality is carried
on by a Crawler, a Message Broker, multiple Scanners, and a
Checker.

Crawler. The Crawler crawls the Docker images to be anal-
ysed from the remote Docker registry. More precisely, the
Crawler crawls the names of the images to be analysed, and
it sends such names to the Message Broker (as it is the task
of Scanners to pull and concretely analyse images).

The Crawler can also implement filtering policies on the
image names that it crawls. For example, the Crawler can

1The figure displays all microservices forming DOCKERFINDER (as rect-
angles) and the interactions among them (as arcs connecting rectangles).
The microservices forming DOCKERFINDER are partitioned in three groups
(i.e., analysis, storage, and discovery), which corresponds to the three main
functionalities carried on by DOCKERFINDER itself.

Fig. 1. Microservice-based architecture of DOCKERFINDER.

crawl only images with a particular tag (e.g., latest), or it can
avoid to re-send the names of images whose description is
already available and up-to-date in the local repository.

Message Broker. A message broker is an intermediary service
whose purpose is to take incoming messages from one or
multiple sources, to process such messages, and to route
them to one or more destinations [14]. The DOCKERFINDER’s
Message Broker receives the names of the images to be
analysed (from the Crawler or from the Checker), it stores
them into a queue, and it permits Scanners to retrieve them.

The main advantage of using the Message Broker is decou-
pling the Crawler and the Checker from the multiple Scanners.
Indeed, once the Crawler (or the Checker) has sent an image
name to the Message Broker, the Crawler can continue its
crawling process, being confident that the Message Broker will
retain the message until a Scanner retrieves it.

Scanner. The Scanner retrieves the name of the images from
the Message Broker, and it analyses and builds descriptions
for the corresponding images. More precisely, the Scanner
continuously works as follows:

1) It retrieves an image name from the Message Broker.
2) It pulls the corresponding image and downloads its meta-

data from the registry.
3) It extracts the software distributions supported by the

pulled image. To do so, it runs a container from the image,
and it exploits the information given by the Software
Service (see Sect. II-C) to determine which software
distributions are supported within the running container2.

4) It generates the image description by exploiting the re-
trieved metadata and the extracted software distributions.

2Given an image i to be analysed, the Scanner creates a non-stopping
container by running docker run i ping 127.0.0.1, and it stores the
returned container id. Then, for each software distribution s = <command,
options, output> retrieved from the Software Service, the Scanner exe-
cutes docker exec id command options, and it parses the returned
output to check whether such output is compatible with the (regular expression
defined in) output. If this is the case, the image is marked as supporting
s. Once the presence of all software distributions have been checked, the
Scanner stops the container by running docker stop id.

5) It sends the produced description to the Images Service.

Checker. The main purpose of the Checker is to enforce
eventual consistency between the image descriptions in the
local repository and the images contained in the remote Docker
registry. The latter is dynamic, as each image it contains
can be updated (e.g., changing the software distributions it
supports) or deleted by image developers at any time. The
Checker is hence in charge of (i) forcing a new analysis of
images whose description is out-of-date3, and of (ii) deleting
the description of images that are no longer available within
the remote Docker registry. To do so, the Checker periodically4

checks the up-to-dateness of image descriptions as follows:
1) It retrieves all image descriptions stored in the local

repository (from the Images Service).
2) For each image description, it checks whether (i) such de-

scription is out-of-date, or whether (ii) the corresponding
image has been deleted from the remote Docker registry.
In the case of (i), the Checker forces a new analysis of the
image by sending its name to the Message Broker (to add
it to the queue of images to be analysed by Scanners). In
the case of (ii), the Checker asks to the Images Service
to delete the image description.

B. Microservices in the storage group

DOCKERFINDER stores all image descriptions produced by the
Scanners into a local repository, and it makes them accessible
to the other microservices in DOCKERFINDER. To accomplish
such a storage functionality, DOCKERFINDER relies on two
microservices (see Fig. 1):

Images Database. The Images Database contains the local
repository for storing image descriptions.

Images Service. The Images Service is a RESTful service
that permits searching, adding, deleting, and updating image
descriptions into the Images Database. The Images Service is
not exposed outside of DOCKERFINDER, as it can only be
consumed by the microservices in DOCKERFINDER.

C. Microservices in the discovery group

The sub-functionalities of the microservices in the discovery
group are twofold: On the one hand, (i) they permit configuring
the list of software distributions to be searched (by Scanners)
within images. On the other hand, (ii) they permit searching
for images by submitting queries to DOCKERFINDER.

The microservices that (i) permit configuring the list of
software distributions to be searched within images are the
Software Database and the Software Service. Instead, the
microservices that (ii) permit submitting queries and searching
for images are the Search API and GUI.

Software Database. The Software Database contains the
repository of software distributions whose support has to

3An image description stored in the local repository is out-of-date if it
has been generated before the last update of the corresponding image in the
remote Docker registry.

4The periodicity of the Checker can be configured to trade-off up-to-
dateness of image descriptions and performances of DOCKERFINDER.

be searched within an image. A software distribution s is
specified as a triple <command, options, output>,
which states the command and options to be executed in a
container run from a Docker image, and the expected output
if s is actually supported by such image.

Software Service. The Software Service is a RESTful ser-
vice that permits adding, updating, and deleting the triples
representing software distributions to the Software Database.
The Software Service is publicly available outside of DO-
CKERFINDER, which means that end-users just have to invoke
the exposed RESTful API to update the list of software
distributions to be searched within images.

Search API. The Search API is a remotely accessible API
that acts as a proxy for the searching capabilities of the
Images Service5. More precisely, users can submit queries to
the Search API, which then adapts and forwards the request
to the Images Service. Once the Images Service returns the
image descriptions satisfying the submitted query, the Search
API forwards such descriptions to the invoker.

GUI. The GUI is a web-based graphical user interface that
allows users to build queries, which can then be submitted
to DOCKERFINDER (through the Search API). The image
descriptions satisfying the query (i.e., those returned by the
Search API) are then visualised by the GUI itself.

III. DOCKERFINDER PROTOTYPE

We hereby introduce the open source DOCKERFINDER pro-
totype6, by first illustrating how DOCKERFINDER has been
implemented as a multi-container Docker application [4]
(Sect. III-A), and then by showing two alternative deployment
solutions for such an application (Sect. III-B).

A. Implementation of the microservice-based architecture

DOCKERFINDER is implemented as a multi-container Docker
application [4], i.e. each microservice is implemented and
shipped in its own Docker container. Fig. 2 displays such
a multi-container Docker application by representing each
Docker container as a box labelled with the name of the
microservice it implements, and with the logo of the official
Docker image used to ship such a microservice. Fig. 2
also illustrates the communication protocols exploited by the
microservices to interact each other (viz., HTTP, AMQP, or
mongodb), and the Docker registry from which to retrieve the
images to be analysed (viz., the Docker Hub [5]).

We now separately discuss the implementation of the mi-
croservices in the analysis, storage, and discovery groups.

5The reason of having such a kind of proxy is to avoid exposing all func-
tionalities of the Images Service, which would also permit users to add, update,
or delete the image descriptions contained in the local repository (hence
potentially hampering the eventual consistency between such repository and
the remote Docker registry).

6We released the source code of DOCKERFINDER under an Apache
License, and we made it publicly available on GitHub at https://github.com/
di-unipi-socc/DockerFinder. A running instance of DOCKERFINDER can be
accessed at http://black.di.unipi.it/dockerfinder.

https://github.com/di-unipi-socc/DockerFinder
https://github.com/di-unipi-socc/DockerFinder
http://black.di.unipi.it/dockerfinder

Fig. 2. DOCKERFINDER as a multi-container Docker application.

Analysis. The Message Broker is implemented by directly
exploiting the official Docker image for RabbitMQ (https:
//hub.docker.com/_/rabbitmq/).

The Crawler, the Checker, and the Scanners are instead
implemented as Python modules, which are shipped in Docker
containers based on the official Docker image for Python
(https://hub.docker.com/_/python/). All modules exploit the
Python library requests7 for interacting with the HTTP APIs
of the Docker Hub and of the Software Service, and the
Python library pika8 for communicating (via AMQP) with the
Message Broker. The Scanner module also exploits the Python
library docker-py9 for creating containers from the images to
be analysed, and for managing such containers.

Storage. The Images Database is implemented as a NoSQL
database hosted on a MongoDB container (https://hub.docker.
com/_/mongo/).

The Images Service is a RESTful API implemented in
JavaScript, which is shipped in a container based on the official
Docker image for NodeJS (https://hub.docker.com/_/node/).
The Images Service API provides the HTTP methods for
retrieving, adding, updating, and deleting image descriptions.
To do so, it exploits the JavaScript libraries express10 and
mongoose11 to run a web server and to interact (via mongodb)
with the Images Database, respectively.

Discovery. The Software Database is implemented as a
NoSQL database hosted on a MongoDB container.

The Software Service is a RESTful API implemented in
JavaScript, which offers the HTTP methods for retrieving,
adding, updating, and deleting the triples modelling the soft-
ware distributions to be searched within containers by Scan-
ners. Similarly to the Images Service, the Software Service

7http://docs.python-requests.org/.
8http://pika.readthedocs.io/.
9https://docker-py.readthedocs.io/.
10http://expressjs.com/.
11http://mongoosejs.com/.

exploits the libraries express and mongoose, and it is shipped
in a container based on the official image for NodeJS.

The Search API and the GUI are also implemented in
JavaScript, and shipped in Docker containers based on the
official image for NodeJS. The Search API is an HTTP API
providing the endpoint /search, which permits submitting
multi-attribute queries for searching for images (e.g., by in-
voking GET /search?python=3.4&pulls_gt=20, we
look for all images having python 3.4 installed and whose
number of pulls is greater than 20). The GUI is instead
a web application, which permits building the queries to
be submitted to the Search API in a graphical environment.
Similarly to the Images Service and the Software Service, both
the Search API and the GUI are implemented by exploiting the
JavaScript library express to run a web server. The GUI is also
exploiting the JavaScript library AngularJS12 for implementing
the graphical interface.

B. How to deploy DOCKERFINDER

DOCKERFINDER is a multi-container Docker application, and
it can be deployed in two different configurations, depending
on whether the target infrastructure is a single host or a cluster
of multiple hosts.

Single host deployment. Docker Compose [4] permits de-
ploying a multi-container application on a single host, if
such application is equipped with a docker-compose.yml file
that describes the application deployment. DOCKERFINDER
is equipped with its own docker-compose.yml file, and it can
hence be deployed on any host supporting Docker Compose.

Multi-host deployment. Docker Swarm [8] permits defining
clusters of hosts where to schedule the containers forming
a multi-container application. DOCKERFINDER is equipped
with two scripts, called init_all.sh and start_all.sh, which
exploit Docker Swarm to initialise and schedule the containers
forming DOCKERFINDER on a cluster of multiple hosts. The
default configuration is for a cluster of three virtual machines:
Two virtual machines are in charge of running 8 Scanners
each, while the third virtual machine is running the other
containers in the architecture of DOCKERFINDER.

IV. RELATED WORK

Due to space limitations, we hereby discuss only solutions
whose aim is to improve the image search capabilities cur-
rently offered by Docker.

The closest solution to DOCKERFINDER is probably the
Docker Store [7]. Docker Store is a web-based application that
extends the image search capabilities provided by the Docker
Hub. Despite it still permits searching for images “by name”
(i.e., it permits specifying a term to be matched within the
name, description, or username associated to an image), it also
permits filtering the returned images by category (e.g., appli-
cation framework images, database images, programming lan-
guages images). Docker Store differs from DOCKERFINDER

12https://angular.io/.

https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/python/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/node/
http://docs.python-requests.org/
http://pika.readthedocs.io/
https://docker-py.readthedocs.io/
http://expressjs.com/
http://mongoosejs.com/
https://angular.io/

mainly because of two reasons. First, Docker Store allows to
filter only trusted and validated images, while DOCKERFIN-
DER permits applying filters to all images available in a Docker
registry. Second, as Docker Store only allows to search images
“by name” and then to filter them by category, it is not possible
to distinguish, for instance, whether an image supports Java
or Python, since all images supporting such languages fall in
the same category (viz., the category of images supporting
programming languages). DOCKERFINDER does not suffer
from the same limitation, as it permits explicitly searching
for images supporting either Java or Python, or both.

JFrog’s Artifactory [12] is an Universal Artefact Repository
working as a single access point to software packages created
by any language or technology (i.e. including Docker). JFrog
users can search for Docker images by their name, tag or im-
age digest. Users can also assign custom properties to images,
which can then be exploited to specify and resolve queries.
JFrog differs from DOCKERFINDER since it requires users to
manually assign properties to images, while DOCKERFINDER
automatically produces image descriptions by retrieving their
metadata from the remote Docker registry, and by analysing
(containers run from) images to extract their runtime features.

Finally, it is worth noting that our work shares with Wet-
tinger et al. [15] the general objective of contributing to ease
the discovery of DevOps “knowledge” (which includes Docker
images). [15] proposes a collaborative approach to store
DevOps knowledge in a shared, taxonomy-based knowledge
base. More precisely, [15] proposes to build the knowledge-
base in a semi-automated way, by (automatically) crawling
heterogeneous artefacts from different sources, and by requir-
ing DevOps experts to share their knowledge and (manually)
associate metadata to the artefacts in the knowledge-base.
DOCKERFINDER instead focuses only on container images,
and it builds the description of such images in a fully-
automated way.

V. CONCLUSIONS

The current support for searching Docker images is limited,
as users can only look for images in Docker registries “by
name” (i.e., by specifying a term that should occur in name,
description, or username associated to an image).

In this paper, we tried to overcome the aforementioned limi-
tations by introducing DOCKERFINDER, a microservice-based
prototype that permits searching for Docker images not only
“by name”, but also imposing requirements on other attributes
(e.g., the software distributions they support, their size, or
their popularity in the Docker community). DOCKERFINDER
crawls images from a remote Docker registry, it automatically
analyses such images to produce descriptions to be stored
in a local repository, and it permits searching for images by
querying the local repository.

It is worth observing that DOCKERFINDER is not thought to
replace Docker registries, but to permit improving their search
capabilities. The ideal situation would be to integrate the
capabilities of DOCKERFINDER within existing Docker reg-
istries (e.g., Docker Hub). This is precisely one of the reasons

 0

 40

 80

 120

 160

 1 2 3 4 5

co
m

pl
et

io
n

tim
e

(m
in

s)

amount of scanners

 1

 2

 3

 4

 5

 1 2 3 4 5

sp
ee

du
p

amount of scanners

(a) (b)

Fig. 3. Time performances registered for analysing a set of 100 images
randomly sampled from the Docker Hub, where each image was analysed by
Scanners by checking the availability of 16 different software distributions.
In both plots, the x-axes represent the amount of Scanners actually running
in the running instance of DOCKERFINDER. The y-axes instead represent the
(a) completion time and the (b) corresponding speed-up.

why DOCKERFINDER is designed following the microservice-
based architectural style [10], which is proven to simplify
system integration [9].

By running DOCKERFINDER, we discovered that the most
time consuming task is that of Scanners, which have to
spend time in downloading images and in analysing them to
produce their description. However, the analysis of images is
independent one another, and it can hence be easily scaled
out to improve the time performances of DOCKERFINDER
(as shown13 in Fig. 3). Given the fact that DOCKERFIN-
DER is a multi-container Docker application (implementing
a microservice-based architecture), scaling Scanners just cor-
responds to manually increasing/decreasing the amount of cor-
responding Docker containers actually running. As part of our
immediate future work, we plan to provide DOCKERFINDER
with auto-scaling capabilities.

Four other interesting extensions of DOCKERFINDER are:
allowing it to simultaneously crawl images from multiple
Docker registries, including user authentication to permit of-
fering DOCKERFINDER as a multi-tenant service, enforcing
security policies in the analysis of Docker images (e.g., Doc-
kerPolicyModules [1]), and improving the image caching
policies of DOCKERFINDER. Maintaining an image in a local
cache would permit lowering the time needed for downloading
the images extending it. Since it is practically unfeasible to
maintain locally all images available in the Docker Hub [6],
we need a smart caching policy to decide which images to
maintain and which images to destroy.

Last, but not least, we view DOCKERFINDER as a first step
towards the definition of a more general framework allowing
users to specify arbitrary criteria for analysing container
images (not only limited to Docker, but also including other
container technologies — e.g., rkt [2]). The development of
such a framework is in the scope of our future work, as we
believe that it would open new research paths. For instance, re-

13The results displayed in Fig. 3 have been obtained by running DOCKER-
FINDER on a Ubuntu 16.04 LTS workstation having a AMD A8-5600K APU
(3.6 GHz) and 4 GBs of RAM.

searchers could start generating datasets of customised image
descriptions, which could then be used to extract knowledge
by applying data mining approaches, or to experiment and
validate research solutions.

ACKNOWLEDGMENTS

This work has been partly supported by the project Through
the fog (PRA_2016_64) funded by the University of Pisa.

REFERENCES

[1] Enrico Bacis, Simone Mutti, Steven Capelli, and Stefano Paraboschi.
DockerPolicyModules: Mandatory access control for docker containers.
In 2015 IEEE Conference on Communications and Network Security
(CNS), pages 749–750, 2015.

[2] CoreOS. rkt. https://coreos.com/blog/rocket/.
[3] Docker Inc. Docker. https://www.docker.com/. Last accessed: January

10th, 2017.
[4] Docker Inc. Docker compose. https://docs.docker.com/compose/. Last

accessed: January 10th, 2017.
[5] Docker Inc. Docker hub. https://hub.docker.com/. Last accessed: January

10th, 2017.
[6] Docker Inc. Docker hub hits 5 billion pulls. https://blog.docker.com/

2016/08/docker-hub-hits-5-billion-pulls/. Last accessed: January 10th,
2017.

[7] Docker Inc. Docker store. https://store.docker.com/.
[8] Docker Inc. Docker swarm. https://docs.docker.com/swarm/. Last

accessed: January 10th, 2017.
[9] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-
croservices: yesterday, today, and tomorrow. CoRR, abs/1606.04036,
2016.

[10] Martin Fowler and James Lewis. Microservices. ThoughtWorks, https:
//www.thoughtworks.com/insights/blog/microservices-nutshell, 2016.

[11] Michael Httermann. DevOps for Developers. Apress, Berkely, CA,
USA, 1st edition, 2012.

[12] JFrog Ltd. Docker: Secure Clustered HA Docker Registries With A
Universal Artifact Repository. https://www.jfrog.com/support-service/
whitepapers/docker/. Last accessed: January 10th, 2017.

[13] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven
design for cloud infrastructure devops. In 2016 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 202–211. IEEE Computer
Society, 2016.

[14] Stephen James Paul Todd. Message broker apparatus, method and
computer program product, 2003. US Patent 6,510,429.

[15] Johannes Wettinger, Vasilios Andrikopoulos, and Frank Leymann. Au-
tomated capturing and systematic usage of devops knowledge for cloud
applications. In Cloud Engineering (IC2E), 2015 IEEE International
Conference on, pages 60–65, March 2015.

https://coreos.com/blog/rocket/
https://www.docker.com/
https://docs.docker.com/compose/
https://hub.docker.com/
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/
https://store.docker.com/
https://docs.docker.com/swarm/
https://www.thoughtworks.com/insights/blog/microservices-nutshell
https://www.thoughtworks.com/insights/blog/microservices-nutshell
https://www.jfrog.com/support-service/whitepapers/docker/
https://www.jfrog.com/support-service/whitepapers/docker/

