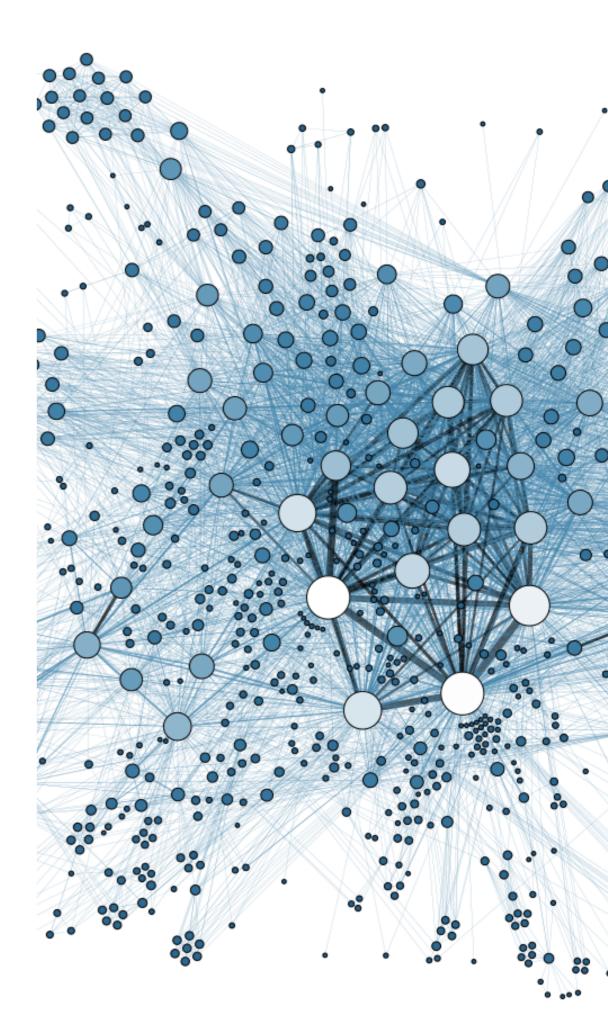
TOWARDS A BETTER UNDERSTANDING OF ADDICTION ON SOCIAL NETWORK: A METRIC COMPARISON

Graph Mining Presentation (December 2018)

Lucia Nasti

lucia.nasti@di.unipi.it



INTRODUCTION

Aim: to study the problem of Internet addiction and its spread through interaction on social network

Our proposal:

- A Hybrid Automata model of the Dopaminergic System, used to simulate the activity of a user type on a virtual social network
- ► To test different network topologies

THE MODEL OF DOPAMINERGIC SYSTEM

Dopamine concentration. The equation describes the dynamics of variable D representing the dopamine concentration in the prefrontal cortex:

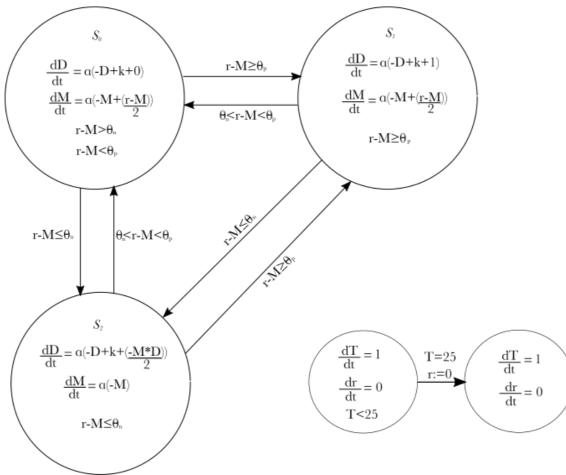
$$\frac{dD}{dt} = \alpha \left(-D + k + \begin{cases} 1, & \text{if } r - M \ge \theta_p \\ 0, & \text{if } \theta_n \le r - M \le \theta_p \\ -\frac{D*M}{2}, & \text{if } r - M \le \theta_n \end{cases} \right)$$

Memory. The equation describes the opponent process (a contrary emotional reaction to a previous stimulus) that is modelled as a memorisation process of previous stimuli.

$$\frac{dM}{dt} = \alpha \left(-M + \begin{cases} \frac{r-M}{2}, & if \ r > M \\ 0, & otherwise \end{cases} \right)$$

HYBRID AUTOMATA MODEL

Hybrid Automata are finite state automata in which states are associated to differential equations that describe the dynamics of a set of continuous variables.



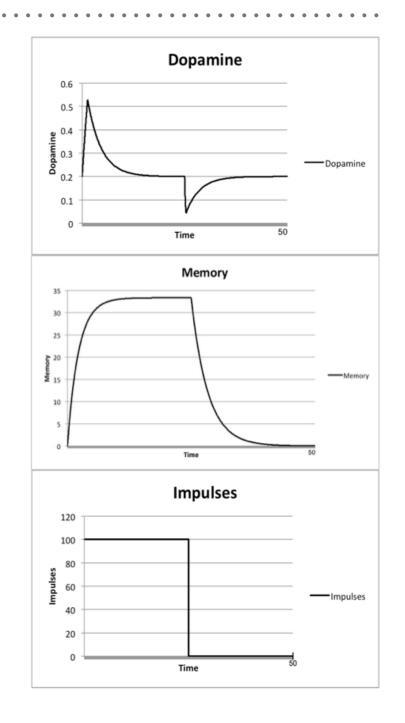
- Compositionality of Hybrid Automata
- Better description of transition

SIMULATION AT CONSTANT PULSE

The **trend of dopamine**, similar to the graph obtained by Gutkin, shows an initial peak which results in a withdrawal symptom, previous to the interruption of the stimulus itself.

The performance of the memory, however, corresponds to the **opponent process**.

To establish if a user became addicted, we consider the memory threshold: M > = 15



THE INTERNET ADDICTION

Excessive use of Internet as a mechanism to **escape** from the daily dissatisfaction.

Main expressions:

- ► Gaming
- ► Social network
- ► Surfing

We represent the social network as a **graph**:

- Each node of graph is a user
- Each user is characterised by the Dopaminergic System and the propensity factor

THE PROPENSITY FACTOR

It is a parameter, which spans the range [0,1], to model the user's predisposition to communicate

It influences the probability to send (or reply) messages through the social network

THE NETWORK COMMUNICATION MODEL

Each user can send at most one message each day

- The probability to send a message is proportional to his/her propensity factor. If he/she sends a message, this is received by his/her neighbours
- On the same day, all users that have received one or more messages choose whether to reply or not, again with a probability proportional to their propensity factors.

Stimuli:

- medium-high: when user receives a message
- high: when an addicted* user sends a message (prediction error phenomenon)

Lucia Nasti - Phd student University of Pisa

GRAPH WITH ONLY TWO NODES

0.2

A=0;

B=0

0.1

A=0; |A=0;

B=0 | B=0

0.3

A=0;

B=0

0.4

A=0;

B=0

This graph is used to **examine the role of the propensity factor**. All the possible combinations of users have been tested to study the behaviour of the Dopaminergic System in different situations

0.6

A=0;

B=0

0.7

A=0;

B=0

0.8

A=0;

B=0

0.9

A=0;

B=0

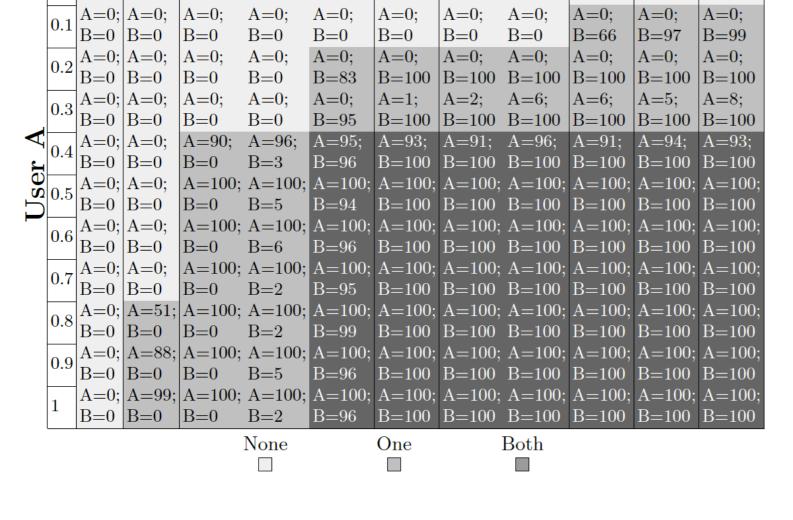
1

A=0;

B=0

We find three values:

- ► low propensity: 0.2
- medium propensity: 0.35
- high propensity: 0.9

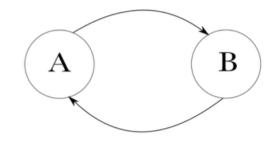


User B

0.5

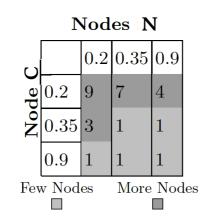
A=0;

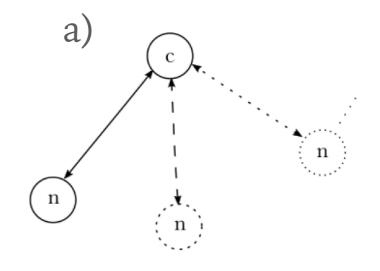
B=0



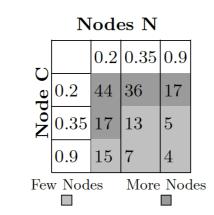
EXPERIMENTS WITH STAR GRAPH

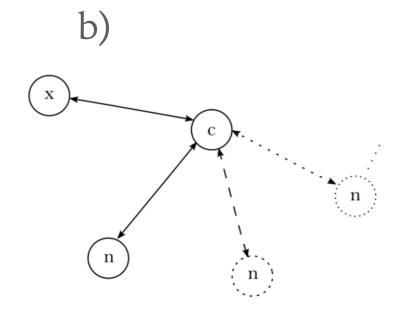
a) **To study the propagation of addiction** in a graph, we start by considering how many peripheral nodes *n* are necessary to cause addiction of the central node *c*, according to different propensity factor.





b) After, we study how one of the peripheral nodes x whose propensity factor is 0.2 (fixed) can be influenced by the others (both c and n).



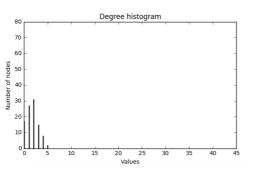


Lucia Nasti - Phd student University of Pisa

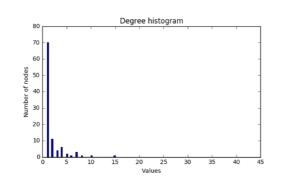
EXPERIMENTS WITH RANDOM AND SCALE-FREE NETWORKS

For our experiments, we used three kinds of networks of 100 nodes, generated in different ways:

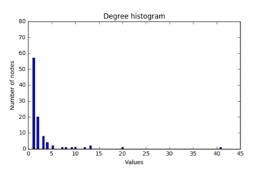
a) with the Erdős-Rényi graph (ER), approach:

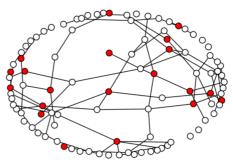


b) with the Barabási-Albert (BA) approach:

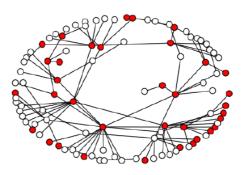


c) with the Bollobás-Riordan (BR) approach:

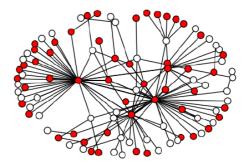




20 nodes addicted in ER



35 nodes addicted in BA



52 nodes addicted in BR

EXPERIMENTS WITH HUGER GRAPH

Real dataset information:

➤ This dataset consists of 'circles' (or 'friends lists') from Facebook (by SNAP)

- ► Number of nodes: 4039
- ► Number of edges: 88234

A scale free graph (Barabasi):

- ► Number of nodes: 4039
- ► Number of edges: 88334

A random graph (Erdős-Rényi):

- ► Number of nodes: 4039
- ► Number of edges: 88234

CLOSENESS CENTRALITY

Closeness centrality can be regarded as a measure of how long it will take to spread information from v to all other nodes sequentially.

The more central a node is, the lower its total distance to all other nodes.

Real Graph	Barabasi Graph	Random Graph	
0.45	0.53	0.41	

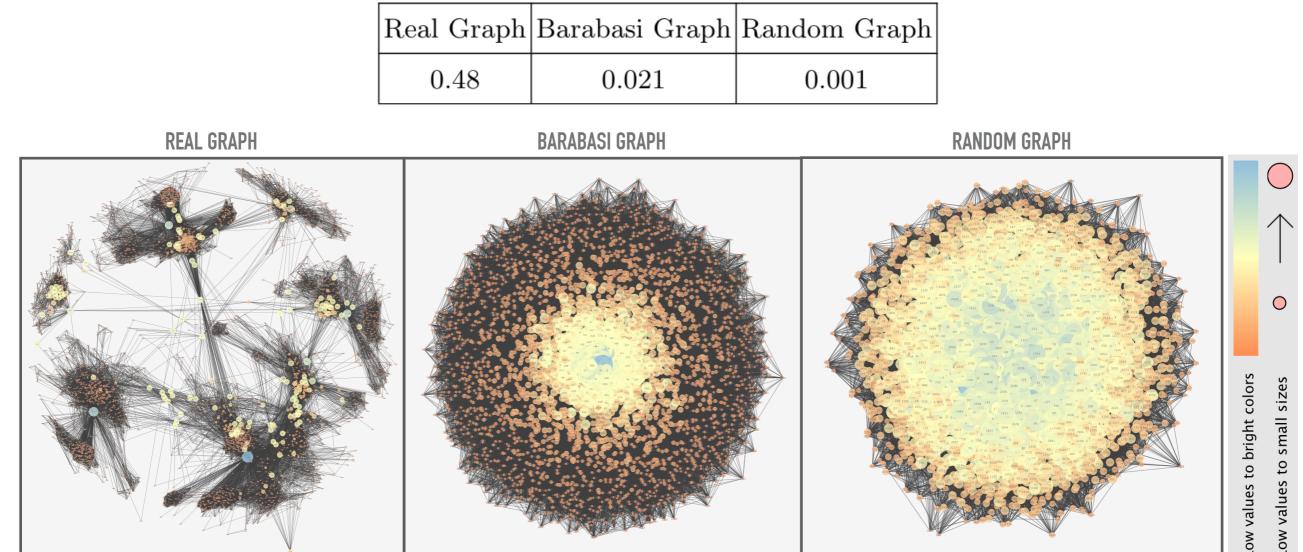
THE MAX VALUE OF CLOSENESS CENTRALITY:

REAL GRAPH BARABASI GRAPH RANDOM GRAPH

BETWEENNESS CENTRALITY

Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path between two other nodes.

In this conception, vertices that have a high probability to occur on a randomly chosen shortest path between two randomly chosen vertices have a high betweenness.



THE MAX VALUE OF BETWEENNESS CENTRALITY:

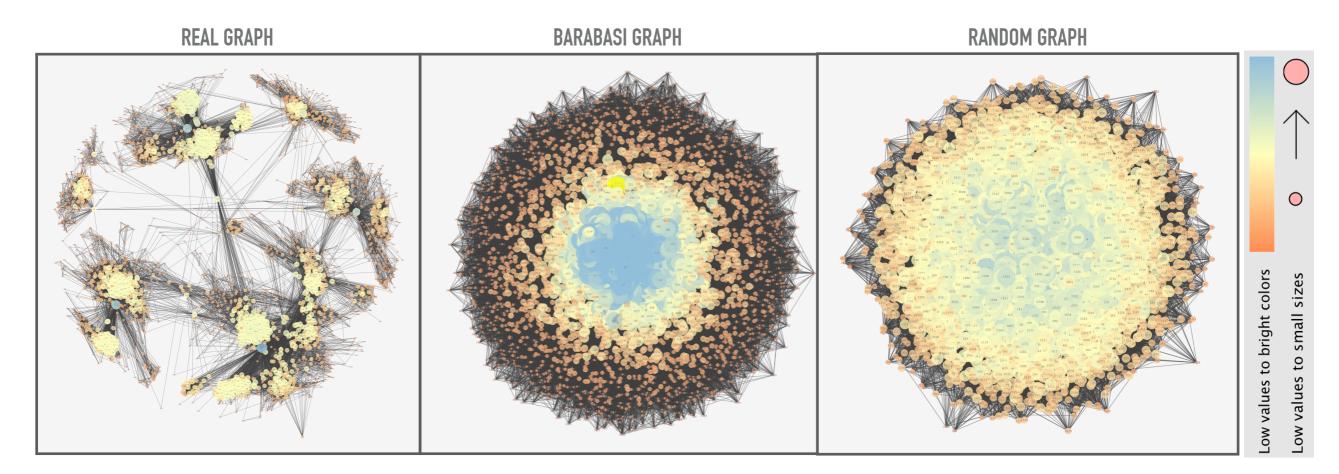
DEGREE CENTRALITY

Degree centrality: a highly effective measure of the influence or importance of a node.

In many social network settings people with more connections tend to have more power and more visibility.

Real Graph	Barabasi Graph	Random Graph			
0.25	0.1	0.017			

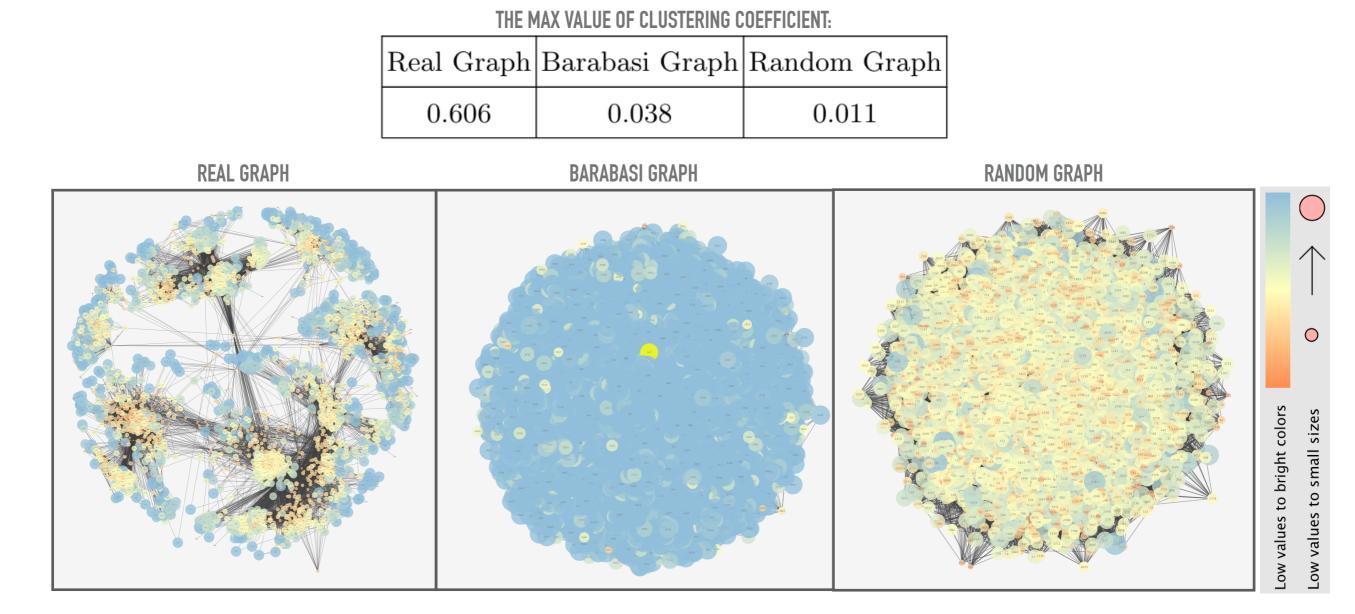
THE MAX VALUE OF DEGREE CENTRALITY:



CLUSTERING COEFFICIENT

Clustering coefficient: is a measure of the degree to which nodes in a graph tend to cluster together.

Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties.



ANALYSIS OF THE SPREAD OF THE ADDICTION

- To test the model, we count the number of addicted nodes (performing 100 simulations for each kind of graph)
- As expected, the topology and not the size of the network is responsible for the largest impact on Internet addiction
- Considering the model of communication, the most influential metrics are closeness and betweenness

THE AVERAGE NUMBER OF ADDICTED NODES (CALCULATING ON 100 SIMULATIONS):

Real Graph	Barabasi Graph	Random Graph
3541.5	3467.2	2990.4

ANALYSIS OF THE SPREAD OF THE ADDICTION

- Considering the model of communication, the most influential metrics are closeness and betweenness
- The nodes characterised with the highest values of closeness and betweenness are the first ones to become addicted

	Real Graph	Barabasi Graph	Random Graph
Closeness	User 107	User 25	User 2518
Betweenness	User 107	User 28	User 2518

THE NODES WITH THE HIGHEST VALUE OF CLOSENESS AND BETWEENNESS:

CONCLUSIONS

- ► To propose a computational framework for the study of addiction
- To use the theory of Hybrid Automata to develop a modular model of the Dopaminergic System
- ► To study how addiction is correlated to network topologies
- ► To study different metrics on different networks

Future work:

- Further validation of our model on a network of the messaging exchange
- ► To investigate different stimuli

Thank you!