

A COMPUTATIONAL MODEL OF THE DOPAMINERGIC SYSTEM FOR THE STUDY OF THE ADDICTION PHENOMENA

DataMod 2017

(Trento, Italy)

Lucia Nasti

lucia.nasti@di.unipi.it

Paolo Milazzo

milazzo@di.unipi.it

INTRODUCTION

Aim: to study the problem of Internet addiction and its spread through interaction on social network

Our proposal: a Hybrid Automata model of the Dopaminergic System, used to simulate the activity of a user type on a virtual social network

TABLE OF CONTENTS

- ► What is addiction?
- ► The role of brain
- Definition of Hybrid Automata
- Computational Modelling of Addiction
- Hybrid Modelling of the Dopaminergic System
- ► Simulations
- ► Conclusion

WHAT IS ADDICTION?

Addiction is a complex phenomenon influenced by **environmental**, **social** and **biological** factors.

Environmental factors:

- Education and family background
- ► Availability
- Economic Resources

Social factors:

- ► Consensus
- ► Consistency
- ► Distinctiveness

Dopamine is a neurotransmitter. In addiction

THE ROLE OF BRAIN

Dopamine System:

context, at the beginning its level increases; later, after loop, it doesn't reach anymore the same level.

Dopamine

Compulsion Loop

Lucia Nasti - Phd student University of Pisa

GUTKIN'S MODEL

dII.

The Gutkin's model⁽¹⁾ specifically analyses nicotine addiction. It shows how a constant stimulus causes a consequent decrease in neurons activity. ()

$$\frac{dU_{DA}}{dt} = -U_{DA} + S_{DA} \left\{ \sum_{i} r_i; N(t) \right\}$$
$$S_{DA} = \frac{1}{2} \left(1 + \tanh\left(N(t)\sum_{i} r_i(t) - \theta_{DA}\right) \right).$$
$$\tau_A \frac{dU_1^A}{dx} = -U_1^A + S_A \{w_{11}^e U_1^A - w_{12}^i U_2^A - \theta_A\} + \sigma \xi \text{ and}$$
$$\tau_A \frac{dU_2^A}{dx} = -U_2^A + S_A \{w_{22}^e U_2^A - w_{21}^i U_1^A - \theta_A\} + \sigma \xi.$$

(1) Boris S Gutkin, Stanislas Dehaene, and Jean-Pierre Changeux. A neurocomputational hypothesis for nicotine addiction. Proceedings of the National Academy of Sciences of the United States of America, 103(4):1106{1111, 2006.

SAMSON'S MODEL

The Samson's model⁽²⁾ focuses on the role of dopamine as reward signal.

Neurons are activated in two cases:

- ► when there is an *imminent* reward
- ► when there is a *predicted* reward

⁽²⁾RD Samson, MJ Frank, and Jean-Marc Fellous. Computational models of reinforcement learning: the role of dopamine as a reward signal. Cognitive neurodynamics, 4(2):91{105, 2010.

THE MODEL OF DOPAMINERGIC SYSTEM

Dopamine concentration. The equation describes the dynamics of variable D representing the dopamine concentration in the prefrontal cortex:

$$\frac{dD}{dt} = \alpha \left(-D + k + \begin{cases} 1, & \text{if } r - M \ge \theta_p \\ 0, & \text{if } \theta_n \le r - M \le \theta_p \\ -\frac{D*M}{2}, & \text{if } r - M \le \theta_n \end{cases} \right)$$

Memory. The equation describes the opponent process (a contrary emotional reaction to a previous stimulus) that is modelled as a memorisation process of previous stimuli.

$$\frac{dM}{dt} = \alpha \left(-M + \begin{cases} \frac{r-M}{2}, & if \ r > M \\ 0, & otherwise \end{cases} \right)$$

HYBRID AUTOMATA MODEL

Hybrid Automata are finite state automata in which states are associated to differential equations that describe the dynamics of a set of continuous variables.

- Compositionality of Hybrid Automata
- Better description of transition

SIMULATION AT CONSTANT PULSE

The **trend of dopamine**, similar to the graph obtained by Gutkin, shows an initial peak which results in a withdrawal symptom, previous to the interruption of the stimulus itself.

The performance of the memory, however, corresponds to the **opponent process**.

To establish if a user became addicted, we consider the memory threshold: M > = 15

HYBRID AUTOMATA AT CLOSE FREQUENCY PULSES

Hybrid Automata

Simulation results

HYBRID AUTOMATA AT INCREASING INTENSITY AND FREQUENCY PULSES

Hybrid Automata

Simulation results

THE INTERNET ADDICTION

Excessive use of Internet as a mechanism to **escape** from the daily dissatisfaction.

Main expressions:

- ► Gaming
- ► Social network
- ► Surfing

We represent the social network as a **graph**:

- Each node of graph is a user
- Each user is characterised by the Dopaminergic System and the propensity factor

THE PROPENSITY FACTOR

It is a parameter, which spans the range [0,1], to model the user's predisposition to communicate

It influences the probability to send (or reply) messages through the social network

THE NETWORK COMMUNICATION MODEL

Each user can send at most one message each day

- The probability to send a message is proportional to his/her propensity factor. If he/she sends a message, this is received by his/her neighbours
- On the same day, all users that have received one or more messages choose whether to reply or not, again with a probability proportional to their propensity factors.

Stimuli:

- medium-high: when user receives a message
- high: when an addicted* user sends a message (prediction error phenomenon)

Lucia Nasti - Phd student University of Pisa

GRAPH WITH ONLY TWO NODES

0.2

A=0;

B=0

A=0;

B=0

0.1

A=0; |A=0;

B=0 | B=0

A=0;|A=0;

B=0 | B=0

0.1

0.3

A=0;

B=0

A=0;

B=0

0.4

A=0;

B=0

A=0;

B=0

This graph is used to **examine the role of the propensity factor**. All the possible combinations of users have been tested to study the behaviour of the Dopaminergic System in different situations

0.6

A=0;

B=0

A=0;

B=0

0.7

A=0;

B=0

A=0;

B=0

0.8

A=0;

B=0

A=0;

B=66

0.9

A=0;

B=0

A=0;

B = 97

1

A=0;

B=0

A=0;

B = 99

We find three values:

- ► low propensity: 0.2
- medium propensity: 0.35
- high propensity: 0.9

User B

0.5

A=0;

B=0

A=0;

B=0

EXPERIMENTS WITH STAR GRAPH

a) **To study the propagation of addiction** in a graph, we start by considering how many peripheral nodes *n* are necessary to cause addiction of the central node *c*, according to different propensity factor.

b) After, we study how one of the peripheral nodes x whose propensity factor is 0.2 (fixed) can be influenced by the others (both c and n).

Lucia Nasti - Phd student University of Pisa

EXPERIMENTS WITH RANDOM AND SCALE-FREE NETWORKS

For our experiments, we used three kinds of networks of 100 nodes, generated in different ways:

a) with the Erdős-Rényi graph (ER), approach:

b) with the Barabási-Albert (BA) approach:

c) with the Bollobás-Riordan (BR) approach:

20 nodes addicted in ER

35 nodes addicted in BA

52 nodes addicted in BR

SIMULATION EXAMPLE: BOLLOBÁS-RIORDAN MODEL

A BR network, characterised by 100 nodes with the same propensity (0.2)

SIMULATION EXAMPLE: BARABÁSI-ALBERT MODEL

A BA network, characterised by 100 nodes with the same propensity (0.2)

EXPERIMENTS WITH RANDOM NODES AND HUBS

To explore the difference between networks, we associated medium and high propensity factors (0.35, 0.9), to particular nodes:

- 1) Random nodes
- 2) Hubs

SIMULATION EXAMPLE: HUBS WITH DIFFERENT PROPENSITY FACTOR

A BR network, characterised by 100 nodes with 20 hubs with 0.35 as PF

CONCLUSIONS

- ➤ To propose a computational framework for the study of addiction
- To use the theory of Hybrid Automata to develop a modular model of the Dopaminergic System
- ► To study how addiction is correlated to network topologies

Future work:

- ► To explore other kinds of communication
- ► To investigate different stimuli
- ► To consider non-constant propensity factors.

Thank you!