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A B S T R A C T

Cells are very complex to analyze because they consist of many components
that interact with each other, producing multiple sequences of chemical reac-
tions, which regulate their behavior. Besides, several fluctuations can alter the
cell functionalities, such as internal errors propagation, and variations in the
concentrations of chemical species.

Regarding this, a significant biological property is robustness, defined as the
observed capacity of the system to maintain its functionalities despite the pres-
ence of internal or external perturbations. In nature, different mechanisms en-
sure this property, such as redundancy, modularity, system control, and struc-
tural stability. Redundancy and modularity represent the architectural char-
acteristics of a biological pathway, resulting in multiple copies of structures
and compartments, which, having the same functions, avoid the possible pres-
ence of errors and failures. Conversely, system control and structural stability
are dynamical properties, expressed as the capacity to adapt to environmental
changes.

In this context, Computer Science can help research in Biology in many
different ways. Through simulations, for instance, it is possible to mimic the
internal dynamics of a natural system and to predict its functions. Moreover,
model-based analysis techniques can be used to interpret some non-intuitive
aspects of a biological system.

In this thesis, we propose a new definition to formally describe a specific no-
tion of robustness, the initial concentration robustness. This has the purpose of
analyzing how perturbations in the initial concentrations of the involved chem-
ical species (identified as inputs) can alter the system behavior at the steady
state. Therefore, we developed a theoretical framework, based on Petri net for-
malism, and we applied it to different known biological networks available in
the literature.

To understand the behavior of a biological system, we should simulate it
considering all the possible combinations of the initial values, which implies a
huge computational effort. To face this issue, we found a sufficient condition
that allows knowing if the concentration of an output species is monotonic
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concerning the concentration of an input species (which is the perturbed sub-
stance). By monotonic, we mean that increasing (or decreasing) the concentra-
tion of the input, the concentration of the output, at each time step, increases
(or decreases) consequently. If the sufficient condition is met, we can drasti-
cally reduce the number of simulations, testing the model only on the extreme
values of the input concentration range.

Finally, we apply our theoretical framework to the case study of Becker-
Döring equations, a model which describes the aggregation kinetics of par-
ticle clusters. In particular, we study the robustness of this model using the
proposed robustness formalism as well as other analytical approaches.
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1I N T R O D U C T I O N

1.1 motivation

From the discovery of DNA structure, in 1953, there has been a growing in-
terest in the investigation of living cells to understand their morphological
and functional organization. Cells are very complex to analyze because they
consist of many components that interact with each other, through multiple se-
quences of chemical reactions which regulate the cell behavior. Besides, several
fluctuations can alter their functionalities, such as internal errors propagation,
and variations in the concentrations of chemical species.

Regarding this, a significant biological property is robustness, defined as the
observed capacity of a cell to maintain its functionalities despite the presence
of internal or external perturbations. In nature, different mechanisms ensure
this property, such as redundancy, modularity, system control, and structural
stability [44]. Redundancy and modularity represent the architectural char-
acteristics of a biological pathway, resulting in multiple copies of structures
and compartments, which, having the same functions, compensate the possi-
ble presence of errors and failures. Conversely, system control and structural
stability are dynamical properties, expressed as the capacity to adapt to envi-
ronmental changes.

We can distinguish three fundamentals and complementary approaches to
investigate robustness: in vivo, in vitro and in silico. The first two deal with
the branch of methods in which organisms, tissue and cells are studied by
direct observation. The last one, instead, deals with all the methods and proce-
dures that abstract the functionalities and dynamical properties of biological
networks through the implementation of algorithms and computational mod-
els.

In this context, Computer Science can help research in Biology in many
different ways. Through simulations, for instance, it is possible to mimic the
internal dynamics of a natural system and to predict its functions. Moreover,
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2 introduction

model-based analysis techniques can be used to interpret some non-intuitive
aspects of a biological system.

Computer scientists developed many formalisms to study systems of in-
teracting components, which can describe new and unexpected issues when
applied to a biological context. These formalisms, having specific applications
for Systems biology [15], include Petri nets [14, 46, 52], Hybrid systems [3, 39,
48], process calculi such as the π-calculus [62], the Bio-ambients calculus [63],
Bio-PEPA [22] and Beta-binders [60]. Other formalisms are based on rewrite
rules such as CLS [9], and the k-calculus [23], specifically designed for describ-
ing protein interactions. In particular, Hybrid automata represent a dynami-
cal system combining its discrete and continuous aspects, as discussed in [50]
where they are used to study an optimal strategy for prostate cancer treatment.
Another example of application of Hybrid automata is [54, 55], where we de-
veloped a model of the Dopamine System, a neurological component involved
in the development of addiction. Petri nets focus on the representation of the
network topology and its structural properties, exploring in a general manner,
observable phenomena such as steady states or oscillations. Using Petri nets, it
is possible to understand in detail the role of single chemical species involved
in reactions, as described in [46].

On the other hand, other formalisms were originally defined taking inspira-
tion from the characteristics of cells and their interactions, as P Systems [56, 58],
a model for membrane computing, and Reactions Systems [27] which model
interactions between biochemical reactions in a rewriting-based formalism. In
particular, P Systems are able to represent parallel and distributed systems,
considering both the connection between the components of a system and its
environment. The work in [58] contains an example of application: in this case,
the authors divide the chemical processes into four pathways taking place in
three separate regions (environment, cell surface, cytoplasm). This allows de-
scribing and reasoning on the chemical reaction network in more manageable
way.

From this brief discussion, it emerges that all the cited formalisms have pe-
culiar characteristics which can describe particular features of the explored
systems. In this thesis, to verify the robustness in chemical reaction networks
we choose the Petri nets formalism for several reasons. In particular, because
Petri nets allow us to have a high level of abstraction. This is relevant since ro-
bustness is an intrinsic and structural property, as shown in Feinberg’s works
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[30, 31]. Then, using Petri nets, we can obtain a simple and intuitive repre-
sentation of the chemical pathways. Indeed, this is not always the case when
applying other formal languages, since we would need to specify additional
and non-necessary features of the network, making difficult their interpreta-
tion.

1.2 contributions

The work in this thesis can be divided into three fundamental contributions
concerning the verification of robustness property.

The first contribution concerns the formal definition of a specific formula-
tion of robustness, namely initial concentration robustness, in which perturba-
tions on the initial concentrations of chemical species can influence the steady
state of the system. We propose a new notion of α-robustness, based on con-
tinuous Petri nets [33] and interval markings, which extends the notion of
absolute concentration robustness considered in [70, 71]. More in detail, we iden-
tify one or more reactants as the input of the network, and we assign to each
of them an interval of initial concentrations. We consider the state when the
initial concentration can vary. Then, our definition is satisfied if, at the steady
state, the concentration of the designed output is in an interval, whose range
is α. Intuitively speaking, α represents an absolute metric to express the extent
of the change of the output at the equilibrium. Regarding this, we can observe
that:

• the wider are the intervals of the initial interval marking, the more robust
is the network. Indeed, it means that the system is able to absorb a higher
level of perturbations.

• the smaller is the value of α, the more robust is the system.

As an extension of the concept of α-robustness, we introduce the concept of
relative robustness, or β-robustness, both to express how robust the system is
considering the intensity of perturbations and to compare different systems.
We observe both concepts by performing simulations of known biological net-
works available in the literature.

As already mentioned, the robustness property can occur in different ways
within biological systems. Therefore, in literature, there are several works, as
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[45, 65], describing it with different approaches. In particular, the framework
proposed by Rizk et al. [65] appears very general and able to treat different
kinds of robustness. Regarding their proposal, in this thesis we prove that our
notion of α-robustness is a specific instance of their definition. Nevertheless,
we choose to consider our new definition because we need to abstract the struc-
ture of the chemical reaction network efficiently and to identify the input and
the output distinctly. In this way, indeed, we can study if there exist structural
correlations between the two selected species, which can help us to have more
information about the internal dynamics of the system.

In general, the verification of robustness requires a huge number of sim-
ulations [70], since we need to test the system behavior for all the possible
combinations of initial concentrations of the involved chemical species. Then,
to reduce the computational effort and to make our definition effective, we
search for sufficient conditions that allows us to analytically infer our robust-
ness property. The sufficient condition relays on the concept of monotonicity
of the system.

In this regard, we introduce the second contribution of the thesis. By the
extension of the work done by Angeli et al. [4], we derive a graphical ap-
proach that can predict if the concentration of the output is monotonic with
respect to the initial concentration of the input. If this sufficient condition
is verified, in order to assets robustness we can simulate the model only on
the extreme values of the input concentration interval, reducing the number
of simulations drastically. Then, we verify our sufficient condition of Input-
Output monotonicity on two case-studies: the Michaelis-Menten kinetics and
the ERK signaling pathway. In particular, these chemical reaction networks un-
derline how to investigate the model dynamics, without making assumptions
on its differential equations but examining only its structure.

The third contribution of this thesis concerns the verification of robustness
property in Becker-Döring equations, which consist of two main processes: the
aggregation and the fragmentation of clusters of particles. The applications of
this kinetic model are multiple and include many fields. Concerning biology,
it is employed to study protein aggregation, polymerization, and concentration
gradients.

Representing this model as a Petri net, we identify the monomers (C1) as the
input and the output of the network. Indeed, C1 is the only cluster present at
the initial state of the system, and it is the cluster involved in every aggregation
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and fragmentation process. By its representation, we find out that we cannot
directly apply the methodology we proposed. So, we focus on avoiding the
need of many simulations to study the concentration of C1 at the steady state.
We prove analytically that this concentration tends to ba , where b and a are the
coefficients of the rates of fragmentation and agglomeration. Then, we apply
known results [69], to show how this model can be sensitive to perturbations
on the initial concentration.

1.3 structure of the thesis

The thesis is organised in 5 chapters, plus introduction and conclusion.

• Chapter 2 provides some background concepts useful for understanding
the rest of the thesis. The Chapter is divided into three main sections: the
first one focuses on the chemical reaction network (CRN) and the chemi-
cal kinetics, the other sections focuses on two formalisms, Petri nets and
Linear Temporal Logic (LTL). In particular, in Section 2.1 we focus on the
representation of chemical reactions, considering the two main methods
used to describe them: the deterministic and stochastic approach. Moreover,
the Section gives an overview of the steady state calculation. Section
2.2 recalls some definitions of Petri nets, which we choose as formal lan-
guage to give the definition of robustness property. Section 2.3.1 presents
some background concepts on LTL, which is the formalism used in [64]
and in Chapter 3.

• Chapter 3 presents the state of the art in the verification of robustness
properties in CRNs. In particular, Section 3.1 focuses on the role of lo-
cal and global sensitivity analysis in the study of biological networks. In
the second part of this Chapter, we focus on the definition of robustness
property, with a particular emphasis on three approaches. Section 3.2
focuses on the general definition of robustness given by Kitano [45], Sec-
tion 3.3.1 depicts the work done by Rizk et al. [65], which extends the
cited previous work. Finally, in Section 3.4, we delineate the work done
by Shinar and Feinberg [30, 31, 70].

• Chapter 4 provides a new formal definition of robustness against per-
turbations to the initial concentrations of species, namely absolute initial
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concentration robustness, based on Petri nets. In Section 4.2, we demon-
strate the validity of our definition by applying it to the models of four
different robust biochemical networks: the EnvZ/OmpR osmoregulatory
signalling system 4.2.1, the isocitrate dehydrogenase regulatory system
4.2.2, the bacterial chemotaxis 4.2.3 and a model of the enzyme activity
at saturation 4.2.4. Finally, in Section 4.3, we prove that our definition of
absolute initial concentration robustness is an instance of the general Defini-
tion 12 given by Rizk et al. and described into detail in Chapter 3.

• Chapter 5 is divided in two parts. The first part focuses on the mono-
tonicity in CRNs, showing the works presented in [4, 5, 24]. The second
part contains one of the main contributions of the thesis. In Section 5.3,
we give our notion of monotonicity between an input and an output
species. Then, in Section 5.2, we present our Input-Output monotonicity
theorem, able to reduce the computational cost of simulations. Finally, in
Section 5.4 we apply our theorem on two examples: Michaelis-Menten
kinetics and ERK signaling pathway. The source code implemented to
verify the sufficient conditions on graphs is freely available online [75].

• Chapter 6 presents the Becker-Döring equations. In the first part, we in-
troduce in detail the mathematical properties of this system, showing the
analytical solution of the steady state. In the second part, we apply the
Deficiency Zero Theorem [30], described in Section 3.4 of Chapter 3, to ver-
ify the robustness property of this model. The source code implemented
to simulate the model is freely available online [74].

• Finally, Chapter 7 presents the conclusion of the thesis and depicts pos-
sible future works.

1.4 published material

Part of the material presented in this thesis has appeared in some publication,
in particular:

• the formalization of absolute initial concentration robustness, presented
in Chapter 4, has appeared in [53];
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• the notion of Input-Output monotonicity, presented in Section 5.2, has
appeared in [35].

Other original contributions of this thesis will be submitted for publications in
extended form, in particular:

• the definition of relative robustness, namely β-robustness, presented in
Section 4.1.1, and the proof of correspondence between Definition 16

and Definition 12, presented in Section 4.3, will be submitted as part of
a journal extension of the work [53].

• Our sufficient condition 1, presented in Section 5.2 and the examples of
application, presented in Section 5.4, will be submitted as journal contri-
bution with the title:

– Roberta Gori, Paolo Milazzo, Lucia Nasti and Federico Poloni. Effi-
cient analysis of Chemical Reaction Networks Dynamics based on
Input-Output monotonicity. (2019)

• The work and the results presented in Chapter 6 will be submitted in
extend form with the title:

– Verification and analysis of Robustness in Becker-Döring equations.
(2019)





2B A C K G R O U N D A N D N O T I O N S

In this chapter we introduce some notions that will be assumed in the rest of
the thesis. In the first part, we focus on the representation of chemical reac-
tions, considering the two main methods that we can use to describe them: the
deterministic and stochastic approach. Then, we concentrate on the steady state
calculation. In the second part, we show two formalisms, useful to describe
the dynamics of chemical reaction networks: Petri nets and Linear temporal
logic.

2.1 chemical reactions

A chemical reaction is a transformation that involves one or more chemical
species, in a specific situation of volume and temperature.

The chemical elements that are transformed are called reactants; on the other
hand, those that are the result of the transformation are called products. We can
represent a chemical reaction as an equation, showing all the species involved
in the process.

A simple example of chemical reaction is the following elementary reaction:

aA + bB
k1 cC + dD (1)

In this case, A, B, C, D are the species involved in the process: A and B are the
reactants, C and D are the products. The parameters a, b, c, d are called stoi-
chiometric coefficients and represent the multiplicities of reactants and products
participating in the reaction. They are always integers, because elementary re-
actions involve whole molecules.

The arrow is used to indicate the direction in which a chemical reaction
takes place. When we have only one arrow, as in Example (1), it means that the
reaction is irreversible, which means that it is not possible to have the opposite
process.

9
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The symbol k1, referred to as kinetic rate, is a real positive number represent-
ing the rate at which the process occurs and has to be associated to a specific
arrow. Intuitively speaking, it represents the speed of a reaction, that is how
quickly the reaction will take place.

In the case there are two arrows in opposite directions, this means that it is
possible to have both the direct and inverse transformations. Considering the
following reactions:

aA + bB
k1
k−1

cC + dD (2)

with the same notation, the symbol k−1 is the kinetic rate for the inverse
reaction, where the reactants and products are exchanged. Reaction (2) is then
called reversible.

To describe chemical reactions inside a system, we have to define the dynam-
ical principles governing the interaction among reactants and their products.
These are formalized within the kinetic theory of reactions.

2.1.1 Chemical kinetics

Given a closed pot and a well-stirred mixture of chemical species, which we
can call composition, the chemical kinetics helps to investigate the temporal
evolution of all the species involved. Indeed, the mixture will not remain con-
stant in time, since there will be some of the species produced and others
consumed [29, 31]. Therefore, we can study how the concentration of elements
changes during time. We can define the chemical concentration as the number
of particles of a specific species per unit volume of the mixture. Conventionally,
the concentration of a chemical species is represented by the symbol denoting
the element, written between square brackets, as [A].

The rate of a reaction measures the change in concentration of the chemical
species per unit time. Mathematically, we can express the rate r as follows:

r =
∆Concentration

∆Time

where ∆Concentration represents how much the concentration of the species
increases or decreases on the considered range of time ∆Time. Since the con-
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centrations of reactants decrease during the time, a minus precedes their rates,
while the concentrations of products increase. To get into details, we can con-
sider a certain closed system, in which the reaction (2) can occur. Here, by
closed we mean that the system is not allowed to exchange energy and parti-
cles with the external environment. It follows that the chemical rates of each
species involved in the reaction (2) are:

rA = −
∆[A]

∆Time
rB = −

∆[B]

∆Time
rC = +

∆[C]

∆Time
rD = +

∆[D]

∆Time

To study the relation between reaction rates and molecular component con-
centrations, we can use the empirical law of mass action, which provides a com-
plete picture of the component concentrations at all future time points. The
law of mass action states that:

Definition 1. The rate of a reaction is proportional to the product of the concentra-
tions of the individual reactants involved.

Referring again to (2), applying the law of mass action, we obtain:

r1 = k1[A]
a[B]b r2 = k−1[C]

c[D]d

considering in the first rate r1 the reaction in which A and B are the reactants,
and for the rate r2 the opposite transformations, in which C and D are the
reactants.

In general, after a sufficiently long amount of time, particular kinds of sys-
tems can reach a chemical equilibrium. This is properly formalized within the
so-called collision theory [21], that is, given a system, the particles inside it are
constantly moving and hit each other with an average uniform distribution,
causing chemical changes. In agreement to that, a macroscopic equilibrium
is, from a microscopic point of view, a dynamical equilibrium, that is, if both
direct and inverse processes are allowed, we have equilibrium when the pro-
cesses occur at the same rate.

For what concerns Example (2), we have:

k1[A]
a[B]b = k−1[C]

c[D]d ⇒ [C]c[D]d

[A]a[B]b
=
k1
k−1

.
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2.1.2 Deterministic and Stochastic Approaches

From the computational point of view, a chemical system can be essentially
described by two mathematical methods [11]:

• the deterministic approach,

• the stochastic approach.

The deterministic approach is the simplest method to solve a chemical model
and it involves the application of Ordinary Differential Equations (ODEs).

We can use an ODE to describe how the variation of the concentration of
chemical species changes over time. Hence, in a deterministic point of view,
we have a differential equation for each species involved in chemical transfor-
mations. Each differential equation is written applying the law of mass action:
the concentration variation of the chemical species is determined by the rates
of the reactions in which the species appears as product minus the rates of the
reactions in which it appears as reactant.

Thus, considering the reaction (2), we obtain:

d[A]

dt
=

direct reaction
term︷ ︸︸ ︷

−ak1[A]
a[B]b

inverse reaction
term︷ ︸︸ ︷

+ak−1[C]
c[D]d

d[B]

dt
= −bk1[A]

a[B]b + bk−1[C]
c[D]d

d[C]

dt
= +ck1[A]

a[B]b − ck−1[C]
c[D]d

d[D]

dt
= +dk1[A]

a[B]b − dk−1[C]
c[D]d.

Since in the system under study, there are four different species A, B, C
and D, we have four differential equations. In each one, we isolated the term
describing the direct reaction (in which A and B are the reactants and C and
D are the products) from the one describing the inverse reaction (in which C
and D are the reactants and A and B are the products). Roughly speaking, if
the species appears as reactant its reaction rate will be preceded by a minus
(as we saw in details in Section 2.1.1), otherwise if it appears as product its
reaction rate will be preceded by a plus. Hence, we implicitly considered, for
each element, its process of destruction and production.
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Through the deterministic approach, we can analyze the time evolution of
the model as a continuum. This method has the advantage of requiring a small
amount of time, due to a modest computational effort. Nevertheless, the dif-
ferential equations have to be solved numerically on the computer and some
physical aspects of how reactions occur are approximated.

To overcome this problem, the stochastic approach has been developed to
involve the results coming from collision theory. Indeed, reactants collide with
a certain probability distribution, which increases as their concentration in-
creases. Therefore, the difference from the previous way of thinking is the
introduction of a probability function, that ultimately implies:

• reactions do not occur necessarily in the same infinitesimal time interval;

• it is possible to have a time interval without a certain process occurring.

Explicitly, considering a closed system of fixed volume, in whichN chemical
species can interact through M possible reactions Rµ, we assume the existence
of M constants cµdt, representing the average probability to have a reaction
at the infinitesimal time interval dt.

In this perspective, we focus the attention on the Stochastic Simulation Ap-
proach, a method to study how a system changes randomly, according to some
given probabilities. In this regard, one of the most common approaches is the
well-known Gillespie’s Algorithm [34]. Gillespie’s Algorithm is formalized on
the basis of the collision theory and the main questions it aims to answer are:

1. Which is the next reaction?

2. When does it occur?

To answer them, the final purpose is to calculate the Reaction Probability Den-
sity Function (PDF) P(τ, µ). Assuming that in a chemical solution, S1, S2..., Sn
are the only molecules present, a state of the under study system is the tuple
(X1, X2, ..., Xn) representing a solution containing Xi molecules of Si for each
i in 1, ..., n. The PDF is defined as follows:

Definition 2. Given a fixed volume V , a set of species S = {S1, S2, ..., Sn}, and a set
of reactions Rµ = {R1, R2, ..., RM}, the P(τ, µ) is the probability that, given a state
(X1, ..., Xn) at a time t, the next reaction in the system of volume V will occur in the
infinitesimal time interval [t+ τ, t+ τ+ dτ] and will be reaction Rµ.
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Even these two approaches appear as very different, they are deeply comple-
mentary because they analyze distinct features of a biological system. Indeed,
the intrinsic system traits determine the reason why we choose one approach
rather than the other.

Generally, a deterministic differential equation models well describe a net-
work characterized by a large number of simultaneous events. In such cases,
the network behavior corresponds to the average of all these events. On the
other hand, a stochastic approach is well suited to describe a system in which
random effects become more pronounced and are not well expressed by the
deterministic model.

To remark the differences between the two approaches, we proceed by com-
paring the two methods by simulations. Consider the chemical reaction net-
work in Example 3, inspired by the Example 29 in [34]:

X + Y
k1

2 Y + X

2 Y
k2 Z

(3)

whose differential equations describing its behavior are the following:


d[X]
dt = 0

d[Y]
dt = k1[X][Y] − k2[Y]

2

d[Z]
dt = k2[Y]

2

(4)

We apply Gillespie’s Algorithm to study the random fluctuation of species Y,
given these initial conditions: Y = 3000, X = 10, Z = 0, k1 = 0.5, and k2 = 0.005.
In Figure 1, we show the simulation result. Instead, in Figure 2, we simulate
the system in Example 3, solving numerically its differential equations 4.

As we can notice, comparing Figure 1 and Figure 2, the simulations agree,
confirming that for large concentrations of reactants, individual decay events
have negligible effects on the overall behavior. In this context, using a determin-
istic approach is convenient because we can study the asymptotic behavior of
the system, neglecting those aspects that are not prominent for its understand-
ing. In particular, in this perspective, using a deterministic model facilitates its
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Figure 1: Simulation result of Example 3. In this case, we apply the Gillespie’s Al-
gorithm to study the random fluctuation of chemical species Y. The set of
parameters are: Y = 3000, X = 10, Z = 0, k1 = 0.5 and k2 = 0.005.
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Figure 2: Simulation result of Example 3. In this case, we apply a deterministic ap-
proach to study how the concentration variation of species Y changes over
time. The set of parameters are: Y = 3000, X = 10, Z = 0, k1 = 0.5 and
k2 = 0.005

2 .

analytical study, as we will see for the steady state calculation in the following
Section 2.1.4.
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2.1.3 Chemical Reaction Networks definition

A Chemical Reaction Network (CRN) is a set of reactions. Formally, it is de-
fined as:

Definition 3 (Chemical reaction network). Let Ri be a list of reactions, where the
index i takes value in R = {1, 2, ..., nr}, and Sj be the set of the chemical elements
involved in the network, where j ∈ {1, 2, ..., ns}, representing the species taking part
in the reactions. Then, the chemical reactions are denoted as follows:

Ri:
∑
j∈S αijSj 


∑
j∈S βijSj

where αij and βij are nonnegative integers called the stoichiometry coefficients.

The stoichiometry coefficient matrix is defined as:

[Γ ]ij = βij −αij

for all i ∈ R and all j ∈ S. Based on these definitions, the rate of a reaction
is expressed as a function of the concentrations of the species taking part to
the chemical transformations. The vector of species concentrations is defined
as S = [S1, S2, ..., Sns ]

′, which describes the concentration variation during
time, and as a function of it, the vector of reaction rates is defined as R(S) =
[R1(S), R2(S), ..., Rn(S)] ′.

Systems are described by differential equations, in a deterministic approach:

dS
dt = Γ · R(S), S ∈ R

ns
>0.

where dS
dt represents the concentration variation of species s ∈ S, Γ is the

matrix of stoichiometric coefficients and R(S) is the vector of reaction rate,
given by concentration of species times constant rate.

2.1.4 Steady State of Chemical Reaction Network

A chemical reaction network can reach a steady state condition when the rates
of decay are equal to the rates of production of each species involved in the
network. In general, almost all biological models have a steady state behavior,
even if some systems display sustained oscillations. To find the steady state,
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it depends on the complexity of the biological model. Consider the following
open system, characterized by two reactions:

k1 A
k2 (5)

The system will reach a steady state when the difference between the reac-
tion rates of the system represented in Example 5 is equal to 0:

rate of change of species [A] = rate of production of A − rate of decay of A

As described in Section 2.1.2, we express the rate of change of A as follows:

d[A]

dt
= k1 − k2[A] (6)

The steady state is mathematically expressed by setting the derivative of A
with respect to time to zero, then:

d[A]

dt
= 0

k1 − k2[A] = 0

k1 = k2[A]

with A = 0, k1 = 1 and k2 = 0.5, we proceed by substitution and we obtain:

k1 = k2[A]

[A] =
k1
k2

[A] =
1

0.5
= 2

(7)

The result obtained in Formula (7), it is also confirmed by the simulation,
represented in Figure 3.

Considering Figure 3, we can identify two particular periods: the transient
and the steady state periods. We talk about transient period to identify the time-
course that leads from the initial state to the long-time behavior. It displays
the immediate feedback to a perturbation [41]. Instead, we talk about steady
state, to describe when, after a certain transient period, the concentrations of a
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Figure 3: Simulation result of Example 5. The set of parameters are: A = 0, k1 = 1 and
k2 = 0.5.

chemical reaction network remain apparently unchanged [11]. In this case, at
the microscopic level, chemical transformations continue, hence the particles
continue to be expressed and decay; however, at the macroscopic level, the
changes are not evident in the system behavior, because the particles number
no longer changes. In Figure 4, we identify the transient and the steady state
periods on the plot. In the rest of the thesis, with the notation [·]ss, we will
identify the concentration of a species at the steady state.

To study how long it takes before this asymptotic behavior is reached de-
pends on the parameters and the initial conditions. Setting different rates and
initial conditions, indeed, the system could reach another steady state or the
same steady state but at different time. As example, consider the simulation
result in Figure 5. In this case, the set of parameters are: A = 0, k1 = 10,
k2 = 0.5. By substitution, in Formula (7), we obtain:

k1 = k2[A]

[A] =
k1
k2

[A] =
10

0.5
= 20

(8)
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Transient Steady state

[A]0

[A]ss

Figure 4: Simulation result of Example 5, in which we show the transient phase and
the steady state phase. As for simulation in Figure 3, the set of parameters
are: A = 0, k1 = 1 and k2 = 0.5. With the notation [A]0 we identify the initial
concentration of the species A, instead with the notation [A]ss we identify
the concentration of the species A at the steady state.

Thus, the system reaches another steady state, as shown in Figure 5. The most
significant theorems to know a priori if a chemical reaction network exhibits
one or multiple steady states are the Zero Deficiency Theorem and One Deficiency
Theorem [30], which we will show in details in Sections 3.4.1 and 3.4.2.

2.2 petri nets

In literature there are many mathematical formalisms from Computer Science,
that can be used to describe a biological system at different complexity levels.

In this thesis, we consider Petri nets, because this method has the advantage
to provide a graphical support, which abstracts further the system description.
As demonstrated by many biologists, in fact, graphical representations are
often used to provide intuition regarding the network main features [16].
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Figure 5: Simulation result of Example 5, in which the set of parameters are: A = 0,
k1 = 10 and k2 = 0.5.

2.2.1 Petri nets formalism definition

The Petri nets are a formal language to model concurrent systems. This method,
developed by Carl Adam Petri in 1962, has many applications in different ar-
eas, since it is used to model static and dynamic behavioural aspects, it is
a valid tool to study communication protocols, decision models, neural net-
works, concurrent and parallel programs [52].

Formally, we can define a Petri net N as a quintuple:

N =< P, T, F,W,m0 >

where:

• P is the set of places, conceptually one for each considered kind of system
resource;

• T is the set of transitions that consume and produce resources;

• F ⊆ (P× T)
⋃
(T × P) is the set of arcs connecting places with transitions;

• W : F→N is a function that defines the weight of each arc, representing
the number of resources of the same kind are needed for the transition
to be fired;



2.2 petri nets 21

H2

t

O2

2
2

H2O

H2

t

O2

2
2

H2O

(A)

(B)

k

k

Figure 6: Example of use of Petri net. In this case, it shows how to represent the chem-
ical reaction: 2 H

2
O + O

2
2 H

2
O. (A) and (B) represent two different

markings for the same Petri net. The marking in (B) is obtained from the
one in (A) as the result of firing transition t.

• m0 is the initial marking, that is the initial distribution of tokens (represent-
ing resource instances) among places. A marking is defined formally as
m : P →N, with m ∈M, where M is domain of all markings.

The tokens are movable objects, assigned to places, that are consumed by tran-
sitions in the input places and produced in the output places. Graphically, a
Petri net is drawn as a graph with nodes representing places and transitions.
Circles are used for places and rectangles for transitions. Tokens are drawn as
black dots inside places. Graph edges represent arcs and are labeled with their
weights. For simplicity, the labels of arcs with weight 1 is omitted.

Figure 6 shows a simple example of Petri net modeling the chemical reaction
2 H

2
O + O

2
2 H

2
O taken from [52]. In sub-figure (A), each place, H and O,

has two tokens: the transition is enabled since it requires two tokens from H2

and only one from O2. Sub-figure (B) shows the situation after the transition
has been fired: the tokens are moved to the output places. Note that in (B) the
transition is no longer enabled.

To faithfully model biochemical networks, we use continuous Petri nets [33],
in which the marking of a place is no longer an integer, but a positive real
number, called token value, representing the concentration of chemical species.
To each transition is associated a chemical rate, which represents a continuous
flow. Continuous Petri nets can be defined as follows:

N =< P, T, F, C,m0 >
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where

• P and T are respectively the sets of places and transitions;

• F : (P × T)
⋃
(T × P) → R>0 represents the set of arcs in terms of a

function giving the weight of the arc as result: a weight equal to 0 means
that the arc is not present;

• C : T → R>0 is a function, which associates each transition with a rate;

• m0 represents the initial marking. A marking is defined formally as m :

P → R>0.

The dynamics of a continuous Petri net can be expressed in terms of ODEs
(in agreement with the standard mass action kinetics of chemical reactions).
Each place corresponds to a continuous variable whose value corresponds the
place’s marking. The dynamics of the variable is expressed by a differential
equation consisting of a summation of terms corresponding to the transitions
connected to the place. The term has a positive sign if the the place is con-
nected to the transition by an outgoing arc. The sign is negative otherwise.
Moreover, the term is the product of the weight of the arc with the values of
the variables corresponding to all the places providing resources to the tran-
sition (i.e., having an outgoing arc connecting them to the transition). Those
variables have as exponent the weight of the arc connecting them to the transi-
tion.

For example, let us consider a continuous version of the Petri net in Figure
6 by assuming that the rate of the transition is k and that the marking is given
in terms of continuous variables rather than of (discrete) numbers of tokens.
The ODEs describing the dynamics of the Petri net are as follows:

d[H2]

dt
= −2k[H2][O2]

d[O2]

dt
= −k[H2][O2]

d[H2O]

dt
= +2k[H2][O2]

An alternative (stochastic) dynamics can be given by using the terms of the
ODEs computed for each transition as rates of a Continuous Time Markov
Chain (CTMC). Both ODEs and CTMCs offer standard analytical ways to com-
pute the steady state of the system.

Hereinafter, we refer to continuous Petri nets simply as Petri nets and we
assume their dynamics to be expressed in terms of ODEs.
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2.2.1.1 Example of use of Petri nets

Figure 7: Petri net model of EGFR Ras- MAPK signaling.

Petri nets are an essential tool in many research fields, including Systems
biology. Indeed, through this approach, we can analyze many biochemical
systems, such as signaling pathways, metabolic networks, and gene regulatory
networks [46].

The advantages of using Petri nets are the following:

• Intuitive visualization, which allows different levels of abstraction, useful
when the model is very complex and difficult to analyze;

• qualitative analysis, which is crucial to describe the network topology and
its structural properties;

• quantitative analysis to explore, in a general manner, possible observable
behaviors (such as steady state or oscillations);

• model validation and verification through mathematical formalization, which
offers an unambiguous representation of the model.

In general, the timeless discrete representation is the natural choice to de-
scribe the architectural properties of a biological system; instead, the timed
continuous one is suggested for the quantitative analysis. As demonstrated in
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[33, 38], both approaches provide different but complementary viewpoints on
the same model. In particular, in the absence of exact parameters, Petri nets
are indispensable to understand the dynamic qualities of a system.

An example of the use of Petri nets is in [14], where the authors present
a Petri net model of the Epidermal Growth Factor Receptor (EGFR) signal-
ing to the RasRaf-Mek-Erk (Ras-MAPK) pathway. The EGFR-Ras-MAPK path-
way is strongly implicated in the development and progression of cancer, and,
therefore, it is studied to develop suitable drugs that intervene in individual
proteins, involved in this pathway.

By developing a Petri net model, as in Figure 7, it emerged that some pro-
teins limited the functionality of the anti-cancer drugs. In particular, these pro-
teins (places in the model) were siphons, which in Petri nets formalism means
that they obstructed any signals. Intuitively, a siphon is a place that when it
becomes empty, it remains empty.

2.3 linear temporal logic

As defined in Section 2.2.1, through the use of Petri nets, we can examine the
behavior of a biological network as a continuous process. The trace obtained
by a sequence of markings describes exactly the time evolution of the system.

In [64], as we will see in details in Section 3.3.1, the authors use a different
approach to describe the dynamical properties of a biological network. Its
dynamics is represented by a numerical trace, which is a discrete sequence
of tuples describing system’s evolution with time. Thus, the numerical trace
corresponds to a discrete representation of a continuous process. Then, the
dynamical system features are specified by the use of the Linear Temporal Logic
(LTL), developed to express the behavior of discrete dynamical systems.

2.3.1 Formal definition of LTL

Linear Temporal Logic is a logical formalism. It provides a mathematical no-
tion to express systems behaviors [6], based on a linear-time perspective. The
temporal logic is necessary to specify the relative order of events, expressed by
elementary modalities, which combined can express complex dynamical prop-
erties. Typical properties are oscillations (when a behavior recurs infinitely),



2.3 linear temporal logic 25

reachability (when the system can reach a given state), invariance (when a
property is always true), inevitability (when a system has to reach a given
state), response (an event causes a specific behavior) [28].

A basic LTL formula φ consists of atomic propositions a ∈ AP, Boolean
connectors (∧, ∨, ¬, =⇒ ), and two basic modal operators:

• Xφ or ◦ ("next") means that a given formula φ is true in the next state;

• φUφ or ∪ ("until") means that given two formulas φ1 and φ2, the for-
mula φ1 is true, until the formula φ2 becomes true.

The "until" operator ∪ allows to derive other two temporal modalities, defined
as follows:

• Fφ or � "eventually (in the future)" means that a given formula φ is true

now or sometime in the future, defined as �φ def= true∪φ;

• Gφ or � "globally" means that a given formula φ is true now and forever,

defined as �φ def= ¬ �¬φ.

The LTL formulae are formed according to the following grammar:

φ :: true |a| φ1 ∧φ2| ¬φ |◦φ| φ1 ∪φ2

The atomic proposition a, with a ∈ AP is a state label, representing an asser-
tion about the value of a system variable that has to be evaluated, such as the
concentration of a chemical species.

A LTL formula φ represents a property of a trace, which is a infinite path.
Given a path and a formula φ, we can formulate precisely when φ holds on the
path. For example, the trace T in Figure 8 satisfies the formula φ1 = F(x∨¬y)

because it is true in the first state of the trace T . Instead, the trace does not
satisfy the formula φ2 = G(y) because y is not true in all states.

xy x¬y x¬y xy xy ...

...atomic prop. a

...atomic prop. a

...atomic prop. a

...atomic prop. a

Figure 8: Example of Linear Temporal Logic.
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Figure 9: Intuitive sketch of LTL semantics.

2.3.2 Semantics of LTL

To precisely formulate when a path satisfies an LTL formula, we define the
semantics of LTL formula φ by providing a satisfaction relation |= such that
σ |= φ if and only if a property φ is satisfied by a trace σ. [6]:

Definition 4. Let φ be an LTL formula over AP and σ ∈ (2AP)ω be a trace. The
satisfaction relation |= ⊆ (2AP)ω × LTL is the smallest relation with the following
properties:

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= φ1 ∧φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ 2 φ

σ |= ◦φ iff σ[1...] = A1A2A3... |= φ

σ |= φ1 ∪φ2 iff ∃j > 0.σ[j...] |= φ2 and σ[i...] |= φ1, ∀0 6 i < j.

Here, for σ = A0A1A2... ∈ (2AP)ω, σ[j...] = AjAj+1Aj+2... is the suffix of σ
starting in the (j+ 1)st symbol Aj.
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For the derived operator � and � the expected result is:

σ |= �φ iff ∃j > 0.σ[j...] |= φ
σ |= �φ iff ∀j > 0.σ[j...] |= φ.

In Figure 9, we add an intuitively sketch of the semantics of temporal modal-
ities.
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Many factors affect the internal and external behavior of a biological system,
which is, for this reason, hard to study. To solve the uncertainty connected
to its understanding, there exist several approaches, such as numerical simu-
lations and experimental methods. In this context, Systems biology emerges
as a powerful tool to investigate network dynamics merging computational
methods and real data.

The development of predictive models requires information about the set
of initial conditions, which characterizes biological systems and which are un-
fortunately challenging (or even impossible) to measure. Moreover, some pa-
rameters are affected by fluctuations that alter ordinary system behavior. Con-
cerning this, one of the most efficient tools is sensitivity analysis, to study how
distinct inputs result in a qualitative change of the system behavior. Therefore,
applying sensitivity analysis we can verify if a model is robust.

Robustness is an observed biological characteristic, for which a system pre-
serves its functions despite the presence of perturbations. Since its implication
in particular diseases (such as diabetes and cancer), there are several works
concerning this property.

In the first part of this Chapter, we will examine the role of local and global
sensitivity analysis, explaining their differences and applications [42, 81].

In the second part, we focus on the robustness property, showing three sig-
nificant works, representing a step forward in the study of this topic. The work
in [45] delineates the first attempt towards a mathematical formalization of ro-
bustness property, albeit in a very general perspective, and it represents the
starting point of the work in [64]. This latter one, indeed, suggests a specific
formal definition for robustness, using a general computational framework
based on temporal logic. The last one [70], done by Guy Shinar and Martin
Feinberg, focuses on a particular acceptation of robustness definition, namely
absolute initial concentration robustness, in which only the perturbations on the
initial concentration of chemical species affect the CRN. In addition, the work

29
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[70] lays the foundations to prove how the structure of a CRN characterizes its
behavior.

3.1 sensitivity analysis approaches to study systems biology

models

Sensitivity analysis is a set of methods that allows understanding different
aspects of systems [81]. It is an invaluable tool for:

• investigating the perturbation effects;

• determining which is the most (or the least) contributing parameter
among all others, or estimate the parameters value;

• predicting and understanding the behavior of a biological model;

• guiding experimental analysis;

• establishing the initial conditions of a Systems biology models;

among the others. The noisy nature of biological data makes it difficult (usu-
ally impossible) to know the exact parameters. For this reason, mathematical
models are the best method to determine such values [26]. In this context,
both biological and mathematical models should be examined to reduce the
uncertainty about parameters values, to valuate if the extracted information is
realistic. Moreover, parameter values can be also influenced by the form used
to shape the problem, hence also the mathematical model has to be valuated,
as described in [26].

3.1.1 Local and global sensitivity analysis

Another interesting point of view on the study of biological models is to inves-
tigate their dynamics, examining the connections among the chemical species.
Sensitivity analysis moves in this direction, dividing into two fundamental
approaches: a local and global perspective.

Local sensitivity analysis is an investigation concerning the effects of small
perturbations in a network. Given a model, described by a set of differential
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equations, we can vary its initial conditions to study how this affects its dy-
namics. We identify with the term input all the perturbed parameters, such
as the initial concentration of substances in a CRN. With the term output, we
refer to all variables, significant to analyze the model response to disturbances,
such as the steady state concentration of a chemical species.

Mathematically, local sensitivity analysis is performed by computing the
first-order partial derivatives of the output with respect to the input, around
a local point in the parameter space [81], and it is usually estimated with a
perturbation in a single variable at a time. In particular, in a CRN we could
study the impact of a small perturbation on the steady state values of a CRN,
applying the absolute local sensitivity analysis, defined as follows:

Definition 5 (Absolute local sensitivity). Given a system modeled by a set of dif-
ferential equations, let P and S be two parameters of the model, respectively the input
and the output of the model. The absolute local sensitivity of S at steady state (Sss)
w.r.t to a variable P is defined as:

dSss
dP .

This partial derivative represents the slope of the tangent to the continuation
curve, and it can be used to predict how a small perturbation on P can affect
the system at the steady state [41]. We can notice that the Definition 5 does not
specify the entity of S and P, but it refers to them generically as "parameters":
indeed, we can vary any model parameters (such as initial concentrations,
kinetic rates, etc.).

To make an example of this approach, we recall the CRN 5 in Chapter 2. The
steady state formula of the species A (the system output) is:

[A]ss =
k1
k2

Identifying k2 as the model input, we can study how it influences [A]ss:

d[A]ss
dk2

=
d

dk2

(
k1
k2

)
= −

1

k22
.
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Choosing a nominal value for the input, such as its original value in the sim-
ulation represented in Figure 3, we can calculate the absolute local sensitivity
coefficient:

−
1

k22
= −

1

(0.5)2
= −4,

which describes the impact on [A]ss. Adding a perturbation in k2, we can
calculate directly the amount of changes in the steady state of A, using the
following linearization formula, as described in [41]:

Sss · (P0 +∆P) ≈ Sss · (P0) +∆P ·
(
dSss

dP

)
Increasing k2 of 0.1, we obtain:

Sss · (P0 +∆P) ≈ −0.6

and this result is confirmed in simulation reported in Figure 10.
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Figure 10: Simulation result of Example 5, presented in Chapter 2. We compare two
simulations to show how the steady state concentration of A is influenced
by k2. The set of parameters are: A1 = 0, k1 = 1, k2 = 0.5 and A2 = 0,
k1 = 1, and the perturbed k2 = 0.5+ 0.1.

The same approach can be used to describe the relative perturbations effect.
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Definition 6 (Relative local sensitivity). Given a system modeled by a set of differ-
ential equations, let P and S be two parameters of the model, respectively the input
and the output of the model. The relative local sensitivity is the relation between the
size of a relative perturbation in P to a relative change in Sss. It is defined as:

dSss
Sss
dP
P

= P
Sss

dSss
dP .

To calculate the derivatives can be more or less arduous: it depends on the
models complexity and the number of parameters, which we have to consider
for the analysis [81]. Indeed, to explore multiparameter responses, using local
sensitivity analysis, is possible but it is costly from a computational point of
view. Moreover, this approach does not consider the model non-linearity and
the interaction among different parameters, hence we have to proceed carefully
in the data interpretation.

The global sensitivity analysis, on the other hand, is the set of approaches,
studying the output of a model with respect to large variations in the input
parameters [81], and typically involves sampling the space of parameters val-
ues and determining the corresponding system behavior [41]. Thus, while the
local sensitivity analysis is estimating the derivatives at a particular point, in
the global sensitivity the evaluation of the perturbations concerns the entire
system behavior, and it is particularly indicated for determining which inputs
are more significant.

As we described above, the local sensitivity analysis gives information about
a small region in parameter space only. Thus, to explore the full parameter
space, we can adopt one of the possible global sensitivity approaches. Briefly,
we introduce some of them:

• Average local sensitivities: it is a local/global method, which combines
both approaches. It computes the local sensitivity analysis, not only on
a single set of values but on a large range of values, in a global fashion.
Then, the average sensitivity coefficient is calculated, which differs from
the coefficient found by a local approach. In this way, the sensitivity on
the whole parameter space is tested. The main issue of the average local
sensitivities is the expensive computational cost;

• Variance-based sensitivity analysis: it is an approach that can be applied in
different ways, through many techniques [20]. In general, there are three
basic principles [59]:
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1. the inputs factors are stochastic variables so that the model induces
a distribution in the output space;

2. the variance of the output distribution represents the model uncer-
tainty;

3. the sensitivity measure is given by the contribution of an input fac-
tor on the output variance.

One of the possible techniques is the First-order indices [59, 66], which
measures the direct contribution to the output variance from individ-
ual input factors. The effect on the output variance is expressed by the
formula:

varX[E(Y|X)]
var(Y)

where X and Y are respectively the input and output variables, the [E(Y|X)]

is the expectation of Y given a fixed value of X, while the varX is taken
over all the possible values of X. Then, First-order indices measure the
single contribution of an input on the output variance.

Instead, if we want to analyze if an input factor is itself influenced by
the other system parameters, we can use Total Sensitivity indices (TS), also
known as Sobol indices. This method studies the interaction of an input
with respect to the output and its correlation with all the other parame-
ters. In this way, we can discern if the input effect is amplified by other
factors. As described in [66], assuming that we have three input factors
in the model (A,B,C) and that we want to measure the total effect of fac-
tor A, we can decompose its effect on the output variance, considering
all the interactions between A and the other inputs, as in the following
example:

TSA = TSA + TSAB + TSABC

First-order indices and Total-order indices are useful because they can
be applied easily on different models (such as non-linear, monotonic or
non-monotonic systems). Moreover, the major disadvantage of variance-
based methods is that the number of indices grow geometrically with
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the number of inputs, hence the problem resolution could become in-
tractable. Another limitation of this approach is linked to the assump-
tion that the variance is the most significant indicator. Actually, for multi-
modal or highly-skewed models, to study the output variance could gen-
erate an inaccurate data interpretation.

• Density-based methods: This set of approaches differs from the variance-
based sensitivity analysis because the output variance is not the only
considered metric. In this context, the PAWN method [80] is an emerg-
ing technique: to describe the output uncertainty the entire model out-
put distribution is considered and not only the variance, as in the Sobol’
method, which implicitly assumes that this metric is a sufficient indica-
tor.

In general, local and global sensitivity analysis allows establishing if the
model output depends on its inputs factors, based on different approaches. In
the following Example 3.1.1.1, we study the output of the a model using a
local and a global method. To do this example, we take inspiration from the
case study shown in paper [26], where the authors analyse how to study local
and global sensitivity can originate different results.

3.1.1.1 Example of difference between local and global sensitivity analysis

To compare the local and global sensitivity analysis, we perform both ap-
proaches on the following model. Given a chemical reaction network:

A + B
k1 C

C
k2 D

D + E
k3 F

F
k4 C

(9)

we want to study how the output C varies at the steady state, changing the
concentrations of other chemical species involved in the network. Randomly,
we set the initial concentrations values for each species: A = 10, B = 32, C = 0,
D = 4, E = 20 and F = 12. Then, we proceed applying the local sensitivity
analysis and the average local sensitivities.
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Local sensitivity analysis. We fix the coefficient rates of reactions: k1 = 0.5,
k2 = 1.6, k3 = 0.3, k4 = 0.02 and we vary by 2% the initial concentration of
one input at time. Then, we simulate the model and we calculate the concen-
tration of the output at the steady state, after the perturbation. In Figure 11 we
plot, for each species, the difference between the concentration of C at steady
state, without any perturbation, with respect to the concentration of C after
the perturbation.
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Figure 11: Graphical result of local sensitivity analysis on the chemical reaction net-
work 9. The parameters perturbed are shown on the horizontal axis, on
the vertical axis it is represented the variation of the concentration of the
output C at the steady state.

Average local sensitivities. As in the local sensitivity analysis, we leave un-
changed the coefficient rates of the network: k1 = 0.5, k2 = 1.6, k3 = 0.3,
k4 = 0.02. We choose one species at time, varying its initial concentration in
a large range: A = [10, 120], B = [32, 120], D = [4, 120], E = [20, 120] and
F = [12, 120]. We perform the simulations considering all the integer values
in the range of possible initial concentrations. Then, for each species, we cal-
culate the average of difference between the concentration of C at the steady
state with respect to the concentration of C, after the perturbation. In this way,
we apply a sort of local sensitivity analysis in a global fashion. In Figure 12,
we represent the average of difference between the concentrations of C at the
steady state with perturbation and without perturbation.

Comparing the two Figures 11 and 12, we can notice that we obtain signifi-
cantly different results. In particular, the chemical species F, which in the local
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Figure 12: Graphical result of average local sensitivities on the chemical reaction net-
work 9. The parameters perturbed are shown on the horizontal axis, on the
vertical axis it is represented the average variation of the concentration of
the output C at the steady state.

sensitivity analysis seems the most influential species, in the global sensitivity
analysis, has a resized role. This difference shows how local sensitivity analy-
sis could not reflect exactly the relation among parameters. Instead, to use a
global approach it guarantees a deeper investigation because, intuitively, we
can test a wide range of possible values and not only a single set.

In general, choosing which method to use to analyze a system depends on
the system characteristics and on the properties to be verified. For example,
the global sensitivity analysis is crucial to analyse the robustness of a system.
As we will explain in details in Section 3.2, robustness is a biological property
for which a system works despite any kinds of disturbances, which can alter
its normal functioning.

In general, it requires many simulations and high computational efforts be-
cause many factors have to be considered, such as the numbers of variables,
the correlations between input and output, the computational cost of the run-
ning model, the uncertainty of initial values. For this reason, other solutions
have to be studied, as the possibility to conduct a preliminary analysis on the
system, as we will propose in details in Chapter 5.
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3.2 robustness mechanisms in nature

Robustness is considered a fundamental feature of complex evolving systems.
It is the property which allows the system to preserve its functions despite
external and internal perturbations. In nature, there exist many examples
of biological systems showing robustness, such as the segmental polarity of
Drosophila melagonaster, the Lac Operon network, the chemotaxis of Escherichia
Coli. The main mechanisms ensuring the robustness are system control, redun-
dancy, modularity and structural stability [44].

The system control is the mechanism attaining an adaptive dynamic response
of the network. There are two main instances of it: positive and negative feed-
back.

The first one is the amplification of the input signals in a pathway, to pre-
vent the presence of noise, which can cause an error cascade. The positive
feedback works when a biological system consists of many states, such as a
cell cycle, and, intensifying the signal, it guarantees the transition from one
state to another.

Instead, the negative feedback works stabilizing the system, which conse-
quently adapts itself to the new environment. The principal representative of
this phenomenon is the chemotaxis of E. Coli because it shows an evident ro-
bust adaptation to environmental changes. The chemotaxis is the process in
which bacteria, such as E. Coli, move due to spatial and temporal gradients
of specific substances, called attractants or repellents if they attract or repulse
the bacteria, respectively. Roughly speaking, while moving bacteria perceive
the difference between the previous and the current concentration, sensing
the gradients by making temporal comparisons. In the case of attractants, like
food for example, bacteria move along straight lines in the direction of the
increasing gradient (runs); on the other hand, if they perceive repellents, they
are found to change randomly direction (tumbles). With the help of in vivo
experiments and of simulations, it was shown that another crucial property
of chemotaxis is the adaptation: a change in the concentration of a chemical
stimulant induces a rapid change in the bacteria’s tumbling frequency, which
gradually adapts back precisely to its pre-stimulus value, as described in [2].

Redundancy is the mechanism according to which a system has multiple
structures with the same functions: the aim, in this case, is to avoid errors or
failures. If one or more components do not work efficiently, other elements
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replace them. A redundancy example occurs in tissues: cells, with equivalent
functionalities, replace each other to avoid error propagation. Or in signalling
pathways, such as in the MAP kinase cascade: if some pathways are disabled
because of errors or mutations, there are collateral pathways preserving the
cellular activity.

Modularity is a mechanism, ensuring that errors and damages remain iso-
lated, without spreading in the other compartments of the system. Thus, the
consequences of failure do not affect the whole structure. A clear example is
the cell, that can be seen as an entire structure or as a set of functional compo-
nents (as organella and membranes): if there is an error in one of its parts, it
does not involve the entire cell.

The structural stability is the quality according to which a system can adapt
to changes even in the presence of different initial parameter variations. Some
examples of it are demonstrated by some gene regulatory circuits, that are
stable for a broad range of initial pulses and genetic polymorphisms [43].

Following the above mentioned examples, it emerges that the robustness is
both an internal quality and an architectural characteristic of the system, that
enables complex systems to evolve after a specific environmental perturbation.

3.3 mathematical formulation of biological robustness

Delineating the concept of robustness and giving a mathematical formaliza-
tion of it are fundamental problems in Systems biology. This because robust-
ness needs a precise definition since it is often confused with other notions
concerning different biological properties.

The first attempt to give a mathematical representation of robustness is in
[45], where there is, first of all, a clear distinction between stability and robust-
ness. The first one is the set of mechanisms that ensures that the system has
a steady state; the second one is a mechanism ensuring the system adaptation
in the environment.

Formally, robustness is defined as follows:

Definition 7 (Kitano’s Robustness). The robustness (R) of a system (s) with respect
to one of its functions (a) can be computed as

Rsa,P =
∫
P ψ(p)D

s
a(p)dp
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where:

• P is the perturbation space;

• ψ(p), with p ∈ P, is the perturbation probability;

• Dsa(p) is the evaluation function, which gives the level of maintenance of func-
tionality a under perturbation p.

Definition 8 (Evaluation function). Given the set P of all possible perturbations,
let A ⊂ P be the set of perturbations for which the systems fails, and p ∈ P. The
evaluation function is defined as:

Dsa(p) =

 0, p ∈ A ⊂ P
fa(p)
fa(0)

, p ∈ P\A

The function D(p) is zero when a system does not maintain its functions
under a perturbation, otherwise the function returns the relative viability of a
function under perturbation (fa(p)) against non-perturbed condition (fa(0)).

Using the approach defined in Definitions 7 and 8, we can compare two
systems to know which is more robust between them: a system S1 can be
considered more robust with respect to a system S2, considering the same
function a and the same perturbations set Y if:

R
S1
a,Y > R

S2
a,Y

The work presented so far represents the starting point for the work [64], in
which what is criticized is the lack of information about how to specify the
evaluation function, described in Definition 7, which needs to be defined for
each specific problem and re-implemented every time for the computation of
robustness. Instead, in [64], the authors propose a general definition of robust-
ness that applies to any biological function expressible in Linear Temporal Logic
(LTL), described in details in Section 2.3.1.

3.3.1 Temporal logic semantics of numerical traces

Before to present, in details, the robustness notion proposed in [64], it is nec-
essary to introduce some background notions. First of all, in [64], numerical
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simulations are used to obtain the behavior of a biological system, which is
described by a numerical timed trace.

A numerical timed trace, expressing the evolution of a system with time, is
a finite sequence of tuples T = (s0, s1, ..., sn) with si = (ti, xi, ẋi) where ti
with i ∈ [0, n] is a sequence of increasing time points, xi is the vector of state
variable values and ẋi is the derivative of state variable at time ti.

By a numerical trace, we can depict different biological phenomena, such as
the time evolution of a concentration of a chemical species in a network, as
represented in Figure 13. In this example, T = ((0, 2, 0), (1, 6, 4.12), ..., (9, 10, 0))
is the the associated trace, in which each state variable defines a specific con-
centration level of B over time.
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Figure 13: Numerical trace representing the time evolution of the concentration of
chemical species B.

As mentioned above, the authors of the work in [64] use LTL to express dy-
namical properties of biological systems. LTL operators, as seen in details in
Section 2.3.1, describe if and when a property φ holds on a trace T . Consider-
ing again Figure 13, the formula φ = F([B] > 7) expresses that at some point
the concentration of species B is greater than 7.

Since it is interesting to define how much a numerical trace satisfies a for-
mula φ, the authors specify the quantifier-free LTL (QFLTL), which replaces
the numerical constants in the atomic propositions of a LTL formula, with free
real-valued variables y. Then, in this way, having a formula φ and a vector of
real-valued variables y, it is possible to know for which values y the QFLTL
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formula φ(y) holds on T . At this point, the satisfaction domain is defined as
follows:

Definition 9 (Satisfaction Domain). Given a QFLTL φ formula, for any trace T ,
the satisfaction domain of φ(y) is the set of variables y for which φ(y) holds. It is
defined as:

DT,φ(y) = {y ∈ Rq|T |= φ(y)} where q is the number of constants appearing in φ.

Through this approach, the LTL formula becomes an instance of a more
general QFLTL formula obtained by variable abstraction, as described in [64].
Considering again Example 13, and the formula φ = F([B] > 2∧F[B] < 10), it
is possible to associate the formula φ(y) = φ(y1, y2) = F([B] > y1 ∧ F([B] <

y2)). Moreover, concerning trace T in Example 13, the domain isDT,φ(y1,y2) =

{y1 6 10 ∧ y2 > 2}, since 2 and 10 are respectively the minimum and the
maximum values of the trace.

Given a trace T = (s0, s1, ..., sn) and a LTL formula φ, the authors define the
notion of violation degree to quantify how much φ must be changed to hold on
T . This concept is defined as the Euclidean distance between a formula φ and
the domain of the trace T . It is formally defined as follows:

Definition 10 (Violation Degree). The violation degree vd(T, φ) of a formula φ
w.r.t a trace T is the distance between the actual specification and validity domain
DT,φ((y)) of the QFLTL formula φ(y) obtained by variable abstraction:

vd(T, φ) = dist(φ,DT,φ(y))

Considering Example 11 and the formula φ1 = F([B] > 2∧ F([B] < 10)), by
violation degree, we can compute how much φ is distant from the domain: in
this case, we obtain vd(T, φ1) = 0 because φ is satisfied by T . Instead, if we
consider the formula φ2 = F([B] > 12∧ F([B] < 3)), the violation degree is
vd(T, φ2) = 2 meaning that φ2 has to be changed to hold on T .

To define, instead, how much the given LTL formula holds on a given nu-
merical trace, the notion of satisfaction degree is introduced as follows:

Definition 11 (Satisfaction Degree). The satisfaction degree sd(T, φ) of a formula
φ w.r.t a trace T is defined as:

sd(T, φ) = 1
1+vd(T,φ) ∈ [0, 1],
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where vd(T, φ) represents the violation degree.

The value obtained by computation of the satisfaction degree ranges be-
tween 0 and 1. The satisfaction degree is equal to 1 when the trace T satisfies
a formula φ, otherwise it tends to 0. The concept of satisfaction degree in [64]
characterizes the definition of robustness. As previously explained, for the ro-
bustness definition in this work, they get inspiration from the one given in
[45], replacing the evaluation function with the concept of satisfaction degree.

Definition 12 (Rizk et al. Robustness). The robustness of a system is defined as:

Rsφ,P =
∫
p∈P prob(p)sd(Tp, φ)dp

where φ is the specification of the functionality in LTL; Tp is the numerical trace,
representing the system behavior under perturbation p; P is the set of perturbations.

The continuous probability distribution characterizes the perturbations, af-
fecting the entire system: each perturbation has its weight, representing how
much it can influence the biological behavior under study.

To compare how different systems react to the same kind of perturbations,
they give a formal relative robustness definition, this notion was already intro-
duced in other works [10, 45].

Definition 13 (Relative Robustness). The relative robustness of a system w.r.t a
nominal behavior is defined as the system’s robustness divided by its satisfaction degree
of the reference behaviour (its nominal performance):

R
s,p∗
φ,P =

Rsφ,P
sd(Tp∗,φ) ,

where Tp∗ denotes the unperturbed, nominal behavior of the system.

3.4 structural sources of robustness in crn

Biological properties are challenging to study because they require the obser-
vation of the system behavior, considering all the possible initial states.

For example, regarding the robustness evaluation of a signaling pathway,
all the combinations of initial concentrations of chemical species have to be
examined, and this requires many simulations with different hypotheses. For
this reason, in literature, numerous works introduce methods and approaches,
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which verify this property, avoiding the execution of the entire system. In [30],
the Deficiency One Theorem and Deficiency Zero Theorem are presented, and both
of them give crucial information about the steady state of the system, using
only linear algebra and without any simulation.

The Deficiency One Theorem is the basis of one of the most relevant contri-
butions [70]. This work defines a sufficient condition that, if met, guarantees
the robustness of the system under study, looking only at its chemical reaction
network structure. Chemical reactions can exhibit cryptic behaviors, due to the
fact that non-linear differential equations govern their dynamics. Nevertheless,
researches have achieved relevant progress using simple models, which have
the advantage to reduce the complexities of large systems. Thus, the approach
in [70] gets general information (such as oscillations, stable or unstable steady
states), looking only at the architecture of the CRN, and avoiding the resolu-
tion of differential equations.

The Deficiency Zero Theorem is fundamental to study the sensitivity of a
CRN. As explained in [69, 71], if the Deficiency Zero Theorem is met, the CRN
is not robust but it can be more or less sensitive to the variation of initial
concentrations of chemical species.

3.4.1 The Decificiency One Theorem and the robustness verification

As mentioned in the Introduction of Section 3.4, the work done by Shinar and
Feinberg analyzes the absolute concentration robustness of a CRN, only looking
to its structure. Informally, this property is verified when a chemical species,
involved in the CRN, maintains the same concentration at the steady-state,
regardless of the initial conditions of the system. Before going into detail, we
introduce some auxiliary definitions, laying the foundation for the structural
analysis of a chemical reaction.

To investigate the architectural properties of a CRN means to imagine it
as a graph, with a specific notation defined Standard Reaction Diagram (SRD).
Considering the following CRN:

A + B α
2B

B
β

A,
(10)
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we build the graph represented in Figure 14.

A + B

B A

2B

Figure 14: Standard Reaction Diagram of Example 10. The nodes of the graph are the
complexes of the network, the edges represent the reactions.

By graph theory, we know that we can represent a graph using an incidence
matrix c × e M, in which c and e represent respectively the nodes and the
edges of the graph. Each Mce will have 1 if the node c is a source of the edge
e, −1 if the node c is the sink of the edge e, 0 if e is not connected to c. Then,
considering Figure 14, we obtain the following incidence matrix:


Rα Rβ

A+B 1 0

2B −1 0

B 0 1

A 0 −1

.

On the graph 14 we define:

• the nodes of the graph are the group of chemical species that are participat-
ing as reactants or product. In Figure 14, the nodes are: A+B, 2B, B and
A. We can notice that we consider as node, not each species singularly,
but the species which are connected by an arrow (identifying a reaction).
Moreover, we define two nodes strongly connected if there is a path from
one node to the other and and also a another path from the second back
to the first. Conventionally, each node is strongly linked to itself;

• the linkage classes represent the distinct group of reactions, in which the
graph is divided. In Figure 14, we have two linkage classes. A linkage
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class is considered strong if all the nodes, included in it, are strongly
connected;

• the terminal strong-linkage class is a linkage class in which no node reacts
to a node in another strong-linkage class. If a node belongs to a terminal
linkage class, it is called terminal node, otherwise a node belonging to a
non-terminal linkage class is called non-terminal. In Figure 14, the non-
terminal node are A+B and B, the terminal ones are 2B and A.

Each species involved in the CRN can be represented as a vector. In 10 the
two species involved are A and B and the vectors are: A = [1, 0] and B = [0, 1].
The graph nodes defined previously are the complexes of the network and to
each of them we can associate a vector. We obtain a set of the complexes vectors
A+B = [1, 1], 2B = [0, 2], B = [0, 1] and A = [1, 0].

The next level of representation of CRN is to associate to it the reaction
vectors, obtained by subtracting the reactant complex vector to the product
complex vector. Considering the example 10, we have: 2B− (A+ B) = [−1, 1]

and A−B = [1,−1].
A reaction network has rank s, a positive integer number, if there exists a

linearly independent set of s reaction vectors for the network and there exists
no linearly independent set of s + 1 reaction vectors. Thus, the rank is the
number of the elements in the largest linearly independent set of reaction
vectors for the network. Considering the example 10, the two reaction vectors
are linearly dependent, hence the rank of the network is equal to 1. Intuitively,
this is explained by noting that the first reaction produces the species B and,
vice versa, the second reaction produces the species A.

To use a formal procedure to determine the CRN rank, we can build the
stoichiometric matrix r×N (Γ ), where r represents the reactions of CRN and
N is the species involved in the CRN and compute the rank of the obtained
matrix. In this case, we have the matrix:

( A B

Rα −1 1

Rβ 1 −1

)
.

whose the rank is 1.
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At this point, we notice that there two possible abstractions for the under
study CRN:

• as a graph, then we can use an incidence matrix, studying how the com-
plexes interact among them;

• as a stoichiometric matrix, studying how the single species are involved
in the reactions.

Then, the incidence matrix gives us information about the structure of the
CRN, while the stoichiometric matrix represents the dynamical characteristics
of the system. According to these parameters, now we can define the deficiency
of the network, a non-negative integer index, representing the amount of linear
independence among the reactions of the network [71]. It is defined as:

deficiency = dim(Ker(Mce) − rank(Γ),

where dim(Ker(Mce) is dimension of the kernel of the incidence matrix (Mce)
and Γ is the stoichiometrix matrix. In [36], it is proved the following equiva-
lence:

dim(Ker(Mce) = n− l,

where n is the number of nodes and l is the number of linkage classes. Then,
with regards to example 10, we have:

deficiency = n− l− rank(Γ) = 4− 2− 1 = 1.

Hence, the deficiency is equal to 1. The lowest value of the deficiency, which is
zero, coincides to the higher extent of linear independence among the chemi-
cal reactions; instead, the highest value corresponds to a lower linear indepen-
dence. Intuitively, the deficiency represents how much the reactions and the
species influence each other in the CRN.

Before to introduce the Deficiency theorem, we introduce four other con-
cepts:

• composition: it is the vector c, containing all the concentration of the chem-
ical species involved in the network, in a specific time;

• weakly reversible: a reaction network is weakly reversible if whenever
there is a reaction going from a complex x to a complex y, there is a
path of reactions going back from y to x, where the paths need to follow
the arrow directions;
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• stoichiometric subspace: given a CRN with N species, the stoichiometric
subspace is the set of vectors in RN, consisting of all possible linear
combinations of the reaction vectors of the network, and it follows that
the dimension of the stoichiometric subspace is equal to the rank of the
stoichiometric matrix;

• stoichiometric compatibility class: suppose that S ⊂ RN is the stoichiomet-
ric subspace of a CRN and c and c ′ ∈ RN are two composition of the
same CRN. We say that c and c ′ are stoichiometrically compatible if c ′ − c
lies in S. Then, the stoichiometric compatibility class is the set of all pos-
sible compositions containing the composition c.

Now we are ready to introduce the Deficiency One Theorem [30], which gives us
information about uniqueness and existence of positive steady states.

Theorem 1 (Deficiency One Theorem). Consider a mass action system for which
the underlying reaction network has l linkage classes, each containing just one termi-
nal strong linkage class. Suppose that the deficiency δ of the network and the deficien-
cies of the individual linkage classes θ satisfy the following conditions:

1. δθ 6 1, θ = 1, 2, ...l

2.
∑l
θ=1 δθ = δ.

Then no matter what (positive) values the rate constants take, the corresponding dif-
ferential equations can admit no more than one steady state within a positive stoichio-
metric compatibility class. If the network is weakly reversible, the differential equations
admit precisely one steady state in each positive stoiochiometric compatibility class.

In [70], the Deficiency One theorem is applied to the robustness concept. In
this case, the authors consider a biological system absolute robustness for a
species if the concentration of that species is identical in every positive steady
state that the system might admit. To verify if a biological system has a species
robust, for any perturbation, we can apply the following theorem:

Theorem 2 (Shinar and Feinberg’s Absolute Concentration Robustness). A
mass action system can be considered robust if it admits a positive steady state, the
underlying reaction network has a deficiency equal to 1 and there are distinct non-
terminal complexes that differ only in a single species.
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Considering the example 10, the CRN deficiency is equal to 1 and the nodes
A+ B and B are non-terminal nodes (since they belong to two non-terminal
complexes), which differs only for one species, A. Hence, we can state that this
CRN is robust in A.

3.4.2 The Deficiency Zero Theorem and the sensitivity analysis

Using the same terminology already presented in Section 3.4.1, the authors
define the Deficiency Zero theorem as described in [30]:

Theorem 3 (Deficiency Zero Theorem). For any reaction network of deficiency zero
the following statements hold true:

1. if the network is not weakly reversible, then, for arbitrary kinetics (not nec-
essarily mass action), the differential equations for the corresponding reaction
network cannot admit positive steady state;

2. if the network is not weakly reversible then, for arbitrary kinetics, the differ-
ential equations for the corresponding reaction network cannot admit a cyclic
composition trajectory along which all species concentrations are positive;

3. if the network is weakly reversible then, for mass action kinetics, the differential
equations for the corresponding reaction network have the following properties:

• There exists within each positive stoichiometric compatibility class pre-
cisely one steady state;

• the steady state is asymptotically stable;

• there is no nontrivial cyclic composition trajectory along which all species
concentrations are positive.

Thus, if the system is weakly reversible and its deficiency is equal to zero,
we can affirm that the CRN has one positive steady state. As explained in [71],
we can have some information about robustness only looking at the structure
of the CRN. If the system deficiency is equal to zero, the system cannot be
robust but it is more or less sensitive to the introduced perturbations in the
environment.

Theorem 4 (Deficiency Zero and Absolute concentration robustness). Consider
a mass-action system in which the underlying reaction network is conservative and
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has a deficiency of zero. Then, no matter what values the rate constants take, there is
no species relative to which the system exhibits absolute concentration robustness.

What we can know about the model, when the deficiency is equal to zero, is
described in [69]. From Theorem 4, we know that the system cannot be robust,
but we can still study how much the individual chemical species involved
in the CRN are sensitive to change of initial parameters. What emerges from
this work, in fact, is an approach that allows us to calculate the intrinsic lower
bound on the species sensitivities, which we will apply it to the Becker-Döring
equations, explained in details in Chapter 6.



4F O R M A L I Z AT I O N O F I N I T I A L C O N C E N T R AT I O N
R O B U S T N E S S

In the first part of this Chapter, we propose a new formal definition of robust-
ness notion against perturbations to the initial concentrations of species, based
on Petri nets. We demonstrate the validity of our definition by applying it to
the models of four different robust biochemical networks.

In the second part, we prove that our definition of absolute initial concentration
robustness is an instance of the general Definition 12 given by Rizk et al. and
described into detail in Chapter 3.

4.1 initial concentration robustness

Given a biochemical network, like a signalling pathway, our idea is to verify
whether, even by varying the initial concentrations of some chemical species,
the output of the chemical reactions remains either constant or, at least, bounded
within a given interval of values. We will assume the initial concentration of
the input molecules of the pathway to vary within certain given intervals,
while the initial concentrations of all the other molecules (that are neither in-
put, nor output) to be fixed. Under these assumptions, we define the property
of robustness of the system and we formalize it by using Petri nets.

First, we introduce some auxiliary definitions. We extend the concept of
marking. Recall that in Section 2.2.1 we defined the initial marking as an as-
signment of a fixed value to each place p. Now, we generalize the idea of initial
marking by considering a marking as an assignment of an interval of values to
each place p of the Petri net. We first define the domain of intervals.

Definition 14 (Intervals). We define the interval domain

I = {[n,m] | n,m ∈ R>0 ∪ {+∞} and n 6 m}.

Moreover we say that x ∈ [n,m] iff n 6 x 6 m.

51
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A

B

C

D

E

k1 k2

Figure 15: Example of Petri nets, in which A and B are marked as input of the system
(red dot-line) and E is marked as output (green dots).

We now define interval markings.

Definition 15 (Interval marking). An interval marking is a function m[ ] : P → I.
We call M[ ] the domain of all interval markings.

A non-trivial interval marking (i.e., an interval marking in which at least
one interval is non-trivial) represents an infinite set of markings, one for each
possible combination of values of the non-trival intervals. Therefore, given an
interval marking, we relate it with the markings as in the original Petri nets
formalism in the following way:

Given a m ∈M and m[ ] ∈M[ ] , m ∈ m[ ] iff ∀p ∈ P,m(p) ∈ m[ ] (p).

In a Petri net PN we assume that there exists at least one place p that we
consider as the input of the network. In addition, we assume that there exists
also a (unique) place p that we consider the output of the net, as shown in
Figure 15 as example.

Within this framework, we can give our formal definition of absolute con-
centration robustness.

Definition 16 (α-Robustness). A Petri net PN with output place O is defined as
α-robust with respect to a given interval marking m[ ] iff ∃k ∈ R such that
∀m ∈ m[ ], the marking m ′ corresponding to the steady state reachable from m, is
such that

m ′(O) ∈ [ k−
α

2
, k+

α

2
] .

Given the previous definition, it can be observed that:
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• the wider are the intervals of the initial interval marking, the more robust
is the network. Indeed, it means that the system is able to absorb a higher
level of perturbations.

• the smaller is the value of α, the more robust is the system.

Thus, in our framework we identify always two places as the input and the
output, which we formally defined as:

Definition 17 (Input). Given a Petri net PN, with an interval marking m[ ] and an
input place I. The interval marking of I, denoted as m(I), is defined as m−n > 0.

Definition 18 (Output). Given a Petri net PN, with an interval marking m[ ]

and an output place O. The interval marking of O, denoted as m(O), is defined as
m−n = 0 and the the marking reached at the steady state as

m ′(O) ∈ [ k−
α

2
, k+

α

2
] .

Here, we have given a general definition that can be modified in different
ways. For example, rather than considering the marking at the steady states,
it is possible to consider the marking reached at a given time T , or when the
system terminates its execution (no transition is enabled).

It is worth noting that our definition is general enough to capture several
notions of robustness available in literature. For example, by considering the
initial intervals [1,∞] for the initial concentration of the input species and
α = 0 we obtain a formal definition for the robustness notions 1, described in
Section 3.4.

A simple example of robust biochemical network is given by the following
two reactions:

A + B
k1

2 B B
k2 A

The Petri net representation of the network is shown in Figure 16 (on the left
with the initial marking, on the right with the steady state marking). In this
case, the steady state is such that

m ′(A) =
k2
k1

m ′(B) = θ−
k2
k1

where θ is the sum of initial concentrations of A and B. If A is the output
of the system, then its concentration at the steady state does not depend on



54 formalization of initial concentration robustness

Figure 16: Example of robust biochemical network, considering the species A as out-
put of the system.

the initial quantity of the (input) chemical species A and B (0-robustness with
k = k2

k1
).

If we consider [10, 20] as the initial interval for both A and B, we obtain that
θ will be in [20, 40]. So, for B as the output we obtain:

m ′(B) ∈ [20−
k2
k1
, 40−

k2
k1

]

Thus, for output B we have α-robustness with α = 20, suggesting that B is not
independent on the initial concentrations of A and B.

In Figure 17 we can see a network that is never robust neither considering A

as output, nor B. The chemical reactions of the CRN are: A
k1 B, B

k2

A. In this case, the concentrations of A and B at the steady state are both al-
ways influenced by the input values. Intuitively, we can motivate this behavior,
considering that this CRN will reach a different steady state depending on the
initial concentrations of the species. Moreover, we find that A is α-robust for
α = 18, B for α = 23.

4.1.1 Relative initial concentration robustness

To compare the α-robustness of different systems or the α-robustness of the
same system, but with different perturbations, we have to introduce another
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[10, 20] 

k2 k1

[10, 20] 

A

B

Initial state

k1/k2

k2 k1

[20-k1/k2, 
40-k1/k2] 

A

B

Steady state

[20,40] [35,45]

k1

k2

A B

[33,51] [22,45]

k1

k2

A B

Initial state Steady state

Figure 17: Example of non robust network. In this case we choose k1 = 2 and k2 = 3.

notion: the relative β-robustness. First of all, we introduce the concept of nor-
malization of α-robustness defined as:

Definition 19 (Normalized α-robustness). Let PN, α an k be as in Definition 16.
The normalized α-robustness of the output O, denoted nO, is defined as αk .

Definition 20 (Normalized Interval Marking). Let PN, α an k be as in Definition
16. The normalized interval marking of the input I, denoted nI, is defined as m−n

k .

Therefore, we can state the definition of relative initial concentration robust-
ness as follows:

Definition 21 (Relative β-robustness). Let PN be as in Definition 16. The relative
initial concentration robustness, denoted as β-robustness, is defined as: nOnI , where
nO and nI are respectively the normalized α-robustness and the normalized interval
marking of I.

4.1.1.1 Example of relative robustness

Considering Example 17. The species A and B are the input and the output
respectively. The initial conditions of the systems are: A = [20, 40] and B =

[35, 45]. At the steady state, the concentration of B is in the interval [22, 45].
First, We calculate the normalized α-robustness, as described in Definition

19, then we obtain:

nO =
α

k
=

23

33.5
= 0.68.

The normalized input values is calculated as follows:

nI =
mI
k

=
20

30
= 0.66.
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Finally, the relative β-robustness is calculated as follows:

β− robustness =
nO
nI

=
0.68
0.66

= 1.03.

4.2 validating the definition of robustness

To validate our definition of robustness, we consider four examples of biolog-
ical networks. The first two, the two component EnvZ/OmpR osmoregulatory
signalling system and the isocitrate dehydrogenase regulatory system of E. coli,
show an absolute concentration robustness (the α parameter of Definition 16

will be equal to 0). The third example models the bacterial chemotaxis of E.
coli. The last example models an enzyme kinetics at saturation behaviour, in-
spired from the Lotka-Volterra reactions [34, 73], which shows a concentration
robustness that it is not absolute (in this case the α parameter of Definition 16

will be greater than 0).
As illustrated in Definition 16, the aim of this work is to verify robustness

at the steady state. Therefore, as first step, we should calculate analytically the
steady state of the model, depicted in details in Section 2.1.4, or calculating the
system deficiency depicted by Definitions 3.4.1 and 3.4.2. As an alternative, we
could also verify robustness at any time t.

Concerning Example 4.2.1, we show the steady state calculation, step by
step. For the other examples, we omit it.

4.2.1 EnvZ/OmpR osmoregulatory signalling system

In bacteria and in particular in E. coli, the EnvZ/OmpR system has the func-
tion to regulate the expression of two porins, OmpF and OmpC, which are
proteins having many roles in the cell, as for example nutrients transportation,
elimination of toxins and many others [12].

The regulatory system consists of two components. The first one is the histine
kinase EnvZ, a particular kind of protein having the role to transmit informa-
tion, adding and removing a phosphate to an aspartame acid, usually on the
other component of the signalling pathway, the response regulator OmpR, which
mediates a response of the cell to changes in its environment. The role of EnvZ
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Table 1: The initial concentrations, the rates and the chemical reactions of EnvZ/OmpR
system. The concentration of X and Y, marked by the symbol �, can vary to
prove the robustness in YP.

Initial concentrations Rates Chemical reactions

X = 25 � k1, k2, k3, k4 = 0.5 XD
k1
k2

X

Y = 150 � k5, k11 = 0.1 XT
k3
k4

X

XT = 0 k6, k9 = 0.02 XT
k5 XP

XP = 0 k7, k8, k10 = 0.5 XP + Y
k6
k7

XPY

XPY = 0 XPY
k8 X + YP

YP = 10 XD + YP
k9 XDYP

XDYP = 0 XDYP
k10 XD + YP

XD = 50 XDYP
k11 XD + Y

is bifunctional because it phosphorylates and dephosphorylates OmpR: the
model predicts that when EnvZ is much less abundant than OmpR, or when
the concentration of this species is sufficiently high, the steady state level of
OmpRP (the phosporylated form of OmpR) is insensitive to variations in the
concentration of Envz and OmpR.

4.2.1.1 Modeling and simulation of the EnvZ/OmpR system in E.coli.

The main components of this chemical network are EnvZ and OmpR [12, 71],
denoted in Table 1 respectively as X and Y. Envz phosporylates OmpR (YP) and
itself (XP), by binding and breaking down ATP. In this sequence of chemical
reactions, in fact, ATP and ADP act as cofactor (denoted as T and D).

In order to check whether the system satisfies our definition of robustness
we build the Petri nets model shown in Figure 18, where X and Y are consid-
ered as input and YP as output.

To study the equilibrium configuration, we need to calculate analytically the
steady state by setting the time-derivative of Yp to zero. Then, considering the
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Figure 18: The Petri nets model for the reaction network of the EnvZ/OmpR system.
The input of the network are X and Y(red dot line), the output is the con-
centration of YP(green dots).
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Figure 19: Graphical results of the simulation of the EnvZ/OmpR system. We vary the
concentrations of X and Y to show robustness in YP. Note that in the third
case the curve of Y is out of the graph.

reactions described in Table 1, we apply the law of mass action to obtain the
set of differential equations representing the system, as follows:

d[X]
dt = k1[XD] − k2[X] + k3[XT ] − k4[X] + k8[XpY]

d[Y]
dt = k7[XpY] − k6[Xp] + k3[XT ] + k11[XDYp]

d[XT ]
dt = k4[X] − k3[XT ] − k5[XT ]

d[Xp]
dt = k5[XT ] − k6[Xp][Y] + k7[XpY] + k8[XpY] − k10[XDYp]

d[XpY]
dt = k6[Xp][Y] − k7[XpY] − k8[XpY]

d[Yp]
dt = k8[XpY] − k9[XD][Yp] + k10[XDYp]

d[XDYp]
dt = k9[XD][Yp] − k10[XDYp] − k11[XDYp]

d[XD]
dt = k2[X] − k1[XD] − k9[XD][Yp] + k10[XDYp] + k11[XDYp].

(11)
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Hence, we calculate the steady state as follows:

d[Yp]

dt
= 0

k8[XpY] − k9[XD][Yp] + k10[XDYp] = 0

k8[XpY] + k10[XDYp] = k9[XD][Yp]

[Yp]ss =
k8[XpY] + k10[XDYp]

k9[XD]

At the steady state, the concentration of YP does not depend on the input
chemical species, thus, the system satisfies 0-robustness (absolute concentra-
tion robustness) for the widest intervals ([1,∞]) of initial concentrations. Obvi-
ously, applying the relative α-robustness, described in Definition 21, we obtain
that the CRN shows β-robustness with β = 0.

To illustrate the robustness of this system we show some simulation results
obtained by using Dizzy [61]: a simulator of chemical reactions. Simulation
results are in Figure 19, where it is shown that the concentration of Yp is
constant even varying the initial concentrations of the input species X and Y.

Moreover, note that in this case, we can also apply Theorem 2: the deficiency
of the network is 1 and the sufficient conditions required by the theorem to
assure robustness in Yp can be verified (see [71] for details).

4.2.2 The isocitrate dehydrogenase regulatory system

In the literature, metabolic and regulatory pathways that contain multifunc-
tional proteins, as the Envz/OmpR system described above, have frequently
been observed to exhibit robustness, thanks to their ability to perform their
tasks even in presence of internal and external perturbations. Among several
examples, there is the isocitrate dehydrogenase regulatory system (IDHKP-
IDH) of E. coli [25].

This system controls the partioning of carbon flux and it is useful when
the bacterium of E. coli grows on substances, like for example acetate, which
contains only a small quantity of carbon. Without this regulation system, in
fact, the organism would not have enough carbon available for biosynthesis of
cell constituents [71].
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Table 2: The initial concentrations, the rates and the chemical reactions of IDHKP-IDH
system. The concentration of E and IP, marked by the symbol �, can vary to
prove the robustness in I.

Initial concentrations Rates Chemical reactions

E = 0.001 � k1, k4 = 0.02 E + IP
k1
k2

EIP

I=100 k2, k3, k5, k11 = 0.5 EIP
k3 E + I

IP = 10000 � k6 = 0.1 EIP + I
k4
k5

EIPI

EIP = 10 EIPI
k6 EIP + IP

4.2.2.1 Modeling and simulation of the IDHKP-IDH system.

The isocitrate dehydrogenase regulatory system works regulating the phos-
phorylation level of the TCA cycle enzyme isocitrate dehydrogenase (IDH),
denoted as I in Table 2. The TCA cycle enzyme is a series of chemical reac-
tions used by different microorganisms to produce energy. The protein I, in
its active form, has the role of regulating how much carbon will flow through
the system, while it is inactive in its phosporylated form IP. The enzyme E is
bifunctional: it phosporylates and dephosporylates I.

E

IP

EIP

EIPI

I

k1

k2

k3

k4
k5k6

Figure 20: The Petri nets model for the reaction network of the IDHKP/IDH system.
The input of the network are E and IP(red dot line), the output is the con-
centration of I(green dots).

We build the Petri net model of the chemical networks and we identify IP
and E as the input of the model and I as the output, as shown in Figure 20.
By studying the equilibrium configuration, we find that at the steady state the
concentration of I is completely independent on the concentration of IP and E.
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Figure 21: Graphical results of the simulation of the IDHKP-IDH system. We change
the concentration of E and IP to test robustness in I.

Thus, the system shows robustness in this species: choosing a wide range
of possible initial concentrations for the input, we obtain a constant value
for I, as it is possible to notice from the simulation results shown in Figure
21. Therefore, we verified 0-robustness for the widest interval range of initial
concentrations of the input species. As in the case of the EnvZ/OmpR system,
we have that Theorem 2 could be applied to prove absolute concentration
robustness of this system, and the relative β-robustness is not significant.

4.2.3 Bacterial chemotaxis

In nature, one of the most important examples for robustness property is
the bacterial chemotaxis. Bacterial chemotaxis is the process in which bacte-
ria sense and move along gradients of specific chemicals, like for example
sugar or amino acids (as serine and aspartame) [1]. Despite the physical lim-
itations faced by the bacteria, these organisms can detect if the distribution
of molecules of attractant (or repellents) changes in the environment and they
use this information to guide their motion, composed of runs, in which the bac-
teria keep a constant direction, and tumbles randomly changing direction. The
bacterium compares the current attractant concentration to the concentration
in the past and, if it detects a positive increment, this reduces the tumbling
frequency. After a while, even if the attractant is still present in the environ-
ment, the tumbling frequency increases and returns to the same level as before
the attractant was added. This phenomenon is an example of exact adaptation,
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because the amount of attractant (or repellents) concentration do not influence
the bacterium response to the ambient change.

4.2.3.1 Modeling and simulation of chemotaxis of E. coli.

Table 3: The initial concentrations, the rates and the chemical reactions of chemotaxis
phenomenon of the E. coli. The concentration of the attractant L, marked by
the symbol �, can vary to prove the robustness in CheYP.

Initial concentration Rates Chemical reaction

X = 10 k1, k14 = 1.15 X
k1
k2

X*

X∗ = 10 k2, k13 = 0.25 X* + CheY
k3 CheYp + X

L = 0 � k3 = 0.1 CheYp + Z
k4 CheY + Z

CheY = 10 k4 = 10 CheYp
k5 CheY

Z = 1 k5 = 0.002 L + X* k6 L + XY

CheYp = 1 k6 = 10000 CheBp
k7 CheB

XL = 0 k7, k9, k10, k12 = 1 XY
k8 XL

X∗m = 1 k11 = 0.08 CheR + XL
k9 X*m + CheR

CheR = 1000 k15 = 0.18 X*m + CheB
k11 Bp + X*m

XY = 0 X*m + CheBp
k12 X* + Bp

CheB = 2 X*m
k13
k14

Xm

CheBp = 0 X*m + CheY
k15 CheYp + Xm

Xm = 0

From the literature [1, 10] we know that E. coli bacterium has receptors, each
of them bounded to a protein kinase, constituting a group generally called X.
Rapidly, this group can pass from inactive (X) into active (X*) state, which
modifying, in turn, the state of a regulator protein diffused in the cell, CheY,
which becomes CheYP with the addition of a phosphoryl group. The protein
CheY is the main responsible of tumbles: in fact, higher is the CheYP concen-
tration, higher is the tumbling frequency.

During this process, the binding between X and other molecules (attractants)
reduces its probability to reach the active state that, consequently, reduces also
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the probability to attach a phosporyl group to CheY, which has the effect of
lowering the tumbling frequency.

Since the attractants (L) reduce the activity of X, there is the methylation
mechanism to activate again the chemical group. An enzyme CheR adds at
constant rate a methyl group to X, which becomes Xm and when it is in its ac-
tive form, X*m, it increases the activity of the cell and the tumbles, because it
influences directly the concentration of CheYP. Continually, the methyl group

Figure 22: The Petri nets model for the reaction network of the bacterial chemotaxis
network. The input of the network are L (red dot line), the output is the
concentration of Yp (green dots).

is removed by the enzyme CheB, which is influenced by X that, adding a phos-
phoryl group to CheB, makes it more active, constituting a negative feedback loop:
higher is the activity of X, higher is the activity of phosporylated CheB, which
on the contrary reduces the activity of X. The exact adaptation is achieved be-
cause of the feedback circuit: the increased methylation of X precisely balances
the reduction in activity caused by the attractant.

In Table 3 we summarize the chemical reactions of the chemotaxis network,
its respective rates and the initial concentrations.

Applying Definition 16, we build the Petri nets of the reaction network, as
in Figure 22, we find that calculating the steady state for CheYP, it does not
depend on L, hence we obtain an absolute concentration robustness in these
species. Thus, for our Definition 16, we obtain α = 0, because even changing
the input of L, it does not influence the output of the network.
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Moreover, we implement the described model of chemotaxis of E. coli [1],
using the chemical kinetics stochastic simulation software Dizzy. In particular,
to model how CheR works at saturation, as described above, we add some
supplementary reactions and chemical species (as XL and XY ), to limit the
reaction speed of CheR, because it is not possible to use a constant rate, since
the software Dizzy is based on mass action law.
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Figure 23: Graphical results of the simulation of the bacterial chemotaxis. To show
how robustness is preserved, we change the concentration of the attractant
L, to study how this influences CheYP.

We simulate the chemical reactions network to verify the robustness, chang-
ing the initial concentration of the attractant. As shown in Figure 23, even
modifying the input of L, after a reduction in concentration, CheYP returns
exactly to the initial value, and this means that the tumbling frequency recurs
again at the same level as before the addition of the attractant. As described in
[1], the bacterial chemotaxis could not show exact adaptation, changing some
parameters of the mathematical model. In Figure 23, in fact, varying the con-
centration of the enzyme CheR, the concentration of CheYP does not return
to the initial value and the system turns out to be α-robust with α = 0.3.
Considering the input and the output of the CRN, we can apply the relative
α-robustness, and it turns out that the CRN is robust for β = 0.35.

Applying Theorem 2, we find that the deficiency is 3, hence the theorem is
not proved, but with our definition, we are able to describe the adaptation and
the absolute robustness of the bacterial chemotaxis.
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Table 4: The initial concentrations, the rates and the chemical reactions of enzyme
activity at saturation model. The concentration of P, marked by the symbol �,
can vary to prove the robustness in X.

Initial concentrations Rates Chemical reactions

R = 1000 k1 = 100 R + X
k1 X + X + Z

X = 30 k2 = 10 X
k2 W

Z = 0 k3 = 0.5 Z
k3 R

P = 1 � k4 = 0.01 X + P
k4 P + P

C = 0 k5 = 0.5 P
k5 C

W = 0

4.2.4 Enzyme activity at saturation

The well-known Lotka-Volterra reactions [49, 51] can be interpreted as abstract
chemical reactions and, in fact, they have been proposed to investigate the os-
cillatory dynamics of autocatalytic enzymes. Similarly, the logistic equation
[76] is a model of population growth that is commonly used also in the con-
text of biochemical reaction kinetics. It describes the growth of a population
by taking the amount of available environmental resources into account (the
carrying capacity of the environment) and it is used also to model enzyme dy-
namics at saturation. In this Section we consider an abstract model of enzyme
activity inspired by the Lotka-Volterra reactions and the logistic equation.

4.2.4.1 Modeling and simulation of enzyme activity at saturation model.

We consider an abstract chemical reaction network in which an enzyme R pro-
duces a molecule X. To guarantee the mass conservation, we add to this ideal-
ized example the species Z, which has the role to preserve the concentration
of R.

The production of X is autocatalytic (the more X are present, the higher is
the production rate), but the concentration of enzymes R is limited. Hence, the
enzyme activity can easily reach saturation. This reaction system is of the kind
typically modeled by the logistic equation. It is expected to reach a dynamic
equilibrium in which the concentration of X does not depend on its initial
concentration, but only on the concentration of R. We add to this system an
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Figure 24: The Petri nets model for enzyme activity at saturation system. The input of
the network is P (red dot line), the output is X (green dots).

additional molecular species P acting as a “predator” for X (as in Volterra’s
equations). What happens is that X can be consumed and transformed into P,
and the reaction performing this action is autocatalytic (i.e., stimulated by P
itself). In this model it can be interesting to investigate how the initial concen-
tration of P influences the steady state concentration of X.

Building the Petri nets model of the reactions network, as shown in Figure
26, we identify P as the input and X as the output of the network. At the steady
state, it emerges that the concentration of X is always constant and its constant
value only loosely depends on the concentration of P. Indeed, even varying the
concentration of the molecular species P in a wide interval, the concentration
of X at the steady state assumes a value in a very small interval. It is worth
noting that this kind of robustness of the system was not captured by the
previous definitions presented in the literature. Instead, our definition is able
to express not only absolute concentration robustness but also weaker levels
of robustness by tuning the α parameter and the amplitude of the intervals of
the input species.

In this case, to apply Definition 16, we choose an interval marking for P =

[1, 1000] and we find, by the means of simulations, that the concentration of
X is in the range [50, 47], as shown in Figure 25. Therefore, the system is α-
robust with α = 3. Computing the relative α-robustness, the system is robust
with β = 0.03.
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Figure 25: Graphical results of the enzyme activity at saturation model. We change
the concentration of the P to test robustness in X.

4.3 initial concentration robustness in the general rizk’s frame-
work

Our definition of robustness focuses purposely on the initial concentrations.
This specific problem is analyzable in the more general context presented in
[64], already shown in Chapter 3.

As explained before, the methodology proposed by Rizk et al. in [64, 65]
describes the ability of a system to maintain specific functionalities against
perturbations. The robustness of a system is measured as the distance of the
system behaviour under perturbations from its reference behaviour expressed
as a temporal logic formula. The distance is computed by using a notion of
violation degree measuring how much the temporal logic formula should be
changed in order to match traces of perturbed behaviours obtained, for in-
stance, through simulations.

The approach proposed by Rizk et al. is very general, both in the description
of the reference behaviour and as regards perturbations. On the contrary, in
our work, we focus on concentration robustness, namely on the influence of the
initial concentrations of species on what will be the steady state of the system.
What we proposed with α-robustness is a notion, which extends the notion of
absolute concentration robustness considered in [70, 71].

Our definition of robustness is simpler and much less general than the one
considered by Rizk et al.. However, it is conceived with the aim of enabling fur-
ther studies on sufficient conditions that could allow robustness to be assesses
by avoiding (or significantly reducing) the number of simulations to be per-
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formed. This could be obtained, for instance, by adapting conditions already
considered in the context of monotonicity analysis [4], as we will see in the
next chapters.

4.3.1 Initial concentration robustness as an LTL formula

In [64], as shown in Chapter 3, a given behavior concerning a given set of
perturbations P is evaluated considering a numerical trace, describing the sys-
tem’s evolution with time. Instead, as described by our Definition 16, our ap-
proach focuses on the evaluation of initial concentration robustness: we vary
the concentration of at least one chemical species (input) and verifying, at the
steady state, if the concentration of an output species is included in an interval.
In line with that, the interval marking, defined in 15, is equivalent to P.

To match the two frameworks, we restrict the analysis of the system behavior
at the equilibrium. We show that Definition 16 is an instance of Definition 12,
expressed using the Rizk et al. framework shown in [64].

Theorem 5 (Definition 16 in the context of Definition 12). Given a Petri Net PN
with output place O, an initial marking m[ ] ∈ M[ ] and a continuous probability
distribution prob(m), defined on m[ ] such that the integral of the pdf is normalized
to 1. PN is α-robust w.r.t. to m[ ] iff there exists an interval [min,max] ∈ R such
that Rsφ,P = 1, with φ = F(G([O] > min∧ [O] 6 max)), P equivalent to m[ ] and
max−min = α.

Proof. Let us consider Definition 12:

Rsφ,P =
∫
p∈P prob(p)sd(Tp, φ)dp.

Since the set of perturbations P is equivalent to the initial marking m[ ] , as
expressed in Theorem 5, the definition becomes:

Rsφ,m[ ]
=
∫
m∈m[ ]

prob(m)sd(Tm, φ)dm,

in which, by Definition of sd 11 is:

Rsφ,m[ ]
=
∫
m∈m[ ]

prob(m) 1
1+vd(Tm,φ)dm.

By Definition of vd 10, we obtain:

Rsφ,m[ ]
=
∫
m∈m[ ]

prob(m) 1
1+dist(φ,DTm,φ(y))

dm
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In order to prove the implication =⇒ of the iff in the statement of the
theorem, we assume that PN is α-robust and we have to show that there exists
an interval [min,max] for which Rsφ,m[ ]

= 1.
Assuming that PN is α-robust, hence ∃ k ∈ R· ∀ m ∈ m[ ] · mss[O] ∈

[k− α
2 , k+

α
2 ]. We choose min = k− α

2 and max = k+ α
2 . With these values

for min and max, considering all the possible perturbations m, the distance
between the formula φ and the domain DTm,φ(y) is always 0 because the do-
main DTm,φ(y) is defined as DTm,φ(y) = {y1 6 mss[O]∧ y2 > mss[O]}. If the
distance is equal to 0, vd(Tm, φ) = 1, hence sd(Tm, φ) = 1. Since the function
prob(m) is a continuous probability distribution, where

∫
m∈m[ ]

prob(m)dm =

1, we obtain:

Rsφ,m[ ]
= 1.

In order to prove the opposite implication, we assume there exists an in-
terval [min,max] ∈ R and we want to show that it is α-robust with α =

max−min, then Rsφ,m[ ]
= 1.

This assumption implies sd = 1 for all perturbations, and, going backwards,
vd = 0. If the distance between the formula φ and the domain DTm,φ(y) is
equal to 0, it means that the formula φ is satisfied, hence, at the steady state,
the output concentration [O] is included in an interval [min,max], where its
range is α = max−min. Thus, considering k = min+ α

2 , the system PN is
α-robust for [k− α

2 , k+
α
2 ].

In [19], it is presented BIOCHAM (BIOCHemical Abstract Machine), a soft-
ware environment for modeling biochemical systems, where it is already im-
plemented the function robustness as mathematically described in Section 3.3.1.
The implementation of function robustness, in BIOCHAM, to test this prop-
erty at the steady state is the following :

Listing 1: Function robustness implemented in BIOCHAM

1 robustness(F(G([O] >= min /\ [O] <= max)), [In], [min -> x, max ->

y])

where

• robustness is the function, implemented in BIOCHAM [19], computing
the robustness measure;
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• In is the concentration of the input species, which is perturbed;

• O is the concentration of the output species;

• F and G are two specific temporal operators, respectively meaning future
and globally;

• the expression [min -> x, max -> y] represents the assignment of the
interval limits;

• the expression F(G([O] >= min ∧ [O] <= max)) represents the system
behavior that has to be evaluated. The formula expresses that, when the
system reaches the steady state, the concentration of output species is
within a range.

To verify Definition 16 is an instance of Definition 12, we apply the LTL
formula of initial concentration robustness described in Section 3.3.1 to the
same examples shown in Section 4.2.

4.3.1.1 Examples of equivalence between robustness definitions

We show step by step the equivalence between Definition 16 and the general
notion of robustness in Definition 12, considering Example 4.2.4, explained in
Section 4.2.

The first step is to build the Petri Net of the CRN, choosing one or more
places as the input of the network and one as the output. As shown in Figure
26, the molecular species P and X are selected as the input and the output
respectively. Hence, we perturbed the initial concentration of the input, to
verify if, at the steady state, the output concentration is included in an interval
[min,max].

We choose an interval marking for the Petri Net: let PL = {P, R, Z, C,W,X}

be the set of places, we vary only the initial concentration of the species P,
which we choose as the input of the CRN, leaving the others equal to 0 or
constant. Performing all the possible simulations, changing the initial value of
P, we find out that the concentration of species X, the output of the CRN, at
the steady state is always included in the interval [47, 50]. Thus, considering
Definition 16, the system is α-robust for α = 3.

At this point, to match Definition 16 with Definition 12 we calculate the do-
main DTm,φ(y), analysing the numerical trace depicting the time evolution of
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Figure 26: The Petri nets model for enzyme activity at saturation system. The input of
the network is P (red dot line), the output is X(green dots).

the species X and considering all the possible perturbations of P. We evaluate
the formula φ = (F(G([X] > 0∧ [X] 6 61))), where the values 0 and 61 are the
interval limits, found by simulations, and we proceed to calculate the violation
degree and the satisfaction degree. The vd = 0, because the distance between
the domain and the formula φ is null, hence the value of the satisfaction de-
gree is sd = 1, because the formula is totally satisfied. Now, we can apply the
robustness formula 12 that is Rsφ,m[ ]

= 1. Then, we obtain:

Listing 2: Function robustness implemented in BIOCHAM

robustness(F(G([X] >= min /\ [X] <= max)), [P], [min -> 0, max -> 61])

For the other examples, presented in Section 4.2, we validate the match be-
tween the two Definitions, using only BIOCHAM:

• EnvZ/OmpR 4.2.1: in this model, the inputs are X and Y and the output is
Yp. In BIOCHAM, we calculate the validity domain of the output to find
the minimum (min) and the maximum (max) values. Then, we compute:

Listing 3: Function robustness implemented in BIOCHAM

robustness(F(G([Yp] >= min /\ [Yp] <= max)), [X, Y], [min ->

0.560474, max -> 25])
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We find that the robustness is equal to 1.

• IDHKP-IDH 4.2.2: the output of this example is I, the inputs species are
E and Ip. Then, we compute:

Listing 4: Function robustness implemented in BIOCHAM

robustness(F(G([I] >= min /\ [I] <= max)), [E, Ip], [min ->

96.1, max -> 112])

we obtain that the robustness is equal to 1.

• Bacterial chemotaxis 4.2.3: R and Yp are respectively the input and the
output of this system. then, we compute:

Listing 5: Function robustness implemented in BIOCHAM

robustness(F(G([Yp] >= min /\ [Yp] <= max)), [R], [min -> 0.9,

max -> 1])

As for the examples before, also in this case the robustness is equal to 1.



5M O N O T O N I C I T Y I N C H E M I C A L R E A C T I O N N E T W O R K S

The dynamical behavior of a biological network is complex to investigate, in
particular, when a system consists of multiple components, interacting with
each other through signaling pathways. As introduced in Chapter 2, one of
the possible approaches is performing simulations based on the Ordinary Dif-
ferential Equations (ODEs) models of the kinetics of the reaction. Besides, the
exact parameters are often not well-known. Then, we need to investigate the
system performing many simulations and by examining all the possible com-
binations of the chemical species concentrations.

One of the possible approaches to reduce the computational cost of simula-
tions is to find some structural and dynamical characteristics that can detect
internal properties of the system, such as robustness and monotonicity. Indeed,
in this way, we could obtain qualitative results about the system, without mak-
ing assumptions on the structure of ODEs involved in the CRN.

In the first part of this Chapter, we focus on the monotonicity in chemical
reaction networks, showing the works presented in [4, 5, 24]. In [24] the princi-
pal aspects of monotone systems theory are presented, starting from the given
definition developed by M. W. Hirsch. In [4, 5], instead, it is proposed a new
approach to study the monotonicity in chemical systems. Using a graphical
representation, the authors are able to investigate global monotonicity prop-
erty analyzing only the structure of the dynamical systems. In this context,
indeed, it is possible to analyze the qualitative features of the CRN, without
any simulations.

In our case, as described in Chapter 4, we are interested in the verification of
the initial concentration robustness, in which the possible perturbations affect
the initial concentrations of the chemical species. To verify this property, we
need to simulate the system for all the possible initial values of the input
(which is the perturbed chemical species). Thus, in this context, we show how
to reduce drastically the number of simulations, studying the CRN structure.
More in detail, in the second part of this Chapter, we propose a graphical
approach that is able to predict if the concentration of the output at the steady

73
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state is monotonic with respect to the initial concentration of the input. If this
property is verified, we are able to simulate the model only on the extreme
values of the input concentration range.

In the end of this Chapter, we verify our sufficient condition of Input - Out-
put monotonicity to two examples:

• Michaelis-Menten kinetics;

• ERK signalling pathway.

5.1 basic definitions of monotonicity in dynamical systems

A dynamical system, such as a chemical reaction network, is monotone if the
flow originated by the differential equations preserves a partial order [24].

More in detail, a monotone dynamical system of the form ẋ = f(x), with
f : X −→ Rn, is a continuous semiflow Φ on a closed set X ⊂ Rn equipped
with a compatible partial order �, such that the partial order is preserved by
the flow:

∀x, y ∈ X : x � y =⇒ Φt(x) � Φt(y), ∀t ∈ R+.

As defined in [5], we assume that the partial order � defined on X has the
following axioms:

• Reflexivity: ∀x ∈ X, x � x;

• Transitivity: ∀x1, x2, x3 ∈ X, x1 � x2 and x2 � x3 =⇒ x1 � x3;

• Antisymmetry: ∀x1, x2 ∈ X, x1 � x2 and x2 � x1 =⇒ x1 = x2 .

The partial order is closed, hence if xn −→ x and yn −→ y as n −→ ∞
and xn � yn for all n, then also x � y. Geometrically, we can define the
partial order on a convex cone K ⊂ Rn, where K is a nonempty closed set with
K+K ⊂ K, R+K ⊂ K and K∩ (−K) = {0}. We say that x1 � x2 iff x1 − x2 ∈ K.

A system is monotone if for all x1 � x2 and all t > 0, x(t, x1) � x(t, x2),
where x(t, xi) represents the solution at time t with initial condition xi and it
is strongly monotone if all x1 � x2 =⇒ x(t, x1)� x(t, x2) for all t > 0.

If the partial order is defined on a positive orthant, K = Rn>0, to check the
monotonicity is equivalent to verify that the Jacobian matrix ∂f

∂x has nonnega-
tive off-diagonal entries, inspecting that the signs of entries never change sign.
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In other cases, to check monotonicity is nontrivial. In literature, one of the
most interesting results is the work presented in [5], where the authors show
how to check global monotonicity in CRN, using a graphical approach.

5.1.1 Graph-theoretic characterizations of global monotonicity in CRN

The qualitative behavior of chemical reaction networks can be very difficult to
understand, first of all because of the complexity of biological systems under
study, usually described by a set of non-linear differential equations. For this
reason one of the most common approach is to try to have some information
about the dynamical behavior of the system, studying only its structure and
without the entire execution of the CRN. This approach is common in Systems
biology, as described also in Sections 3.4.1 and 3.4.2, where we introduce the
Feinberg’s theorems about deficiency.

In line with what has been said, in [4, 5] it is presented a theorem able to
investigate the structural monotonicity of a chemical reaction network, using a
graphical approach, providing easily verifiable conditions concerning asymp-
totic dynamics.

Before explaining in detail the sufficient condition, we proceed recalling
some assumptions, crucial for the application of the method in [4, 5], recalling
the definition of chemical reaction networks in Section 2.1.3:

• Exclusion of auto-catalytic reactions, that are reactions in which a chemical
species appears both as reactant and as product.

• The reaction rate depends monotonically on the concentrations of the species,
hence increasing the concentrations of chemical species, it increases also
the rate of the perturbed reaction. In particular for irreversible reactions,
we assume:

∂Ri(S)

∂Sj
=

> 0 if αij > 0

= 0 if αij = 0
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For reversible reactions, the assumption is:

∂Ri(S)

∂Sj
=


> 0 if αij > 0 and βij = 0

6 0 if βij > 0 and αij = 0

= 0 if αij = 0 and βij = 0

• Absence of a chemical species stops its reaction: if any of the reactants of an
irreversible or reversible reaction are missing, then the corresponding
reaction does not take place;

• Systems are described by differential equations, as already defined in Section
2.1.3.

• All stoichiometry classes are compact sets, which implies that the solution of
the system are bounded.

Before presenting the theorem in [4, 5], we need to give some auxiliary
definition.

The first step to apply the theorem is to represent the CRN as a species-
reaction graph, known shortly as SR-graph: a bipartite graph in which each
node is associated to a chemical species or a reaction involved in the system,
and the edges, linking species and reaction, describe what is the behavior of
the species towards the respective reaction. If the species is a reactant, it helps
the reaction, hence between the species and the reaction there is a positive
edge. Otherwise, if the species is the product of the reaction, they are linked
by a negative edge. Mathematically, the SR-graph is defined as follows:

Definition 1 (SR-graph). Given a finite set of reactions R over a set of species S,
the associated SR-graph is defined by the quadruple 〈VS, VR, E+, E−〉, where VS is
a finite set of nodes, each one associated to a species, VR is the set of nodes, disjoint
from VS, representing the reactions (either irreversible or reversible: in the latter case,
the forward and backward reactions are taken into account only once in the graph).
Whenever a certain reaction Ri belongs to the network:∑

j∈S αijSj 

∑
j∈S βijSj

the relations E+ ⊆ (VS × VR) and E− ⊆ (VS × VR) are defined as follows:

• (Sj, Ri) ∈ E+ if αij > 0, with Sj ∈ VS and Ri ∈ VR;
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• (Ri, Sj) ∈ E− if βij > 0, with Ri ∈ VR and Sj ∈ VS;

Intuitively, we draw a positive edge between every node S ∈ VS and every
node R ∈ VR if S is a reactant of the reaction R and, thus it contributes to the
reaction. On the contrary, we draw a negative edge between every node R ∈ VR
and every node S ∈ VS, because that species is not "helping" the reaction.

In this context, we can notice that when we are modeling a reversible reac-
tion, we can choose one of the two possible orientations because the product
of the sign of the edges is equivalent.

To make an example of how to build the SR-graph, we consider the well-
known Michaelis–Menten kinetics, which models enzyme kinetics:

E + S
k1
k2

ES
k3 E + P (12)

where the enzyme E, binding the substrate S, forms a complex ES, which
releases the product P regenerating the original enzyme.

In the chemical reaction network in 12, we have four node-species that are
E, S, ES and P. We consider only one orientation in reversible reactions, hence

we have only two node-reactions, labelled with R1 and R2: E + S
R1 ES

and ES
R2 E + P. The obtained SR-graph is shown in Figure 27. As we can

notice, the SR-graph is graphically equivalent to a Petri net. In both formalisms,
we can express the relations among species and reactions.

S

E

R1 ES R2 P

Figure 27: SR-graph of the chemical reaction network 12, representing the Michaelis-
Menten kinetics. In this graph, the circles represent the node-species, the
squares represent the node-reactions, the dotted edges and not dotted
edges are respectively the negative and positive ones.

From the SR-graph, the authors derive the reaction graph, shortly called R-
graph, in which only the relation among reactions are considered. Indeed,
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R-graph has only the nodes representing the reactions. It is formally defined
as:

Definition 2 (R-graph). The R-graph is defined by the triple (VR, Ē+, Ē−), where
VR is the finite set of nodes associated to the reactions, Ē+ and Ē− are respectively the
positive and negative edges defined as:

• (Ri, Rj) ∈ Ē+, with i 6= j, whenever there exists in the SR-graph a species
Sk ∈ VS such that (Sk, Ri) and (Sk, Rj) both belonging either to E+ ∪E−, but
having opposite signs;

• (Ri, Rj) ∈ Ē−, with i 6= j, whenever there exists in the SR-graph a species
Sk ∈ VS such that (Sk, Ri) and (Sk, Rj) both belonging either to E+ or E−.

Intuitively, given two reactions, we draw a positive edge between them if
they "cooperate" each other, hence, for example, the product of a reaction is
among the reactants of the other reaction. Instead, we draw a negative edge
between two reactions if both share the same reactants, hence they "compete".

To make an example of R-graph, we consider again the reaction network 12

and its associated SR-graph, in Figure 27.
In the SR-graph, we have to consider all the edges that link two reactions.

In Example 27, we have the edges ES−R2 and ES−R1, which are respectively
positive and negative, and the edges E− R1 and E− R2 , respectively positive
and negative. Therefore, according to Definition 2, we draw a positive edge
between R1 and R2, as in Figure 28.

S

E

R1 ES R2 P

R1 R2

Figure 28: R-graph of the chemical reaction network 12, representing the Michaelis-
Menten kinetics. In general in the R-graph, we have only one kind of nodes
(the squares), which represent the reactions, and the dotted edges and not
dotted edges are respectively the negative and positive ones. In this exam-
ple, between the reactions R1 and R2 there is a positive edge because they
"cooperate" each other.

On an arbitrary SR- or R-graph we can have some additional definitions, as
described in [4, 5]:
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• simple loop: it is a path connecting nodes via edges, in which the first
and the last node coincide, and no node or edge occurs twice, with the
exception of the first and last node;

• length: in a simple loop, it is the total number of negative edges;

• positive simple loop: a SR- or a R- graph has a positive simple loop when,
any simple loop presented in the graph, has an even number of edges;

• e-loop and o-loop: Let L be a simple loop in the SR-graph. We say that L
is an e-loop if letting λ be half of its length and σ the product of the signs
of all its edges, it holds that (−1)λ = σ. Otherwise, we say that L is an
o-loop.

After these auxiliary definitions, we can state the two main results of [4, 5]:

Theorem 6 (R-graph positive loop property). The R-graph has the positive loop
property iff the following two conditions are met:

• all simple loops in the SR-graph are e-loops;

• in the SR-graph, each node in VS is linked at most two nodes in VR.

Theorem 7 (Global Monotonicity). A dynamical system is monotone with respect
to an order induced by an orthant cone iff the associate R-graph has the positive loop
property.

Considering again the SR-graph in Figure 27: both requirements for global
monotonicity are met. It is presented only one loop E− R2 − ES− R1 − E and
it is an e-loop because it has an even number of negative edges, and all the
nodes-species are linked to at most two nodes-reactions. Thus, according to
Theorem 7, the system in Figure 12 is globally monotonic. The proofs of the
theorems are in [5].

5.2 definition of input-output monotonicity

In Chapter 4, we formalized a notion of initial concentration robustness, de-
fined as the property of a system to preserve its functions despite the presence
of perturbations affecting the initial concentrations. To represent the pertur-
bations, we use intervals as initial parameters. Thus, to study the network
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dynamics to verify robustness, we should simulate the model considering all
the possible combinations of the values included in the range and performing
many simulations. Then, to reduce the computational cost we decide to study
monotonicity in chemical reaction networks between the input and the output
of the CRN. Indeed, if the monotonicity is verified, we are able to test the
model only on the extreme values of the input concentration range, reducing
the number of simulations drastically.

Theorem 7 does not help us in this sense because we want to study the
monotonicity between an input and an output species. Therefore, we give a
new definition of monotonicity, namely the Input-Output monotonicity, and
we prove that starting from [5], we can study the monotonicity relation of an
input and an output species.

Consider a set of reactions R, over a set of species S = S1, ...Sn.
The following two definitions describe the concept of monotonicity that we

are interested in. Our properties of monotonicity describe whether the output
species react in a monotone way to the increase of the input concentration.

We consider two initial states S0, S0 such that S0I > S0I for one particular
species I (the input species), and S0k = S0k for all other species k 6= I.

With Si(t) we indicate the solution of the ODEs for the species Si with initial
value S0, and with Si(t) the solution with initial value S0.

Definition 3 (Positive Input-Output Monotonicity). Given a set of reactions R,
species O is positively monotonic with respect to I in R if and only if, ∀I(t) > I(t),
O(t) > O(t), for every time t ∈ R>0.

Definition 4 (Negative Input-Output Monotonicity). Given a set of reactions R,
species O is negatively monotonic with respect to I in R if and only if, ∀I(t) > I(t),
O(t) 6 O(t), for every time t ∈ R>0.

Example 1. Consider a network R consisting of the following chemical reac-
tions:

A + B
k1 C (R1)

D + B
k2 E (R2)
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The differential equations describing the behavior of R are the following, ac-
cording to the mass action kinetics:

d[A]
dt = −k1[A][B]

d[B]
dt = −k1[A][B] − k2[B][D]

d[C]
dt = +k1[A][B]

d[D]
dt = −k2[B][D]

d[E]
dt = +k2[B][D]

Consider A as the input species and C as the output species. Assume now
that the initial concentrations of species B, D, C and E are fixed, but that the
initial concentration of species A can vary from 10 to 1000. In principle, in or-
der to study the dynamics of the concentration of Cwe would need to perform
many simulations, sampling possible initial values of the concentration of A.
However, if species C is positively monotonic w.r.t. A, then just two simulations
are necessary: one with A = 10 and one with A = 1000. The dynamics of C in
all the other (intermediate) cases is included in the results we obtained from
these two simulations. A similar simplification could be done by assessing the
negatively monotonicity of E w.r.t. A. In addition, if the species to vary were
two, say A and B with the latter varying from 20 to 200, and if species C was
also positively monotonic w.r.t. B, then just two simulations would be necessary
to study the behavior of C: one with A = 10 and B = 20 and another with
A = 1000 and B = 200. Finally, if we could prove that species E is positively
monotonic w.r.t. B then, to study its behavior we would need at most four dif-
ferent simulations, A = 10 and B = 20, A = 10 and B = 200, A = 100 and
B = 20, and A = 100 and B = 200.

It is worth noting that interesting weaker notions of monotonicity could be
defined. For example, for some reaction networks it could be interesting to
study steady-state monotonicity, defined (in its positive formulation) as fol-
lows.

Definition 5. O in R is steady-state positively monotonic with respect to I if and
only if I < I implies

lim
t→∞O(t) > lim

t→∞O(t).
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5.3 assessment of monotonicity

According to Definition 2, in the R-graph, we intuitively draw a positive edge
if the two reactions cooperate, otherwise we draw a negative edge if they
compete. Therefore, considering again the chemical reaction network 1, the
two reactions, namely R1 and R2, have in common a reactant, B, hence by
definition they compete and the corresponding R-graph is shown in Figure 29.

S

E

R1 ES R2 P

R1 R2

Figure 29: R-graph of the chemical reaction network 1. In this example, between the
reactions R1 and R2 there is a negative edge because they "compete" each
other: the species B is a reactant of both reactions.

In the following, we assume that the R-graph is connected: this is a natu-
ral assumption because otherwise the reaction system could be split into two
systems with disjoint variables and completely independent behaviors.

Following [5], we introduce some definitions related to a labeling of the
R-graph.

Definition 6. A consistent labeling of a signed graph 〈V, E+, E−〉 is a labeling
s : V → {+,−} in which vertices i, j ∈ V have the same label if (i, j) ∈ E+, and
opposite labels if (i, j) ∈ E−.

It is well-known [37] that a consistent labeling can be constructed if and
only if the graph has the positive loop property. In that case, a labeling can be
constructed with Algorithm 1.

Let Γ ∈ R|S|×|R| be the stoichiometry matrix of R, i.e., the matrix such that Γij
is the amount of species Si produced (if with a positive sign) or consumed (if
with a negative sign) by reaction Rj.
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Input : A connected reaction graph 〈VR, E+, E−〉 with the positive loop
property

Output : A consistent labeling s
Label an arbitrary reaction with +;
while there are still unlabeled vertices do

for each Rj s.t. there exists Ri with label + and (Ri, Rj) ∈ E+, assign
+ to Rj;

for each Rj s.t. there exists Ri with label − and (Ri, Rj) ∈ E−, assign
+ to Rj;

for each Rj s.t. there exists Ri with label + and (Ri, Rj) ∈ E−, assign
− to Rj;

for each Rj s.t. there exists Ri with label − and (Ri, Rj) ∈ E+, assign
− to Rj;

end
Algorithmus 1 : Consistent labeling of an R-graph.

In our running example (Figure 1),

Γ =



R1 R2

A −1 0

B −1 −1

C 1 0

D 0 −1

E 0 1

.

Let R(·) : R|S| → R|R| be the function that gives the rates of all reactions as
a function of the amounts of species present at time i, and DR be its Jacobian
matrix. Assume that DRjiΓij 6 0 for each i, j: i.e., every reaction has a rate
which increases if more reactants are present, where this assumption is given
by the law of mass action, for which the rate of a reaction is proportional to
the product of reactant’s concentrations.

Our main result is the following.

Theorem 1. Let a set of chemical reactions G be given, with a species input I, marked
as Si1 , and a species output O, marked as Si2 (with i2 6= i1). If the following three
conditions hold

1. the R-graph of G has the positive loop property and hence admits a consistent
labeling s;
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2. The input species I (Si1) participates in only one reaction Rj1

3. The output species O (Si2) participates in only one reaction Rj2

then, the speciesO is positively monotone with respect to I if Γi1j1s(j1) and Γi2j2s(j2)
have opposite signs, and negatively monotone if they have the same sign.

Proof. We quickly recall the proof of [5, Theorem 1]. Let Σ ∈ R|R|×|R| be the
diagonal matrix such that Σjj = 1 for all reactions Rj such that s(Rj) = + and
Σjj = −1 for all reactions Rj such that s(Rj) = −.

Let x(t) =
∫t
0 R(S(τ))dτ be the vector such that xi is the extent of the ith

reaction.
The vector x(t) solves, with initial condition x(0) = 0, the system of differ-

ential equations

d

dt
x(t) = R(S0 + Γx(t)), (13)

whose Jacobian is J = DR · Γ .
If the R-graph of the system has the positive loop property, then it is proved

in [5] that ΣJΣ has non-negative off-diagonal elements, i.e., (ΣJΣ)ij > 0 for
all i 6= j. Thanks to a result in [40], this property implies that the dynamical
system (13) is orthant-monotone with respect to the orthant {x : Σx > 0}, i.e.,
if we call x(t), x̂(t) two solutions of (13) with initial conditions x0, x̂0, then
Σ(x̂0 − x0) > 0 implies Σ(x̂(t) − x(t)) > 0 for all t > 0.

We shall use a modification of this proof to show our result. We assume
without loss of generality that Γi1j1s(j1) < 0, as otherwise we can switch the
sign of each label, obtaining a new consistent labeling −s.

Define the dynamical system
d
dty(t) = R(S

0 + zei1 + Γx(t)),

d
dtz(t) = 0,

(14)

where ei1 ∈ R|S| is the vector that has 1 in the i1th component and 0 in all
others.

Direct verification shows that the solution of this system with initial value
y(0) = 0, z(0) = 0 is y(t) = x(t), z(t) = 0, whereas the solution y(t), z(t) with
initial value y(0) = 0, z(0) = Si1 − Si1 > 0 is y(t) = x(t), z(t) = Si1 − Si1 ,
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where the quantity x(t) is defined analogously to (13) but with initial value
S0 = S0 + z(0)ei1 . Define

Σ̂ =

Σ 0

0 1

 , Ĵ =

J v

0 0

 ,
where v = DR · ei1 is the i1th column of DR, and has only one nonzero entry
DRj1,i1 with sign s(Rj1) (due to the assumption that DRjiΓij 6 0 for all i, j).
The matrix Ĵ is the Jacobian of (14), and the matrix Σ̂ĴΣ̂ has non-negative off-
diagonal elements. Thus the dynamical system (14) is orthant-monotone, and
z(0) − z(0) > 0, y(0) − y(0) = 0 implies that Σ(y(t) − y(t)) > 0 for all t.

The quantities of the output species Si2(t), Si2(t) at time t with the two
initial conditions S0, S0 are given by

Si2(t) = S
0
i2

+ eTi2 · Γx(t), Si2(t) = S
0
i2 + e

T
i2
· Γx(t).

The row vector eTi2Γ is the i2th row of Γ , and under our Condition 3 it has only
one nonzero entry Γi2j2 . So

Si2(t) − Si2(t) = S
0
i2 − S

0
i2

+ Γi2j2(xj2(t) − xj2(t)).

The term S0i2 − S
0
i2

is zero since i1 6= i2, and the rest is zero (when xj2(t) =
xj2(t)) or has sign Γi2j2s(j2).

Remark 1. An attentive reader may have noticed that this proof can be extended
with minimal changes to the more general case in which Si1 (or Si2) partici-
pates in more than one reaction, as long as all nonzero entries in the i1th (or
i2th) row of ΓΣ have the same sign. However, it follows from the labeling rules
that whenever ΓΣ has two nonzero elements on the same row they must have
opposite signs, so this more general case is never encountered in practice.

We continue our running example. Considering again the labeled R-graph
in Figure 30, we can now apply our theorem and state that the chemical species
Si2 = E is negatively monotonic w.r.t the input species Si1 = A. This result is
confirmed also by simulation in Figure 31: by increasing the initial concentra-
tion of A, the concentration of E decreases (at all times). In the simulations,
initial concentrations of B, C, D and E are B0 = 20, C0 = 0, D0 = 10, and
E0 = 0.
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Figure 30: Labeled R-graph of the chemical reaction network 1. In this graph, the
squares representing the node-reactions are labeled with a sign "+" or "-",
according to Algorithm 1.
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Figure 31: Simulation results of Example 1. In this case, we increase the initial concen-
tration of A and compare the concentrations of the output E. The results
show that E is negatively monotonic with respect to the variation of the
input.

5.4 examples of application of input-output monotonicity the-
orem

We show the application of Theorem 1 to two examples: in the first case, we
apply our methodology to the CRN of Michaelis Menten kinetics and, in the
second case, we use a more complex network of ERK signalling pathway.

Michaelis-Menten kinetics example. We can study the monotonicity relation be-
tween an input and output species, when both of them are involved in only
one reaction. Therefore, in Example 12, we can study the monotonicity be-
tween the species S, which we can consider as the input of the CRN, and the
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Figure 32: Labeled R-graph of CRN 12, representing Michaelis-Menten kinetics. Since
the signs are both positive on the node-reactions, we can say that the output
of the CRN, the species P, is positively monotonic w.r.t the input of the
CRN, the species S.

species P, as the output, since they are involved respectively in reactions R1
and R2.

We already presented the R-graph of this CRN in Figure 28. Since the R-
graph has the positive loop property, we can proceed with labeling, using
Algorithm 1. Then, we obtain the labeled R-graph, represented in Figure 32,
in which the signs on the node-reactions are both positive. Then, we compute
the stoichiometric matrix of the system as follows:

Γ =


R1 R2

E −1 1

S −1 0

ES 1 −1

P 0 1

.

We calculate the product Γi1j1s(j1) and Γi2j2s(j2), which have opposite signs.
Then, we can affirm that the output of this CRN, the chemical species P, is posi-
tively monotonic with respect to the species S, which means that if we increase
the initial concentration of the input (S), we obtain that the concentration of
the output (P) increases at the steady state.

This result is also confirmed by simulations. Fixed the chemical rates (k1 =

0.1, k2 = 1000, k3 = 0.3), we increase the initial concentration of the input S in
the range [100, 2000] and we obtain that, at the steady state, the concentration
of P increases, as we can notice in Figure 33. Indeed, in Figure 33, we show
on the horizontal axis all the initial values of S, which we choose as initial
concentration of the simulation, and on the vertical axis, we show that the
value of P increases at the steady state.
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Figure 33: Simulation results of Example 12, representing Michaelis-Menten kinetics.
To show how the concentration of the species P is positively monotonic with
respect to the species S, we plot on the horizontal axis the initial concentra-
tion of S, in a range [100, 2000] and on the vertical axis the concentration of
P at the steady state.

Signalling pathway example. A signalling pathway is a long succession of
chemical reactions, having a starting point that triggers the other connected
processes. An initial stimulus, perceived by a transductor (a sort of the first
messenger), activates the sequence amplifying the signal for the next reaction.
Many biochemical processes are associated with signalling pathways as pro-
tein activation, repression, and expression of genes: if anomalies occur, we are
facing an error propagation, that could give rise to some diseases, like cancer
and diabetes, among the others.

One of the most important examples is the ERK pathway, which regulates
growth, survival, proliferation, and differentiation of cells [68]. It consists of
many fast phosphorylation events, representing the attachment of a phospho-
ryl group, which has the function to spread the signal along all the enzymatic
cascade. For this example, we will focus only on a particular section of the
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entire pathway, which we will denote as ERK∗, as shown in Figure 34. The
reactions involved are the following:

Raf
R18
R19

PRaf

Mek1

R21
R27

PMek1

PMek1

R23
R25

PPMek1

(15)

Considering Figure 34, the species PRaf is involved as catalyst promoter of

Raf PRaf

R18

R19

Mek1 PMek1

R21

R27

PPMek1

R23

R25

Figure 34: The subgraph of ERK signalling pathway. The particular edge characterized
by the black circle represents that the species PRaf is involved as catalyst
promoter in the following reaction R21. Then, PRaf helps the production of
PMek1.

the reaction R21, which means that its concentration positively influences the
production of the species PMek1. A catalytic species increases the reaction
rate of the reaction in which it is involved, and during this process, it acts
as a constant since its concentration is not consumed. Then, we translate this
process in another equivalent CRN, making explicit the function of the enzyme
PRaf on the reaction R21. We summarize in Table 5 the reactions involved in
the ERK∗, the coefficient rates and the initial conditions.

Since the reactions follow one another in a chain, we assume that PRaf
reaches the steady-state before the PPMek1 species, which represents the final
product of the CRN, and we verify the assumption by simulations, as shown
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Table 5: The initial concentrations, the rates and the chemical reactions of ERK∗ sys-
tem.

Initial concentrations Rates Chemical reactions

Raf = 10 k18 = 0.1445 Raf
R18
R19

PRaf

PRaf = 0 k19 = 0.37 PRaf + Mek1

R21 PMek1+PRaf

Mek1 = 1 k21 = 0.02 PMek1

R27 Mek1

PMek1 = 0 k27 = 0.07 PMek1

R23
R25

PPMek1

PPMek1 = 0 k23 = 667.957
k25 = 0.13

in Figure 35. Then, we subdivide the network into two distinct blocks, repre-
sented in Figure 36. On the new configuration obtained, we apply Theorem 1

separately on the two sub-networks, choosing Raf and PRaf respectively the
input and the output of the first block, and Mek1 and PPMek1 the input and
the output of the second one. For the first block, the Input-Output monotonic-
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Figure 35: Simulation results of Example 15, representing ERK signalling pathway.
We show how the species PRaf reaches the steady state before than species
PPMek1.

ity is trivially applied, since we have only one reaction, and we obtain that
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R25

Figure 36: A "modified" subgraph of ERK signalling pathway, denoted as ERK∗. In
this equivalent version of signalling pathway we divide the CRN in two
sub-networks, leaving its behavior unchanged.

PRaf is positively monotonic with respect to Raf. For the second sub-network
we proceed applying first Algorithm 1, and we obtain the labelled R-graph,
represented in Figure 37. We compute the stoichiometric matrix as follows:

Γ =

( R1 R2

Mek1 −1 0

PPMek1 0 +1

)
.

We calculate the product Γi1j1s(j1) and Γi2j2s(j2), which have opposite signs.
Then, we can affirm that the output of this CRN, the chemical species PPMek1,
is positively monotonic with respect to the species Mek1, which means that
if we increase the initial concentration of the input (Mek1), we obtain that
the concentration of the output (PPMek1) increases at the steady state. As de-
scribed above, PRaf cooperate with reaction R21, increasing its reaction rate
and acting as constant. Then we can conclude that, since PRaf is positively
monotonic with respect to Raf and PPmek1 is positively monotonic with re-
spect to Mek1, PPmek1 is positively monotonic also with respect to Raf and
we show the result in Figure 38.

In general, for signaling pathways, it is always possible to apply a modular
approach, which divides the reactions into distinct blocks. This particular reac-
tion network, indeed, consists of a long series of chemical processes, in which
each event is activated by the previous one.
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Figure 37: Labeled R-graph of the second sub-network of CRN 15, representing ERK
signalling pathway. Since the signs are both positive on the node-reactions,
we can say that the output of the CRN, the species PPMek1, is positively
monotonic w.r.t the input of the CRN, the species Mek1.
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Figure 38: Simulation results of Example 15, representing ERK signalling pathway. To
show how the concentration of the species PPMek1 is positively monotonic
with respect to the species Mek1, we plot on the horizontal axis the initial
concentration of Mek1, in a range [1, 100] and on the vertical axis the con-
centration of PPMek1 at the steady state.
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The Becker-Döring equations were theorized for the first time in 1935, by the
two authors who gave rise to the name of the model [13], who proposed an infi-
nite system of ordinary differential equations as a model for the time evolution
of the distribution of cluster sizes for such a system [8]. Later, in 1977, Burton
started to consider this system to explain condensation phenomena at differ-
ent pressures [18], indeed, they consist of two main processes: the aggregation
and the fragmentation of clusters of particles. The applications of this kinetic
model are multiple and include many fields, like physics, chemistry, and bi-
ology. In particular, concerning biology, it has been applied to study protein
aggregation, polymerization, and the formation of intracellular concentration
gradients.

As shown in [67], the clustering processes can be very robust to concentra-
tion fluctuations which suggests that it exhibits robustness. Then, we proceed
to verify this property using different approaches.

In the first part of the Chapter, we introduce in detail the mathematical
properties of Becker-Döring equations, showing the analytical solution of the
steady state. In the second part, we apply the Deficiency Zero Theorem [30],
described in Section 3.4, to verify the robustness property of this model.

6.1 the becker-döring equations

The Becker-Döring equations (BD) describe two principal phenomena, namely
the coagulation and the fragmentation of clusters of particles, based on two pro-
cesses:

1. a monomer (or elementary particle) is a cluster characterized by a size i
equal to 1. Hitting a cluster of size i > 1, it gives rise to a coagulation
phenomenon, producing a cluster of dimension i+ 1;

2. a cluster of size i > 2 can be subjected to a spontaneous fragmentation,
splitting itself in a cluster of size i− 1 and a monomer.

93
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They can be summarized by the following set of kinetic reactions:

C
1

+ Ci
ai
bi+1

Ci+1
(16)

where Ci denotes clusters consisting of i particles, which is also the cluster
size, while kinetic coefficients ai and bi + 1 stand, respectively, for the rate
of aggregation and fragmentation, and for the moment we consider them as
fixed values. We can notice that at the basis of this model there are three
fundamental assumptions:

• only a monomer coalesces to give rise a cluster;

• a cluster releases spontaneously a monomer;

• at the initial stage of the system, only C1(0), namely the initial concen-
tration of monomers, is different from 0, hence all the clusters, with size
i > 2, develop successively.

From the last assumption, it follows that the initial concentration of C1 de-
termines the mass of the system, hence the largest dimension of the cluster
that can be formed. Indeed, if we add 5 molecules in an ideal closed pot, the
maximum cluster will have size 5, and the only possible clusters will be C2,
C3, C4, and C5. Then, in a model with the initial concentration of monomers
C1(0) = 5, we will have 10 reactions (considering for each cluster its process
of fragmentation and coagulation) as follows:

C
1

+ C
1

a
b

C
2

C
1

+ C
2

a
b

C
3

C
1

+ C
3

a
b

C
4

C
1

+ C
4

a
b

C
5

(17)

In a deterministic framework, applying the law of mass action 1, the BD
model is a set of differential equations, representing the time evolution of each
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concentrations of clusters of size i. Considering the example 17, we obtain the
following differential equations:

d[C1]
dt = −2a[C1]

2 + 2b[C2] − a[C1][C2] + b[C3] − a[C1][C3] + b[C4] − a[C1][C4] + b[C5]

d[C2]
dt = +a[C1]

2 − b[C2] − a[C1][C2] + b[C3]

d[C3]
dt = +a[C1][C2] − b[C3] − a[C1][C3] + b[C4]

d[C4]
dt = +a[C1][C3] − b[C4] − a[C1][C4] + b[C5]

d[C5]
dt = +a[C1][C4] − b[C5]

As we can notice it is possible to generalize the differential equations obtaining
two differential equations, one describing the time evolution of the cluster C1
and the other describing the time evolution of a generic cluster Ci, as follows:


d[C1]
dt = −J1 −

∑C1(0)
i>1 Ji

d[Ci]
dt = Ji−1 − Ji

(18)

for every i > 2, where Ji is the flux:

Ji = a[C1][Ci] − b[Ci+1] (19)

Analyzing the formula 19, we can recognize the generic process of coagula-
tion, as a second order reaction, and the generic process of fragmentation, as
a first order linear reaction. Looking at this formula, we can notice that the
expression for the biggest cluster is different from the others one. In the previ-
ous example, indeed, the biggest cluster is C5, which can only participate in
fragmentation, otherwise other interactions it would create cluster bigger than
5, which is the total mass of the system. This is evident, also considering the
fluxes.
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Considering again a system with C1(0) = 5, there are 4 fluxes, as follows:

J1 = a[C1]
2 − b[C2]

J2 = a[C1][C2] − b[C3]

J3 = a[C1][C3] − b[C4]

J4 = a[C1][C4] − b[C5].

(20)

As we can notice, there is not a flux J5 because the cluster of dimension 5
can be only involved in a spontaneous fragmentation, this is because of the
mass conservation.

The mass of the system (ρ) is conserved, hence the considered system has
not sink or source. From the generic formula of differential equations 18 we
can deduce that the mass of system depends on the the initial condition of the
system and has the following form:∑

i>1

iCi(t) = ρ (21)

6.2 verification of robustness property in becker-döring model

The Becker-Döring equations can be used to study different biological phe-
nomena, as the formation of gradient concentrations, which we can define as
the measurement of the variation of quantity of molecules from one area to
another in the same system. This phenomenon is experimentally observable
in unicellular and multicellular organisms, and it is involved in various pro-
cesses, such as cellular differentiation, as described in [67, 78].

In the work [67], the authors develop a theoretical model describing cluster
aggregation-fragmentation in subcellular systems, based on the Becker-Döring
equations, and show that, for particular conditions, the concentration gradient
can be robust to relevant biological fluctuations. Therefore, we proceed to ver-
ify formally the robustness of the system based on Becker-Döring equations,
applying different approaches that we can summarize as follows:

• Simulations;

• Petri net formalization;
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• Analytical study of the steady state solution;

• Application of Feinberg’s theorems.

6.2.1 Petri net and simulations

First of all, we formalize the input and the output of the network, applying
our definition 16. In our work, we identify as input and output of the net-
work the concentration of monomer C1, in agreement with the assumptions
we mentioned in Section 6.1. Indeed, C1 is the only cluster present at the ini-
tial state of the system, and it is the cluster involved in every aggregation and
fragmentation process. Then, we represent the system as a Petri net, as shown
in Figure 39.

 

C1

R1

C2

R2

C3

R3 R4 R5

C4

R6 ...

2 2

  

Figure 39: The Petri net for the BD model. C1 is both the input and the output of
the network. The encountered problems are that the Petri net is potentially
infinite and, by changing the initial conditions of the network, we obtain
different Petri nets.

The Petri net formalization helps us to understand two features of this
model:

1. the Petri net is potentially infinite, because every time we change the
initial concentration of the system we change the set of differential equa-
tions, describing the system;

2. we cannot apply Theorem 1, because the sufficient condition is not ver-
ified since both the input and the output are linked to more than one
reaction.
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As consequence of the last item, we cannot use, in simulations, only the min-
imum and the maximum of the range of the interval of values describing the
initial concentration of monomers. Hence we start performing many simula-
tions, perturbating the initial concentration of C1. In particular, we change the
mass of the system, in a wide range of values, to study the concentration of
monomers at the steady state. As we can notice in Figure 40, we find out that,
assuming as constant the coefficient rates a = 1 and b = 1, the concentration
of C1 seems to tend to 1 at the steady state, even with very different initial
conditions.

0 500 1000 1500

[C1]0
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0.5

1

1.5

[C
1]
ss

C1

Figure 40: Simulations result of Becker-Döring model. We plot on the horizontal axis
the initial concentration of C1, in a range [5, 1500], and on the vertical axis
the concentration of C1 at the steady state. We assume the the coefficient
rates a and b are constant and equal to 1.

This preliminary result convince us to study analytically the solution of the
steady state formula.

6.2.2 Analysis of the Steady state

In the simulation result shown in Figure 40, the concentration of monomer C1
appears to be robust at the steady state. Indeed, we change, in a wide range of
values, the input of the system (C1) and we notice that the output (C1) tends
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to 1 at the steady state, considering the coefficient rates a and b constant and
equal to 1.

Then, in line with the other works presented in literature [8, 47, 57], our
main result in the analytical study of steady state is the following:

Theorem 8 (Monomers Steady State). Let a and b be the coefficient rates of co-
agulation and fragmentation process in the Becker-Döring system, ρ the mass of the
system and [C1]ss the concentration of monomers at the steady state. Then, as ρ→∞,
[C1]ss → b

a .

Proof. As described in Section 6.1, the crucial assumption of the Becker-Döring
model is mass conservation, which therefore depends on the initial concentra-
tion of monomers, hence the mass ρ at the initial state will remain the same at
the steady state, that is the sum of the fluxes of the species goes to zero. Then,
recalling Formula 21, we can write:

ρ(0) = ρ(∞) =

k∑
i=1

i ·Ci, (22)

where k is the maximum number of molecules in the system, hence it is
k = ρ. Generalizing the fluxes formulas, as in example 20, we deduce the
general steady state formula for a cluster of dimension i, as follows:

[Ci]ss =
(a
b

)i−1
[C1]

i
ss. (23)

Replacing (23) in (22), we obtain:

ρ =

k∑
i=1

i
(a
b

)i−1
[C1]

i
ss

=
b

a

k∑
i=1

i
(a
b
[C1]ss

)i
=
b

a

k(abC1)
k+2 − (k+ 1)(abC1)

k+1 + (abC1)

(1− a
bC1)

2
.

(24)
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We want to study the asymptotic behaviour of C1, then we define:

lim
t→∞C1(t) := xk.

Equating (24) with its general form, we get:

k = x+
a

b
2x2 + ... +

ak−1

bk−1
kxk =

b

a
·
k · abx

(k+2) − (k+ 1) · abx
(k+1) + a

bx

(1− a
bx)

2
.

We can rearrange the previous expression as follows:

1 =
x

k
+
a

b

2

k
x2 + ... +

ak−1

bk−1
xk =

b

a
·
k · abx

(k+2) − (k+ 1) · abx
(k+1) + a

bx

k · (1− a
bx)

2
,

(25)

and we define:

gk(x) =
x

k
+
a

b

2

k
x2 + ... +

ak−1

bk−1
xk,

=
b

a
·
k · abx

(k+2) − (k+ 1) · abx
(k+1) + a

bx

k · (1− a
bx)

2
.

We will need both expressions because they make it simpler to observe differ-
ent properties.

• gk(x) is an increasing function of x

• with simple algebraic manipulation, we get:

gk(x) =
1

k
· b
a

(
a

b
x+

a2

b2
2x2 + ... + k

ak

bk
xk
)

from which it is easy to see that:

gk

(
b

a

)
=
1

k
· b
a
(1+ 2+ ... + k) =

b

a
· k+ 1
2

.

• Following the first two items, we notice that there is one and only one
solution for the equation gk(x) = 1, ∀k, in the range

[
0, ba

]
.
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• Looking at the other expression for the function gk(x), we find that

lim
k→∞gk(x) = 0, ∀x ∈

[
0,
b

a

)
.

• Because of the previous limit, if we now take a generic x∗ < b
a , then, for

k large enough we will have gk(x∗) < gk(xk) ≡ 1 Since the function is
increasing and monotonic with respect to x, then:

gk(xk) − gk(x
∗)

xk − x∗
> 0 ⇒ xk > x

∗.

This shows that, for k large enough, xk > x∗, ∀x∗ < b
a . Therefore xk > b

a .

For an intuitive visualization of what just said, in Figure 41 we show a plot
of the gk(x) in the particular case where a = b.
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Figure 41: The plot of the function g(x). Graphically, we see that the curves of function
g(x) will be closer to zero, increasing the value of k.

Our result is shown also in Figure 40 and Figure 42, respectively for a = b

and a 6= b. As we can notice, through the analytical solution of the steady
state formula, we can avoid performing many simulations to study all possible
behaviors of the system considering different values for a and b.
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Figure 42: Simulations result of Becker-Döring model. We plot on the horizontal axis
the initial concentration of C1, in a range [5, 1500], and on the vertical axis
the concentration of C1 at the steady state. The coefficient rates are a = 1
and b = 2.

6.2.3 Application of Deficiency Theorems

To verify robustness in the Becker-Döring model, we apply the Deficiency One
Theorem 3.4.1, as described in detail in Section 3.4.

The first step is to fix an initial concentration for the monomers, such as
C1(0) = 5. Then we obtain the following set of reactions:

C
1

+ C
1

a
b

C
2

C
1

+ C
2

a
b

C
3

C
1

+ C
3

a
b

C
4

C
1

+ C
4

a
b

C
5

(26)

Before to calculate the deficiency δ, we define the number of nodes and the
linkage classes, and the rank of the matrix r×N, where r represents the reac-
tions and N the species involved in the network. In this case, we consider as a
species each possible cluster Ci.
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• Nodes (n) are one or more chemical species involved in forward and
backward reaction. In this case, the number of nodes is 8, and they are:
C1 +C1, C2, C1 +C2, C3, C1 +C3, C4,C1 +C4, C5;

• linkage classes (l) are the "groups" of reactions which compose the net-
work, then we have 4 linkage classes;

• Considering the following matrix, we obtain that the rank (r) is 4.

C1 C2 C3 C4 C5

R1

R1b

R2

R2b

R3

R3b

R4

R4b



−2 +1 0 0 0

+2 −1 0 0 0

−1 −1 +1 0 0

+1 +1 −1 0 0

−1 0 −1 +1 0

+1 0 +1 −1 0

−1 0 0 −1 +1

+1 0 0 +1 −1


Then, we can calculate the deficiency δ, defined as δ = n− l− r, and we find

out that the δ = 8− 4− 4 = 0. Therefore, applying Theorem 4, described in
Section 4, we know that a system with δ = 0 cannot be robust.

In [69], the authors explain that in a biological network, some chemical
species can be more sensitive to the presence of fluctuations. Then, the authors
present lower bounds on the individual species-concentration sensitivities that
derive from reaction network structure alone, independently from kinetic pa-
rameters or even of the particular equilibrium state at which sensitivities are
calculated. In this context, the main result of [69] states that the less sensitive
species are the monomers or the molecules, which tend to react with other
species through multiple interactions. Below, we informally present an exam-
ple of the approach, applying it to Becker-Döring system.

We assume that the chemical reaction network, governed by the Becker-
Döring equation, is a mass-action system and it takes place in an ideal closed
pot, with fixed temperature and volume. Then, after a certain period, it will
reach a steady state, identified as c. If we open the vessel and introduce other
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species quantities, hypothetically, the system will be in another equilibrium,
namely c∗, and, consequently, all the species involved will arrive at a different
steady state.

In the system, we make a distinction between monomer and species, which
respectively identify an elementary substance e and a compound of monomers
s, where e denotes a single element of the set of monomers E and s represents
a single species of the set of involved species S.

Applying this specification to our system 26, we consider that all the clusters
Ci consist of i copies of C1, then we obtain:

• S = {C1, C2, C3, C4, C5};

• E = {C1}.

For each monomer e ∈ E and each species s ∈ S, we specify how many
monomers form a species, denoting the e-content of species s, namely Mse.
In our example, considering C1 as the only monomer, we specify how many
copies of C1 there are in each species. Then, we obtain:

• M
C1
C1

= 1,

• M
C2
C1

= 2,

• M
C3
C1

= 3,

• M
C4
C1

= 4,

• M
C5
C1

= 5.

For each pair of monomers e, e ′ ∈ E, we denote by Mmaxe (e ′), the maximal
e-content that can be found as we search over all species that contain the
element e ′. Running our example, we set:

• MmaxC1
(C1) = 5.

If the maximal e-content is high for the specific monomer under study, it
means that this monomer is involved in many other species. Intuitively, since
C1 is the only monomer present in the system and it forms all the species, its
maximal e-content is the possible maximum size of the cluster.
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In the end, we define as monomer degree the sum of all maximal e-content,
and it is given by:

deg(e) =
∑
e ′∈E

Mmaxe (e ′).

Thus, for our CRN, we have:

• deg(C1) = 5,

and as we can notice the monomer degree is the value, which identifies how
a particular substance is free to combine with many other elements. The lower
bound Λs(c∗) on the species sensitivities is defined as follows:

Λs(c∗) > max
e∈E

{
Mse
deg(e)

}
.

Thus, in our example it is:

• ΛC1(c∗) > 1
5 .

Increasing the initial concentration of monomer C1, we will obtain different
results. For example, choosing C1 = 10, the degree and the lower bound will
be respectively:

• deg(C1) = 10,

• ΛC1(c∗) > 1
10 .

Intuitively, if we change the initial concentration of monomers, two processes
will occur in the system:

1. the monomer degree of C1 will increase, in relation with the initial con-
centration. Then, C1 will interact with many species in the system;

2. the sensitivity of the species and monomers in the system will decrease
because the effects of perturbation will attenuated through proopaga-
tion across many species or buffered within species cointaining multiple
instance of elements.
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Two main characteristics define living cells: an intrinsic structural complexity,
according to which there is modularity inside the cell itself, and the ability
to interact with other networks, working as a system. Besides, at various fre-
quencies and timescales, internal and external fluctuations can alter specific
functions or traits of biological systems, causing genetic mutations, loss of
structural integrity, and diseases among the others. Nevertheless, many bio-
logical networks can maintain their functionalities despite perturbations: this
distinct property is known as robustness [44, 45].

Robust traits are pervasive in biology: they pertain to various structural
levels, such as gene expression, protein folding, metabolic flux, species per-
sistence. For this reason, the study of this characteristic is essential for many
biologists, whose aim is to understand the performance and functions of a
biological system [77].

In general, it is difficult to investigate biological systems because they are
characterized by non-linearity and non-intuitive behaviors. They can be stud-
ied by performing wet-lab (in vitro) experiments, or through mathematical or
computational (in silico) methods on a pathway model (often expressed in
terms of ODEs or Markov chains). In particular, robustness is very arduous to
analyse because there exist many different notions of this concept, studied us-
ing simulations or identifying significant topological structures of the systems
[30]. However, this last approach can only be used in a very restrictive context,
useful only for studying specific biological systems.

For this reason, in this thesis, we propose a new definition to formally de-
scribe a specific notion of robustness, the initial concentration robustness. This
has the purpose of analyzing how perturbations in the initial concentrations
of the involved chemical species (identified as inputs) can alter the system
behavior at the steady state. Therefore, we developed a theoretical framework,
based on Petri net formalism, and we applied it to different known models. Us-
ing simulations, we validated Definition 16 by applying it to systems already
studied in literature, such as the EnvZ/OmpR osmoregulatory signalling sys-

107



108 conclusions

tem 4.2.1, the isocitrate dehydrogenase regulatory system 4.2.2, the bacterial
chemotaxis 4.2.3 and a model of the enzyme activity at saturation 4.2.4.

To understand the behavior of a biological system, we should simulate it
considering all the possible combinations of the initial values, which implies
a huge computational effort. To face this issue, we found a sufficient condi-
tion that allows knowing if the concentration of an output species is mono-
tonic concerning the concentration of an input species (which is the perturbed
substance). By monotonic, we mean that increasing (or decreasing) the con-
centration of the input, the concentration of the output, at each time step, in-
creases (or decreases) consequently. If the sufficient condition is met (namely
the monotonicity is found), we can significantly reduce the number of simula-
tions, testing the model only on the extreme values of the input concentration
range. Then, we test Theorem 1 on two examples: Michaelis-Menten kinetics
and ERK signalling pathway.

Finally, we apply our theoretical framework to the case study of Becker-
Döring equations [7], a model which describes condensations phenomena
at different pressures. We focused on the robustness property of this model,
studying analytically its steady state. Concerning this, we prove that the con-
centration of monomer tends to the ratio of coefficients at the steady state, and
we verify this statement by simulations. Then, we applied known results in lit-
erature [69], to prove how the clusters presented in the model show different
sensitivity to the perturbations on the initial concentration.

7.1 future work

There are several improvements that can be introduced to extend this research
and that we leave as future work.

Stochasticity. One of the key aspects of the complex biological systems is
their randomness. A deterministic approach makes it possible to infer the tem-
poral behavior of the species involved as a result of a system of differential
equations that come from the law of mass action (mainly) or other kinetic
laws. However, we could extend our theoretical framework on the robustness
in chemical reaction networks to stochastic systems.

Topological features. Our definition can always be verified at the cost of per-
forming many simulations. This could be done on a large database of biologi-
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cal systems in order to obtain a large training and validation set for a machine
learning algorithm able to guess the robustness of a system, as in part it is
described in [17]. Then, techniques of explainable AI could be applied in or-
der to infer some topological features that the biological systems recognised
as robust have in common.

Applicability to new specific problems. The framework we developed so far
has been studied to be as general as possible, in order for it to be applied
of many biological systems to investigate the initial concentration robustness.
However, studying new biological systems, it would be interesting to extend
this framework or to find a new theoretical model to infer robustness or other
interesting biological properties.

Analysis of Becker-Döring equations with real rates. In this thesis, we analyse the
Becker-Döring equations assuming that the coefficient rates of agglomeration
and fragmentation are constant real values. Moreover, we could improve this
analysis introducing some physical aspects of the model. As described in [8,
57, 72], the size and the shape of clusters involved in the reactions influence
the dynamical properties of the system.
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