Esame di Ricerca Operativa del 17/07/17

(Nome)	(Numero di Matricola)
a considerando il problema di pro	ogrammazione lineare:
$($ may $7 r_1 + r_2$	
$\begin{array}{c} \max_{1} x_{1} + x_{2} \\ x_{1} \leq 5 \end{array}$	
$x_1 - x_2 < 12$	
•	,

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =		
{4, 6}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{4,5}					
2° iterazione						

Esercizio 3. Una ditta produce latte liquido e in polvere. Il latte liquido viene venduto in cartocci da 1 l, ciascuno dei quali occupa un volume di $0.002~m^3$. Il profitto ottenuto dalla vendita di 1 l di latte è di 1.20 Euro. Il latte in polvere viene venduto in barattoli da 2, 1.5 e 1 kg rispettivamente. Il costo che la ditta sostiene per la produzione di 1 kg di latte in polvere è di 5 Euro. La seguente tabella riporta i prezzi di vendita dei barattoli e i volumi occupati:

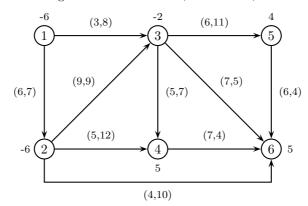
Barattolo	Prezzo (Euro)	Volume occupato (m^3)
2 kg	24	0.004
1.5 kg	16	0.003
1 kg	12	0.002

La ditta deve soddisfare la domanda di mercato stimata in 600 l di latte liquido e 200 kg di latte in polvere. Il latte prodotto sarà trasportato con un veicolo a temperatura controllata di capacità $28.3 \ m^3$. Determinare quante unità dei diversi tipi di latte la ditta deve produrre per massimizzare il profitto e soddisfare le richieste di mercato.

var	ariabili decisionali:		
mo	odello:		

A= b=	C=	int=	
Aeg=	A=	b=	
ved-	Aeq=	beq=	
lb= ub=	lb=	ub=	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

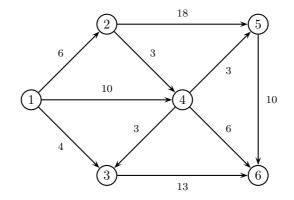


Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,6)$ $(3,4)$				
(3,5)(3,6)	(1,2)	x =		
(1,3) $(2,3)$ $(2,4)$				
(3,5)(3,6)	(1,2)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

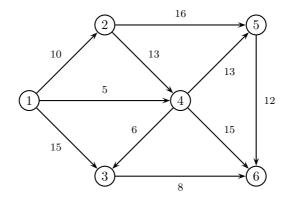
	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	
Archi di U	(2,3)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.



	iter 1		ite	r 2	iter 3		iter 4		iter 5		iter 6	
	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
$\stackrel{\text{insieme}}{Q}$												

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.



cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 5 x_1 + 14 x_2 \\ 17 x_1 + 9 x_2 \le 49 \\ 9 x_1 + 12 x_2 \le 64 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	9	58
3			98	11
4				97

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni sotto-

problema ed istanziando, nell'ordine, le variabili $x_{24},\,x_{45},\,x_{34}$. Dire se l'algoritmo é terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni del sis	tema LKT	Mass	imo	Mini	Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$							
(0, 0)							
(0, 2)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 x_1^2 + 4 x_1 x_2 - 2 x_2^2 + 3 x_1 + 8 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,-2) , (3,1) , (-2,3) e (-3,-2). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{7}{3},\frac{4}{3}\right)$					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 7 \ x_1 + x_2 \\ x_1 \le 5 \\ x_1 - x_2 \le 12 \\ x_1 + 2 \ x_2 \le -5 \\ -x_1 - x_2 \le 6 \\ -2 \ x_1 - x_2 \le 4 \\ -x_1 + x_2 \le -7 \\ x_2 \le -4 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (5, -7)	SI	NO
{4, 6}	y = (0, 0, 0, -4, 0, -3, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
				uscenic		CHUTAHUC
1° iterazione	$\{4, 5\}$	(2, -8)	(0, 0, 0, 5, -6, 0, 0)	5	3, 1	2
2° iterazione	{2, 4}	(3, -9)	(0, 3, 0, -4, 0, 0, 0)	4	$4, \frac{20}{3}, 10$	1

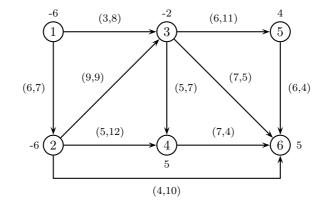
Esercizio 3. Una ditta produce latte liquido e in polvere. Il latte liquido viene venduto in cartocci da 1 l, ciascuno dei quali occupa un volume di $0.002~m^3$. Il profitto ottenuto dalla vendita di 1 l di latte è di 1.20 Euro. Il latte in polvere viene venduto in barattoli da 2, 1.5 e 1 kg rispettivamente. Il costo che la ditta sostiene per la produzione di 1 kg di latte in polvere è di 5 Euro. La seguente tabella riporta i prezzi di vendita dei barattoli e i volumi occupati:

Barattolo	Prezzo (Euro)	Volume occupato (m^3)
2 kg	24	0.004
1.5 kg	16	0.003
1 kg	12	0.002

La ditta deve soddisfare la domanda di mercato stimata in 600 l di latte liquido e 200 kg di latte in polvere. Il latte prodotto sarà trasportato con un veicolo a temperatura controllata di capacità $28.3 \, m^3$. Determinare quante unità dei diversi tipi di latte la ditta deve produrre per massimizzare il profitto e soddisfare le richieste di mercato (ignorare il vincolo di interezza).

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

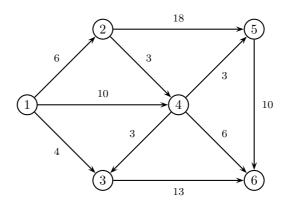


Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,6)$ $(3,4)$				
(3,5)(3,6)	(1,2)	x = (7, -1, 0, 0, 13, 5, 4, -8, 0, 0)	NO	NO
(1,3) $(2,3)$ $(2,4)$				
(3,5)(3,6)	(1,2)	$\pi = (0, -6, 3, -1, 9, 10)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

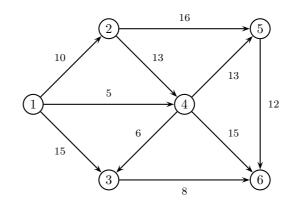
	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	(1,3) $(2,3)$ $(3,4)$ $(3,5)$ $(3,6)$
Archi di U	(2,3)	
x	(3, 3, 9, 0, 0, 5, 4, 5, 0, 0)	(0, 6, 6, 0, 0, 5, 4, 5, 0, 0)
π	(0, 6, 3, 8, 9, 10)	(0, -6, 3, 8, 9, 10)
Arco entrante	(2,3)	(2,4)
ϑ^+,ϑ^-	5, 3	12, 5
Arco uscente	(1,2)	(3,4)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.



	iter	1	iter	2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2	2	۷ِ	1	Ę	,)	(j
nodo 2	6	1	6	1	6	1	6	1	6	1	6	1
nodo 3	4	1	4	1	4	1	4	1	4	1	4	1
nodo 4	10	1	10	1	9	2	9	2	9	2	9	2
nodo 5	$+\infty$	-1	$+\infty$	-1	24	2	12	4	12	4	12	4
nodo 6	$+\infty$	-1	17	3	17	3	15	4	15	4	15	4
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4	, 6	4, 5	5, 6	5,	6	(;	())

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.



cammino aumentante	δ	x	v
1 - 3 - 6	8	(0, 8, 0, 0, 0, 8, 0, 0, 0, 0)	8
1 - 4 - 6	5	(0, 8, 5, 0, 0, 8, 0, 0, 5, 0)	13
1 - 2 - 4 - 6	10	(10, 8, 5, 10, 0, 8, 0, 0, 15, 0)	23

Taglio di capacità minima: $N_s = \{1, 3\}$ $N_t = \{2, 4, 5, 6\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 5 \ x_1 + 14 \ x_2 \\ 17 \ x_1 + 9 \ x_2 \le 49 \\ 9 \ x_1 + 12 \ x_2 \le 64 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(0, \frac{16}{3}\right)$

 $v_S(P) = 74$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento

sol. ammissibile = (0,5)

 $v_I(P) = 70$

c) Calcolare un taglio di Gomory.

$$r = 2 x_2 \le 5$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	9	58
3			98	11
4				97

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

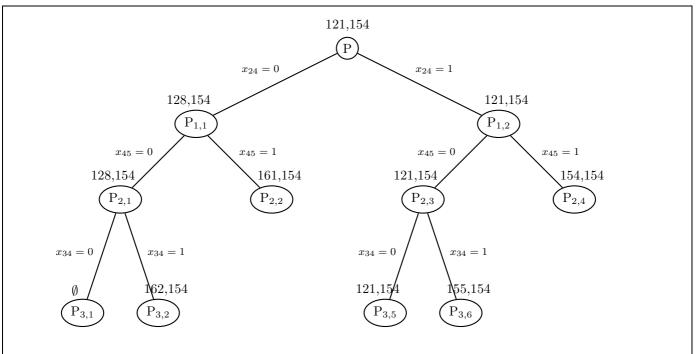
2–albero: (1 , 2) (1 , 3) (1 , 4) (2 , 4) (3 , 5)

 $v_I(P) = 121$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 4 - 5 - 3$$
 $v_S(P) = 154$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{45} , x_{34} .



Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni del sist	Mass	simo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
(0, 0)	$\left(-\frac{1}{2},0\right)$		NO	SI	NO	NO	NO
(0, 2)	$\left(\frac{1}{2},0\right)$		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 x_1^2 + 4 x_1 x_2 - 2 x_2^2 + 3 x_1 + 8 x_2 \\ x \in P \end{cases}$$

 ${\rm dove}\; P \; \grave{\rm e} \; {\rm il} \; {\rm poliedro} \; {\rm di} \; {\rm vertici} \; (1,-2) \; , \; (3,1) \; , \; (-2,3) \; {\rm e} \; (-3,-2). \; {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}.$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{7}{3}, \frac{4}{3}\right)$	$27 x_1 - \frac{20}{3} x_2$	(-2,3)	$\left(\frac{1}{3}, \frac{5}{3}\right)$	1	(-2,3)