Esame di Ricerca Operativa del 06/02/17

(Cognome)	(Nome)	(Numero d Matricola)

Esercizio 1. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h) di studio compatibilmente con i suoi impegni giornalieri. Nella seguente tabella sono indicati (con *) gli esami a cui lo studente intende dedicarsi ogni giorno, le ore massime di studio giornaliero e le ore minime settimanali che intende dedicare a ciascun esame.

	Lun	Mar	Mer	Gio	Ven	h min studio (sett.)
A	*		*	*		6
В		*		*	*	5
С	*	*	*		*	4
h max studio (giorn.)	5	6	4	7	5	

variabili decisionali:			
1 11			
modello:			

Esercizio 2. Completare la seguente tabella considerando il problema di programmazione lineare:

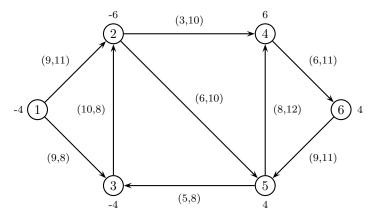
$$\begin{cases} \max -6 x_1 + 5 x_2 \\ -x_1 + x_2 \le -7 \\ x_1 + 2 x_2 \le -5 \\ 3 x_1 - x_2 \le 20 \\ x_1 - x_2 \le 12 \\ -2 x_1 - x_2 \le 4 \\ -x_1 - x_2 \le 6 \\ x_1 - x_2 \le 13 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	Degenere (si/no)
$\{1, 2\}$	x =		
${3, 4}$	y =		

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 2.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3,4}					
2° iterazione						

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacit).

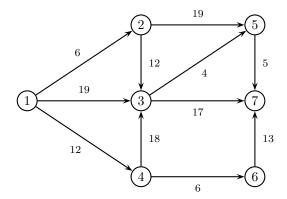


Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,4)				
(5,4) (6,5)	(5,3)	x =		
(1,2) (2,5) (5,3)				
(5,4) (6,5)	(4,6)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

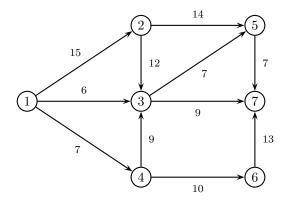
	1° iterazione	2° iterazione
Archi di T	(1,3) (2,5) (3,2) (4,6) (6,5)	
4 1 1 1 17	(2.4)	
Archi di U	(2,4)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.



	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.



cammino aumentante	δ	x	v

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

taglio:

$$\begin{cases} \max & 10 \ x_1 + 8 \ x_2 \\ 17 \ x_1 + 14 \ x_2 \le 64 \\ 10 \ x_1 + 19 \ x_2 \le 64 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a)	Calcolare una	valutazione	superiore de	el valore	ottimo	risolve	ndo il	rilassamento	continuo
----	---------------	-------------	--------------	-----------	--------	---------	--------	--------------	----------

sol. ottima del rilassamento =

$$v_S(P) =$$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

$$v_I(P) =$$

c) Calcolare un taglio di Gomory.

$$r =$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 citt, le cui distanze reciproche sono indicate in tabella:

citt	2	3	4	5
1	15	26	66	47
2		99	58	58
3			12	9
4				15

a)	П	rovare	una	valuta	zione	inferio	ore de	el valor	e ottimo	calcola	ndo	il 4	-albero	di	costo	minim	10
----	---	--------	-----	--------	-------	---------	--------	----------	----------	---------	-----	------	---------	----	-------	-------	----

4-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo pi vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{23} .

SOLUZIONI

Esercizio 1

Variabili decisionali:

Indichiamo con i = 1, 2, 3 gli esami A,B,C rispettivamente e con j = 1, 2, 3, 4, 5, i giorni della settimana dal lunedi al venerdi.

Sia
$$C = \{(1,1), (1,3), (1,4), (2,2), (2,4), (2,5), (3,1), (3,2), (3,3), (3,5)\}.$$

 $x_{ij} = \text{ore dedicate alla materia } i \text{ nel giorno } j, (i,j) \in C;$

Modello:

$$\begin{cases}
\max \sum_{(i,j) \in C} x_{ij} \\
x_{11} + x_{13} + x_{14} \ge 6 \\
x_{22} + x_{24} + x_{25} \ge 5 \\
x_{31} + x_{32} + x_{33} + x_{35} \ge 4
\end{cases}$$

$$\begin{cases}
x_{11} + x_{31} \le 5 \\
x_{22} + x_{32} \le 6 \\
x_{13} + x_{33} \le 4 \\
x_{14} + x_{24} \le 7 \\
x_{25} + x_{35} \le 5 \\
x_{ij} \ge 0, \ (i,j) \in C
\end{cases}$$

Esercizio 2. Completare la seguente tabella considerando il problema di programmazione lineare:

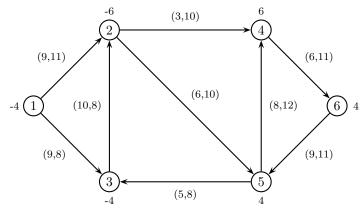
$$\begin{cases}
\max & -6 \ x_1 + 5 \ x_2 \\
-x_1 + x_2 \le -7 \\
x_1 + 2 \ x_2 \le -5 \\
3 \ x_1 - x_2 \le 20 \\
x_1 - x_2 \le 12 \\
-2 \ x_1 - x_2 \le 4 \\
-x_1 - x_2 \le 6 \\
x_1 - x_2 \le 13
\end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (3, -4)	SI	NO
{3, 4}	$y = \left(0, \ 0, \ -\frac{1}{2}, \ -\frac{9}{2}, \ 0, \ 0, \ 0\right)$	NO	NO

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 2.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
1° iterazione	{3, 4}	(4, -8)	$\left(0,\ 0,\ -\frac{1}{2},\ -\frac{9}{2},\ 0,\ 0,\ 0\right)$	3	$\frac{8}{3}$, 2	6
2° iterazione	{4, 6}	(3, -9)	$\left(0,\ 0,\ 0,\ -\frac{11}{2},\ 0,\ \frac{1}{2},\ 0\right)$	4	5, 20, 2	5

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacit).

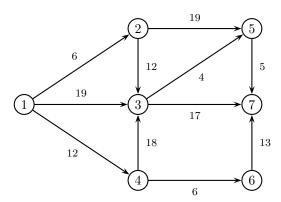


Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,4)				
(5,4) (6,5)	(5,3)	x = (16, -12, 22, 0, 0, 0, 8, -16, -4)	NO	NO
(1,2) (2,5) (5,3)				
(5,4) (6,5)	(4,6)	$\pi = (0, 9, 20, 23, 15, 6)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

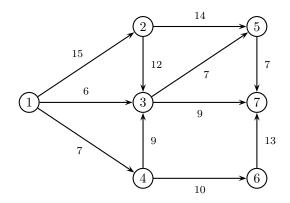
	1° iterazione	2° iterazione
Archi di T	(1,3) (2,5) (3,2) (4,6) (6,5)	(1,2) (2,5) (3,2) (4,6) (6,5)
Archi di U	(2,4)	(2,4)
x	(0, 4, 10, 4, 8, 4, 0, 0, 0)	(4, 0, 10, 4, 4, 4, 0, 0, 0)
π	(0, 19, 9, 10, 25, 16)	(0, 9, -1, 0, 15, 6)
Arco entrante	(1,2)	(2,4)
θ^+, θ^-	11 , 4	6,0
Arco uscente	(1,3)	(6,5)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.



	iter	1	iter	2	iter	3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4		3	3	(5	Ę	5	7	7
nodo 2	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 3	19	1	18	2	18	2	18	2	18	2	18	2	18	2
nodo 4	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 5	$+\infty$	-1	25	2	25	2	22	3	22	3	22	3	22	3
nodo 6	$+\infty$	-1	$+\infty$	-1	18	4	18	4	18	4	18	4	18	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	35	3	31	6	27	5	27	5
$\begin{array}{c c} \text{insieme} \\ Q \end{array}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	5, 6	5, 7	5,	7	7	7	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.



cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 3 - 7	3	(3,6,0,3,0,0,9,0,0,0)	9
1 - 2 - 5 - 7	7	(10,6,0,3,7,0,9,0,0,7,0)	16
1 - 4 - 6 - 7	7	(10,6,7,3,7,0,9,0,7,7,7)	23

Taglio di capacit minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 8 \ x_2 \\ 17 \ x_1 + 14 \ x_2 \le 64 \\ 10 \ x_1 + 19 \ x_2 \le 64 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{64}{17}, 0\right)$$
 $v_S(P) = 37$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(3,0)$$

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r = 1 & x_1 \le 3 \\ r = 4 & 7x_1 + 5x_2 \le 26 \end{vmatrix}$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 citt, le cui distanze reciproche sono indicate in tabella:

citt	2	3	4	5
1	15	26	66	47
2		99	58	58
3			12	9
4				15

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(1,3)(3,4)(3,5)(4,5)$$
 $v_I(P)=77$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo pi vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 4 - 3 - 5$$
 $v_S(P) = 141$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{23} .

