

Università degli Studi di Pisa
Corso di Laurea Magistrale in Informatica

Anno Accademico 2021-2022

Insegnamento di

Foundation of Computing

Pagina del corso: http:/pages.di.unipi.it/montanari/FOC.html

Note di

Pi Calcolo

a cura di

Ugo Montanari
Dipartimento di Informatica
Università degli Studi di Pisa

ugo@di.unipi.it

13.1 Name Mobility 291

The general mechanism for handling name mobility makes the formalisation
of the semantics of the p-calculus more complicated than that of CCS, especially
because of the side-conditions that serve to guarantee that certain names are fresh.

Let us start with an example which illustrates how the p-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch)
def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs).

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk0 and switch0) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i 2 [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi.

In the first case the base is connected to the car, so either the phone can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi for allowing it to

13.1 Name Mobility 291

The general mechanism for handling name mobility makes the formalisation
of the semantics of the p-calculus more complicated than that of CCS, especially
because of the side-conditions that serve to guarantee that certain names are fresh.

Let us start with an example which illustrates how the p-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch)
def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs).

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk0 and switch0) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i 2 [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi.

In the first case the base is connected to the car, so either the phone can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi for allowing it to

13.1 Name Mobility 291

The general mechanism for handling name mobility makes the formalisation
of the semantics of the p-calculus more complicated than that of CCS, especially
because of the side-conditions that serve to guarantee that certain names are fresh.

Let us start with an example which illustrates how the p-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch)
def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs).

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk0 and switch0) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i 2 [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi.

In the first case the base is connected to the car, so either the phone can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi for allowing it to

292 13 p-Calculus

change base. In the second case the base i becomes idle, and remains so until it is
alerted by the communication centre.

CENTRE1
def
= give1htalk2,switch2i.alert2.CENTRE2

CENTRE2
def
= give2htalk1,switch1i.alert1.CENTRE1.

The communication centre can be in different states according to which base is active.
In the example there are only two possible states for the communication centre
(CENTRE1 and CENTRE2), because only two bases are considered.

Finally we have the process which represents the entire system in the state where
the car is talking to the first base.

SYSTEM def
= CAR(talk1,switch1) | BASE1 | IDLEBASE2 | CENTRE1.

Then, suppose that: 1) the centre communicates the names talk2 and switch2 to
BASE1 by sending the message give1htalk2,switch2i; 2) the centre alerts BASE2 by
sending the message alert2; 3) BASE1 tells CAR to switch to channels talk2 and
switch2, by sending the message switchi(talk2,switch2). Correspondingly, we have:

SYSTEM t�! t�! t�! CAR(talk2,switch2) | IDLEBASE1 | BASE2 | CENTRE2.

Example 13.2 (Secret channel via trusted server). As another example, consider two
processes Alice (A) and Bob (B) that want to establish a secret channel using a trusted
server (S) with which they already have trustworthy communication link cAS (for
Alice to send private messages to the server) and cSB (for the server to send private
messages to Bob). The system can be represented by the expression:

SY S def
= (cAS)(cSB)(A | S | B)

where restrictions (cAS) and (cSB) guarantee that channels cAS and cSB are not visible
from the environment and where the processes A, S and B are specified as follows:

A def
= (cAB)cAScAB.cABm.A0 S def

=!cAS(x).cSBx.nil B def
= cSB(y).y(w).B0.

Alice defines a private name cAB that wants to use for communicating with B (see
the restriction (cAB)), then Alice sends the name cAB to the trusted server over their
private shared link cAS (output prefix cAScAB) and finally sends the message m on
the channel cAB (output prefix cABm) and continues as A0. The server continuously
waits for messages from Alice on channel cAS (input prefix cAS(x)) and forwards the
content to Bob (output prefix cSBx). Here the replication operator ! allows to serve
multiple requests from Alice by issuing multiple instances of the server process. Bob
waits to receive a name to be replaced for y from the server over the channel cSB
(input prefix cSB(y)) and then uses y to input the message from Alice (input prefix
y(w)) and then continues as B0[cAB/y,m /w].

292 13 p-Calculus

change base. In the second case the base i becomes idle, and remains so until it is
alerted by the communication centre.

CENTRE1
def
= give1htalk2,switch2i.alert2.CENTRE2

CENTRE2
def
= give2htalk1,switch1i.alert1.CENTRE1.

The communication centre can be in different states according to which base is active.
In the example there are only two possible states for the communication centre
(CENTRE1 and CENTRE2), because only two bases are considered.

Finally we have the process which represents the entire system in the state where
the car is talking to the first base.

SYSTEM def
= CAR(talk1,switch1) | BASE1 | IDLEBASE2 | CENTRE1.

Then, suppose that: 1) the centre communicates the names talk2 and switch2 to
BASE1 by sending the message give1htalk2,switch2i; 2) the centre alerts BASE2 by
sending the message alert2; 3) BASE1 tells CAR to switch to channels talk2 and
switch2, by sending the message switchi(talk2,switch2). Correspondingly, we have:

SYSTEM t�! t�! t�! CAR(talk2,switch2) | IDLEBASE1 | BASE2 | CENTRE2.

Example 13.2 (Secret channel via trusted server). As another example, consider two
processes Alice (A) and Bob (B) that want to establish a secret channel using a trusted
server (S) with which they already have trustworthy communication link cAS (for
Alice to send private messages to the server) and cSB (for the server to send private
messages to Bob). The system can be represented by the expression:

SY S def
= (cAS)(cSB)(A | S | B)

where restrictions (cAS) and (cSB) guarantee that channels cAS and cSB are not visible
from the environment and where the processes A, S and B are specified as follows:

A def
= (cAB)cAScAB.cABm.A0 S def

=!cAS(x).cSBx.nil B def
= cSB(y).y(w).B0.

Alice defines a private name cAB that wants to use for communicating with B (see
the restriction (cAB)), then Alice sends the name cAB to the trusted server over their
private shared link cAS (output prefix cAScAB) and finally sends the message m on
the channel cAB (output prefix cABm) and continues as A0. The server continuously
waits for messages from Alice on channel cAS (input prefix cAS(x)) and forwards the
content to Bob (output prefix cSBx). Here the replication operator ! allows to serve
multiple requests from Alice by issuing multiple instances of the server process. Bob
waits to receive a name to be replaced for y from the server over the channel cSB
(input prefix cSB(y)) and then uses y to input the message from Alice (input prefix
y(w)) and then continues as B0[cAB/y,m /w].

13.4 Structural Equivalence of p-calculus 299

13.3.9 A Sample Derivation

Example 13.3 (Scope extrusion). We conclude this section by showing an example
of the use of the rule system. Let us consider the following system:

(((y)xy.p) | q) | x(z).r

where p,q,r are p-calculus processes. The process (y)x y.p would like to set up a
private channel with x(z).r, which however should remain hidden to q. By using
the inference rules of the operational semantics we can proceed in a goal-oriented
fashion to find a derivation for the corresponding transition:

(((y)xy.p) | q) | x(z).r a�! s

-(CloseL), a=t, s=(w)(s1 | r1) ((y)xy.p) | q
x(w)��! s1, x(z).r

x(w)��! r1

-(ParL), s1=p1 | q, w62fn(q) (y)xy.p
x(w)��! p1 x(z).r

x(w)��! r1

-(Open), p1=p2[w/y], w62fn((y).p) xy.p xy�! p2, x(z).r
x(w)��! r1

-⇤
(Out)+(In), r1=r[w/z], p2=p, w62fn((z).r) ⇤

so we have:

p2 = p
p1 = p2[

w/y] = p[w/y]

r1 = r[w/z]

s1 = p1 | q = p[w/y] | q
s = (w)(s1 | r1) = (w)((p[w/y] | q) | (r[w/z]))

a = t

In conclusion:

(((y)xy.p) | q) | x(z).r t�! (w)((p[w/y] | q) | (r[w/z]))

under the condition that w is fresh, i.e., that w 62 fn(q)[fn((y)p)[fn((z)r).

13.4 Structural Equivalence of p-calculus

As we have already noticed for CCS, there are different terms representing essentially
the same process. As the complexity of the calculus increases, it is more and more
convenient to manipulate terms up to some intuitive structural axioms. In the follow-
ing we denote by ⌘ the least congruence2 over p-calculus processes that includes

2 This means that ⌘ is reflexive, symmetric, transitive and closed under context embedding.

Bisimulation

Early bisimilar processes

Late bisimilar processes

Processes which are early but not late bisimilar

302 13 p-Calculus

13.5.1 Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a
channel x there exists a state q0 in which the bisimilar agent will be after receiving w
on x. This means that the bisimilar agent can choose a different transition (and thus a
different state q0) depending on the observed name w.

Formally, a binary relation S on p-calculus agents is a strong early ground bisim-
ulation if:

8p,q. p S q)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8p0. if p t�! p0 then 9q0. q t�! q0 and p0 S q0

8x,y, p0. if p xy�! p0 then 9q0. q xy�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

Of course, “vice versa” means that other four cases are present, where q challenges p
to (bi)simulate its transitions. Note that in the case of silent label t or output labels xy
the definition of bisimulation is as expected. The case of bound output labels x(y) has
the additional condition y 62 fn(q) as it makes sense to consider only moves where
y is fresh for both p and q.4 The more interesting case is that of input labels x(y):
here we have the same condition y 62 fn(q) as in the case of bound output (for exactly
the same reason), but additionally we require that p0 and q0 are compared w.r.t. all
possible received names p0[w/y] S q0[w/y]. Notice that, as obvious for a generic input,
also names which are not fresh (namely that appear free in p0 and q0) can replace
variable y. This is the reason why we required y to be fresh in the first place. It
is important to remark that different moves of q can be chosen depending on the
received value w: this is the main feature of early bisimilarity.

The very same definition of strong early ground bisimulation can be written more
concisely by grouping together the three cases of silent label, output labels and bound
output labels in the same clause:

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

4 In general, a bisimulation can relate processes whose sets of free names are different, as they
are not necessarily used. For example, we want to relate p and p | q when q is deadlocked, even if
fn(q) 6= ?, so the condition y 62 fn(p | q) is necessary to allow p | q to (bi)simulate all bound output
moves of p, if any.

302 13 p-Calculus

13.5.1 Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a
channel x there exists a state q0 in which the bisimilar agent will be after receiving w
on x. This means that the bisimilar agent can choose a different transition (and thus a
different state q0) depending on the observed name w.

Formally, a binary relation S on p-calculus agents is a strong early ground bisim-
ulation if:

8p,q. p S q)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8p0. if p t�! p0 then 9q0. q t�! q0 and p0 S q0

8x,y, p0. if p xy�! p0 then 9q0. q xy�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

Of course, “vice versa” means that other four cases are present, where q challenges p
to (bi)simulate its transitions. Note that in the case of silent label t or output labels xy
the definition of bisimulation is as expected. The case of bound output labels x(y) has
the additional condition y 62 fn(q) as it makes sense to consider only moves where
y is fresh for both p and q.4 The more interesting case is that of input labels x(y):
here we have the same condition y 62 fn(q) as in the case of bound output (for exactly
the same reason), but additionally we require that p0 and q0 are compared w.r.t. all
possible received names p0[w/y] S q0[w/y]. Notice that, as obvious for a generic input,
also names which are not fresh (namely that appear free in p0 and q0) can replace
variable y. This is the reason why we required y to be fresh in the first place. It
is important to remark that different moves of q can be chosen depending on the
received value w: this is the main feature of early bisimilarity.

The very same definition of strong early ground bisimulation can be written more
concisely by grouping together the three cases of silent label, output labels and bound
output labels in the same clause:

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

4 In general, a bisimulation can relate processes whose sets of free names are different, as they
are not necessarily used. For example, we want to relate p and p | q when q is deadlocked, even if
fn(q) 6= ?, so the condition y 62 fn(p | q) is necessary to allow p | q to (bi)simulate all bound output
moves of p, if any.

304 13 p-Calculus

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and 8w. p0[w/y] S q0[w/y]

(and vice versa)

The only difference w.r.t. the definition of strong early ground bisimulation is that,
in the second clause, the order of quantifiers 9q0 and 8w is inverted.

Remark 13.5. In the literature, early and late bisimulations are often defined over
two different transition systems. For example, if only early bisimilarity is considered,
then the labels for input transitions could contain the actual received name, which
can be either free or fresh. We have chosen to define a single transition system to
give an uniform presentation of the two abstract semantics.

Definition 13.4 (Late bisimilarity ⇠L). Two p-calculus agents p and q are said to
be late bisimilar, written p ⇠L q if there exists a strong late ground bisimulation S
such that p S q.

The next example illustrates the difference between late and early bisimilarities.

Example 13.5 (Early vs late bisimulation). Let us consider again the early bisimilar
processes p and q from Example 13.3. When late bisimilarity is considered, then
the two agents are not equivalent. In fact p should find a state which can handle all
the possible names received on x. If the leftmost choice is selected, then t.nil is
equivalent to [w = z].t.nil only when when the received value w = z but not in the
other cases. On the other hand, if the right choice is selected, then t.nil is equivalent
to [w = z].t.nil only when w 6= z.

As the above example suggests, it is possible to prove that early bisimilarity is
strictly coarser than late: if p and q are late bisimilar, then they are early bisimilar.

13.5.3 Compositionality and Strong Full Bisimilarities

Unfortunately both early and late ground bisimilarities are not congruences, even in
the strong case, as shown by the following counterexample.

Example 13.6 (Ground bisimilarities are not congruences). Let us consider the fol-
lowing agents:

p def
= xx.nil | x0(y).nil q def

= xx.x0(y).nil + x0(y).xx.nil

We leave the reader to check that the agents p and q are bisimilar (according to both
early and late bisimilarities). Now, in order to show that ground bisimulations are not
congruences, we define the following context:

13.5 Abstract Semantics of the p-calculus 303

Remark 13.4. While the second clause introduces universal quantification over the
received names, it is enough to check that the condition p0[w/y] S q0[w/y] is satisfied
for all w 2 fn(p0)[fn(q0) and for a single fresh name w 62 fn(p0)[fn(q0), i.e., for a
finite set of names.

Definition 13.3 (Early bisimilarity ⇠E). Two p-calculus agents p and q are early
bisimilar, written p ⇠E q, if there exists a strong early ground bisimulation S such
that p S q.

Example 13.4 (Early bisimilar processes). Let us consider the processes:

p def
= x(y).t.nil + x(y).nil q def

= p + x(y).[y = z]t.nil

whose transitions are (for any fresh name u):

p
x(u)��! t.nil q

x(u)��! t.nil
p

x(u)��! nil q
x(u)��! nil

q
x(u)��! [u = z]t.nil

The two processes p and q are early bisimilar. On the one hand, it is obvious that q
can simulate all moves of p. On the other hand, let q perform an input operation on
x by choosing the rightmost option. Then, we need to find, for each received name

w to be substituted for u, a transition p
x(u)��! p0 such that p0[w/u] is early bisimilar

to [w = z]t.nil. If the received name is w = z, then the match is satisfied and p can
choose to perform the left input operation to reach the state t.nil, which is early
bisimilar to [z = z]t.nil. Otherwise, if w 6= z, then the match condition is not satisfied
and [w = z]t.nil is deadlock, so p can choose to perform the right input operation
and reach the deadlock state nil. Notably, in the early bisimulation game, the received
name is known prior to the choice of the transition by the defender.

13.5.2 Strong Late Ground Bisimulations

In the case of late bisimulation, we require that, if an agent p has an input transition
to p0, then there exists a single input transition of q to q0 such that p0 and q0 are
related for any received value, i.e., q must choose the transition without knowing
what the received value will be.

Formally, a binary relation S on p-calculus agents is a strong late ground bisimu-
lation if (in concise form):

304 13 p-Calculus

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and 8w. p0[w/y] S q0[w/y]

(and vice versa)

The only difference w.r.t. the definition of strong early ground bisimulation is that,
in the second clause, the order of quantifiers 9q0 and 8w is inverted.

Remark 13.5. In the literature, early and late bisimulations are often defined over
two different transition systems. For example, if only early bisimilarity is considered,
then the labels for input transitions could contain the actual received name, which
can be either free or fresh. We have chosen to define a single transition system to
give an uniform presentation of the two abstract semantics.

Definition 13.4 (Late bisimilarity ⇠L). Two p-calculus agents p and q are said to
be late bisimilar, written p ⇠L q if there exists a strong late ground bisimulation S
such that p S q.

The next example illustrates the difference between late and early bisimilarities.

Example 13.5 (Early vs late bisimulation). Let us consider again the early bisimilar
processes p and q from Example 13.3. When late bisimilarity is considered, then
the two agents are not equivalent. In fact p should find a state which can handle all
the possible names received on x. If the leftmost choice is selected, then t.nil is
equivalent to [w = z].t.nil only when when the received value w = z but not in the
other cases. On the other hand, if the right choice is selected, then t.nil is equivalent
to [w = z].t.nil only when w 6= z.

As the above example suggests, it is possible to prove that early bisimilarity is
strictly coarser than late: if p and q are late bisimilar, then they are early bisimilar.

13.5.3 Compositionality and Strong Full Bisimilarities

Unfortunately both early and late ground bisimilarities are not congruences, even in
the strong case, as shown by the following counterexample.

Example 13.6 (Ground bisimilarities are not congruences). Let us consider the fol-
lowing agents:

p def
= xx.nil | x0(y).nil q def

= xx.x0(y).nil + x0(y).xx.nil

We leave the reader to check that the agents p and q are bisimilar (according to both
early and late bisimilarities). Now, in order to show that ground bisimulations are not
congruences, we define the following context:

13.5 Abstract Semantics of the p-calculus 305

C[·] = z(x0).[·]

by plugging p and q inside the hole of C[·] we get:

C[p] = z(x0).(xx.nil | x0(y).nil) C[q] = z(x0).(xx.x0(y).nil + x0(y).xx.nil)

C[p] and C[q] are not early bisimilar (and thus not late bisimilar). In fact, suppose
the name x is received on z: we need to compare the agents

p0 def
= xx.nil | x(y).nil q0 def

= xx.x(y).nil + x(y).xx.nil

Now p0 can perform a t-transition, but q0 cannot.

The problem illustrated by the previous example is due to aliasing, and it appears
often in programming languages with both global variables and parameter passing to
procedures. It can be solved by defining a finer relation between agents called strong
early full bisimilarity and defined as follows:

p 'E q , ps ⇠E qs for every substitution s

where a substitution s is a function from names to names that is equal to the identity
function almost everywhere (i.e., it differs from the identity function only on a finite
number of elements of the domain).

Analogously, we can define strong late full bisimilarity 'L by letting

p 'L q , ps ⇠L qs for every substitution s

13.5.4 Weak Early and Late Ground Bisimulations

As for CCS, we can define the weak versions of transitions a
=) and of bisimulation

relations. The definition of weak transitions is the same as CCS: 1) we write p t
=) q

if p can reach q via a, possibly empty, sequence of t-transitions; and 2) we write
p a

=) q for a 6= t if there exist p0,q0 such that p t
=) p0 a�! q0 t

=) q.
The definition of weak early ground bisimulation S is then the following:

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a
=) q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)
==) q0 and p0[w/y] S q0[w/y]

(and vice versa)

So we define the corresponding weak early bisimilarity ⇡E as follows:

300 13 p-Calculus

p+nil ⌘ p p+q ⌘ q+ p (p+q)+ r ⌘ p+(q+ r)
p | nil ⌘ p p | q ⌘ q | p (p | q) | r ⌘ p | (q | r)
(x)nil ⌘ nil (y)(x)p ⌘ (x)(y)p (x)(p | q) ⌘ p | (x)q if x /2 fn(p)

[x = y]nil ⌘ nil [x = x] p ⌘ p p | !p ⌘ !p

Fig. 13.3: Axioms for structural equivalence

a-conversion of bound names and that is induced by the set of axioms in Figure 13.3.
The relation ⌘ is called structural equivalence.

13.4.1 Reduction semantics

The operational semantics of p-calculus is much more complicated than that of
CCS because it needs to handle name passing and scope extrusion. By exploiting
structural equivalence we can define a so-called reduction semantics that is simpler
to understand. The idea is to define an LTS with silent labels only, that models all the
interactions that can take place in a process, without considering interactions with
the environment. This is accomplished by first rewriting the process to a structurally
equivalent normal form and then by applying basic reduction rules. In fact it can be
proved that for each p-calculus process p there exists:

• a finite number of names x1,x2, ...,xk;
• a finite number of guarded sums3 s1,s2, ...,sn;
• and a finite number of processes p1, p2, ..., pm, such that

P ⌘ (x1) · · ·(xk)(s1 | · · · | sn | !p1 | · · · | !pm)

Then, a reduction is either a silent action performed by some si or a communication
from an input prefix of say si with an output prefix of say s j. We write the reduction
relation as a binary relation on processes using the notation p 7! q for indicating that
p reduces to q in one step. The rules defining the relation 7! are the following:

t.p+ s 7! p (x(y).p1 + s1)|(xz.p2 + s2) 7! p1[z/y]|p2

p 7! p0

p|q 7! p0|q

p 7! p0

(x)p 7! (x)p0

p ⌘ q q 7! q0 q0 ⌘ p0

p 7! p0

The reduction semantics can be put in correspondence with the (silent transitions
of the) labelled operational semantics by the following theorem.

Lemma 13.1 (Harmony Lemma). For any p-calculus processes p, p0 and any ac-
tion a we have that:

3 They are nondeterministic choices whose arguments are action prefixed processes, i.e., they take
the form p1.p1 + · · ·+ph.ph.

300 13 p-Calculus

p+nil ⌘ p p+q ⌘ q+ p (p+q)+ r ⌘ p+(q+ r)
p | nil ⌘ p p | q ⌘ q | p (p | q) | r ⌘ p | (q | r)
(x)nil ⌘ nil (y)(x)p ⌘ (x)(y)p (x)(p | q) ⌘ p | (x)q if x /2 fn(p)

[x = y]nil ⌘ nil [x = x] p ⌘ p p | !p ⌘ !p

Fig. 13.3: Axioms for structural equivalence

a-conversion of bound names and that is induced by the set of axioms in Figure 13.3.
The relation ⌘ is called structural equivalence.

13.4.1 Reduction semantics

The operational semantics of p-calculus is much more complicated than that of
CCS because it needs to handle name passing and scope extrusion. By exploiting
structural equivalence we can define a so-called reduction semantics that is simpler
to understand. The idea is to define an LTS with silent labels only, that models all the
interactions that can take place in a process, without considering interactions with
the environment. This is accomplished by first rewriting the process to a structurally
equivalent normal form and then by applying basic reduction rules. In fact it can be
proved that for each p-calculus process p there exists:

• a finite number of names x1,x2, ...,xk;
• a finite number of guarded sums3 s1,s2, ...,sn;
• and a finite number of processes p1, p2, ..., pm, such that

P ⌘ (x1) · · ·(xk)(s1 | · · · | sn | !p1 | · · · | !pm)

Then, a reduction is either a silent action performed by some si or a communication
from an input prefix of say si with an output prefix of say s j. We write the reduction
relation as a binary relation on processes using the notation p 7! q for indicating that
p reduces to q in one step. The rules defining the relation 7! are the following:

t.p+ s 7! p (x(y).p1 + s1)|(xz.p2 + s2) 7! p1[z/y]|p2

p 7! p0

p|q 7! p0|q

p 7! p0

(x)p 7! (x)p0

p ⌘ q q 7! q0 q0 ⌘ p0

p 7! p0

The reduction semantics can be put in correspondence with the (silent transitions
of the) labelled operational semantics by the following theorem.

Lemma 13.1 (Harmony Lemma). For any p-calculus processes p, p0 and any ac-
tion a we have that:

3 They are nondeterministic choices whose arguments are action prefixed processes, i.e., they take
the form p1.p1 + · · ·+ph.ph.

ugo
Sticky Note
X supports aiffπ ∈fix(X) → π ∈G(a)

ugo
Sticky Note
left
=>
right

