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An Introductory Example 

A dynamic concurrent stack 
of equal cells 

11.1 From Sequential to Concurrent Systems 225

dynamically created and disposed and that communicate by sending and receiving
data over some channels:1

• the send operation of data v over channel a is denoted by av;
• the receive operation of data x over channel a is denoted by ax.

We have one process (or agent) for each cell of the stack. Each process can
store one incoming value or send a stored value to other processes. All processes
involved in the implementation of the extensible stack follow essentially the same
communication pattern. We represent graphically one of such processes as follows:

CELL

� �

� �

The figure shows that a CELL has four channels a,b ,g,d that can be used to
communicate with other cells. A stack is obtained by aligning the necessary cells in a
sequence. In general, a process can perform bidirectional operations on its channels.
Instead, in this particular case, each cell will use each channel for either input or
output operations (but not both) as suggested by the arrows in the above figure:

Channel a: is the input channel to receive data from either the external environ-
ment or the left neighbour cell;

Channel g: is the channel used to send data to either the external environment or
the left neighbour cell;

Channel b : is the channel used to send data to the right neighbour cell and to
manage the end of the stack;

Channel d : is the channel used to receive data from the right neighbour cell and
to manage the end of the stack.

In the following, we specify the possible states (CELL0, CELL1, CELL2 and
ENDCELL) that a cell can have, each corresponding to some specific behaviour.
Note that some states are parametric to certain values that represent, e.g., the particular
values stored in that cell. The four possible states are described below.

CELL0
def
= dx. if x = $ then ENDCELL else CELL1(x)

The state CELL0 represents the empty cell. The agent CELL0 waits for some data
from the channel d and stores it in x. When a value is received the agent checks if it
is equal to a special termination character $. If the received data is $ this means that
the agent is becoming the last cell of the stack, so it switches to the ENDCELL state.
Otherwise, if x is a valid value, the agent moves to the state CELL1(x).

1 In the literature, alternative notations for send and receive operations can be found, such as a!v
for sending the value v over a and a?(x) or just a(x) for receiving a value over a and binding it to
the variable x.
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CELL1(v)
def
= ay.CELL2(y,v) + gv.CELL0

The state CELL1(v) represents a cell that contains the value v. In this case the cell can
nondeterministically wait for new data on a or send the stored data v on g . In the first
case, the cell stores the new value in y and enters the state CELL2(y,v). The second
case happens when the stored value v is extracted from the cell; then the cell sends
the value v on g and it becomes empty by switching to the state CELL0. Note that the
operator + represents a nondeterministic choice performed by the agent. However a
particular choice could be forced on a cell by the behaviour of its neighbours.

CELL2(u,v) def
= bv.CELL1(u)

The cell in state CELL2(u,v) carries two parameters u (the last received value) and v
(the previously stored value). The agent must cooperate with its neighbours to shift
the data to the right. To this aim, the agent communicates to the right neighbour the
old stored value v on b and enters the state CELL1(u).

ENDCELL def
= az.(CELL1(z) _

^ ENDCELL| {z }
a new bottom cell

) + g$.nil

The state ENDCELL represents the bottom of the stack. An agent in this state can
perform two actions in a nondeterministic way. First, if a new value is received on
a (in order to perform a right-bound shift), then the new data is stored in z and the
agent moves to state CELL1(z). At the same time, a new agent is created, whose
initial state is ENDCELL, that becomes the new bottom cell of the stack. Note that
we want the newly created agent ENDCELL to be able to communicate with its
neighbour CELL1(z) only. We will explain later how this can be achieved, when
giving the exact definition of the linking operation _

^ (see Example 11.3). Informally,
the b and d channels of CELL1(z) are linked, respectively, to the a and g channels
of ENDCELL and the communication over them is kept private with respect to the
environment: only the channels a and g of CELL1(z) will be used to communicate
with neighbours cells and all the other communications are kept local. The second
alternative is that the agent can send the special symbol $ to the left neighbour cell,
provided it is able to receive this value. This is possible only if the left neighbour
cell is empty (see state CELL0) and after receiving the symbol $ on its channel
d it becomes the new ENDCELL. Then the present agent concludes its execution
becoming the inactive process nil.

Notice that ENDCELL cannot send or receive messages on its b and d channels.
In fact, ENDCELL should possess no such channels. Also, the behaviour of the stack
is correct only if the initial state of the agent is ENDCELL.

Now we will show how the stack works. Let us start from an empty stack. We
have only one cell in the state ENDCELL, whose channels b and d are made private,
written ENDCELL\b\d : no neighbour will be linked to the right side of the cell.

Suppose we want to perform a push operation in order to insert the value 1 in
the stack. This can be achieved by sending the value 1 on the channel a to the cell
ENDCELL (see Figure 11.1).
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A CELL can be in one of four different states 
according to the number of data items  
(natural numbers) it contains 
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nondeterministically wait for new data on a or send the stored data v on g . In the first
case, the cell stores the new value in y and enters the state CELL2(y,v). The second
case happens when the stored value v is extracted from the cell; then the cell sends
the value v on g and it becomes empty by switching to the state CELL0. Note that the
operator + represents a nondeterministic choice performed by the agent. However a
particular choice could be forced on a cell by the behaviour of its neighbours.

CELL2(u,v) def
= bv.CELL1(u)

The cell in state CELL2(u,v) carries two parameters u (the last received value) and v
(the previously stored value). The agent must cooperate with its neighbours to shift
the data to the right. To this aim, the agent communicates to the right neighbour the
old stored value v on b and enters the state CELL1(u).

ENDCELL def
= az.(CELL1(z) _

^ ENDCELL| {z }
a new bottom cell

) + g$.nil

The state ENDCELL represents the bottom of the stack. An agent in this state can
perform two actions in a nondeterministic way. First, if a new value is received on
a (in order to perform a right-bound shift), then the new data is stored in z and the
agent moves to state CELL1(z). At the same time, a new agent is created, whose
initial state is ENDCELL, that becomes the new bottom cell of the stack. Note that
we want the newly created agent ENDCELL to be able to communicate with its
neighbour CELL1(z) only. We will explain later how this can be achieved, when
giving the exact definition of the linking operation _

^ (see Example 11.3). Informally,
the b and d channels of CELL1(z) are linked, respectively, to the a and g channels
of ENDCELL and the communication over them is kept private with respect to the
environment: only the channels a and g of CELL1(z) will be used to communicate
with neighbours cells and all the other communications are kept local. The second
alternative is that the agent can send the special symbol $ to the left neighbour cell,
provided it is able to receive this value. This is possible only if the left neighbour
cell is empty (see state CELL0) and after receiving the symbol $ on its channel
d it becomes the new ENDCELL. Then the present agent concludes its execution
becoming the inactive process nil.

Notice that ENDCELL cannot send or receive messages on its b and d channels.
In fact, ENDCELL should possess no such channels. Also, the behaviour of the stack
is correct only if the initial state of the agent is ENDCELL.

Now we will show how the stack works. Let us start from an empty stack. We
have only one cell in the state ENDCELL, whose channels b and d are made private,
written ENDCELL\b\d : no neighbour will be linked to the right side of the cell.

Suppose we want to perform a push operation in order to insert the value 1 in
the stack. This can be achieved by sending the value 1 on the channel a to the cell
ENDCELL (see Figure 11.1).
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Fig. 11.1: ENDCELL\b\d receiving the value 1 on channel a

Once the cell receives the new value it generates a new bottom process ENDCELL
for the stack and changes its state to CELL1(1). The result of this operation is the
configuration shown in Figure 11.2.

�

�

CELL1(1) ENDCELL

�3

Fig. 11.2: (CELL1(1) _
^ ENDCELL)\b\d receiving the value 3 on channel a

When the stack is stabilised we can perform another push operation, say with
value 3. In this case the first cell moves to state CELL2(3,1) in order to perform a
right-bound shift of the previously stored value 1 (see Figure 11.3).

Fig. 11.3: (CELL2(3,1) _
^ ENDCELL)\b\d before right-shifting the value 1

Then, when the rightmost cell (ENDCELL) receives the value 1 on its channel
a , privately connected to the channel b of the leftmost cell (CELL2(3,1)) via the
linking operation _

^, it will change its state to CELL1(1) and will spawn a new
ENDCELL, while the leftmost cell moves from the state CELL2(3,1) to the state
CELL1(3) (see Figure 11.4). Note that the linking operation is associative.

Now suppose we perform a pop operation, which will return the last value pushed
into the stack (i.e., 3). The corresponding operation is an output to the environment
(on channel g) of the leftmost cell. In this case the leftmost cell changes its state
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Fig. 11.4: CELL1(3) _
^ CELL1(1) _

^ ENDCELL\b\d before a pop operation

to CELL0, and waits for a value through its channel d (privately connected to the
channel g of the middle cell). The situation is depicted in Figure 11.5.

Fig. 11.5: (CELL0
_
^ CELL1(1) _

^ ENDCELL)\b\d before left-shifting value 1

When the middle cell sends the value 1 to the leftmost cell, it changes its state to
CELL0, and waits for the value sent from the rightmost cell. Then, since the received
value from ENDCELL is $, the middle cell changes its state to ENDCELL, while
the rightmost cell reduces to nil, as illustrated in Figure 11.6 (where the nil agent is
just omitted, because it is the unit of composition).

Fig. 11.6: (CELL1(1) _
^ ENDCELL _

^ nil)\b\d

The above example shows that processes can synchronise in pairs, by perform-
ing dual (input/output) operations. In this chapter, we focus on a pure version of
CCS, where we abstract away from the values communicated on channels. The
correspondence with value passing CCS is briefly discussed in Section 11.3.8.
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Example 11.2 (Derivation). We show an example of the use of the derivation rules
we have introduced. Let us take the (guarded) CCS process: ((p | q) | r)\α , where:

p def
= rec x. (α.x+β .x) q def

= rec x. (α.x+ γ.x) r def
= rec x. α.x.

First, let us focus on the behaviour of the simpler, deterministic agent r. We have:

rec x. α.x λ−→ r′ ↖Rec α.(rec x. α.x) λ−→ r′

↖Act, λ=α, r′=rec x. α.x 2

where we have annotated each derivation step with the name of the applied rule.
Thus, r α−→ r and since there are no other rules applicable during the above derivation,
the LTS associated with r consists of a single state and one looping arrow with
label α . Correspondingly, the agent is able to perform the action α indefinitely.
However, when embedded in the larger system above, then the action α is blocked
by the topmost restriction ·\α . Therefore, the only opportunity for r to execute a
transition is by synchronising on channel α with either one or the other of the two
(nondeterministic) agents p and q. In fact the synchronisation on α produces an
action τ which is not blocked by ·\α . Note that p and q are also available to interact
with some external agent on other non-restricted channels (β or γ).

By using the rules of the operational semantics of CCS we have, e.g.:

((p | q) | r)\α µ−→ s ↖Res, s=s′\α (p | q) | r µ−→ s′, µ 6= α,α

↖Com, µ=τ, s′=s′′ | r1
p | q λ−→ s′′, r λ−→ r1

↖Par, s′′=p | q1
q λ−→ q1, r λ−→ r1

↖Rec α.q+ γ.q λ−→ q1, r λ−→ r1

↖Sum α.q λ−→ q1, r λ−→ r1

↖Act, λ=α, q1=q r α−→ r1

↖Rec α.r α−→ r1

↖Act, r1=r �

From which we derive:
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Fig. 11.8: Graphically illustration of the concatenation operator p _
^ q

r1 = r = rec x. α.x

q1 = q = rec x. α.x+ γ.x

s′′ = p | q1 = (rec x. α.x+β .x) | rec x. α.x+ γ.x

s′ = s′′ | r1 = ((rec x. α.x+β .x) | (rec x. α.x+ γ.x)) | rec x. α.x

s = s′\α = (((rec x. α.x+β .x) | (rec x. α.x+ γ.x)) | rec x. α.x)\α
µ = τ

and thus:
((p | q) | r)\α τ−→ ((p | q) | r)\α

Note that during the derivation we had to choose several times between different
rules which could have been applied; while in general it may happen that wrong
choices can lead to dead ends, our choices have been made so to complete the
derivation satisfactorily, avoiding any backtracking. Of course other transitions are
possible for the agent ((p | q) | r)\α : we leave it as an exercise to identify all of them
and draw the complete LTS (see Problem 11.1).

Example 11.3 (Dynamic stack: linking operator). Let us consider again the extensible
stack from Example 11.1. We show how to formalise in CCS the linking operator _

^.
We need two new channels ϑ and η , which will be private to the concatenated cells.
Then, we let:

p _
^ q = (p[φβ ,δ ] | q[φα,γ ])\ϑ\η

where φβ ,δ is the relabelling that switches β with ϑ , δ with η and is the identity
otherwise, while φα,γ switches α with ϑ , γ with η and is the identity otherwise.
Notably, ϑ and η are restricted, so that their scope is kept local to p and q, avoiding
any conflict on channel names from the outside. For example, messages sent on β by
p are redirected to ϑ and must be received by q that views ϑ as α . Instead, messages
sent on β by q are not redirected to ϑ and will appear as messages sent on β by the
whole process p _

^ q (see Figure 11.8).




















