

Università degli Studi di Pisa
Corso di Laurea Magistrale in Informatica

Anno Accademico 2021-2022

Insegnamento di

Foundation of Computing

Pagina del corso: http:/pages.di.unipi.it/montanari/FOC.html

Note di

Teoria della Concorrenza

1. Specifiche algebriche, categorie di modelli e aggiunzioni

2. Le reti di Petri e i loro modelli monoidali (strettamente) simmetrici

a cura di

Ugo Montanari
Dipartimento di Informatica
Università degli Studi di Pisa

ugo@di.unipi.it

Double-pushout step by step process (continued)

(1) (2)

L

m

��

K //

��

oo R

��

G Doo // H

(1) construct D such that the gluing of L and D via K is equal to G

(2) construct the gluing of R and D via K leading to the graph H

Simple Example

64

observations, interfaces and tiles themselves are all supposed to consist of several
components in parallel.

initial

initial configuration initial
input s ,~ ou tpu t

interface interface

trigger a effect

final final
input ,~ ou tpu t

interface s~ interface
final

configuration

Fig. 1. A tile.

Both configurations and observations are assumed to be equipped with oper-
ations of parallel and sequential composition. Similarly, tiles themselves possess
three operations of composition: parallel (_®_), horizontal (_,_), and vertical (_._)
composition.

The operation of parallel composition is self explanatory. Vertical composi-
tion models sequential composition of transitions and computations. Horizontal
composition corresponds to synchronization: the effect of the first tile acts as
trigger of the second tile, and the resulting tile expresses the synchronized be-
havior of both.

Computing in tile logic consists of starting from a set of basic tiles called
rewrite rules and of applying the composition rules in all possible ways. In general
the structure of a tile obtained in this way is specified by a proof, built up from the
basic tiles used in the derivation and from the composition operations performed
on them, up to certain normalizing axioms (which are those of monoidal double
categories).

A tile reduces to a rewriting logic rule when trigger and effect are identities,
i.e., when input and output interfaces stay idle during the step. In rewriting
logic, the rewriting process is fully asynchronous, in the sense that matching
rules can be independently applied, except when their redexes overlap. A tile
with nontrivial trigger or effect, instead, can be applied only when it matches
the whole state, or when it can be composed (usually horizontally or in parallel)
with other tiles to build such a global tile.

Abstract semantics can be defined on tiles in the obvious way, i.e., by consid-
ering triggers and effects as external observations. Equivalences and congruences
of configurations can then be defined in terms of traces, or via bisimilarity, or

74

x = {zij : (T, T'~Itl-<i~n -- JJ1_<j<rn,
Xl. = {:~ij : (T, T')}l_<j_<m,
x.j = { x , j : (T, T')}l<_i<n,

l < i < n
l < j < m .

[]

The essential property of T ® T ~ is expressed in the following theorem, whose
proof will be given elsewhere.

T h e o r e m 12. (models of the tensor product)
Let T, T ~ be theories in partial membership equational logic. Then we have

the following isomorphisms of categories:

PAlgT® T, ~ PAIg T (PAlg T,) ~ PAIg T, (PAIg T).

[]

A useful property of the tensor product of theories that we will make use
of without proof is its functoriality in the category of theories. Therefore, if
H : T1 --~ T2 and G : T~ --+ T~ are theory morphisms, we have an associated
theory morphism:

H ® G : TI ® T~ --+ T2 ® T~.

It can be shown that the tensor product of theories is associative and commu-
tative up to isomorphism, that is, that we have natural isomorphisms of theories
T ® T' ~_ T ~ ® T and T® (T ~ ® T") ~_ (T ® T ~) ® T ~' giving a symmetric monoidal
category structure to the category of theories.

Example4. (double category)
A double category has been defined [14] as a category structure on Cat, the

category of categories, that is, an object of PAIgcAT(PAIgcAT) = DCat . The
theory CAT ® CAT then axiomatizes double categories in partial membership
equational logic.

Spelling out the specification of T ® T ~ for the case of T = T' = CAT we get
the following poset of sorts, where Square is the top:

(Object, Object) = Object, (Arrow, Arrow) = Square,
(Arrow, Object) = Harrow, (Object,Arrow) = Varrow,
Object < Harrow < Square, Object < Varrow < Square.

For the operations in $2 ® I2 ~ we adopt the following N-E-W-S notation:

d t = w , c t = e , d ~ = n , e r = s , (4 -) t = - * - , (_;_)r =_ ._ .

The presentation of double categories in Maude-like notation is thus as fol-
lows.

86

Signatures of the CCS Rewrite System. There is only one sort 1. The free monoid
generated by it is represented by underlined natural numbers with rt ® rn =
m + n. For the horizontal signature the operators are: nil 6 (Eh)_0,!; /t._ and
_\a 6 (I7h)!,!; - + - and _ I - 6 (I7h)_2,!; and !(_) 6 (,Uh)!,_0. The latter constructor,
called eraser, is needed to discard the rejected alternative after a choice step.
For the vertical signature the operators are/J._ 6 (1Yv)!,!.

Rules of the CCS Rewrite System.

1
Pref~ : /z --W ! Restt : \o~ --~ \o~ for ~ ~ {a, H}

/~®1 1®/~
Suml~ : +~!@! Sumr~ : +~!®!

c o m p l . : I ~:~ I c o . p r . : I - ~ 1 Synchx : I ~---~ I . £ _~ r_

We associate a name to every rule of the tile rewrite system in order to
refer to them later. The rules closely correspond to the ordinary SOS rules. For
instance rule Prefg states, as its SOS counterpart, that constructor ~t can be
deleted, i.e., it can be replaced by the identity 1. Furthermore, the trigger is
also the identity, and thus the corresponding SOS rule is an axiom. Finally, the
effect is ~ and this corresponds to the label of the transition in the SOS case. As
another example, rule Suml u defines left choice. The initial configuration is the
constructor + : _2 --> 1, while the final configuration is 1@! : _2 -+ ! , which states
that the first component is preserved and the second component is discarded.
The trigger states that in the first component we must have an action ~t while
no action (i.e., identity action) is required on the second component. Action p_
is then transferred to the effect. We call CCS the computad defined in this way.

The tile corresponding to the previous example is obtained as follows:

= (((ni l * Prefixa) ® (nil * b) * Sumla) ® (n i l , Prefix~)) * Syneha * Rest.

CCS Rules and Tiles as Cells. According to Definition 21, we can now employ
the functor Fz to derive the enriched rewriting logic semantics of our CCS
rewrite system. For this purpose, we first specify the cell version of our rewrite
rules and then apply ERWL rewriting.

P~. : _~[~(v)] -+ p
sumlg : / t [p+ q] -~ £[p]®!(q)
Complg : ~t[p I q] --+ g[P] I q
SynchA : Z~ I q] -+ -~[P] I--X[q] •

Rest, : ~_~\a] --+ ~_~]\a for # ~ {a,H}
Sum.v,: p_[p + q] --~ p_[q]®!(p)
Compr# : /t[p I q] --+ V I ju[q]

We use standard term notation for left and right hand sides of rewriting
rules, i.e., for the domain and codomain arrows of cells. This is possible since
almost all our horizontal and vertical constructors are term constructors, i.e.,
return one value. The only exception is discharger, which returns no value. To
accommodate for the discharger, we extend the ordinary term notation intro-
ducing the monoidal operation. Notice that the parallel composition t®!(t') still

