
Basic Notions of Discrete-Event Simulation (DES)
Computational Models for Complex Systems

Paolo Milazzo

Dipartimento di Informatica, Università di Pisa
http://pages.di.unipi.it/milazzo

milazzo di.unipi.it

Laurea Magistrale in Informatica
A.Y. 2019/2020

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 1 / 19



Roadmap

What we did...

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 2 / 19



Roadmap

... and what we are going to do!

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 3 / 19



Introduction

We have seen Stochastic Simulation (e.g. Gillespie’s algorithm and PRISM
simulation feature) as a simulation approach for discrete-state systems

Stochastic simulation produces descriptions of possible system’s
behaviours as sequences (traces) of instantaneous events

The frequency of events is based on an exponential distribution

The memoryless property of exponential distribution makes each
simulation step independent from the previous ones

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 4 / 19



Gillespie’s Stochastic Simulation Algorithm (SSA)

Gillespie’s algorithm (REMINDER):

The state of the simulation:

is a vector representing the multiset of molecules in the chemical
solution (initially [X1, . . . ,Xn])

a real variable t representing the simulation time (initially t = 0)

The algorithm iterates the following steps until t reaches a final value tstop.

1 The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter a0 =

∑M
ν=1 aν ;

2 The reaction Rµ that has to occur at time t + τ is randomly chosen
with probability

aµ∑M
ν=1 aν

(that is
aµ
a0

).

At each step t is incremented by τ and the multiset representing the
chemical solution is updated by subtracting reactants and adding products.

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 5 / 19



Introduction

Some weaknessess of Stochastic Simulation:

in general, events of a system could be not instantaneous

the frequency of events could follow different distributions, such as:
I fixed delay
I uniform distribution within an interval
I gaussian distribution
I conditional delay (wait until a certain condition is satisfied)
I ...

Discrete-Event Simulation is a more general simulation approach that
allows all of these timing issues to be easily dealt with

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 6 / 19



Classical example: customers queue

Consider the following (classical) example of customer service with one
operator:

Customers arrive and join the queue

When the operator is free, he/she starts
serving the next customer in the queue

Serving a customer requires some time,
after which the operator is free again

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 7 / 19



Classical example: customers queue

We may imagine that the different events have different timings...

Event Timing

arrival of a new customer exponentially distributed
with rate λ

customer moving from condition based (i.e.“when the customer
queue to service is the first of the queue and the operator

is free”)

customer served gaussian distribution with mean µ
and variance σ2

Memoryless-property cannot be assumed!

we cannot choose one of the enabled events, update the simulator
clock, handle the event and continue (as in Gillespie’s case)

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 8 / 19



Discrete-Event Simulation

Discrete Event Simulation (DES) allows these systems to be simulated by
maintaining an event list

Some terminology:

State: is a description of a system configuration in terms of a set of
variables

Activity: is a process that involves a sequence of updates of the state
variables (events) over time. It has a duration

Event: is an instantaneous update of the state variables. For example
they can correspond to the start and end of an activity

Event notice: is the description of a future event with the time at
which it will happen

Future Event List (FEL): is a list of event notices ordered by time

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 9 / 19



Discrete-Event Simulation

In general, an activity may trigger other events between Start and End...

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 10 / 19



The Future Event List (FEL)

The Future Event List (FEL) controls the simulation

The FEL contains notices of all future events that are scheduled

The FEL is ordered by increasing time of event notice

t1 ≤ t2 ≤ t3 ≤ t4

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 11 / 19



The Future Event List (FEL)

Idea of the simulation algorithm:

1 initialize state variables, the FEL (with one or more pre-schedueled
events) and a global clock variable T = 0

2 iteratively:
I remove the first event notice (t,Event)
I handle Event. This may require updating state variables, adding one or

more event notices in FEL and possibly (but unusually) removing one
or more scheduled events from FEL

I update the global clock T = t

3 until a stop time T = Tstop is reached or the FEL is empty

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 12 / 19



Conditional and Primary Events

Actually, events that have to wait for a condition in order to be enabled
make the picture a little bit more complex

Let us distinguish:

Primary events: events whose occurrence is scheduled at a certain
time

I The arrival of a new customer

Conditional events: events that are triggered by a certain condition
becoming true

I Customer moving from queue to service
(waits for the operator to be free)

Conditional events are untimed.

They could be stored either at the beginning of the FEL or in a
separate data structure

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 13 / 19



The Simulation Algorithm

Revised simulation algorithm (with conditional events):

1 Initialize variables, FEL and T
2 Iterate:

I If there is a conditional event enabled, remove and process it
(T does not change)

I Otherwise, remove and process the first primary event (and update T )

3 Until T = Tstop or FEL empty

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 14 / 19



The Customer Queue

State variables:

int N: the length of the queue

bool Op: the availability of the operator

Events (in pseudo-code):

[CustomerArrival]

N:=N+1;

schedule(CustomerArrival,T+Exp(λ));

[CustomerMovingToService]

WHENEVER (N>0) and (Op=true)

N:=N-1; Op:=false;

schedule(CustomerServed,T+Gauss(µ,σ2));

schedule(CustomerMovingToService);

[CustomerServed]

Op:=true;

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 15 / 19



The Customer Queue
Example of FEL at run-time:

Tracking the value of the state variables over time we obtain a possible
dynamics of the system

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 16 / 19



Implementation of a Discrete-Event Simulator

Many specialized modeling languages exist for DES. Some examples:

Arena (https://www.arenasimulation.com/)
Commercial, but with free student licence

FlexSim (https://www.flexsim.com/)
Commercial, but with free student licence

SimPy (https://simpy.readthedocs.io)
Open source Python Library

System C (http://www.systemc.org/)
Open source C++ Library

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 17 / 19

https://www.arenasimulation.com/
https://www.flexsim.com/
https://simpy.readthedocs.io
http://www.systemc.org/


Implementation of a Discrete-Event Simulator

A Discrete-Event Simulator can be easily implemented in any general
purpose programming language

Typically, object-oriented languages are preferred (Java is the most used in
this context) since interfaces and inheritance mechanisms make the
management of the FEL very natural

public class CustomerArrival implements Event { ... }

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 18 / 19



Implementation of a Discrete-Event Simulator

The implementation of a Discrete-Event Simulator with a general purpose
language require to pay some attention on the implementation of the FEL

Typically, most of the CPU time is spent in FEL operations:

Removals of the first element (very common)

Insertion in the middle of the list (very common)

Removals in the middle of the list (quite rare)

It is often better to resort to some tree-based representation of the FEL in
order to pay O(log n) for the insertion operations rather than O(n) (but
sacrifying something on the removals)

Paolo Milazzo (Università di Pisa) CMCS - Discrete-Event Simulation A.Y. 2019/2020 19 / 19


