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Introduction

Transition systems describe all the possibile behaviors of a systems

Alternative behaviors are described through non-determinstic choices

Non-determinism allows choices between alternative behaviors to be
modeled without describing the choice criterion
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Introduction

Sometimes the choice criterion is known to be

probabilistic, or

due to a (stochastic) race between poisson processes (race condition)

This leads to the definition of

Probabilistic Transition Systems (PTSs)
aka Discrete Time Markov Chains (DTMCs)

Stochastic Transition Systems (STSs)
aka Continuous Time Markov Chains (CTMCs)

See also:

Dave Parker’s Lectures on Probabilistic Model Checking
(in particular, Lectures 2,3,8,9)
Available here:
https://www.prismmodelchecker.org/lectures/pmc/

Paolo Milazzo (Università di Pisa) CMCS - Markov Chains A.Y. 2019/2020 3 / 30

https://www.prismmodelchecker.org/lectures/pmc/


Probability Example

Modeling a 6-sided dice using a fair coin

algorithm due to Knuth/Yao

start at 0, toss a coin

upper branch when H

lower branch when T

repeat until value chosen

Is this algorithm correct?

e.g. probability of obtaining a 4?

Obtain as disjoint union of events

THH, TTTHH, TTTTTHH, . . .

Probability:
(1/2)3 + (1/2)5 + (1/2)7 + . . . = 1/6
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Discrete Time Markov Chains (DTMCs)

Let’s extend Transition Systems with probabilities...

Definition: Discrete Time Markov Chain (DTMC)

A Discrete Time Markov Chain is a pair (S ,P) where

S is a set of states and

P : S × S → [0, 1] is the probability transition matrix such that, for all
s ∈ S it holds: ∑

s′∈S
P(s, s ′) = 1

The probability transition matrix can be expressed equivalently as a
probabilistic transition relation →⊆ S × [0, 1]× S such that (s, p, s ′) ∈→
(or s

p−→ s ′) if and only if P(s, s ′) = p > 0 (if p = 0 the transition is
usually omitted).
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Discrete Time Markov Chains (DTMCs)

When the set of states is finite, S = {s0, s1, . . . , sn}, the probability
transition matrix can actually be represented as a square matrix:

P =


p00 p01 p02 . . . p0n

p10 p11 p12 . . . p1n
...

...
...

. . .
...

pn0 pn1 pn2 . . . pnn


where pij = P(si , sj) and the sum of each row is equal to 1.
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A simple DTMC example

S = {s0, s1, s2} P =

 0 1 0
0.99 0 0.01

0 0 1
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Some notes

In DTMC we usually have an initial state or (more generally) a probability
distribution of initial states, represented as a vector

[1, 0, 0] means that s0 is the initial state

[0.5, 0.5, 0] means that s0 and s1 are equally likely to be initial states

The constraint
∑

s′∈S P(s, s ′) = 1 implies that

every state has at least one outgoing transition
(otherwise the sum would be 0)

hence, deadlocks correspond to states with a self-loop
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Coins and dice example as a DTMC

Let’s reformulate Knuth/Yao’s algorithm as a DTMC:

S = {s0, s1, . . . , s6, 1, 2, . . . , 6}

sinit = s0

P =

0 0.5 0.5 . . .
0 0 0 . . .
...

...
...

. . .
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Paths and their probabilities

A path of a DTMC is the analogous of a (maximal) trace for a Transition
System

Definition: Path

A path π of a DTMC (S ,P) with initial state s0, is a (possibly infinite)
sequence of states π = s0, s1, s2, . . . such that for each si+1 with i ∈ N in
π it holds P(si , si+1) > 0.

The probability of a path is simply the product of the probabilities of its
transitions:

Prob(s0, s1, s2, . . . , sn) =
n−1∏
i=0

P(si , si + 1)

Prob(s0, s1, s2, . . .) =
∏
i∈N

P(si , si + 1)
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Probabilistic reachability
In a DTMC it is possible to compute the probability that the system will
reach a given state

Reachability = property expressing whether a given state can be
reached (there exists a path leading to it)

Probabilistic reachability = probability of reaching a given state
(probabilities of all the paths leading to it)

Paths are independent events: their probabilities can be summed!

Definition: Probabilistic Reachability

The probability of reaching state s of a DTMC (S ,→) from the initial
state s0, is the sum of the probabilities of all paths leading to it.

ProbReach(s0, s) =
∑

π∈Reach(s0,s)

Prob(π)

where Reach(s0, s) is the (possibly infinite) set of paths reaching s.
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Probabilistic reachability: example

ProbReach(s0, s2) = 1 · 0.01

+ 1 · 0.99 · 1 · 0.01

+ (1 · 0.99)2 · 1 · 0.01

...

+ (1 · 0.99)n · 1 · 0.01

...

= 1
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Probabilistic reachability: example

In this example, the infinite sum can be avoided by observing that the only
path not leading to s2 is the infinite path π01 = s0, s1, s0, s1, s0, . . .

So, ProbReach(s0, s2) = 1− Prob(π01)

But π01 is a single infinite path with a loop containing a transition with a
probability strictly smaller than 1

P(π01) = (0.99 · 1)∞ = 0

ProbReach(s0, s2) = 1− Prob(π01) = 1
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Probabilistic reachability: example

Another (more general) way to avoid the infinite summation, is by
reformulating ProbReach in terms of a linear system of equations

The idea:

the probability of reaching s2 from s2 is 1

the probability of reaching s2 from s1 is 0.01 plus the probability of
reaching s0 in one step, and then of reaching s2 from there

the probability of reaching s2 from s0 is the probability of reaching s1

in one step, and then of reaching s2 from there
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Probabilistic reachability: example

Another (more general) way to avoid the infinite summation, is by
reformulating ProbReach in terms of a linear system of equations

This leads to a mutually recursive reformulation of ProbReach:

ProbReach(s2, s2) = 1

ProbReach(s1, s2) = 0.01 ·ProbReach(s2, s2) + 0.99 ·ProbReach(s0, s2)

ProbReach(s0, s2) = 1 · ProbReach(s1, s2)
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Probabilistic reachability: example

Another (more general) way to avoid the infinite summation, is by
reformulating ProbReach in terms of a linear system of equations

Let’s denote ProbReach(s, s2) as xs to obtain:
xs2 = 1

xs1 = 0.01xs2 + 0.99xs0

xs0 = xs1

From which we obtain easily xs0 = 1
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Probabilistic reachability: coins and dice example

Let’s compute the probability of rolling a 6



x6 = 1

xs6 = 1
2xs2 + 1

2x6

xs2 = 1
2xs6 + 1

2xs5

xs5 = 0

xs0 = 1
2xs2 + 1

2xs1

xs1 = 0
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Probabilistic reachability: coins and dice example

Let’s compute the probability of rolling a 6


xs6 = 1

2xs2 + 1
2

xs2 = 1
2xs6

xs0 = 1
2xs2
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Probabilistic reachability: coins and dice example

Let’s compute the probability of rolling a 6


xs6 = 2

3

xs2 = 1
3

xs0 = 1
6
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Computing probabilistic reachability

We have seen that computing probabilistic reachability ProbReach(s, s ′)
amounts to solving a system of linear equations in order to obatain xs′ :

∀Si ∈ S Xsi =

{
1 if si = s ′∑

sj∈S P(sj , si )Xsi otherwise

where P is the probability transition matrix of the DTMC

This can be done by applying iterative computational algebra methods
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Continuous Time Markov Chains (CTMCs)

This time let’s extend Transition Systems with stochastic rates...

Definition: Continuous Time Markov Chain (CTMC)

A Continuous Time Markov Chain is a pair (S ,R) where

S is a set of states and

R : S × S → R≥0 is the transition rate matrix

The transition rate matrix can be expressed equivalently as a stochastic
transition relation →⊆ S × R≥0 × S such that (s, r , s ′) ∈→ (or s

r−→ s ′) if
and only if R(s, s ′) = r > 0 (if r = 0 the transition is usually omitted).
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Race conditions

What happens when there exist multiple s ′ with R(s, s ′) > 0?

race condition: the “fastest” transition determines the next state of
the system

Two questions:
I 1) How long is spent in s before a transition occurs?
I 2) Which transition is eventually taken?

1) Time spent in a state before a transition

minimum of exponential distributions

exponential with parameter given by the
summation:

E (s) =
∑
s′∈S

R(s, s ′)

E(s) is called exit rate of state s
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Race conditions

2) Which transition is taken from state s?

the choice is independent from the time at which it occurs

the probability is proportional to the rate of each transition

More generally, the probability of the next transition to occur is given by
the embedded DTMC of the CTMC...
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Embedded DTMC of a CTMC

The embedded DTMC of a CTMC describes the state changes of the
CTMC by ignoring time

It is obtained by normalizing the transition rates of the CTMC with
respect to the exit rate of each state

Definition: Embedded DTMC

Given a CTMC (S ,R), its embedded DTMC is the DTMC (S ,P) where,
for any s, s ′ ∈ S

P(s, s ′) =


R(s, s ′)/E (s) if E (s) > 0

1 if E (s) = 0 and s = s ′

0 otherwise
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Embedded DTMC of a CTMC

An example:
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Time Independent Probabilistic Reachability on CTMCs

Given a CTMC, what is the probability of reaching a state s at any time?

It corresponds to probabilistic reachability of the same state in the
embedded DTMC

So, it can be computed by applying computational algebra methods
based on the transition probability matrix P of the embedded DTMC
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Transient (Time-dependent) Probabilistic Reachability on
CTMCs

Given a CTMC, what is the probability of the system to be in a state s at
a given time?

This can be answered by introducing uniformised DTMCs
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Uniformisation

Given a CTMC, its uniformised DTMC is obtained by choosing a
uniformisation rate q bigger or equal to all the rates of the CTMC

each rate r of the CTMC is transformed into probability r/q

self-loops are added where necessary

Example (with q = 10):
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Uniformisation

Some notes:

a transition in the uniformised DTMC describes a step with duration
1/q

q should be chosen big enough to assume that at most one transition
can occur during a 1/q time interval

Transient probabilistic reachability of a CTMC can now be computed as
probabilistic reachability in the uniformised DTMC, by taking the length of
the paths in the DTMC into account.

again, can be computed by performing matrix computations on the
transition probability matrix of the DTMC
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Application to chemical reactions

Now, we could apply reachability analysis to chemical reactions...

A + B
k1


k2

AB A
k3→
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